JPWO2014119586A1 - オービトロンポンプ、およびオービトロンポンプを備えた電子線装置 - Google Patents

オービトロンポンプ、およびオービトロンポンプを備えた電子線装置 Download PDF

Info

Publication number
JPWO2014119586A1
JPWO2014119586A1 JP2014559702A JP2014559702A JPWO2014119586A1 JP WO2014119586 A1 JPWO2014119586 A1 JP WO2014119586A1 JP 2014559702 A JP2014559702 A JP 2014559702A JP 2014559702 A JP2014559702 A JP 2014559702A JP WO2014119586 A1 JPWO2014119586 A1 JP WO2014119586A1
Authority
JP
Japan
Prior art keywords
electron beam
anode
pump
material source
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014559702A
Other languages
English (en)
Other versions
JP6174054B2 (ja
Inventor
実 金田
実 金田
大西 崇
崇 大西
村越 久弥
久弥 村越
伊藤 博之
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2014119586A1 publication Critical patent/JPWO2014119586A1/ja
Application granted granted Critical
Publication of JP6174054B2 publication Critical patent/JP6174054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps
    • H01J41/14Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of thermionic cathodes
    • H01J41/16Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of thermionic cathodes using gettering substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • H01J2237/1825Evacuating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

オービトロンポンプを構成する部品からのガス放出量を減らす。アノード(1)、吸着材料源(2)及び電子放出用フィラメント(3)がチャンバ(4)の内部に配置されたオービトロンポンプにおいて、アノード(1)を通電加熱できるようにする。これにより、ポンプ動作前にアノードを通電加熱して脱ガスでき、ポンプ動作中のガス放出量を低減できる。

