KR102279130B1 - 이온 빔 장치 - Google Patents

이온 빔 장치 Download PDF

Info

Publication number
KR102279130B1
KR102279130B1 KR1020180032439A KR20180032439A KR102279130B1 KR 102279130 B1 KR102279130 B1 KR 102279130B1 KR 1020180032439 A KR1020180032439 A KR 1020180032439A KR 20180032439 A KR20180032439 A KR 20180032439A KR 102279130 B1 KR102279130 B1 KR 102279130B1
Authority
KR
South Korea
Prior art keywords
ion beam
gas
voltage
ions
ion
Prior art date
Application number
KR1020180032439A
Other languages
English (en)
Other versions
KR20180117527A (ko
Inventor
신이치 마츠바라
요시미 가와나미
히로야스 시치
Original Assignee
가부시키가이샤 히다치 하이테크 사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크 사이언스 filed Critical 가부시키가이샤 히다치 하이테크 사이언스
Publication of KR20180117527A publication Critical patent/KR20180117527A/ko
Application granted granted Critical
Publication of KR102279130B1 publication Critical patent/KR102279130B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0822Multiple sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0822Multiple sources
    • H01J2237/0827Multiple sources for producing different ions sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

본 발명은 시료에 대하여 주는 대미지를 경감하는 동시에, 관찰과 가공을 단시간에 전환할 수 있는 이온 빔 장치를 제공하는 것을 과제로 한다.
이러한 과제를 해결하기 위한 수단으로서, 본 발명에 따른 이온 빔 장치는, H3+ 이온을 가장 많이 포함하는 이온 빔을 조사하는 동작 모드와, H3+보다 무거운 이온을 가장 많이 포함하는 이온 빔을 조사하는 동작 모드를 전환한다.

Description

이온 빔 장치{ION BEAM APPARATUS}
본 발명은, 이온 빔 장치에 관한 것이다.
전자계 렌즈를 통해 전자빔을 집속해, 이것을 주사하면서 시료에 조사하고, 시료로부터 방출되는 2차 전자 하전입자를 검출함으로써, 시료 표면의 구조를 관찰할 수 있다. 이것을 주사 전자 현미경이라고 부른다. 한편, 전자계 렌즈를 통해 이온 빔을 집속하고, 이것을 주사하면서 시료에 조사해, 시료로부터 방출되는 2차 하전입자를 검출함으로써도, 시료 표면의 구조를 관찰할 수 있다. 이것은 주사 이온 현미경(Scanning Ion Microscope, 이하, SIM으로 약기)이라고 불린다.
SIM에 있어서 채용할 수 있는 이온원의 1종으로 전계 전리 이온원(Gas Field Ionization Source, 이하 GFIS로 약기)이 있다. GFIS는, 바람직하게는 선단의 곡률 반경을 100nm정도 이하로 한 금속제의 이미터 팁에 고전압을 인가하고, 선단에 전계를 집중시켜, 그 부근에 가스를 도입해(이온화 가스) 그 가스 분자를 전계 전리하고, 이온 빔으로서 인출하는 것이다.
GFIS를 채용한 SIM(이하 GFIS-SIM으로 약기)에 있어서는, 헬륨 이온 빔이나 네온빔을 채용한 장치가 주류이다. 이것은, 액체 금속의 이온원이나 플라스마 현상을 이용한 이온원에 비하면, GFIS로부터 방출되는 이온 빔은 에너지 폭이 좁고 광원 사이즈가 작으므로, 미세하게 집속할 수 있기 때문이다.
하기 특허문헌 1은,『시료의 관찰 및 가공을 가능하게 하는 단일 컬럼의 이온 빔 장치를 제공한다.』는 것을 과제로 하는 기술로서,『가스 전계 이온원으로부터 인출된 이온 빔을 집속시켜서 시료(24)에 조사해, 시료를 가공 및 관찰하는 집속이온 빔 장치로서, 상기 이온원은 이온을 생성하는 이미터 팁(13)과, 이것을 가열하는 가열 수단(15)과, 제 1 가스 및 적어도 하나의 제 2 가스를 도입하는 가스 도입구(110, 112)와, 어느 하나의 가스의 이온 빔을 생성하기 위해서 제 1 이미터 팁 온도와 제 2 이미터 팁 온도를 전환하는 컨트롤러(172)를 구비한다. 상기 제 1 가스는 가벼운 가스이며, 관찰 모드용으로 이용되고, 상기 적어도 하나의 제 2 가스는 무거운 가스(불활성 가스, 반응 가스)이며, 스퍼터링 모드용(불활성 가스의 경우), 또는 반응 모드용(반응 가스의 경우)으로 이용된다.』고 하는 기술을 개시하고 있다(요약 참조).
일본국 특개 2010-114082호 공보
현재 상태의 GFIS-SIM은, 유저가 시료를 관찰하고 싶을 경우에는 예를 들면 질량이 가벼운 헬륨 이온을 사용하고, 시료를 가공하고 싶을 경우에는 예를 들면 비교적 질량이 무거운 네온 이온을 사용하는 식으로, 이온 빔의 종류를 전환한다. 그러나 일반적으로 이온 빔을 전환할 때에는, GFIS 이온원으로부터 일단 가스를 배기하고나서 다시 원하는 이온 종류의 이온화 가스를 도입할 필요가 있으므로, 전환에 시간을 요한다.
전환 시간을 단축하기 위해서, 관찰 시에 사용하는 이온종을 발생시키기 위한 가스와, 가공 시에 사용하는 이온종을 발생시키기 위한 가스를, GFIS 이온원에 대하여 동시에 도입하고, 인출 전압의 변경에 의해 순시(瞬時)에 이온 빔의 종류를 전환하는 방법도 몇 가지 제안되어 있다. 상기 특허문헌 1에 있어서도 마찬가지의 방법을 채용하고 있다. 그러나 실제로 GFIS 이온원에 복수의 가스를 도입하면, 일반적으로는 이온 전류가 불안정해진다고 하는 단점이 생기는 것을 알 수 있었다. 이온 전류의 불안정은, 특히 시료의 관찰 상(像)의 질을 저하시키는 것으로 연결된다.
헬륨의 이온화 에너지는 모든 원자 중 가장 높다. 따라서 이온을 이미터 팁 선단에서 이온화할 때, 선단에 높은 전계를 생성할 필요가 있다. GFIS를 실용에 충분한 휘도로 하기 위해서는, 이미터 팁 선단을 몇 개의 원자로 종단시킨 상태에서 이온 빔을 방출시킬 필요가 있지만, 이온 빔을 방출시키기 위한 인출 전압을 지나치게 높게 하면, 이미터 팁 선단의 원자가 전계 증발이라고 불리는 현상으로 소실됨으로써 이온 방출을 할 수 없게 된다. GFIS의 원래의 휘도를 재현하기 위해서는, 원자 종단 형상을 재현한 다음에, 이온 빔 장치의 광학적인 최적 조건을 재현할 필요가 있어, 원래의 휘도를 재현하기 위해 시간을 요한다.
헬륨 이온은 GFIS에 의해 인출할 수 있는 이온종 중에서도 질량이 가벼운 부류에 속하지만, 그래도 또한 시료를 관찰할 때에 시료에 대미지(damage)가 발생한다. 종래에 있어서의 요구 사양이면 헬륨 이온에 의해 발생하는 정도의 대미지는 걱정되지 않았지만, 최근에서는 대미지에 대한 영향이 현재화되어 오고 있다.
종래의 이온 빔 장치의 상기와 같은 과제를 해결하기 위해서는, 시료를 관찰할 때에 수소 이온을 방출하는 GFIS를 채용하는 것을 고려할 수 있다. 수소 이온은 질량이 가벼우므로 대미지를 경감할 수 있는 것에 더하여, 이온화 에너지가 헬륨보다 작기 때문이다. 그러나, 종래의 수소 GFIS에도 과제가 있다. 즉 종래의 수소 GFIS는 원리상, 헬륨보다 이온 빔의 에너지 폭이 커져버린다. 따라서, 관찰 분해능 혹은 가공 가능폭이 헬륨 GFIS보다 커진다고 하는 과제가 있다.
본 발명은, 상기와 같은 과제를 감안하여 이루어진 것으로서, 시료에 대하여 주는 대미지를 경감하는 동시에, 관찰과 가공을 단시간에 전환할 수 있는 이온 빔 장치를 제공하는 것을 목적으로 한다.
본 발명에 따른 이온 빔 장치는, H3+ 이온을 가장 많이 포함하는 이온 빔을 조사하는 동작 모드와, H3+보다 무거운 이온을 가장 많이 포함하는 이온 빔을 조사하는 동작 모드를 전환한다.
본 발명에 따른 이온 빔 장치에 의하면, 시료를 관찰할 때 시료에 대하여 주는 대미지를 억제하면서, 시료를 관찰하는 동작 모드와 가공하는 동작 모드를 단시간에 전환할 수 있다.
도 1은 실시형태 1에 따른 가스 전계 전리 이온원(1)의 구성을 나타내는 측단면도.
도 2는 가스 공급부(37과 39)의 변형예를 나타내는 도면.
도 3a는 이미터 팁(11)의 선단부를 확대한 상태를 나타내는 측면도.
도 3b는 도 3a에 있어서의 프로브 전류값(24)과 인출 전압의 관계를 나타내는 그래프.
도 3c는 이미터 팁(11)의 선단부를 확대한 상태를 나타내는 측면도.
도 3d는 도 3c에 있어서의 프로브 전류값(24)과 인출 전압의 관계를 나타내는 그래프.
도 4a는 극대(25)보다 낮은 인출 전압에 있어서 측정된 이온 빔의 에너지 폭의 예.
도 4b는 제 2 극대(23) 근방의 인출 전압에 있어서 측정된 이온 빔의 에너지 폭의 예.
도 5a는 전계 이온 현미경에 의해 취득한, 이미터 전극(11) 선단 형상의 원자 상.
도 5b는 원자(51)의 근방에 원자(52)가 존재하는 예를 나타내는 도면.
도 5c는 이미터 전극(11)의 선단이 4개 이상의 원자로 종단되어 있는 예.
도 5d는 이미터 전극(11)의 선단이 4개 이상의 원자로 종단되어 있는 예.
도 6은 실시형태 2에 따른 이온 빔 장치(1000)의 구성을 나타내는 측단면도.
도 7a는 거의 H2+ 이온만으로 구성되는 이온 빔에서 시료를 관찰했을 때의 주사 이온 상의 예.
도 7b는 H+ 이온과 H2+ 이온이 혼재한 이온 빔에서 시료를 관찰했을 때의 주사 이온 상의 예.
도 7c는 H+ 이온과 H2+ 이온과 H3+ 이온이 혼재한 이온 빔에서 시료를 관찰했을 때의 주사 이온 상의 예.
도 7d는 도 7c를 부분적으로 확대한 도면.
도 7e는 이온 빔의 가속 전압을 변경하면서 엣지 콘트라스트의 분리 폭을 측정한 결과를 나타내는 예.
도 8은 H3+ 이온이 이온 빔에 차지하는 비율이 80% 이상이라고 어림잡아진 상태에서 카본 모체 위에 금미립자를 증착한 시료 표면을 관찰한 예를 나타내는 도면.
도 9a는 수소 가스와 네온 가스를 혼합해서 가스 전계 전리 이온원(1)에 도입하고, H3+ 이온 빔을 많이 함유하는 조건에서 시료의 표면을 관찰한 예를 나타내는 도면.
도 9b는 이온 빔을 네온 이온으로 전환하여 시료 표면을 가공한 후, H3+ 빔을 이용하여 시료 표면을 관찰한 예를 나타내는 도면.
도 10은 수소 가스와 네온 가스를 혼합해서 가스 전계 전리 이온원(1)에 도입하고, 네온 이온 빔을 인출하여 시료 표면을 관찰한 예를 나타내는 도면.
<본 발명의 기본원리에 대하여>
이하에서는 본 발명의 이해를 쉽게 하기 위해, 먼저 본 발명의 기본적 원리 에 대해 설명한다. 그 후에 본 발명의 실시형태에 따른 이온 빔 장치의 구체적 구성에 대해 도면을 사용하여 설명한다.
본원 발명자 등은, 수소 이온 빔을 채용한 장치를 실용화하기 위해 검토하고 있는 중에, 이미터 팁 선단을 1개의 원자로 종단하고, 수소 가스를 도입해서 이온 전류(프로브 전류)를 계측한 바, 제 1 피크(극대)의 후에, 이미터 팁 선단의 원자가 전계 증발이라고 불리는 현상으로 소실하기 전의 인출 전압의 범위 내에서 제 2 피크(극대)가 나타나는 것을 찾아냈다. 이러한 현상(제 1 피크(극대)의 후에 제 2 피크가 존재하는 현상)은, 이미터 팁 선단을 1개의 원자로 종단해서 헬륨 가스를 도입했을 경우에는 관찰되지 않았다.
그래서 본 현상을 더 분석한 바, (1) 제 1 피크에 있어서의 이온 빔을 구성하는 이온은 H+나 H2+가 주체이며, 제 2 피크에 있어서의 이온 빔을 구성하는 이온은 H3+가 주체인 것, (2) 제 2 피크의 주체인 H3+의 에너지 폭은, 제 1 피크의 주체인 H+나 H2+의 에너지 폭에 비해서 작은 것을 찾아냈다. 이것은, H+나 H2+ 빔보다 H3+ 빔을 가늘게 좁히는, 즉 고분해능을 얻을 수 있다는 것을 의미한다.
또한 H3+가 주로 방출되는 조건에 있어서, 수소 가스 이외의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 H3+보다 무거운 이온을 발생시킬 수 있는 가스)를 혼합해서 GFIS에 도입해도, H3+의 이온 전류는 안정성을 손상하지 않고, SIM 관찰에 대한 영향이 작은 것을 알 수 있었다.
종래의 수소 GFIS에 있어서는, 제 1 피크인 H+나 H2+를 채용한 관찰이나 가공을 전제로 하여 광학 조건을 조정하고 있다. 따라서 제 1 피크 이상의 전압을 설정하는 것은 통상 고려되지 않는 것이었다. 즉, 제 1 피크 이상의 전압을 인가하면, 다른 가스가 이미터 팁에 부착되어 이온 빔 전류가 저하할 가능성이나, 기껏 형성한 이미터 팁 선단의 원자가 전계 증발할 가능성이 높아지기 때문이다. 또한 이미터 팁의 선단을 1개의 원자로 종단하는 것은, 이온 빔의 휘도를 상승시키기 위해서인 것이 보통이며, 이것에 따라 이온 종류를 변경하는 것은 통상 고려되지 않는 것이었다. 따라서 본 발명은, 종래는 사용하는 것을 상정하지 않고 있었던 조건에 있어서 발견한 현상을 상세하게 해석한 지견에 의해 나온 신규한 발명이다.
H3+ 이온의 에너지 폭은, 상기한 바와 같이 통상의 조건에서 인출되는 H2+ 이온보다 작다. 이온 빔 장치에 상기 가스 전계 전리 이온원을 적용했을 경우, 관찰 분해능 또는 가공 가능폭이 우수해지고, 시료 관찰 시의 대미지를 He 이온 조사의 경우에 비해 저감하며, 또한 He 이온 방출의 경우에 비해 이미터의 선단 형상을 재생하기 위한 시간을 저감할 수 있다.
H3+ 이온은 H2+ 이온과 비교하여, 동일 가속 에너지로 빔 조사했을 경우, 하나의 수소 원자가 가지는 에너지가 2/3로 되므로, 이 에너지량에 의존하는 시료 대미지(예를 들면 믹싱 등)는 보다 작아지는 것을 기대할 수 있다. 또한 H3+ 이온 빔은 에너지 폭이 작으므로, H2+ 이온보다 저가속으로 동일한 집속 성능을 실현할 수 있다. 따라서, 저가속으로 빔을 조사할 수 있으므로, 시료 대미지를 저감할 수 있다.
발명자 등은 가스 전계 전리 이온원에 있어서, H3+ 이온의 방출 비율이 가장 커지는 이온 방출 방법을 발견하였다. 지금까지 H3+가 방출되는 현상 자체는 알려져 있었지만, 수소 이온종 중, H3+의 방출 비율이 가장 높아지는 조건은 지금까지 알려져 있지 않았다. 상기 조건이란, 이미터 팁 선단을 원자 3개 이하, 가장 바람직하게는 1개로 종단하고, 프로브 전류가 제 2 피크가 되는 인출 전압에서 이온원을 동작시키는 것이다. 즉, 이미터 팁 선단이 원자 3개로 종단되어 있는 것보다 2개로 종단되어 있는 쪽이 보다 효과가 높고, 특히 단일의 원자로 선단을 종단했을 경우에는 방출 비율의 향상 효과가 가장 크다.
발명자 등은 상기의 H3+ 이온의 방출 비율이 가장 커지는 이온 방출 상태에 있어서, 수소 이외의 다른 종의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등)가 수소 가스와 동시에 GFIS에 도입되었다고 해도, H3+ 이온 전류는 안정성을 손상하지 않고 일정하게 유지되는 것을 발견하였다. GFIS에 있어서 불순물 가스가 존재할 경우, 그 불순물 가스가 이미터 팁 표면에 흡착 탈리함으로써, 이미터 팁 선단에의 이온화 가스의 공급이 증감하거나, 혹은 이미터 팁 선단의 전계가 흐트러져, 이온 전류의 안정성이 손상되는 것은 잘 알려져져 있다. 본 방법을 사용함으로써, 불순물 가스를 동시에 공급했다고 해도, 이온 전류를 안정하게 유지할 수 있다. 이 H3+의 가스 혼합에 대한 안정성은, 그 밖의 가스종류의 전계 전리 이온화와는 다른, H3+의 특이한 이온화 프로세스, 또는 수소 가스의 환원성으로부터 발단된 것으로 생각된다.