Description

本発明は、電子線装置に用いる真空ポンプに関する。
従来の高輝度照射を目的とした走査型電子顕微鏡(SEM)や電子線描画装置(EB)は、電界放出型、ショットキー放出型または熱電子放出型の電子源から放出される電子線を加速し、電子レンズで細い電子ビームとし、これを一次電子ビームとして走査偏向器を用いて試料上に走査し、走査型電子顕微鏡であれば得られる二次電子あるいは反射電子を検出して像を得るものであり、電子線描画装置であればレジスト膜上にあらかじめ登録されたパターンを描画するものである。電子源の材料としてはタングステン、ジルコニア塗布タングステン、ジルコニア含有タングステンまたは六ホウ化ランタン(LaB6)などが用いられる。
上記電子源から良好な電子ビームを長時間にわたって得るには、電子源周辺を超高真空〜極高真空(10-7-10-10Pa)に保つ必要がある。B. Cho et al., Applied Physics Letters, Volume 91 (2007), 012105(非特許文献1)には、タングステン電界放出型の電子源を用いる場合、電子源周辺の圧力が下がるほどビーム電流の安定性が向上することが記載されている。このため、従来においては、特開2002-358920号公報(特許文献1)に記載されているように、電子源をスパッタイオンポンプで排気する方法が取られている。ここで、スパッタイオンポンプとは、化学吸着排気機能とイオン化排気機能を有する真空ポンプであり、化学吸着排気機能とは、活性金属膜の持つガス分子に対する化学吸着能を利用した排気機能のことであり、イオン化排気機能とは、真空槽内のガス分子をイオン化して加速し活性金属膜に打込んで排気する機能のことである。
特開2000-149850号公報(特許文献2)には、電子光学系を小型化する手段として、鏡筒内にゲッターポンプを内蔵した荷電粒子線装置が開示されている。また米国特許第4833362号明細書(特許文献3)、特開平6-111745号公報(特許文献4)には、電子源室内に非蒸発ゲッターポンプを内蔵した荷電粒子線装置が開示されている。ここで、ゲッターポンプとは、加熱によりゲッターを活性化し昇華させ、ゲッターにガス分子を吸着する形式の真空ポンプである。また、非蒸発ゲッターポンプとは、ゲッターを昇華させずに加熱するだけでガス分子を吸着する合金を用いて構成された真空ポンプのことである。
米国特許第3244969号明細書(特許文献5)には、スパッタイオンポンプと同様に2つの排気機能を持つ真空ポンプであるオービトロンポンプが開示されている。オービトロンポンプは、ポンプチャンバ、チタン源、チタン源を保持するアノード、およびフィラメントから構成される。通常、アノードは、ポンプチャンバの中心軸上に配置される。アノードは、ポンプチャンバおよびフィラメントに対して正の高電圧が印加される。フィラメントは、ポンプチャンバに対して正の電圧が通常印加されるが、ポンプチャンバと同電位でも良い。ポンプチャンバは、通常接地電位である。
フィラメントを加熱することによりフィラメントから電子が放出される。フィラメントから放出された電子は、アノードおよびフィラメントならびにポンプチャンバの作る電界により加速され、アノードまたはアノードに保持されたチタン源に衝突する。電子の衝突によりチタン源が加熱されチタンが昇華し、ポンプチャンバ内壁に清浄なチタン膜が形成される。清浄なチタン膜は、ガス分子に対する化学吸着機能を有しており、化学的に活性なガスは、ポンプチャンバ内壁に形成されたチタン膜の化学吸着排気機能により排気される。
希ガスまたはメタンなどの化学的に安定なガス分子は、次のような機構により排気される。フィラメントから放出された電子の一部は、ガス分子に衝突してガス分子をイオン化する。イオン化されたガス分子は、ポンプチャンバ内の電界により加速され、ポンプチャンバ内壁に形成されたチタン膜内部に打込まれ排気される(イオン化排気機能)。
特開2002-358920公報 特開2000-149850公報 米国特許第4833362明細書 特開平6-111745公報 米国特許第3244969明細書
B. Cho et al., Applied Physics Letters, Volume 91 (2007), 012105
本願発明者が、電界放出型の電子源にかかる真空ポンプなどの小型化について鋭意検討した結果、次の知見を得るに至った。
電界放出型の電子源を用いる場合、超高真空〜極高真空(圧力10-7-10-10Pa)が要求されるので、電子源の真空排気にはスパッタイオンポンプが用いられている。しかし、スパッタイオンポンプは、可動部が無く、通電のみにより10-7Pa以下の圧力に維持できる長所があるものの、数十cm角以上の大きさを有する。更に、強磁場を発生するためのマグネットを有するため、電子源側に磁場シールドを設置する必要がある。
特開2002-358920号公報(特許文献1)に記載されている従来技術では、主排気ポンプであるスパッタイオンポンプが大きく、かつ磁場の漏れがあるために電子源から一定の距離を置いて設置する必要があり、小型化が困難であった。また、スパッタイオンポンプは、ペニング放電を利用したポンプであるため、真空度が良くなる(圧力が下がる)につれて排気効率が落ちるという欠点もあり、到達真空度(到達圧力;実現できる最も低い圧力)に制限があった。
非蒸発ゲッターポンプを用いれば小型化は可能となるが、非蒸発ゲッターポンプではヘリウムやアルゴンなどの希ガス類、メタン等の化学的に安定なガス分子の排気が困難であるという欠点がある。スパッタイオンポンプを併用すれば真空度は良くなる(圧力が下がる)が、先に述べたスパッタイオンポンプの持つ欠点を回避できない。