H3+의 가스 혼합에 대한 내성에 의해, 이하를 실현할 수 있다. 예를 들면 수소 가스와 수소 가스 이외의 다른 종의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 가스)를 동시에 GFIS에 도입하고, H3+의 방출 전계를 주는 인출 전압값과 기타 이온의 방출 전계를 주는 인출 전압값을 전환함으로써, H3+ 이온 빔과 기타 이온 빔을 비교적 고속으로 전환하는 동시에, H3+ 이온 빔을 안정적으로 방출할 수 있다.
H3+의 가스 혼합에 대한 내성에 의해, 이온 종류를 전환할 때에 종래 필요했던 진공 배기가 불요(不要)해지므로, 그를 위한 시간을 단축할 수 있다. 예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 가스를 GFIS에 도입해서 이온을 방출하고 있을 때에, 이온 빔 종류를 H3+로 전환하는 것을 고려한다. 이 경우, 이미터 팁 근방의 진공 배기가 종료하기 전에 수소 가스를 도입하는 동시에 인출 전압을 변경함으로써, H3+의 방출을 시작해도 된다. 이렇게 하여도 H3+의 안정성은 손상되지 않는다.
한편, 가스를 각각 개별적으로 GFIS에 도입하는 것이 아니라, GFIS에의 가스 도입구를 하나 마련하고, 수소 가스와 수소 가스 이외의 다른 종의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 가스)의 혼합 가스를 도입하여, 그 혼합비를 자유롭게 조정할 수 있게 구성해도 된다. 도입구를 하나로 함으로써, 이온 빔 장치의 제조 코스트를 저감할 수 있다.
<실시형태 1 : 장치 구성>
도 1은, 본 발명의 실시형태 1에 따른 가스 전계 전리 이온원(1)의 구성을 나타내는 측단면도이다. 가스 전계 전리 이온원(1)은, 이미터 전극(이미터 팁)(11), 인출 전극(13), 냉동기(4), 진공 챔버(17), 진공 배기 장치(16), 가스 공급부(가스 도입 기구)(37), 고전압 전원(111)을 구비한다. 이미터 전극(11)은 바늘 모양의 선단을 가진다. 인출 전극(13)은 이미터 전극(11)과 대향하는 위치에 개구를 갖는다. 냉동기(4)는 이미터 전극(11)을 냉각한다. 냉동기(4)는 냉동기 본체(41)를 가지며, 냉동기 본체(41)는 제 1 스테이지(412)와 제 2 스테이지(413)를 갖는다. 진공 챔버(17)는 이미터 전극(11)/인출 전극(13)/제 1 스테이지(412)/제 2 스테이지(413)를 수용한다. 진공 배기 장치(16)는 진공 챔버(17)를 진공 배기한다. 가스 공급부(37)는 진공 챔버(17) 내부에 수소 가스를 포함하는 가스를 공급한다. 고전압 전원(111)은 이미터 전극(11)과 인출 전극(13) 사이에 전압을 인가 해서 이미터 전극(11)의 선단 근방에 가스를 양 이온화하는 전계를 형성한다. 각 전극의 전압을 독립적으로 제어함으로써, 이온 빔의 가속과 이온화 전계를 형성하기 위한 인출 전압을 독립적으로 제어할 수 있게 해도 된다.
이미터 팁(11)으로부터 이온 빔(15)을 방출할 때에는, 먼저 이미터 팁(11)과 인출 전극(13) 사이에 고전압을 인가한다. 고전압의 인가에 의해 이미터 팁(11)의 선단에 전계가 집중한다. 선단에 형성된 전계의 강도가 수소의 양 이온화에 충분하도록 하고, 이 상태에서 가스 공급부(37)로부터 수소 가스를 진공 챔버(17) 내에 도입함으로써, 이미터 팁(11)의 선단으로부터 수소 이온 빔이 방출된다. 부호 161은 유량 조정기, 부호 371은 가스 노즐, 부호 374는 유량 조정기, 부호 376은 가스 봄베, 부호 415는 열복사 실드, 부호 416은 전열 기구이다.
이미터 팁(11)의 근방에 수소 이외의 가스를 도입할 수도 있다. 도 1에 나타나 있는 바와 같이, 가스 공급부(37)의 이외에 가스 공급부(39)를 구비해도 된다. 가스 공급부(39)는 유량 조정기(394), 가스 노즐(391), 가스 봄베(396)를 구비한다. 필요에 따라 가스의 순화 수단 등도 구비해도 된다. 가스 공급부(39)는, 수소 이외의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 가스)를 이미터 팁(11)의 근방에 도입할 수 있다. 유량 조정기(374)와 유량 조정기(394)에 의해, 원하는 혼합 압력비에서, 진공 챔버(17) 내에 가스를 도입할 수 있다.
헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 가스를 수소와 동시에 도입했을 경우, 이미터 팁(11)과 인출 전극(13) 사이에 인가하는 고전압을, 이미터 팁(11)의 선단에 그 밖의 가스가 이온화하는데 적합한 값으로 되도록 인가함으로써, 이미터 팁(11)의 선단으로부터 방출되는 이온 빔을 수소 이온 빔으로부터 그 밖의 이온 빔으로 전환할 수 있다.
도 2는 가스 공급부(37과 39)의 변형예를 나타내는 도면이다. 도 2에 나타내는 가스 전계 전리 이온원(1)은, 가스 공급부(37과 39) 대신에 가스 공급부(35)를 구비한다. 가스 공급부(35)는 가스 노즐(351), 가스 혼합부(352), 압력계(353), 유량 조정기(354), 수소 가스 봄베(356), 수소 가스 이외의 가스를 축적하는 가스 봄베(357), 수소용 가스 필터(3561), 유량 조정기(3571), 유량 조정기(3562), 필터(3572), 밸브(355)를 구비한다.
가스 혼합부(352)에 원하는 가스 혼합비의 혼합 가스를 축적할 때에, 진공 배기 장치(16)는 밸브(355)를 통해서 가스 혼합부(352)를 일단 배기한다. 진공 배기 장치(16)가 가스 혼합부(352)를 진공 배기한 후, 압력계(353)가 가스 혼합부(352) 내의 압력을 측정하면서, 유량 조정기(3562)를 통해서 가스 혼합부(352)에 대하여 수소 가스가 도입된다. 수소 가스가 도입되기 전에, 수소용 가스 필터(3561)에 의해 수소 가스의 순도를 높인 후, 가스 혼합부(352)에 도입해도 된다. 수소용 가스 필터(3561)는 팔라듐을 포함하는 금속막을 가지는 막투과형의 필터로 구성할 수 있다.
수소 가스를 가스 혼합부(352)에 도입한 후, 압력계(353)가 가스 혼합부(352) 내의 압력을 측정하면서, 유량 조정기(3571)를 통해서 가스 혼합부(352)에 대하여 수소 이외의 가스가 도입된다. 압력계(353)는, 혼합비에 관계 없이 가스 혼합부(352)의 절대압력을 지시하는 것이어도 되고, 직접 혼합비를 측정할 수 있는 질량 분석 기능이 달린 압력계를 이용해도 된다.
이상의 공정에 의해, 가스 혼합부(352) 내부에 원하는 혼합비의 가스를 생성할 수 있다. 이상의 공정은, 혼합비 제어기(358)가 각 유량 조정기를 자동 제어함으로써 실시해도 된다. 또한 혼합비 제어기(358)는, 압력계(353)의 지시 값을 자동적으로 읽어들여도 된다.
가스 혼합부(352)의 가스 혼합비는, 가스의 종류, 가스 혼합부(352)로부터 가스 노즐(351)에 이르기까지의 가스 컨덕턴스, 인출 전극 구멍(131)의 가스 컨덕턴스, 이미터 팁(11)의 냉각 온도 등의 이온 빔 장치의 각 부에 대한 정보와 유저 지시에 맞춰서 결정할 수 있다.
유저가 시료 관찰만 실시할 경우, 유저는 유저 인터페이스를 통해 혼합비 제어기(358)에 대하여 그 취지를 지시한다. 유저 인터페이스는, 예를 들면 혼합비 제어기(358) 자신이 구비하는 디스플레이 등을 통해서 제공할 수도 있고, 기타 적당한 컴퓨터 등을 통해서 제공할 수도 있다. 혼합비 제어기(358)는 그 지시를 받으면, 가스 혼합부(352)에 수소 가스를 100%에 가까운 비율로 도입한다.
유저가 시료 가공만 실시할 경우, 유저는 유저 인터페이스를 통해 혼합비 제어기(358)에 대하여 그 취지를 지시한다. 혼합비 제어기(358)는 그 지시를 받으면, 가스 혼합부(352)에 네온이나 아르곤 등 질량이 무거운 가스만을 100%에 가까운 비율로 도입한다.
유저가 관찰과 가공을 전환하면서 사용할 경우, 유저는 유저 인터페이스를 통해 혼합비 제어기(358)에 대하여 그 취지를 지시한다. 혼합비 제어기(358)는 그 지시를 받으면, 이온원 내부(132)에 있어서의 가스 혼합비가, 수소 가스와 그 이외의 가스(예를 들면 헬륨, 네온, 아르곤, 크립톤, 크세논, 질소, 산소 등의 수소보다 질량이 무거운 가스)에서 1:1이 되도록, 가스 혼합부(352)에 있어서의 혼합비를 제어한다. 이들 가스를 균등하게 사용하는 것으로 상정되기 때문이다. 구체적으로는 예를 들면 가스의 종류, 가스 혼합부(352)로부터 가스 노즐(351)에 이르기까지의 가스 컨덕턴스, 인출 전극 구멍(131)의 가스 컨덕턴스, 이미터 팁(11)의 냉각 온도 등의 이온 빔 장치의 각 부 파라미터에 따라서, 미리 정해진 함수에 의거하여 혼합비를 결정할 수 있다. 관찰 대상 등의 여러가지 조건에 따라서는 반드시 가스 혼합비를 1:1로 할 필요는 없으며, 적당한 비율을 사용해도 된다.
유저는 유저 인터페이스를 통해, 수소 이온 빔과 그 밖의 이온 빔에 대해서, 원하는 이온 전류값을 지시할 수 있다. 혼합비 제어기(358)는 그 지시를 받으면, 그 이온 전류값이 얻어지도록, 이온원 내부(132)에 있어서의 가스 혼합비를 제어한다. 구체적으로는, 가스의 종류, 가스 혼합부(352)로부터 가스 노즐(351)에 이르기까지의 가스 컨덕턴스, 인출 전극 구멍(131)의 가스 컨덕턴스, 이미터 팁(11)의 냉각 온도 등의 이온 빔 장치의 각 부 파라미터에 따라서, 미리 정해진 함수에 의거하여 혼합비를 결정할 수 있다. 이 혼합비에 의해, 유저가 지정한 이온 전류값을 실현할 수 있다.
이온 빔 종류를 전환하기 전후의 이온 전류값은, 시료 가공에 사용하는 질량이 무거운 이온의 쪽이 H3+보다 큰 편이 좋다. H3+를 시료 표면의 관찰에 사용할 경우, 시료에의 대미지를 작게 하기 위해서, 전류량은 필요 최저한으로 억제할 필요가 있다. 한편 가공에 있어서는 가공 레이트(rate)가 중요하므로, 일반적으로는 이온 전류는 클수록 좋다. 예를 들면 H3+와 Ar+의 조합의 경우, Ar+의 이온 전류량을 H3+의 이온 전류량의 3배로 함으로써, 약 100배의 시료 표면 스퍼터량으로 되는 것을 알고 있다(시료가 실리콘일 경우). 즉, 가공 시의 이온 전류를 관찰 시의 이온 전류의 3.0배 이상으로 함으로써, H3+에 의한 관찰 시의 시료 스퍼터는 거의 무시해도 되고, Ar+의 조사에 의한 가공만을 고려하면 되게 된다.
<실시형태 1 : 장치의 상세에 대하여>
도 3a는 이미터 팁(11)의 선단부를 확대한 상태를 나타내는 측면도이다. 도 3a에 있어서, 이미터 팁(11)의 선단(5)은 원자 1개로 종단되어 있다. 부호 151은 프로브 전류, 부호 152는 빔 제한 개방각, 부호 153은 광축을 나타낸다. 프로브 전류(151)는, 가스 전계 전리 이온원(1)으로부터 인출되는 이온 빔(15)을 어떤 일정한 방사각으로 제한한 것이다.
도 3b는, 도 3a에 있어서의 프로브 전류값(24)과 인출 전압의 관계를 나타내는 그래프이다. 이미터 전극(11)의 선단(5)이 3개 이하의 원자로 종단되어 있을 경우, 프로브 전류값(24)은, 인출 전압(이미터 전극(11)과 인출 전극(13) 사이에 인가된 전압)에 대하여 도 3b에 나타낸 바와 같이 변화된다.
인출 전압에 의해 이미터 전극(11)의 선단에 발생하는 전계의 값은, 가령 인출 전압의 값이 같아도, 이미터 전극(11)의 선단의 곡률 반경 등으로 대표되는 형상에 따라 다르다. 또한 본 실시형태 1에 있어서 명백해지는 현상은 선단에 발생하는 전계에 의한 것이다. 즉, 여기에서는 편의적으로 본 실시형태 1의 효과를 확인했을 때의 실험 결과를 사용하여 설명하지만, 여기에 나타난 인출 전압의 절대값은, 그 사상을 일탈하지 않는 범위 내에서 변경할 수 있는 것이며, 예시하는 인출 전압값은 본 발명의 범위를 제한하는 것이 아니다.
도 3b에 나타내는 예에 있어서, 프로브 전류값(24)은 인출 전압 약 10kV에 있어서 제 1 극대(22)를 갖고, 제 1 극대(피크)(22)를 주는 인출 전압보다 더욱 높은 인출 전압값 약 11.68kV에 있어서 제 2 극대(23)를 갖는다. 발명자는, 제 2 극대(23)를 주는 인출 전압의 근방에 있어서 H3+ 이온의 방출 비율이 다른 수소 이온 H+나 H2+보다 높은 것을 찾아냈다. 구체적으로는, 제 2 극대(23)를 주는 인출 전압의 절대값에 대하여, 바람직하게는 상하 5%의 전압 범위(21)를 의미한다. 도 3b에 나타내는 예에 있어서는, 제 2 극대(23)를 주는 인출 전압 11.68kV를 중심으로 하고, 바람직하게는 11.1kV 내지 12.26kV의 범위로 인출 전압을 설정하는 것을 의미한다.