オービトロンポンプは、スパッタイオンポンプと異なり磁石を用いないため、磁場の遮蔽が必要無く、また構造も単純である。例えば、荷電粒子線装置の電子源の真空排気ポンプとして用いることで、装置の小型化が可能となる。また、スパッタイオンポンプのイオン化排気機能は、ペニング放電を利用したものであるため、真空槽内の圧力が下がると(真空度が上がると)イオン化排気機能は小さくなるが、一方、オービトロンポンプのイオン化排気機能は、フィラメントから供給する電子を利用したものであるため、真空槽内の圧力(真空度)とは無関係であり、真空槽内の圧力が下がっても(真空度が上がっても)イオン化排気機能は小さくならないという特長を持つ。
しかしながら、オービトロンポンプは、フィラメントから電子を放出しアノードに向かって加速するポンプであるため、フィラメントの加熱、および電子がアノードに衝突する際の発熱に伴う熱負荷が大きく、熱負荷によるガス放出が大きいという欠点がある。
真空槽内の単位時間当たりのガス放出量をQ(ポンプからのガス放出量をQ1,ポンプ以外からのガス放出量をQ2)、真空排気ポンプの実効排気速度をSとすると、到達できる圧力Pは
Figure 2014119586
となり、ポンプからのガス放出量Q1が大きいほど到達できる圧力が上がる(真空度が下がる)。つまり、超高真空〜極高真空を実現するためには、オービトロンポンプ部品からのガス放出量を減らすことが必要である。
本発明の目的は、オービトロンポンプを構成する部品からのガス放出量を減らすことや、真空ポンプを用いる電子源などを小型化することに関する。
本発明は、アノード、吸着材料源および電子放出用フィラメントがチャンバの内部に配置されたオービトロンポンプにおいて、アノードが通電加熱されることに関する。
本発明により、一つの観点として、ポンプ動作中の熱負荷が大きい電子放出用フィラメントおよびアノードを、ポンプ動作前に通電加熱することにより脱ガスできるので、ポンプ動作中のガス放出量を低減できる。また、別の観点として、ポンプ動作中に電子放出用フィラメントへの熱負荷を上げること無く、吸着材料源を昇華できる。また、別の観点として、アノードからの輻射熱により吸着材料表面を清浄化できる。また、別の観点として、オービトロンポンプを電子源の近傍に配置できるので、電子源を含む真空槽の到達圧力を下げることができる。
実施例にかかるオービトロンポンプの基本構成を示す模式図 オービトロンポンプの第一の実施例を示す模式図(アノードの周りに吸着材料のワイヤを巻きつけたもの) オービトロンポンプの第一の実施例を示す模式図(アノードが吸着材料の塊を担持しているもの) オービトロンポンプの第一の実施例を示す模式図(アノードの表面に吸着材料を塗布したもの) オービトロンポンプの第二の実施例を示す模式図 オービトロンポンプの第三の実施例を示す模式図 オービトロンポンプの第四の実施例を示す模式図 オービトロンポンプの第五の実施例を示す模式図 オービトロンポンプの第六の実施例を示す模式図 オービトロンポンプを用いた走査型電子顕微鏡の第一の実施例を示す模式図 オービトロンポンプを用いた走査型電子顕微鏡の第二の実施例を示す模式図
図1に、実施例にかかるオービトロンポンプの基本構成を示す。実施例にかかるオービトロンポンプは、アノード1、吸着材料源2、フィラメント3およびポンプチャンバ4から構成され、アノード1が通電加熱可能であることを特徴とする。ポンプ動作中の熱負荷が大きいフィラメント3およびアノード1をポンプ動作前に通電加熱脱ガスすることで、ポンプ動作中のガス放出量を低減することができる。
また、実施例にかかるオービトロンポンプのイオン化排気機能は、フィラメント3から放出される電子が担っており、一方、化学吸着排気機能は、アノード1への通電加熱が担っている。従来のオービトロンポンプでは、化学吸着排気機能もフィラメントからの電子が担っており、吸着材料源の昇華に必要なエミッション電流を賄うためにフィラメントへの熱負荷が大きかった。一方、実施例にかかるオービトロンポンプでは、フィラメント3への熱負荷を上げること無く、吸着材料源の昇華が可能であり、吸着材料源の昇華時のフィラメントへの熱負荷によるガス放出も低減できる。
実施例にかかるオービトロンポンプを用いることにより、オービトロンポンプ部品からのガス放出量が低減し、式(1)で与えられる関係によりオービトロンポンプおよびオービトロンポンプを含む真空槽の到達圧力を下げることができる(到達真空度が改善する)。また、真空ポンプとしてオービトロンポンプを用いることにより、電子源、電子源から電子線を引き出すための電極、および電子源近傍を真空排気する真空ポンプなどから構成される電子銃を小型化でき、小型化した電子銃を有する走査電子顕微鏡および電子線描画装置などの電子線装置を得ることができる。
実施例では、アノード、吸着材料源および電子放出用フィラメントがチャンバの内部に配置され、アノードが通電加熱されるオービトロンポンプを開示する。また、オービトロンポンプおよび電子線を形成する手段を備えた電子線装置を開示する。また、オービトロンポンプが、電子源その内部に配置している電子源室に直結していることを開示する。また、電子源が、オービトロンポンプに組み込まれていることを開示する。
また、実施例では、オービトロンポンプのアノードが、そのチャンバの内部で折り返された形状であることを開示する。また、吸着材料源がアノードに保持されていること開示する。また、ワイヤ状の吸着材料源がアノードに巻き付けられていることを開示する。また、吸着材料源の塊がアノードに担持されていることを開示する。また、吸着材料源がアノードの表面に塗布されていることを開示する。
また、実施例では、吸着材料源が前記アノードと前記チャンバの間の空間に配置されていることを開示する。また、吸着材料源がチャンバの内壁に形成されていることを開示する。
また、実施例では、オービトロンポンプが吸着材料源を保持するヒーターを備え、オービトロンポンプのアノードと吸着材料源が分離していることを開示する。また、ヒーターがチャンバの内部で折り返された形状であり、通電加熱されることを開示する。また、吸着材料源がヒーターに保持されていること開示する。また、ワイヤ状の吸着材料源がヒーターに巻き付けられていることを開示する。また、吸着材料源の塊がヒーターに担持されていることを開示する。また、吸着材料源がアノードの表面に塗布されていることを開示する。
また、実施例では、オービトロンポンプが、その電子放出用フィラメントから放出される電子を、そのチャンバ内に閉じ込めるリフレクタ電極を有することを開示する。また、オービトロンポンプが、電子放出用フィラメントから放出される電子との反応によってイオン化されたガス分子を、そのチャンバ内壁に向かって加速するグリッド電極を有することを開示する。また、吸着材料源が前記グリッド電極と前記チャンバの内壁の間にあることを開示する。
また、実施例では、アノードからの輻射熱により吸着材料源を清浄化することを開示する。
以下、上記およびその他の新規な特徴および効果について図面を参酌して説明する。なお、図面はもっぱら発明の理解のために用いるものであり、権利範囲を限定するものではない。
図2に、オービトロンポンプの第一の実施例を示す。
本実施例にかかるオービトロンポンプは、アノード1、吸着材料源2、フィラメント3、ポンプチャンバ4、リフレクタ電極5およびグリッド電極6から構成される。ポンプチャンバ4は、取り付け口を有する円筒形チャンバである。このポンプチャンバ4の中心近傍に、アノード1および吸着材料源2が配置されている。アノード1は、逆U字形状であり、ポンプチャンバ4内で折り返された形状となっており、通電加熱が可能である。材料としては、タングステンなどの金属線である。吸着材料源2として、ワイヤ状の吸着材料が、アノード1に巻き付けられている。吸着材料としては、活性金属または活性金属から成る合金を用いればよく、例えば純チタンがその一例である。フィラメント3は、ポンプチャンバ4とアノード1の間に配置されている。リフレクタ電極5は、フィラメント3から放出される電子をポンプチャンバ4内に閉じ込めるためのものである。グリッド電極6は、フィラメント3から放出される電子との反応によってイオン化されたガス分子をポンプチャンバ4内壁に向かって加速するためのものである。なお、リフレクタ電極5およびグリッド電極6は無くても良い。
フィラメント3を加熱することによりフィラメント3から電子が放出される。フィラメント3から放出された電子は、フィラメント3に対して正の高電圧を印加されたアノード1およびフィラメント3ならびにポンプチャンバ4の作る電界により加速され、アノード1またはアノード1に保持された吸着材料源2に衝突する。電子の衝突により吸着材料源2が加熱され吸着材料が昇華し、ポンプチャンバ4内壁に清浄な吸着膜が形成される。若しくは、アノード1を通電加熱することにより吸着材料源2を昇温し、吸着材料源2を昇華させてポンプチャンバ4内壁に清浄な吸着膜を形成しても良い。清浄な吸着膜は、ガス分子に対する化学吸着機能(ゲッター作用)を有しており、化学的に活性なガスは、ポンプチャンバ4内壁に形成された吸着膜のゲッター作用により排気される。希ガスまたはメタンなどの化学的に安定なガス分子は、次のような機構により排気される。フィラメント3からアノード1に到達するまでに一部の電子はガス分子と衝突する。フィラメント3から放出された電子がガス分子に衝突すると、ガス分子がイオン化される。イオン化されたガス分子は電界により加速され、ポンプチャンバ4内壁に形成された吸着膜内部に叩き込まれ排気される(イオン化排気機能)。また、熱負荷の大きいフィラメント3およびアノード1をポンプ動作前に通電加熱して十分脱ガスすることにより、ポンプ動作中のガス放出量を低減することができる。ここで、リフクレクタ電極5は、フィラメント3から放出された電子がポンプチャンバ4の外部に出ていくことを防止し、ポンプの排気効率の向上を図る。グリッド電極6は、グリッド電極6とポンプチャンバ4間に電位差を設けることにより、電子と衝突することにより生成されたイオンを加速し、効率的にポンプチャンバ4内壁に叩き込み排気する。
具体的な立ち上げ手順は以下のようになる。図示されていない粗引きポンプにより、ポンプ内部の圧力を高真空まで真空排気する。その後、超高真空以上の真空が要求される真空槽とオービトロンポンプを加熱脱ガスするベーキングと呼ばれる作業を実施する。ベーキング終了直前にアノード1およびフィラメント3に通電して加熱脱ガスを実施し、ベーキング作業を終了する。アノード1およびフィラメント3の通電加熱脱ガスをベーキング中に一回、あるいは複数回実施しても良い。ベーキング終了後の真空槽およびオービトロンポンプの温度が下がる途中でオービトロンポンプを動作させて粗引き系を閉じることにより、超高真空〜極高真空が実現される。
吸着材料源2として、本実施例では、吸着材料をワイヤ状にしてアノード1に巻き付けたものを用いているが、図3のようにアノード1の中途に吸着材料の塊を担持したもの、または図4のようにアノード1の表面に吸着材料を塗布したものを用いても良い。
図5に、オービトロンポンプの第二の実施例を示す。以下、第一の実施例との相違点を中心に説明する。
本実施例にかかるオービトロンポンプは、アノード1、吸着材料源2、フィラメント3、ポンプチャンバ4、リフレクタ電極5およびグリッド電極6から構成されている。ここで、吸着材料源2は、グリッド電極6とポンプチャンバ4の間に配置されている。あるいは、吸着材料源2はポンプチャンバ4の内壁に形成されていても良い。なお、リフレクタ電極5およびグリッド電極6は無くても良い。
本実施例では、アノード1を通電加熱することによりアノード1から輻射熱が放出され、アノード1からの輻射熱により吸着材料源2を昇温することにより吸着材料源2の表面が清浄化される。清浄な吸着材料表面は、ガス分子に対する化学吸着機能(ゲッター作用)を有しており、化学的に活性なガスは、吸着材料源2のゲッター作用により排気される。希ガスまたはメタンなどの化学的に安定なガス分子は、次のような機構により排気される。フィラメント3からアノード1に到達するまでに一部の電子はガス分子と衝突する。フィラメント3から放出された電子がガス分子に衝突すると、ガス分子がイオン化される。イオン化されたガス分子は電界により加速され、吸着材料源2の内部に叩き込まれ排気される(イオン化排気機能)。