도 3c는 이미터 팁(11)의 선단부를 확대한 상태를 나타내는 측면도이다. 도 3c에 있어서, 이미터 팁(11)의 선단(5)은 원자 4개 이상으로 종단되어 있다. 그 외는 도 3a와 마찬가지이다.
도 3d는, 도 3c에 있어서의 프로브 전류값(24)과 인출 전압의 관계를 나타내는 그래프이다. 이미터 전극(11)의 선단(5)이 4개 이상의 원자로 종단되어 있을 경우, 프로브 전류값(24)은, 인출 전압에 대하여 도 3d에 나타내는 바와 같이 변화된다. 즉, 프로브 전류값(24)은 인출 전압 약 10kV에 있어서 유일한 극대(피크)(25)를 갖는다. 도 3b에 나타내는 예와는 달리, 모든 인출 전압에 걸쳐 H3+ 이온의 방출은 그래프상에 있어서 관측되지 않으며, H3+의 비율이 다른 수소 이온 H+나 H2+를 상회하는 것은 없다. 극대(25)보다도 저전압측에서는 H2+의 방출 비율이 크고, 고전압측에서는 H+의 방출 비율이 증대해 간다.
프로브 전류값(24)의 제 2 극대(23) 근방에 있어서의 H3+ 이온 빔의 방출 비율은, 선단(5)의 원자수가 적은 쪽이 높아진다. 즉, 원자가 3개보다 2개인 편이 방출 비율이 높으며, 원자 1개인 상태가 H3+ 이온 빔의 방출 비율을 높이는 방면에서 가장 바람직하다.
도 4a는 극대(25)보다 낮은 인출 전압에 있어서 측정된 이온 빔의 에너지 폭의 예이다. 극대(25)보다 낮은 인출 전압에 있어서는, 주로 H2+가 방출된다. 이 경우의 에너지의 반값폭은 0.96eV이었다.
도 4b는 제 2 극대(23) 근방의 인출 전압에 있어서 측정된 이온 빔의 에너지 폭의 예이다. 제 2 극대(23) 근방에 있어서는, 주로 H3+가 방출된다. 이 경우의 에너지의 반값폭은 0.54eV이었다.
발명자는 도 4a와 도 4b에 나타나 있는 바와 같이, H3+ 이온 빔의 에너지 폭이 그 밖의 수소 이온(H+ 이온과 H2+ 이온)의 에너지 폭보다도 작은 것을 찾아냈다. 즉 H3+ 이온 빔을 방출하는 가스 전계 전리 이온원(1)을 탑재하는 이온 빔 장치에 의하면, 헬륨 이온 빔을 방출하는 가스 전계 전리 이온원을 구비하는 이온 빔 장치에 비하여, 관찰 분해능의 열화나 가공 가능폭의 증대를 수반하지 않으며, 이온 빔 조사에 의한 시료 대미지를 저감할 수 있다. 이 때 시료에 조사하는 이온 빔 중 H3+ 이온의 비율이 가장 높으면, 그 밖의 수소 이온(H+ 이온과 H2+ 이온)의 빔에 의한 영향이 적어져서, 더욱 바람직하다.
발명자는, H3+ 이온의 방출 비율이 높은 상기 영역 중에 있어서도, 이온 빔의 에너지 폭에 변화가 있는 것을 찾아냈다. 즉, 제 2 극대(23)에 해당하는 인출 전압 및 제 2 극대(23)보다 5% 큰 범위 내의 인출 전압에서 인출한 이온 빔보다도, 범위(26)의 인출 전압에서 인출된 이온 빔 쪽이, 에너지 폭이 작은 것을 찾아냈다. 따라서, 제 2 극대(23)에 해당하는 인출 전압의 절대값에 대하여, 바람직하게는 5%까지 낮은 범위(도 3b의 범위(26))로 인출 전압을 설정하면 된다. 도 3b의 예에 있어서는, 제 2 극대(23)=11.68kV에 대하여, 바람직하게는 11.1kV 내지 11.68kV의 범위에서 인출 전압을 설정하는 것을 의미한다.
H3+ 이온의 방출 비율을 향상시키기 위해서, 이미터 전극(11)의 금속 재료로서, 체심 입방 격자 구조 또는 육방 최밀 충전 구조를 가지는 금속을 사용해도 된다. 예를 들면 텅스텐, 탄탈, 몰리브덴, 니오브, 루비듐, 루테늄, 티탄, 베릴륨 등의 금속을 들 수 있다. 또는 화학적 내성이 뛰어난 예를 들면 이리듐이나 탄탈 등을 사용해도 된다. 화학적 내성이 뛰어난 금속을 사용함으로써, 이미터 전극(11)이 이온화 가스나 이온화 가스에 포함되는 불순물 가스에 의해 침식되는 효과를 억제하고, 이온원이 안정적으로 동작하는 효과가 기대된다. 발명자들은, 텅스텐의 <111> 방위가 장축 방향으로 되는 이미터 전극(11)을 사용하여, H3+ 이온의 방출 비율을 향상시키는 상기 현상을 확인하였다.
선단(5)이 원자 1개로 종단되어 있다란, 시료에 조사하는 이온 빔을 방출하는 원자가 존재하는 이미터 전극(11)의 결정면상에 있어서, 그 원자에 인접하는 원자가 존재하지 않는 것을 의미한다. GFIS에 있어서는 이미터 전극(11)의 표면에 이온 빔을 방출하는 원자가 복수 존재하고, 각각의 원자로부터 서로 다른 각도로 이온 빔이 방출될 경우도 있다. 예를 들면 텅스텐의 <111> 방위의 결정 표면의 인접하는 3개의 원자로부터 각각 헬륨 이온 빔이 방출할 경우가 있다. 본 실시형태 1에 있어서 선단(5)이 원자 1개로 종단되어 있다란, 같은 정도의 전류량의 이온 빔을 방출하는 원자가 인접하지 않다라고 하는 것이다. 예를 들면, (a) 시료에 조사하는 이온 빔을 방출하는 원자로부터 떨어진 위치에 가스 분자가 흡착해서 생긴 이미터 전극(11)의 표면 돌기로부터 이온 빔이 방출되는 것, (b) 당해 원자를 유지하는 일층 하층의 결정면의 단면 부분으로부터 이온 빔이 방출되는 것이 상정된다. 본 실시형태 1에 있어서는, 이러한 경우여도 선단(5)은 원자 1개로 종단되어 있다고 간주한다. 따라서 예를 들면, 결정면의 일층 하층에 있어서 당해 원자와 결합·인접하고 있는 원자는, 결정면상에 있어서 인접하는 원자에 해당되지 않는다.
도 5a는, 전계 이온 현미경(Field Ion Microscopy, 이하 FIM으로 약기)에 의해 취득한, 이미터 전극(11) 선단 형상의 원자 상(像)이다. 도 5a에 나타나 있는 바와 같이, 선단(5)은 1개의 원자(51)로 종단되어 있다. 이것은 도 3a에 해당한다. 발명자들은, 도 5a에 나타내는 선단 형상을 이용하여, H3+ 이온이 고비율로 방출하는 도 3b와 같은 조건을 실제로 확인하였다.
도 5b는, 원자(51)의 근방에 원자(52)가 존재하는 예를 나타낸다. 원자(51)로부터 방출되는 이온 전류에 대하여, 원자(52)가 충분히 작은 이온 전류를 방출하고 있다고 해도, 원자(52)가 원자(51)로부터 충분히 떨어져 있으면, 원자(51)로부터 H3+ 이온을 고비율로 방출할 수 있다.
도 5c와 도 5d는, 이미터 전극(11)의 선단이 4개 이상의 원자로 종단되어 있는 예이다. 이 형상은 도 3c에 해당한다. 발명자들은, 도 5c와 도 5d에 나타내는 선단 형상을 사용했을 경우, H3+ 이온이 고비율로 방출하는 전압 조건이 존재하지 않다는 것을 실제로 확인하였다. 즉 도 3d와 같이 프로브 전류값(24)이 변화되는 것을 확인하였다.
H3+ 이온의 방출 비율을 향상시키기 위해서, 이미터 전극(11)의 선단(5)으로부터 인출되는 이온 전류를, 광축(153)에 대한 어떤 일정한 빔 제한 개방각(152)으로 제한할 수도 있다. 빔 제한 개방각(152)으로 제한된 프로브 전류(151)는, 제한되지 않을 경우에 비해 H3+ 이온의 방출 비율이 향상할 것을 기대할 수 있다. 프로브 전류(151)의 크기가 프로브 전류값(24)에 해당한다. 바람직하게는 빔 제한 개방각(152)을 5mrad 이하로 하면 된다. 예를 들면 H3+ 이온의 방출 비율이 높은 인출 전압을 설정했을 경우, 같은 팁의 다른 장소에 존재하는 원자(예를 들면 원자(52)와 같은)의 개소(箇所)의 전계는 원자(51)에 있어서의 전계와는 다르다. 따라서 원자(52)로부터의 이온 빔은 H3+ 이온의 방출 비율이 작을 가능성이 있다. 발명자들은, 빔 제한 개방각(152)을 5mrad 이하로 함으로써, 원자(52)와 같은 원자로부터 조사되는 H+ 이온과 H2+ 이온이 혼입하는 현상을 저감할 수 있다는 것을 확인하였다. 원자(51)로부터만 이온 빔이 방출되고, H+ 이온과 H2+ 이온의 방출 각도가 H3+ 이온의 방출 각도보다 클 경우에 있어서도, 빔 제한 개방각(152)을 작게함으로써, H+ 이온과 H2+ 이온이 혼입하는 것을 저감할 수 있다. 빔 제한 개방각(152)이 충분히 클 경우, 프로브 전류(151)는 이온 빔(15)과 일치한다.
H3+ 이온 빔의 휘도를 상승시키는 동시에 이온 방출을 안정시키기 위해서는, 냉동기(4)에 의한 이미터 팁(11)의 냉각 온도를 조절하는 것이 바람직하다. 냉각 온도의 조정에 의해 H3+ 이온의 방출 비율도 어느 정도 조정할 수 있다. 도 3a∼도 3d의 예에 있어서는, 이미터 전극(11)을 대략 40K로 냉각하였다. 냉동기(4)는, 가스 전계 전리 이온원(1)의 내부, 이미터 전극(11), 인출 전극(13) 등을 냉각한다. 냉동기(4)는 예를 들면 기포드 맥마혼(Gifford-McMahon)형(GM형)이나 펄스 튜브형 등의 기계식 냉동기, 또는 액체 헬륨/액체 질소/고체 질소 등의 냉매를 사용할 수 있다. 도 1은, 기계식의 냉동기를 사용하는 구성을 예시하고 있다. 제 2 스테이지(413)로부터의 열은 전열 기구(416)에 의해 이미터 전극(11), 인출 전극(13) 등에 열전도되어, 이들이 냉각된다.
제 2 스테이지(413)보다 냉각 온도가 낮은 제 1 스테이지(412)는, 열복사 실드(415)를 냉각하도록 구성해도 된다. 열복사 실드(415)는 제 2 스테이지를, 더 바람직하게는 이미터 전극(11)이나 인출 전극(13)을, 덮도록 구성된다. 복사 실드(415)에 의해 진공 챔버(17)로부터의 열적인 복사에 의한 영향을 작게 할 수 있고, 제 2 스테이지(413), 이미터 전극(11), 인출 전극(13) 등을 효율적으로 냉각할 수 있다.
전열 기구(416)는, 열도율이 좋은 동이나 은이나 금 등의 금속으로 구성할 수 있다. 열적인 복사의 영향을 적게 하기 위해서, 표면이 금속 광택을 가지는 것 같은 표면처리(예를 들면 금 도금) 등의 처리를 실시해도 된다. 냉동기(4)가 발생시키는 진동이 이미터 전극(11)에 전해지면 이온 빔에 의한 시료 관찰 상의 분해능이 열화하는 등의 영향이 있으므로, 전열 기구(416)의 일부를, 금속제의 보다 선 등과 같이 진동이 전해지기 어려운 유연성을 갖는 부품을 이용하여 구성해도 된다. 같은 이유에서, 냉동기(4)가 냉각한 가스나 액체를 전열 기구(416)가 순환시킴으로써, 이미터 전극(11), 인출 전극(13)에 열을 전해주도록 구성해도 된다. 이러한 구성에 있어서는, 냉동기(4)를 이온 빔 장치 본체로부터 격리된 위치에 설치할 수도 있다.
제 1 스테이지(412), 제 2 스테이지(413), 전열 기구(416)는, 온도를 조절하는 수단을 구비해도 된다. 온도를 조절하는 수단에 의해 이미터 전극(11)의 온도를 H3+ 이온 빔의 휘도가 상승하도록 조절하면, 시료 관찰 시의 시그널 노이즈비, 시료 가공 시의 스루풋 등이 향상된다.
H3+ 이온 빔의 휘도를 상승시키기 위해서는, 진공 챔버(17) 내에 도입하는 수소 가스의 압력을 최적으로 하는 것이 바람직하다. 가스 압에 따라서 이미터 전극(11)으로부터 방출되는 총 이온 전류량을 조정할 수 있는 것에 더하여, H3+ 이온의 방출 비율도 가스 압의 조정에 의해 어느 정도 조정할 수 있다. 진공 배기 장치(16)에 의한 가스 배기량과 도입되는 수소 가스의 유량의 밸런스에 의해, 진공 챔버(17) 내의 압력이 결정된다. 가스 배기량은, 진공 배기 장치(16)와 진공 챔버(17) 사이에 유량 조정기(161)를 마련하여 조절해도 된다. 수소 가스의 순도가 충분히 높으면, 가스 전계 전리 이온원(1)의 동작이 안정된다. 그래서 필요에 따라 수소 가스의 순도를 높이기 위한 필터를 사용해도 된다.
가스 공급부(37)(또는 35, 39)로부터 진공 챔버(17) 내부 전체에 걸쳐 높은 가스 압으로 가스가 도입되면, 이미터 전극(11)과 진공 챔버(17) 사이에 도입된 가스를 통해 열교환이 생긴다. 이에 따라, 이미터 전극(11)이 충분히 냉각되지 않고, 진공 챔버(17)가 결로(結露)하는 등의 불량이 생긴다. 또한 이미터 전극(11)으로부터 방출된 이온 빔(15)의 광로상 전체에 걸쳐 가스 압이 높으면, 이온 빔의 일부가 산란되어 빔의 집속성이 나빠지는 등의 불량이 생긴다. 이들에 비추어, 진공 챔버(17)에 도입하는 가스 압으로서는 약 0.01Pa 정도로 하는 것이 바람직하다.
도입 압력을 더 올릴 필요가 있을 경우에는, 도 2와 같이, 진공 챔버(17)의 내부에 이미터 팁(11)을 둘러싸는 내벽(18)을 마련해도 된다. 이 때 내벽(18)이 인출 전극(13)을 수용하도록 구성하고, 인출 전극(13)의 이온 빔(15)이 통과하는 구멍 이외의 부분의 기밀을 유지한 상태에서, 가스 노즐(371)로부터 내벽(18)의 내부에 가스를 도입한다. 이에 따라, 이미터 전극(11)의 주변만 가스 압을 높일 수 있다. 또한 이미터 팁(11)의 각도를 변경하는 기능을 가지도록, 내벽(18)의 일부에 변형 가능한 벨로우즈(19)를 마련해도 된다. 이러한 구성에 의해, 이미터 전극(11) 주변의 가스 압을 약 0.1Pa로부터 1Pa 정도까지 올릴 수 있다. 가스 압의 상한은 방전 현상에 따른 것이며, 이미터 전극(11)과 인출 전극(13) 사이의 전위차에 의해 도입할 수 있는 가스 압은 이것과 다르다. 내벽(18)을 냉동기(4)에 의해 냉각해도 된다. 내벽(18)은 이미터 전극(11)을 둘러싸므로, 내벽(18)이 이미터 전극(11)과 같은 정도로 냉각되어 있으면, 진공 챔버(17)로부터의 열적인 복사의 영향을 작게 할 수 있다. 내벽(18) 내부가 초고진공 상태로 유지되어 있으면, 반드시 진공 챔버(17) 전체가 초고진공 상태로 유지되어 있을 필요는 없다.
<실시형태 1 : 정리>
본 실시형태 1에 따른 가스 전계 전리 이온원(1)은, H3+ 이온 빔을 주로 방출하는 인출 전압과, 그 이외의 이온 빔을 주로 방출하는 인출 전압을 전환한다. 인출 전압의 전환은 단시간에 가능하므로, 예를 들면 GFIS-SIM에 있어서의 시료 관찰과 시료 가공을 단시간에 전환할 수 있다. 또한, H3+ 이온 빔은 가스 혼합에 의한 영향이 작으므로, 관찰 화상의 품질열화를 억제할 수 있다.
본 실시형태 1에 따른 가스 전계 전리 이온원(1)은, H3+ 이온 빔을 사용하여 시료를 관찰하므로, 헬륨 이온 빔을 사용할 경우와 비교해서 시료에 대한 대미지를 저감할 수 있다.
<실시형태 2>
도 6은, 본 발명의 실시형태 2에 따른 이온 빔 장치(1000)의 구성을 나타내는 측단면도이다. 이온 빔 장치(1000)는, 실시형태 1에서 설명한 가스 전계 전리 이온원(1), 빔 조사 컬럼(7), 시료실(3), 그 밖의 구성요소를 구비한다. 가스 전계 전리 이온원(1)으로부터 방출된 이온 빔(15)은, 빔 조사 컬럼(7)을 통해 시료실(3)의 내부의 시료 스테이지(32) 위에 설치된 시료(31)에 조사된다. 시료(31)로부터 방출된 2차 입자는 2차 입자 검출기(33)에 의해 검출된다.
빔 조사 컬럼(7)은, 집속 렌즈(71), 애퍼처(72), 제 1 편향기(73), 제 2 편향기(74), 대물 렌즈(76), 매스 필터(78), 페러데이컵(79)을 구비한다. 이온 빔(15)을 시료에 조사하기 위한 광학계는, 어느 성능을 중시할지에 따라 적절하게 설계 파라미터를 변경하면 된다. 따라서 빔 조사 컬럼(7)은 필요에 따라, 이온 빔(15)을 집속하는 렌즈, 이온 빔(15)을 편향하는 편향기 등을 더 구비해도 되고, 배치하는 순서를 변경해도 되며, 어느 요소를 제거해도 된다.
집속 렌즈(71)는 이온 빔(15)을 집속한다. 애퍼처(72)는 이온 빔(15)을 프로브 전류(151)와 같이 제한한다. 대물 렌즈(76)는 이온 빔(15)이 시료 표면에 있어서 미세한 형상이 되도록 더 집속한다. 제 1 편향기(73)와 제 2 편향기(74)는 렌즈에 의한 집속의 수차(收差)를 작아지도록 하는 축 조정, 시료상에 있어서의 이온 빔 주사 등을 위해 사용된다.
페러데이컵(79)은 이온 빔(15)의 전류량을 계측하는 전류계(790)와 접속할 수 있다. 제어 장치(791)는 전류계(790)가 계측한 결과를 이용하여 고전압 전원(111)을 제어한다. 예를 들면 제어 장치(791)는, 인출 전압이 H3+ 이온의 방출 비율이 높은 범위가 되도록, 고전압 전원(111)의 출력을 자동 조정한다. 제어 장치(791)는 예를 들면 컴퓨터, 마이크로컴퓨터, 전자 회로 등을 이용하여 구성할 수 있다. 제어 장치(791)는 일단 측정한 이온 빔 전류와 인출 전압의 관계를 기억매체에 보존해도 된다. 이미터 전극(11)의 선단의 곡률 반경 등이 크게 바뀌지 않으면, H3+ 이온의 방출 비율이 높은 인출 전압의 범위는 크게 바뀌지 않을 것이 기대되므로, 보존한 파라미터를 이용하여 마찬가지의 빔 조사 조건을 재현할 수 있다.
인출 전압의 변경에 의해, 일반적으로는 가상 광원의 위치가 이동하므로, 이온 빔(15)을 집속하기 위한 최적 조건(즉 집속 렌즈(71), 애퍼처(72), 제 1 편향기(73), 제 2 편향기(74), 대물 렌즈(76)의 동작 파라미터)도 변화된다. 그래서, 각각의 종류의 이온 빔에 대응하는 최적의 집속 조건을 기억매체에 보존해 두고, 이온 빔 종류를 전환할 때에, 제어 장치(791)가 전환 후의 이온 빔 종류에 대응하는 집속 조건을 자동적으로 셋트해도 된다. 예를 들면 제어 장치(791)는, 집속 렌즈용 전원(710), 제 1 편향기용 전원(730), 제 2 편향기용 전원(740), 대물 렌즈용 전원(760)으로부터 출력되는 전압 혹은 전류를 변경함으로써, 집속 조건을 변경할 수 있다.
제어 장치(791)는 또한, 이온 빔 종류의 전환 시에, 예를 들면 관찰 화상의 이미지 시프트량, 관찰 화상의 비점 수차의 보정량, 대물 렌즈(76)에 입사하는 이온 빔(15)의 위치 등을 변경해도 된다.
발명자 등은, 상기와 같은 각 부 전압의 변경에 의해, 이온 빔(15)의 집속 상태는 어느 정도 이온 빔 전환의 전후에서 유지되지만, 최적의 집속 상태로 하기 위해서는, 전압 이외의 예를 들면 이미터 팁(11)의 각도나 위치와 같은, 전압과는 달리 순시(瞬時)에 전환하는 것이 곤란한 조건을 변경할 필요가 있을 경우가 있다는 것을 찾아냈다. 또한 발명자 등은, 이온 빔 전환 시의 인출 전압의 변화가 크면, 최적 집속 조건이 보다 현저하게 변화되는 것을 찾아냈다. 이것은 인출 전압의 변경에 의해 이온 빔 광원의 가상 광원 위치가 이동함으로써 야기되고 있는 것으로 생각된다.
따라서 발명자 등은, 상기와 같은 용이하게는 유추할 수 없는 새로운 지견으로부터, 이온 빔 종류를 전환할 때의 이온 종류의 조합 중에서, 이온 빔이 혼입하지 않는다는 것을 전제로 하여, 인출 전압에 차이가 없는 조합이 이온 빔의 신속한 전환에 바람직하다는 것을 찾아냈다. 구체적으로는 H3+와 Ar+의 조합이 바람직하다는 것을 찾아냈다. 우리들의 조사에 따르면 H3+의 인출 전압이 11.7kV일 때 Ar+의 인출 전압은 약 9kV였다. 인출 전압의 차이는 약 3kV로 가깝다. 이 차이는, 11.7kV에 대하여 30%의 크기이며, 9kV에 대하여 23%의 크기이다. 이 인출 전압에 있어서는, 가상 광원의 이동은 대부분 무시할 수 있는데다가, H3+가 방출하는 인출 전압의 크기에 있어서는 Ar+의 방출 대부분은 이미터 팁(11)의 선단으로부터 떨어진 개소에서 일어나므로, 이온 빔(15)에 혼입하는 경우는 거의 없다.
Ar+ 이외에는 Ne+도 바람직하다. H3+의 인출 전압이 11.7kV임에 비하여 Ne+은 18.3kV이었다. 양자의 차이는 6.6kV이며, 이것은 11.7kV에 대하여 56%이고, 18.3kV에 대하여 36%이다.
이온 빔 종류를 전환하기 전후에 있어서의 인출 전압의 비가 지나치게 작으면 이온이 혼합되고, 지나치게 크면 광학계 부품의 집속 조건에 대하여 영향을 줄 가능성이 있다. 그래서, 이온 빔 종류를 전환하기 전후에 있어서의 인출 전압의 차분은, 전환 전후 중 어느 하나를 기준으로 해서 대략 10% 내지 50%의 범위 내로 들어가게 하는 것이 바람직하다. 전술한 Ar+와 Ne+의 예는, 이 범위를 만족시키고 있다.
도 7a는, 거의 H2+ 이온만으로 구성되는 이온 빔으로 시료를 관찰했을 때의 주사 이온 상의 예이다. 부호 82가 나타내는 바와 같이, 1종만의 엣지 콘트라스트가 관찰된다.
도 7b는 H+ 이온과 H2+ 이온이 혼재한 이온 빔으로 시료를 관찰했을 때의 주사 이온 상의 예이다. 도 7a의 예에 더하여, 부호 81이 나타내는 엣지 콘트라스트가 중첩적으로 관찰되어 있다. 이것은, 각 이온 빔의 궤도가 자장에 의한 편향 작용으로 분리한 상태에서 주사 이온 상을 취득한 것에 의한 경우이다.
도 7c는 H+ 이온과 H2+ 이온과 H3+ 이온이 혼재한 이온 빔으로 시료를 관찰했을 때의 주사 이온 상의 예이다. 도 7b의 예에 더하여 또한, 부호 83이 나타내는 엣지 콘트라스트가 중첩적으로 관찰되어 있다.
도 7d는, 도 7c를 부분적으로 확대한 도면이다. 각 이온에 대응하는 관찰 상의 엣지 콘트라스트를 점선으로 강조해서 나타내었다. 도 7d에 나타나 있는 바와 같이, 각 이온에 의해 얻어지는 관찰 상은 편향 작용에 의해 서로 벗어나 관찰된다.
도 7a∼도 7d에 나타나 있는 바와 같이, 편향 자장에 의해 각 이온의 궤도가 분리된 상태에서 주사 이온 상을 취득하면, 시료 표면의 구조가 다중으로 관측된다. 예를 들면 시료의 요철의 엣지 부분에 있어서는 이 현상이 현저해 있으므로, 이온종의 방출 비율을 추정하는데 바람직하다. 추정 시에는, 각 이온종에 의한 2차 전자의 방출량의 차이도 고려하는 것이 바람직하다. 이 콘트라스트비로부터 H3+ 이온의 방출비가 높은 인출 전압을 결정할 수도 있다.
어느 엣지 콘트라스트가 어느 이온종의 이온 빔에 의한 것인지는, 엣지 콘트라스트의 분리 폭으로부터 추정할 수 있다. 질량 전하비가 큰 H3+ 이온은 자장에 의한 편향의 영향이 작고, 질량 전하비가 작은 H+ 이온은 자장에 의한 편향의 영향이 크다. 도 7c의 예에 있어서는, 분리 폭의 차이가 가장 큰 엣지 콘트라스트(81과 83)의 페어가 H+ 이온과 H3+ 이온에 해당하고, 분리 폭의 차이가 가장 작은 엣지 콘트라스트(82와 83)의 페어가 H2+ 이온과 H3+ 이온에 해당하는 것이라고 추정할 수 있다.
도 7e는 이온 빔의 가속 전압을 변경하면서 엣지 콘트라스트의 분리 폭을 측정한 결과를 나타내는 예이다. 편향 자장의 강도를 변경하거나 또는 이온 빔의 가속을 변경함으로써, 도 7c에 나타내는 3종의 엣지 콘트라스트의 분리 폭을 변경할 수 있다. 이 예는 가속 전압을 30kV/20kV/15kV로서 측정했다. 가속 전압을 감소시키면, 편향 자장의 영향이 상대적으로 커지므로 분리 폭은 증가한다. 가속 전압이 같아도 편향 자장을 변경하면 분리 폭은 변화된다. 가장 큰 분리 폭(84)은 H+ 이온과 H3+ 이온에 해당하고, 가장 작은 분리 폭(86)은 H2+ 이온과 H3+ 이온에 해당한다. 중간의 분리 폭(85)은 H+ 이온과 H2+ 이온에 해당한다.
의도하지 않은 자장이 이온 빔(15)에 걸리고, 또한 이온 빔(15) 내에 복수의 이온종이 혼재할 경우, 상기와 같은 분리 작용이, 시료 표면 관찰을 저해할 가능성이 있다. 그래서 이온 빔(15)에 대한 의도하지 않은 자장의 영향을 방지하도록, 진공 챔버(17)의 소재를 투자율이 높은 소재(예를 들면 퍼멀로이(Permalloy)나 순철(純鐵))로 구성하는 것이 바람직하다. 또는 이온 빔(15)이 통과하는 광로 근방(즉 진공 챔버(17) 내부)에 투자율이 높은 소재로 만들어진 자장 누설 방지용의 부품을 구비해도 된다. 혹은 진공 챔버(17)의 외부에 자장 누설 방지 기능을 가지는 장치 커버를 구비해도 된다. 이들은 적절하게 필요에 따라 조합시켜도 된다.
매스 필터(78)를 필요에 따라 장착해도 된다. 매스 필터(78)는, 특정한 이온을 투과하도록 구성 가능하다. 매스 필터(78)를 사용하여, H3+ 이온 이외의 이온이 어느 정도 이온원으로부터 방출되고 있는지, 측정할 수 있다. 예를 들면 인출 전압의 설정값이 H3+ 이온의 방출 비율을 높이는데 적합한지의 여부를 측정할 때에, 매스 필터(78)를 사용할 수 있다.
매스 필터(78)는, 편향 자장을 발생시키는 요소를 구비할 수도 있다. 동일 개소로부터 방출된 동일 가속의 H+ 이온과 H2+ 이온과 H3+ 이온은, 편향 전장에 따라서는 이온 빔의 궤도가 동일해질 경우가 있지만, 편향 자장에 의해 그것들의 이온 빔 궤도를 분리할 수 있다. 이온종의 방출 비율을 측정할 때에, 이 분리 폭을 사용할 수도 있다.
매스 필터(78)를 수차가 가능한 한 적어지도록 설계하면, H3+ 이온의 방출 비율을 측정할뿐만 아니라, 불필요한 이온종을 필터함으로써, H3+ 이온의 방출 비율이 높으면서 또한 집속 성능을 유지한 빔을 조사할 수 있다. 또한 H3+ 이온으로부터 그 이외의 수소 이온(H+ 이온과 H2+ 이온)을 구분하는 것만으로 특화함으로써, 수차의 발생을 최소한으로 억제할 수 있다. 또는 코스트를 억제해서 필터를 만들 수 있다. 일반적으로 질량 전하비가 작을수록, 자장에 의한 이온 빔의 편향량이 크다. 또한 질량 전하비가 클수록, 다른 이온종을 용이하게 분리할 수 있다.
이온 빔을 분리하기 위한 편향 자장은, 반드시 매스 필터(78)를 사용해서 발생시킬 필요는 없으며, 예를 들면 제 1 편향기(73), 제 2 편향기(74), 시료실(3) 내의 대물 렌즈(76)로부터 시료(31)의 사이의 공간에 있어서 인가할 수 있다. 이온 빔 가속 전압이 클 경우(예를 들면 10kV 이상), 이온 빔의 편향에는 실용적으로 전장을 사용하는 경우가 많으므로, 제 1 편향기(73)와 제 2 편향기(74)는 종래대로 전장에 의한 편향장을 발생시키도록 구성하고, 새롭게 이온 빔 분리를 위한 편향 자장을 발생시키는 제 3 편향기를 마련해도 된다. 혹은 전장에 자장을 중첩할 수 있도록 제 1 편향기(73) 또는 제 2 편향기(74)를 구성해도 된다.
종래의 이온 빔 장치는, (1) 통상 전류가 피크값(제 1 극대)이 되는 인출 전압에서 사용하거나, (2) 에너지 폭이 좁아지는 것이 기대되는 피크값보다 낮은 전압에서 사용하는 것이 상정된다. 즉, 제 2 피크는 제 1 피크에 비해서 에너지 폭이 매우 좁고, 이것을 발견하려면 상세한 실험이 필요했다. 또한, 질량 전하비가 다른 이온을 식별하기 위해서는 자장 인가가 필요하지만, 이온 현미경에 있어서는 자장을 발생시키는 편향기를 사용하는 것은 보통 상정되어 있지 않고, 전부 전계 편향과 전계 렌즈를 사용한다. 발명자들은, 이온종을 식별하기 위해서 자장을 인가하는 실험을 시험해 봄으로써, 도 7a∼도 7e에 나타나 있는 바와 같이 이온종을 식별하기에 이르렀다.