図6に、オービトロンポンプの第三の実施例を示す。以下、第一の実施例との相違点を中心に説明する。
本実施例では、ポンプチャンバ4、2つのフィラメント3、2つのアノード1、2組のリフクレクタ電極5および2つの円筒形のグリッド電極6を有している。2つの円筒形のグリッド電極6の中心近傍に、アノード1および吸着材料源2がそれぞれ配置されている。2つのフィラメント3は、それぞれの円筒形のグリッド電極6とアノード1の間にそれぞれ配置されている。つまり、本実施例では、1つのポンプチャンバ4内に、オービトロンポンプ機能を持つセル(1つのセルは、フィラメント3、アノード1、グリッド電極6およびリフクレクタ電極5から構成される)を2つ有する。なお、図6では2つのセルを有する場合を図示しているが、3つ以上のセルを有していても良い。また、リフクレクタ電極5は無くても良い。
図7に、オービトロンポンプの第四の実施例を示す。以下、第一および第三の実施例との相違点を中心に説明する。
本実施例では、ポンプチャンバ4、2つのフィラメント3、1つのアノード1、2組のリフクレクタ電極5および2つの円筒形のグリッド電極6を有している。1つのアノード1は、大きな逆U字形状であり、ポンプチャンバ4内で折り返された形状となっており、通電加熱が可能である。2つの円筒形のグリッド電極6の中心近傍に、アノード1のそれぞれの端部が配置されている。吸着材料源2として、ワイヤ状の吸着材料が、アノード1のそれぞれの端部に巻き付けられている。2つのフィラメント3は、それぞれの円筒形のグリッド電極6とアノード1のそれぞれの端部の間にそれぞれ配置されている。つまり、本実施例では、1つのアノード1が2つのポンプセルのアノードの役割を同時に担う構造となっている。
図7では、2つのセルを有する場合を図示しているが、4つ以上のセルを有していても良い。4つのセルを有する場合には、4つのフィラメント3、4組のリフクレクタ電極5、4つのグリッド電極6、2つのアノード1から構成され、2つのアノード1が、4つのポンプセルのアノードの役割を担うことになる。また、リフクレクタ電極5は無くても良い。
図8に、オービトロンポンプの第五の実施例を示す。以下、第一ないし第四の実施例との相違点を中心に説明する。
本実施例では、ポンプチャンバ4、2つのフィラメント3、2つのアノード1、2組のリフクレクタ電極5、2つの円筒形のグリッド電極6、ならびに1つの吸着材料源2およびヒーター7を有している。2つの円筒形のグリッド電極6の中心近傍に、アノード1がそれぞれ配置されている。吸着材料を保持していないアノード1は、逆U字形状であり、ポンプチャンバ4内で折り返された形状となっており、通電加熱が可能である。2つのフィラメント3は、それぞれの円筒形のグリッド電極6とアノード1の間にそれぞれ配置されている。
つまり、1つのポンプチャンバ4内に、オービトロンポンプ機能を持つセル(1つのセルは、フィラメント3、アノード1、グリッド電極6およびリフクレクタ電極5から構成される)を2つ有する。そして、ヒーター7および吸着材料源2は、ポンプチャンバ1の中心近傍であって、2つのオービトロン機能を持つセルの間に配置されている。ヒーター7は、逆U字形状であり、ポンプチャンバ4内で折り返された形状となっており、通電加熱が可能である。材料としては、タングステンなどの金属線である。吸着材料源2として、ワイヤ状の吸着材料が、ヒーター7に巻き付けられている。つまり、本実施例では、吸着材料源とアノードを分離した構成となっている。なお、図8では、2つのセルを有する場合を図示しているが、3つ以上のセルを有していても良い。また、リフクレクタ電極5は無くても良い。
ヒーター7を通電加熱することにより吸着材料源2を昇温し、吸着材料源2を昇華させてポンプチャンバ4内壁に清浄な吸着膜を形成する。清浄な吸着膜は、ガス分子に対するゲッター作用を有しており、化学的に活性なガスはポンプチャンバ4内壁に形成された吸着膜のゲッター作用により排気される。希ガスまたはメタンなどの化学的に安定なガス分子は、イオン化排気機能により排気される。また、熱負荷の大きいフィラメント3およびアノード1をポンプ動作前に通電加熱し十分脱ガスすることにより、ポンプ動作中のガス放出量を低減することができる。
吸着材料源2として、本実施例では、ヒーター7の表面に吸着材料を塗布したもの用いているが、図2のように吸着材料をワイヤ状にしてヒーター7に巻き付けたもの、または図3のようにヒーター7の中途に吸着材料の塊を担持したものを用いても良い。
図9に、オービトロンポンプの第六の実施例を示す。以下、第一ないし第五の実施例との相違点を中心に説明する。
本実施例では、ポンプチャンバ4、2つのフィラメント3、1つのアノード1、2組のリフクレクタ電極5、2つの円筒形のグリッド電極6ならびに1つの吸着材料源2およびヒーター7を有している。吸着部材を保持していない1つのアノード1は、大きな逆U字形状であり、ポンプチャンバ4内で折り返された形状となっており、通電加熱が可能である。2つの円筒形のグリッド電極6の中心近傍に、アノード1のそれぞれの端部が配置されている。2つのフィラメント3は、それぞれの円筒形のグリッド電極6とアノード1のそれぞれの端部の間にそれぞれ配置されている。そして、ヒーター7および吸着材料源2は、ポンプチャンバ1の中心近傍であって、2つのオービトロン機能を持つセルの間に配置されている。つまり、本実施例では、吸着材料源2とアノード1を分離した構成となっている。