제어 장치(791)는, 도 7a 내지 도 7d와 같은 이온종이 혼재하는 주사 이온 상으로부터 이온종의 비율을 추정하는 기능을 구비하도록 구성해도 된다. 제어 장치(791)에 의해 인출 전압을 변경하면서 편향 자장을 이온 빔(15)에 인가한 주사 이온 상을 해석함으로써, 이온 빔에 혼재하는 이온종의 비율의 인출 전압에 대한 의존성을 밝힐 수 있다. 또한 그 결과에 의거하여 제어 장치(791)가 고전압 전원(111)을 제어해도 된다.
이온 빔 장치(1000)는, 표시 장치(792)를 구비해도 된다. 표시 장치(792)는, 현재 가장 높은 비율로 방출되고 있는 이온종을 표시해도 된다. 또한 다른 동일의 원소로 이루어지는 질량 전하비가 다른 이온을 표시하고, 유저는 제어 장치(791)를 통해서 어느 하나의 이온을 선택할 수 있게 구성해도 된다. 예를 들면 표시 장치(792)는, H+ 이온과 H2+ 이온과 H3+ 이온이 어느 정도의 비율로 방출되고 있는 것인지 표시해도 된다. 또한 어느 수소 이온이 가장 높은 비율로 방출되고 있는지 표시해도 된다.
매스 필터(78)나 이미터 전극(11)에 인가하는 인출 전압을 조정함으로써, 시료에 조사하는 이온을 전환해도 된다. 또한 어느 수소 이온을 가장 높은 비율로 방출할지 유저가 선택할 수 있도록 구성해도 된다. H+ 이온과 H2+ 이온과 H3+ 이온은, 가속 에너지가 같아도 시료 내에의 침입 깊이가 서로 다르기 때문에, 이온을 전환함으로써, 시료에 대한 침입 레인지를 변경할 수 있다. 이것은, 전자 디바이스의 제작 프로세스나 특성 조정 등에 사용할 수 있다. 인출 전압을 조정하는 것 대신에, 예를 들면 렌즈의 전압, 팁의 각도 등에 의해 이온을 전환해도 된다. 특히 분자 이온은 분자 내의 원자의 개수가 많을수록 침입 레인지가 작아지므로, 시료 내의 이온 확대에 의한 시료 내 대미지를 억제할 때에 바람직하다. 예를 들면 가속 전압 30kV의 H3+ 이온 빔은 가속 10kV의 H+ 이온 빔과 침입 레인지가 동등하다.
도 8은 H3+ 이온이 이온 빔에 차지하는 비율이 80% 이상이라고 어림잡아진 상태에서 카본 모체 위에 금미립자를 증착한 시료 표면을 관찰한 예를 나타낸다. 도 7b나 도 7c에서 나타나 있는 바와 같은 엣지 콘트라스트의 분리도 없이 시료 표면이 양호하게 관찰 가능해 있는 것을 알 수 있다. 시료 관찰 시에는, 시료에 조사되는 이온 빔의 시료면상에서의 지름이 10nm 이하가 되도록 하면 된다.
빔 조사 컬럼(7)은 진공 펌프(77)를 사용하여 진공 배기된다. 시료실(3)은 진공 펌프(34)를 사용하여 진공 배기된다. 가스 전계 전리 이온원(1)과 빔 조사 컬럼(7) 사이, 및 빔 조사 컬럼(7)과 시료실(3) 사이는, 필요에 따라 차동 배기 구조로 해도 된다. 즉 이온 빔(15)이 통과하는 개구부를 제외하고 서로의 공간이 기밀하게 유지되도록 구성해도 된다. 이와 같이 구성함으로써, 시료실(3)에 도입되는 가스가 가스 전계 전리 이온원(1)에 도입하는 양이 줄어, 영향이 적어진다. 또한 가스 전계 전리 이온원(1)에 도입되는 가스가 시료실(3)에 도입하는 양이 줄어, 영향이 적어진다.
이온 빔 장치(1000)는, 가스 전계 전리 이온원(1)의 이미터 전극(11)이나 시료실(3) 내부에 설치한 시료(31) 등이 진동되어 시료의 관찰이나 가공의 성능이 열화하지 않도록, 예를 들면 방진 기구(61)와 베이스 플레이트(62)로 이루어지는 장치 가대(60) 위에 설치해도 된다. 방진 기구(61)는 예를 들면 공기스프링이나 금속스프링, 겔(gel)상의 소재, 고무 등을 사용하여 구성할 수 있다. 도시하고 있지 않지만, 이온 빔 장치(1000) 전체 또는 일부를 덮는 장치 커버를 설치해도 된다. 장치 커버는 외부로부터의 공기적인 진동을 차단 또는 감쇠할 수 있는 소재로 구성하는 것이 바람직하다.
시료(31) 근방에, 반응성의 가스 또는 시료(31)의 표면이 대전하는 것을 억제하기 위한 가스를 도입하기 위해서, 시료실(3)은 가스 공급부(38)를 구비해도 된다. 가스 공급부(38)는 가스 노즐(381), 유량 조정기(384), 가스 봄베(386)를 갖는다. 반응성의 가스로서는, (a) 시료(31)의 에칭을 촉진하기 위한 가스로서, 예를 들면 XeF2 가스나 H2O 가스나 할로겐계의 가스, (b) 데포지션을 촉진하기 위한 가스로서, TEOS(Tetra Ethyl Ortho Silicate)나 탄화수소계의 가스, 혹은 금속을 포함하는 예를 들면 WF6와 같은 가스를 사용해도 된다. 에칭을 촉진하는 가스를 사용한 시료 가공에 의해, 이온의 침입량에 대한 시료 가공량을 늘릴 수 있으므로, 시료의 기판에 대한 대미지를 감소시킬 수 있다.
이러한 다양한 반응성 가스를 사용한 시료 가공을 조합시킴으로써, 이온 빔 장치(1000)는 예를 들면 (a) 반도체 프로세스에 있어서 사용되는 포토마스크의 수정, (b) EUV(Extreme UltraViolet) 리소그래피를 사용한 반도체 프로세스에 사용되는 포토마스크의 수정, (c) 나노인프린트 리소그래피에 사용되는 몰드의 수정 등을 실시할 수 있다. 집속성이 좋은 에너지 폭이 작은 H3+ 이온 빔은, 반도체 디바이스의 구조와 같은 정도의 사이즈를 가지는 포토마스크나 몰드의 수정에 바람직하다. 반응성 가스를 사용한 시료 가공과 H3+ 이온 빔 자체의 반응성을 사용함으로써, 다양한 디바이스를 만들 수 있다.
시료실(3)은 진공 펌프(34)에 의해 진공 배기된다. 진공 펌프(34)로서는 예를 들면, 터보 분자 펌프, 이온 스퍼터링 펌프, 비증발 게터 펌프, 서브리메이션 펌프, 크라이오 펌프 등을 사용할 수 있다. 상기와 같은 펌프를 복수 조합시켜도 된다. 가스 공급부(38)와 연동하여, 가스 노즐(381)로부터 가스 도입이 있을 때만 진공 펌프(34)를 동작하도록 장치를 구성하거나, 또는 배기량을 조정하도록 진공 펌프(34)와 시료실(3) 사이에 밸브를 마련해도 된다.
도시하고 있지 않지만, 시료실(3)은 시료 교환실을 구비할 수도 있다. 시료 교환실은, 시료(31)를 교환하기 위한 예비 배기를 할 수 있게 구성해도 된다. 이에 따라, 시료 교환의 때에 시료실(3)의 진공도가 저하하는 정도를 저감할 수 있다.
도 9a는, 수소 가스와 네온 가스를 혼합해서 가스 전계 전리 이온원(1)에 도입하고, H3+ 이온 빔을 많이 함유하는 조건에서 시료의 표면을 관찰한 예를 나타낸다. 가스의 불순물이 많을 때 전형적으로 보이는, 전류의 증감에 의한 상 콘트라스트의 급격한 변화는, 관측되지 않았다. 즉, H3+의 방출은 가스 혼합에도 관계없이 매우 안정하다는 것이 찾아내졌다. 수소 가스와 혼합하는 가스종은 네온에 한하지 않으며, 다른 가스종이어도 마찬가지로 안정하다는 것을 찾아냈다. 즉 H3+와 기타 질량이 무거운 이온과의 조합은, 인출 전압을 변경하는 것에 의한 신속한 이온 빔의 전환에 바람직하다.
도 9b는 이온 빔을 네온 이온으로 전환하여 시료 표면을 가공한 후, H3+ 빔을 사용하여 시료 표면을 관찰한 예를 나타낸다. 점선 부분이 가공 개소이다. 도 9b에 나타나 있는 바와 같이, 가공과 관찰을 신속하게 전환할뿐만 아니라, 관찰 시의 이온 빔의 안정성도 양립할 수 있다.
도 10은, 수소 가스와 네온 가스를 혼합해서 가스 전계 전리 이온원(1)에 도입하고, 네온 이온 빔을 인출하여 시료 표면을 관찰한 예를 나타낸다. 도 10에 나타나 있는 바와 같이, 가스 전계 전리 이온원은 일반적으로는 불순물 가스에 대한 내성이 약하다. 따라서 가스를 혼합하면 전류량의 증감 등의 불안정성이 생긴다. 단 가공 용도에 이온 빔을 사용할 경우에는, 전류의 총량으로 가공량을 제어할 수 있으므로, 관찰에 비하면 전류량의 증감에 의한 영향은 경미하다.
<실시형태 2 : 정리>
본 실시형태 2에 따른 이온 빔 장치(1000)는, 실시형태 1에서 설명한 가스 전계 전리 이온원(1)을 사용함으로써, 시료 관찰 시에 시료에 대하여 주는 대미지를 억제하는 동시에, 관찰 분해능이나 가공 가능폭이 뛰어나, 빔 종류를 고속으로 전환할 수 있다.
<본 발명의 변형예에 대하여>
본 발명은 상기한 실시예에 한정되는 것이 아니며, 여러가지 변형예가 포함된다. 예를 들면, 상기한 실시예는 본 발명을 이해하기 쉽게 설명하기 위해서 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것이 아니다.
이상의 실시형태에 있어서는, 진공 챔버(17)를 진공 배기하는 장치와 가스 혼합부(352)를 진공 배기하는 장치는 공통이지만, 각각 별도의 진공 배기 장치에 의해 진공 배기해도 된다.
이상의 실시형태에 있어서, 진공 챔버(17) 내는, 가스 공급부(37)로부터 가스가 도입되지 않고 있을 경우, 10-7Pa 이하의 초고진공으로 유지된다. 진공 챔버(17) 내를 초고진공으로 하기 위해, 진공 챔버(17) 전체를 100도 이상으로 가열하는 공정(소위 베이킹)을, 가스 전계 전리 이온원(1)의 상승 작업에 포함시켜도 된다.
이상의 실시형태에 있어서, 이미터 팁(11)의 선단을 원자 3개 이하, 바람직하게는 1개로 종단하기 위해서, 이미터 팁(11)을 가열하는 공정을 포함하는 방법을 이용해도 된다. 마찬가지로 이미터 팁(11)의 선단을 선예화(先銳化)하기 위해서, 이미터 팁(11)을 가열하면서 진공 챔버(17) 내에 예를 들면 O2나 N2 등의 가스를 도입하는 방법을 이용해도 된다. 마찬가지로 이미터 팁(11)을 선예화하기 위해서, 이미터 팁(11)과 인출 전극(13) 사이에 고전압을 인가하면서 진공 챔버(17) 내에 예를 들면 O2나 N2 등의 가스를 도입하는 방법을 이용해도 된다. 마찬가지로 텅스텐을 주성분으로 하는 바늘에 의해 이미터 팁(11)을 구성하고, 그 표면에 귀금속(예를 들면 이리듐, 팔라듐, 플라티나 등)을 증착한 후, 이미터 팁(11)을 가열하는 방법을 이용해도 된다.
이상의 실시형태에 있어서, 이온 빔 장치(1000)는 이온 빔을 조사하는 것을 설명했지만, 전자빔을 조사하는 기능부를 합쳐서 구비할 수도 있다.
이상의 실시형태에 있어서, 매스 필터(78)나 이미터 전극(11)에 대하여 인가하는 인출 전압을 조정하는 것 등에 의해, H3+ 이온이 이온 빔(15)에 차지하는 비율을 80% 이상으로 하면, 시료를 관찰하는데 바람직하다.
이상의 실시형태에 있어서, 수소 가스 H2와 마찬가지로 2원자 분자인 가스 N2나 O2도, H3+ 이온에 대해서 도 3a∼도 4b를 사용하여 설명한 것과 마찬가지의 현상이 발생할 것이 기대된다. H3+와 마찬가지로, N2나 O2를 N3+나 O3+로서 방출할 수 있으면, N2+나 O2+에 비해서 에너지 폭이 저감하는 것에 의한 집속 성능 향상이나, N2+나 O2+에 비해서 반응성이 상승하여 가공 속도가 높아지는 효과를 기대할 수 있다.
이상의 실시형태에 있어서, H3+ 이온의 혼합 내성을 이용함으로써, 이온 빔 종류를 전환할 때에 진공 챔버(17) 내를 진공 배기하기 위한 시간을 단축할 수 있는 것을 설명했다. 단 진공 배기 장치(16)를 사용하는 것이 배제되는 것이 아니며, 종래대로 진공 챔버(17) 내를 진공 배기한 상태에서 이온 빔 종류를 전환해도 된다.
1: 가스 전계 전리 이온원 11: 이미터 전극(이미터 팁)
13: 인출 전극 15: 이온 빔
16: 진공 배기 장치 17: 진공 챔버
18: 내벽 19: 벨로우즈
24: 프로브 전류값 111: 고전압 전원
131: 인출 전극 구멍 151: 프로브 전류
152: 빔 제한 개방각 153: 광축
161: 유량 조정기 3: 시료실
31: 시료 32: 시료 스테이지
33: 2차 입자 검출기 34: 진공 펌프
35: 가스 공급부 351: 가스 노즐
352: 가스 혼합부 353: 압력계
354: 유량 조정기 356: 수소 가스 봄베
3561: 수소용 가스 필터 357: 가스 봄베
3571: 유량 조정기 3572: 필터
37: 가스 공급부(가스 도입 기구) 371: 가스 노즐
374: 유량 조정기 376: 가스 봄베
38: 가스 공급부 381: 가스 노즐
384: 유량 조정기 386: 가스 봄베
39: 가스 공급부 391: 가스 노즐
394: 유량 조정기 396: 가스 봄베
4: 냉동기 41: 냉동기 본체
412: 제 1 스테이지 413: 제 2 스테이지
415: 열복사 실드 416: 전열 기구
60: 장치 가대 61: 방진 기구
62: 베이스 플레이트 7: 빔 조사 컬럼
71: 집속 렌즈 710: 집속 렌즈용 전원
72: 애퍼처 73: 제 1 편향기
730: 제 1 편향기용 전원 74: 제 2 편향기
740: 제 2 편향기용 전원 76: 대물 렌즈
760: 대물 렌즈용 전원 77: 진공 펌프
78: 매스 필터 79: 페러데이컵
790: 전류계 791: 제어 장치
792: 표시 장치 1000: 이온 빔 장치

Claims (13)

  1. 바늘 모양의 선단(先端)을 가지는 이미터 팁,
    상기 이미터 팁에 대향해서 배치되며 상기 이미터 팁으로부터 떨어진 위치에 개구를 갖는 인출 전극,
    가스를 공급하는 가스 공급원,
    상기 가스 공급원으로부터 공급되는 가스를 상기 이미터 팁의 근방에 공급하는 가스 공급 배관,
    상기 이미터 팁과 상기 인출 전극 사이에 전압을 인가함으로써 상기 이미터 팁으로부터 이온 빔을 조사시키는 전압 인가부
    를 구비하며,
    상기 전압 인가부는, H3+ 이온을 가장 많이 포함하는 상기 이온 빔이 조사되는 제 1 전압을 인가하는 동작 모드와, H3+보다 무거운 이온을 가장 많이 포함하는 상기 이온 빔이 조사되는 제 2 전압을 인가하는 동작 모드를 전환함으로써, 상기 이온 빔의 종류를 전환하는
    것을 특징으로 하는 이온 빔 장치.
  2. 제 1 항에 있어서,
    상기 가스 공급원은,
    제 1 종류의 가스를 공급하는 동시에, 상기 제 1 종류와는 다른 제 2 종류의 가스를 공급하고,
    상기 이온 빔 장치는,
    상기 가스 공급원과 상기 가스 공급 배관 사이에 배치되며 상기 제 1 종류의 가스와 상기 제 2 종류의 가스를 축적하는 가스 혼합부,
    상기 제 1 종류의 가스의 유량과 상기 제 2 종류의 가스의 유량을 조정함으로써 상기 가스 혼합부에 있어서의 가스 혼합비를 제어하는 혼합비 제어부
    를 더 구비하는 것을 특징으로 하는 이온 빔 장치.
  3. 제 1 항에 있어서,
    상기 이미터 팁의 선단은, 3개 이하의 원자에 의해 종단(終端)되어 있는
    것을 특징으로 하는 이온 빔 장치.
  4. 제 1 항에 있어서,
    상기 가스 공급원은, 수소 가스와 아르곤 가스를 공급하고,
    상기 전압 인가부는, H3+ 이온을 가장 많이 포함하는 상기 이온 빔이 조사되는 전압을 인가하는 동작 모드와, 아르곤을 가장 많이 포함하는 상기 이온 빔이 조사되는 전압을 인가하는 동작 모드를 전환하는
    것을 특징으로 하는 이온 빔 장치.
  5. 제 2 항에 있어서,
    상기 이온 빔 장치는, 상기 이온 빔의 이온 전류값을 지정하는 유저 인터페이스를 더 구비하고,
    상기 혼합비 제어부는, 상기 유저 인터페이스를 통해 지정된 이온 전류값을 상기 이온 빔이 갖도록 상기 가스 혼합비를 제어하는
    것을 특징으로 하는 이온 빔 장치.
  6. 제 1 항에 있어서,
    상기 이온 빔 장치는, H3+ 이온을 가장 많이 포함하는 상기 이온 빔과 H3+ 이외의 이온을 가장 많이 포함하는 상기 이온 빔을 전환하도록 지정하는 유저 인터페이스를 더 구비하고,
    상기 전압 인가부는, 상기 유저 인터페이스를 통해 지정된 상기 이온 빔이 조사되는 전압을 인가하는
    것을 특징으로 하는 이온 빔 장치.
  7. 제 6 항에 있어서,
    상기 유저 인터페이스는, 시료를 관찰하는 동작 모드와 시료를 가공하는 동작 모드를 전환하는 지정을 받고,
    상기 전압 인가부는, 상기 유저 인터페이스를 통해 시료를 관찰하는 동작 모드가 지정된 경우에는 H3+ 이온을 가장 많이 포함하는 상기 이온 빔이 조사되는 전압을 인가하고, 상기 유저 인터페이스를 통해 시료를 가공하는 동작 모드가 지정된 경우에는 H3+보다 무거운 이온을 가장 많이 포함하는 상기 이온 빔이 조사되는 전압을 인가하는
    것을 특징으로 하는 이온 빔 장치.
  8. 제 1 항에 있어서,
    상기 제 1 전압과 상기 제 2 전압 사이의 차분은, 상기 제 1 전압의 10% 내지 50%의 사이 또는 상기 제 2 전압의 10% 내지 50%의 사이인
    것을 특징으로 하는 이온 빔 장치.
  9. 제 1 항에 있어서,
    H3+보다 무거운 이온을 가장 많이 포함하는 상기 이온 빔의 이온 전류는, H3+ 이온을 가장 많이 포함하는 상기 이온 빔의 이온 전류의 3.0배 이상인
    것을 특징으로 하는 이온 빔 장치.
  10. 제 1 항에 있어서,
    상기 이온 빔 장치는,
    상기 가스 공급원이 공급하는 가스와는 다른 종류의 가스를 공급하는 제 2 가스 공급원,
    상기 제 2 가스 공급원으로부터 공급되는 가스를 상기 이미터 팁의 근방에 공급하는 제 2 가스 공급 배관
    을 더 구비하며,
    상기 전압 인가부는, 상기 가스 공급 배관과 상기 제 2 가스 공급 배관이 각각 상기 이미터 팁의 근방에 가스를 공급하고 있을 때에, 상기 제 1 전압과 상기 제 2 전압을 전환함으로써, 상기 이온 빔의 종류를 전환하는
    것을 특징으로 하는 이온 빔 장치.
  11. 제 1 항에 있어서,
    상기 이온 빔 장치는,
    상기 이미터 팁의 근방의 공간을 수용하는 컬럼,
    상기 컬럼의 내부를 진공 배기하는 배기 장치
    를 더 구비하며,
    상기 전압 인가부는, 상기 배기 장치가 상기 컬럼의 내부를 진공 배기한 후에, 상기 제 1 전압과 상기 제 2 전압을 전환함으로써, 상기 이온 빔의 종류를 전환하는
    것을 특징으로 하는 이온 빔 장치.
  12. 제 1 항에 있어서,
    상기 이온 빔 장치는,
    상기 이온 빔을 집속하는 렌즈,
    상기 이온 빔을 편향시키는 편향기,
    상기 이온 빔이 통과하는 개구를 갖는 애퍼처,
    상기 렌즈, 상기 편향기, 및 상기 애퍼처를 제어하는 제어기
    를 더 구비하며,
    상기 제어기는, 상기 전압 인가부가 상기 제 1 전압과 상기 제 2 전압을 전환할 때에, 상기 렌즈, 상기 편향기, 및 상기 애퍼처 각각의 상태를 전환하는
    것을 특징으로 하는 이온 빔 장치.
  13. 제 1 항에 있어서,
    상기 이온 빔 장치는, 상기 이온 빔을 시료에 대하여 조사함으로써 얻어지는 상기 시료의 관찰 화상을 취득하는 화상 처리 장치를 더 구비하고,
    상기 화상 처리 장치는, 상기 전압 인가부가 상기 제 1 전압과 상기 제 2 전압을 전환함에 따라, 상기 관찰 화상에 대하여 적용하는 이미지 시프트량과 비점 수차 보정량을 전환하는
    것을 특징으로 하는 이온 빔 장치.
KR1020180032439A 2017-04-19 2018-03-21 이온 빔 장치 KR102279130B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-082547 2017-04-19
JP2017082547A JP6909618B2 (ja) 2017-04-19 2017-04-19 イオンビーム装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200010925A Division KR20200018520A (ko) 2017-04-19 2020-01-30 이온 빔 장치