また、1つのアノード1が、2つのポンプセルのアノード1の役割を同時に担う構造となっている。図9では2つのセルを有する場合を図示しているが、4つ以上のセルを有していても良い。4つのセルを有する場合には、4つのフィラメント3、4組のリフクレクタ電極5、4つのグリッド電極6、2つのアノード1から構成され、2つのアノード1が、4つのポンプセルのアノードの役割を担うことになる。また、リフクレクタ電極5は無くても良い。
図10に、主排気ポンプとしてオービトロンポンプを用いた電子銃を搭載した走査型電子顕微鏡の第一の実施例を示す。以下、オービトロンポンプにかかる第一との相違点を中心に説明する。
本実施例にかかる走査型電子顕微鏡は、主に、オービトロンポンプユニット10および電子源室などから構成される電子銃、鏡筒、試料室ならびに粗排気系20から構成される。電子源室には、電子源11、引出電極12および加速電極13が配置されている。鏡筒は、絞り14および対物レンズ15を含む真空槽である。試料室は、試料16を載置する試料ステージ17および二次電子検出器18を含む真空槽である。バルブ19aは、鏡筒と粗排気系20を接続するものである。バルブ19bは、試料室と粗排気系20を接続するものである。粗排気系20は、バルブ21を介して、電子源室とオービトロンポンプユニット10を接続する配管と、接続されている。
本実施例では、オービトロンポンプユニット10として、実施例1にかかるオービトロンポンプを用いたが、実施例2ないし実施例6にかかるものであってもよい。
電子源11から電界放出、ショットキー放出または熱電子放出によって放出された電子は、引出電極12および加速電極13によって引き出し加速されて電子線23を形成する。電子線23は、電子源11の下流に設けられたガンバルブ22を通過して、鏡筒および試料室に導かれる。絞り14および対物レンズ15によって電子線23は集束され、試料ステージ17に設置された試料16に照射される。電子線照射によって試料16から放出される二次電子または反射電子は、二次電子検出器18で検出される。電子線を走査することにより、二次電子または反射電子の収量に比例した二次元のコントラスト像が得られる。
電子源11は、オービトロンポンプユニット10によって排気され、超高真空〜極高真空の圧力に維持される。スパッタイオンポンプと異なり、オービトロンポンプユニット20は、小型化や軽量化が可能であり、オービトロンポンプユニット10および電子源室などから構成される電子銃の小型化や耐振動性能向上が可能となる。また、漏洩磁場の影響が無いため、スパッタイオンポンプに比べて電子源11の近傍に配置することができ、したがってポンプ排気速度と配管コンダクタンスで決まる実効排気速度が向上し、スパッタイオンポンプの場合と比べて低い圧力が得られる。電子源11としてタングステン電界放出の電子源を用いた場合には、高輝度かつ電流変動の少ない電子線を利用できる時間が従来より伸びる。したがって、色々な試料を観察や分析する汎用SEMにおいては、高分解能像が安定して得られるメリットがある。半導体パターンの寸法を測長する測長SEMにおいては、ショットキー型の電子源11よりも高分解能の測長を実施できる。
本実施例における真空立ち上げ手順は、大別すると、最初に、電子源室およびオービトロンポンプユニット10などから構成される電子銃の真空排気、次に、鏡筒および試料の真空排気の順となる。鏡筒および試料室の真空排気は、試料16の交換の度に必要となる。しかし、試料交換の際にガンバルブ22およびバルブ21と閉じた状態とすることにより、電子銃の真空排気を試料交換の度に実施する必要は無い。
電子銃の真空排気は、次の手順による。バルブ19a、19bおよびガンバルブ22を閉じた状態とし、バルブ21を開いた状態とした上で、粗排気系20を起動して、電子銃の粗排気を行う。電子銃の圧力を高真空(10-5〜10-6 Pa)まで排気した後、電子銃のベーキング作業を実施する。ベーキング終了前に、オービトロンポンプユニット10のアノードおよびフィラメントを通電加熱脱ガスし、ベーキング作業を終了する。ベーキング終了直後にバルブ21を閉じ、オービトロンポンプユニット10を起動することにより、電子銃を超高真空〜極高真空まで排気できる。
鏡筒及び試料室の真空排気は、ガンバルブ22およびバルブ21を閉じた状態とし、バルブ19aおよび19bを開いた状態とした上で、粗排気系20で排気すればよい。
図11に、主排気ポンプとしてオービトロンポンプを用いた電子銃を搭載した走査型電子顕微鏡の第二の実施例を示す。以下、オービトロンポンプを用いた走査電子顕微鏡にかかる第一の実施例との相違点を中心に説明する。
本実施例にかかる走査型電子顕微鏡は、主に、オービトロンポンプユニット20と直結した電子源室、鏡筒、試料室および粗排気系20から構成される。電子源11は、オービトロンポンプユニット20の取り付け口の近傍に配置されている。粗排気系20は、バルブ21を介して、電子源室と接続されている。つまり、本実施例では、図10で示した走査電子顕微鏡の第一の実施例と異なり、電子源室とオービトロンポンプユニット10が配管を通すこと無く直結されていることを特徴とする。
なお、実施例1ないし実施例8は適宜組合せることが可能であり、本願明細書は当該組合せ形態についても開示する。
また、実施例7および実施例8では、主排気ポンプとしてオービトロンポンプを用いた電子銃の適用例として走査型電子顕微鏡を説明したが、本発明はこれに限られるものではなく、透過型電子顕微鏡や電子線描画装置に用いることもできる。
1:アノード、2:吸着材料源、3:フィラメント、4:ポンプチャンバ
5:リフレクタ電極、6:グリッド電極、7:ヒーター
10:オービトロンポンプユニット、11:電子源、12:引出電極、13:加速電極
14:絞り、15:対物レンズ、16:試料、17:試料ステージ
18:二次電子検出器、19:バルブ、20:粗排気系、21:バルブ
22:ガンバルブ、23:電子線