Publications (2)

Publication Number Publication Date
KR20180117527A KR20180117527A (ko) 2018-10-29
KR102279130B1 true KR102279130B1 (ko) 2021-07-16

Family

ID=63714346

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180032439A KR102279130B1 (ko) 2017-04-19 2018-03-21 이온 빔 장치
KR1020200010925A KR20200018520A (ko) 2017-04-19 2020-01-30 이온 빔 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200010925A KR20200018520A (ko) 2017-04-19 2020-01-30 이온 빔 장치

Country Status (6)

Country Link
US (1) US10651006B2 (ko)
JP (1) JP6909618B2 (ko)
KR (2) KR102279130B1 (ko)
CN (1) CN108735565B (ko)
DE (1) DE102018106993A1 (ko)
TW (1) TWI670744B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120966B2 (en) * 2019-09-03 2021-09-14 Applied Materials, Inc. System and method for improved beam current from an ion source
US11232925B2 (en) 2019-09-03 2022-01-25 Applied Materials, Inc. System and method for improved beam current from an ion source
JPWO2023037545A1 (ko) * 2021-09-13 2023-03-16

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328965A (ja) * 2006-06-07 2007-12-20 Univ Nagoya イオン発生装置および中性子発生装置
JP2009187950A (ja) * 2008-02-08 2009-08-20 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh デュアルモードガス電界イオン源
JP2016076431A (ja) * 2014-10-08 2016-05-12 株式会社日立ハイテクノロジーズ イオンビーム装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951590B2 (ja) * 2000-10-27 2007-08-01 株式会社日立製作所 荷電粒子線装置
WO2007067296A2 (en) 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
JP4625775B2 (ja) 2006-02-17 2011-02-02 株式会社アルバック イオン注入装置
JP5171192B2 (ja) * 2007-09-28 2013-03-27 東京エレクトロン株式会社 金属膜成膜方法
CN101842910B (zh) * 2007-11-01 2013-03-27 株式会社半导体能源研究所 用于制造光电转换器件的方法
US8026492B2 (en) * 2008-11-04 2011-09-27 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Dual mode gas field ion source
JP5087601B2 (ja) * 2008-11-04 2012-12-05 アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー デュアルモードのガス電界イオン源
WO2010132265A2 (en) * 2009-05-12 2010-11-18 Carl Zeiss Nts, Llc. Gas delivery in a microscope system
US8173980B2 (en) 2010-05-05 2012-05-08 Tel Epion Inc. Gas cluster ion beam system with cleaning apparatus
WO2012168225A1 (en) * 2011-06-06 2012-12-13 Centre National De La Recherche Scientifique - Cnrs - Ion source, nanofabrication apparatus comprising such source, and a method for emitting ions
US8779395B2 (en) * 2011-12-01 2014-07-15 Axcelis Technologies, Inc. Automatic control system for selection and optimization of co-gas flow levels
US9024282B2 (en) * 2013-03-08 2015-05-05 Varian Semiconductor Equipment Associates, Inc. Techniques and apparatus for high rate hydrogen implantation and co-implantion
US10971329B2 (en) 2016-02-05 2021-04-06 Hitachi High-Tech Corporation Field ionization source, ion beam apparatus, and beam irradiation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328965A (ja) * 2006-06-07 2007-12-20 Univ Nagoya イオン発生装置および中性子発生装置
JP2009187950A (ja) * 2008-02-08 2009-08-20 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh デュアルモードガス電界イオン源
JP2016076431A (ja) * 2014-10-08 2016-05-12 株式会社日立ハイテクノロジーズ イオンビーム装置

Also Published As

Publication number Publication date
CN108735565B (zh) 2020-09-25
JP6909618B2 (ja) 2021-07-28
KR20180117527A (ko) 2018-10-29
TW201901729A (zh) 2019-01-01
US20180308658A1 (en) 2018-10-25
KR20200018520A (ko) 2020-02-19
JP2018181716A (ja) 2018-11-15
TWI670744B (zh) 2019-09-01
US10651006B2 (en) 2020-05-12
DE102018106993A1 (de) 2018-10-25
CN108735565A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
JP6093752B2 (ja) イオンビーム装置
US8563944B2 (en) Ion beam device
US9508521B2 (en) Ion beam device
JP5178926B2 (ja) 荷電粒子顕微鏡及びイオン顕微鏡
KR102279130B1 (ko) 이온 빔 장치
US10636623B2 (en) Ion beam device
WO2017134817A1 (ja) 電界電離イオン源、イオンビーム装置、およびビーム照射方法
JP6138942B2 (ja) ナノチップとガス供給機構を備える荷電粒子線装置
WO2014119586A1 (ja) オービトロンポンプ、およびオービトロンポンプを備えた電子線装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2020101000315; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20200130

Effective date: 20210429

GRNO Decision to grant (after opposition)
GRNT Written decision to grant