Claims (28)

  1. アノード、吸着材料源および電子放出用フィラメントがチャンバの内部に配置されたオービトロンポンプにおいて、
    前記アノードが通電加熱されることを特徴とするオービトロンポンプ。
  2. 請求項1記載のオービトロンポンプにおいて、
    前記アノードが前記チャンバの内部で折り返された形状であることを特徴とするオービトロンポンプ。
  3. 請求項1記載のオービトロンポンプにおいて、
    前記吸着材料源が前記アノードに保持されていることを特徴とするオービトロンポンプ。
  4. 請求項3記載のオービトロンポンプにおいて、
    ワイヤ状の前記吸着材料源が前記アノードに巻き付けられているか、前記吸着材料源の塊が前記アノードに担持されているか、または前記吸着材料源が前記アノードの表面に塗布されていることを特徴とするオービトロンポンプ。
  5. 請求項1記載のオービトロンポンプにおいて、
    前記吸着材料源が前記アノードと前記チャンバの間の空間に配置されていることを特徴とするオービトロンポンプ。
  6. 請求項1記載のオービトロンポンプにおいて、
    前記吸着材料源が前記チャンバの内壁に形成されていることを特徴とするオービトロンポンプ。
  7. 請求項1記載のオービトロンポンプにおいて、
    前記吸着材料源を保持するヒーターを備え、
    前記アノードと前記吸着材料源が分離していることを特徴とするオービトロンポンプ。
  8. 請求項7記載のオービトロンポンプにおいて、
    前記ヒーターが前記チャンバの内部で折り返された形状であり、通電加熱されることを特徴とするオービトロンポンプ。
  9. 請求項7記載のオービトロンポンプにおいて、
    ワイヤ状の前記吸着材料源が前記ヒーターに巻き付けられているか、前記吸着材料源の塊が前記ヒーターに担持されているか、または前記吸着材料源が前記ヒーターの表面に塗布されていることを特徴とする電子線装置。
  10. 請求項1記載のオービトロンポンプにおいて、
    前記電子放出用フィラメントから放出される電子を前記チャンバ内に閉じ込めるリフレクタ電極を有することを特徴とするオービトロンポンプ。
  11. 請求項1記載のオービトロンポンプにおいて、
    前記電子放出用フィラメントから放出される電子との反応によってイオン化されたガス分子を前記チャンバ内壁に向かって加速するグリッド電極を有することを特徴とするオービトロンポンプ。
  12. 請求項11記載のオービトロンポンプにおいて、
    前記吸着材料源が前記グリッド電極と前記チャンバの内壁の間にあることを特徴とするオービトロンポンプ。
  13. 請求項1記載のオービトロンポンプにおいて、
    前記アノードからの輻射熱により前記吸着材料源を清浄化することを特徴とするオービトロンポンプ。
  14. アノード、吸着材料源および電子放出用フィラメントがチャンバの内部に配置されたオービトロンポンプならびに電子線を形成する手段を備えた電子線装置において、
    前記アノードが通電加熱されることを特徴とする電子線装置。
  15. 請求項14記載の電子線装置において、
    前記アノードが前記チャンバの内部で折り返された形状であることを特徴とする電子線装置。
  16. 請求項14記載の電子線装置において、
    前記吸着材料源が前記アノードに保持されていることを特徴とする電子線装置。
  17. 請求項16記載の電子線装置において、
    ワイヤ状の前記吸着材料源が前記アノードに巻き付けられているか、前記吸着材料源の塊が前記アノードに担持されているか、または前記吸着材料源が前記アノードの表面に塗布されていることを特徴とする電子線装置。
  18. 請求項14記載の電子線装置において、
    前記吸着材料源が前記アノードと前記チャンバの間の空間に配置されていることを特徴とする電子線装置。
  19. 請求項14記載の電子線装置において、
    前記吸着材料源が前記チャンバの内壁に形成されていることを特徴とする電子線装置。
  20. 請求項14記載の電子線装置において、
    前記吸着材料源を保持するヒーターを備え、
    前記アノードと前記吸着材料源が分離していることを特徴とする電子線装置。
  21. 請求項20記載の電子線装置において、
    前記ヒーターが前記チャンバの内部で折り返された形状であり、通電加熱されることを特徴とする電子線装置。
  22. 請求項20記載の電子線装置において、
    ワイヤ状の前記吸着材料源が前記ヒーターに巻き付けられているか、前記吸着材料源の塊が前記ヒーターに担持されているか、または前記吸着材料源が前記ヒーターの表面に塗布されていることを特徴とする電子線装置。
  23. 請求項14記載の電子線装置において、
    前記電子放出用フィラメントから放出される電子を前記チャンバ内に閉じ込めるリフレクタ電極を有することを特徴とする電子線装置。
  24. 請求項14記載の電子線装置において、
    前記電子放出用フィラメントから放出される電子との反応によってイオン化されたガス分子を前記チャンバ内壁に向かって加速するグリッド電極を有することを特徴とする電子線装置。
  25. 請求項24記載の電子線装置において、
    前記吸着材料源が前記グリッド電極と前記チャンバの内壁の間にあることを特徴とする電子線装置。
  26. 請求項14記載の電子線装置において、
    前記アノードからの輻射熱により前記吸着材料源を清浄化することを特徴とする電子線装置。
  27. 請求項14記載の電子線装置において、
    前記オービトロンポンプが、前記電子源をその内部に配置している電子源室に直結していることを特徴とする電子線装置。
  28. 請求項14記載の電子線装置において、
    前記電子源が、前記オービトロンポンプに組み込まれていることを特徴とする電子線装置。
JP2014559702A 2013-01-30 2014-01-29 オービトロンポンプ、およびオービトロンポンプを備えた電子線装置 Active JP6174054B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013014965 2013-01-30
JP2013014965 2013-01-30
PCT/JP2014/051875 WO2014119586A1 (ja) 2013-01-30 2014-01-29 オービトロンポンプ、およびオービトロンポンプを備えた電子線装置

Publications (2)

Publication Number Publication Date
JPWO2014119586A1 true JPWO2014119586A1 (ja) 2017-01-26
JP6174054B2 JP6174054B2 (ja) 2017-08-02

Family

ID=51262299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014559702A Active JP6174054B2 (ja) 2013-01-30 2014-01-29 オービトロンポンプ、およびオービトロンポンプを備えた電子線装置

Country Status (2)

Country Link
JP (1) JP6174054B2 (ja)
WO (1) WO2014119586A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339106A (en) * 1965-05-28 1967-08-29 Canadian Patents Dev Ionization vacuum pump of the orbitron type having a porous annular grid electrode
US3371853A (en) * 1966-06-17 1968-03-05 Wisconsin Alumni Res Found Orbitron vacuum pump with getter vaporization by resistance heating
US3449660A (en) * 1966-08-10 1969-06-10 Wisconsin Alumni Res Found Orbitron electronic vacuum gauge having second anode for collecting scattered electrons
JPS5224244B1 (ja) * 1969-12-29 1977-06-30
JPH0765762A (ja) * 1993-08-26 1995-03-10 Fujitsu Ltd 電子銃
JPH07254388A (ja) * 1994-03-17 1995-10-03 Fujitsu Ltd スパッタイオンポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339106A (en) * 1965-05-28 1967-08-29 Canadian Patents Dev Ionization vacuum pump of the orbitron type having a porous annular grid electrode
US3371853A (en) * 1966-06-17 1968-03-05 Wisconsin Alumni Res Found Orbitron vacuum pump with getter vaporization by resistance heating
US3449660A (en) * 1966-08-10 1969-06-10 Wisconsin Alumni Res Found Orbitron electronic vacuum gauge having second anode for collecting scattered electrons
JPS5224244B1 (ja) * 1969-12-29 1977-06-30
JPH0765762A (ja) * 1993-08-26 1995-03-10 Fujitsu Ltd 電子銃
JPH07254388A (ja) * 1994-03-17 1995-10-03 Fujitsu Ltd スパッタイオンポンプ

Also Published As

Publication number Publication date
JP6174054B2 (ja) 2017-08-02
WO2014119586A1 (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5178926B2 (ja) 荷電粒子顕微鏡及びイオン顕微鏡
JP5514472B2 (ja) 荷電粒子線装置
US20080283745A1 (en) Emitter chamber, charged partical apparatus and method for operating same
JP6283423B2 (ja) 走査電子顕微鏡
US20080284332A1 (en) Gun chamber, charged particle beam apparatus and method of operating same
WO2014132758A1 (ja) オービトロンポンプ、およびオービトロンポンプを用いた電子線装置
JP5809890B2 (ja) イオンビーム装置
WO2017168557A1 (ja) 真空装置及び真空ポンプ
JP2020047407A (ja) 荷電粒子線装置
WO2018055715A1 (ja) 電子顕微鏡
KR102279130B1 (ko) 이온 빔 장치
JP6328023B2 (ja) イオンビーム装置
WO2016021484A1 (ja) イオンビーム装置およびイオンビーム照射方法
US10455683B2 (en) Ion throughput pump and method
JP6594983B2 (ja) イオンビーム装置、及び試料元素分析方法
JP6174054B2 (ja) オービトロンポンプ、およびオービトロンポンプを備えた電子線装置
US10971329B2 (en) Field ionization source, ion beam apparatus, and beam irradiation method
US10804084B2 (en) Vacuum apparatus
JP2002313270A (ja) 高真空電子線装置及びその排気方法
WO2015115000A1 (ja) オービトロンポンプを備えた電子線装置、およびその電子線照射方法
WO2023203755A1 (ja) 荷電粒子線装置
TW202345188A (zh) 電子顯微鏡、電子顯微鏡的電子源、和操作電子顯微鏡的方法
JP2014149919A (ja) イオンビーム装置および不純物ガスの除去方法
JP2015028892A (ja) ガス電界電離イオン源を備えたイオンビーム装置、および当該イオンビーム装置を備えた複合荷電粒子線装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6174054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350