JPWO2014104394A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
JPWO2014104394A1
JPWO2014104394A1 JP2014554632A JP2014554632A JPWO2014104394A1 JP WO2014104394 A1 JPWO2014104394 A1 JP WO2014104394A1 JP 2014554632 A JP2014554632 A JP 2014554632A JP 2014554632 A JP2014554632 A JP 2014554632A JP WO2014104394 A1 JPWO2014104394 A1 JP WO2014104394A1
Authority
JP
Japan
Prior art keywords
ppm
sol
less
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014554632A
Other languages
English (en)
Other versions
JP5983777B2 (ja
Inventor
之啓 新垣
之啓 新垣
山口 広
山口  広
有衣子 脇阪
有衣子 脇阪
松田 広志
広志 松田
敬 寺島
寺島  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5983777B2 publication Critical patent/JP5983777B2/ja
Publication of JPWO2014104394A1 publication Critical patent/JPWO2014104394A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Abstract

質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを素材として、方向性電磁鋼板を製造するに際し、一次再結晶焼鈍前、焼鈍中または焼鈍後に窒素増量(ΔN)が次式(1)または式(2)で規定される窒化処理を施して、窒化珪素(Si3N4)を粒界上に析出させ、この窒化珪素を正常粒成長の抑制力として機能させることにより、磁気特性のバラつきを大幅に低減して、良好な特性を有する方向性電磁鋼板を工業的に安定して製造する。・sol.Al−N×(26.98/14.00)≦0の場合、50ppm≦ΔN≦1000ppm −−−(1)・0<sol.Al−N×(26.98/14.00)≦30の場合、(N−sol.Al×14.00/26.98+100)≦ΔN≦(N−sol.Al×14.00/26.98+1000)−−−(2)

Description

本発明は、優れた磁気特性を有する方向性電磁鋼板を安価に得ることができる磁気特性に優れた方向性電磁鋼板の製造方法およびかような方向性電磁鋼板の製造に適した方向性電磁鋼板用の一次再結晶鋼板に関するものである。
方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。
従来、このような方向性電磁鋼板は、4.5mass%以下程度のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱して、インヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して、一次再結晶および脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3)。
上述したとおり、従来の方向性電磁鋼板の製造に際しては、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させ、1300℃を超える高温のスラブ加熱により、これらのインヒビター成分を一旦固溶させ、後工程で微細析出させることにより、二次再結晶を発現させるという工程が採用されてきた。このように、従来の方向性電磁鋼板の製造工程では、1300℃を超える高温でのスラブ加熱が必要であったため、その製造コストは極めて高いものとならざるを得ず、近年の製造コスト低減の要求に応えることができないというところに問題を残していた。
上記の問題を解決するために、例えば特許文献4では、酸可溶性Al(sol.Al)を0.010〜0.060%含有させ、スラブ加熱を低温に抑え、脱炭焼鈍工程で適正な窒化雰囲気下で窒化を行うことにより、二次再結晶時に(Al,Si)Nを析出させてインヒビターとして用いる方法が提案されている。(Al,Si)Nは鋼中に微細分散して有効なインヒビターとして機能するが、Alの含有量によってインヒビター強度が決まるため、製鋼でのAl量的中精度が十分ではない場合は、十分な粒成長抑制力が得られない場合があった。このような途中工程で窒化処理を行い、(Al,Si)NあるいはAlNをインヒビターとして利用する方法は数多く提案されており、最近ではスラブ加熱温度も1300℃を超える製造方法等も開示されている。
一方、そもそもスラブにインヒビター成分を含有させずに二次再結晶を発現させる技術についても検討が進められ、例えば特許文献5では、インヒビター成分を含有させなくとも二次再結晶ができる技術、いわゆるインヒビターレス法が開発された。このインヒビターレス法は、より高純度化した鋼を利用し、テクスチャー(集合組織の制御)によって二次再結晶を発現させる技術である。
このインヒビターレス法では、高温のスラブ加熱が不要であり、低コストでの方向性電磁鋼板の製造が可能ではあるが、インヒビターを有しないが故に製造時に、途中工程での温度のバラツキ等の影響を受け、製品の磁気特性もバラツキやすいという特徴があった。なお、集合組織の制御は、本技術においては重要な要素であり、集合組織制御のため温間圧延などの多くの技術が提案されている。但し、こうした集合組織制御が十分に行えない場合は、インヒビターを用いる技術に比べて二次再結晶後のゴス方位((110)〔001〕)への集積度は低く、磁束密度も低くなる傾向にあった。
米国特許第1965559号公報 特公昭40−15644号公報 特公昭51−13469号公報 特許第2782086号公報 特開2000−129356号公報
上述したとおり、これまで提案されてきたインヒビターレス法を用いた方向性電磁鋼板の製造方法では、良好な磁気特性を安定的に実現することは必ずしも容易ではなかった。
本発明は、Alを100ppm未満に抑制したインヒビターレス成分に準じた成分を用い、高温スラブ加熱を回避しつつ、窒化を利用することで、AlNではなく窒化珪素(Si)を析出させ、この窒化珪素を正常粒成長の抑制力として機能させることにより、磁気特性のバラつきを大幅に低減して、工業的に安定して良好な磁気特性を有する方向性電磁鋼板の製造を可能にしたものである。
発明者らは、スラブ加熱温度を抑えつつ、磁気特性のバラツキを低減した方向性電磁鋼板を得るために、インヒビターレス法を用いて一次再結晶集合組織の作り込みを行い、これに途中工程で窒化を利用して窒化珪素を析出させ、これをインヒビターとして利用する検討を行った。
すなわち、発明者らは、方向性電磁鋼板で一般に数%程度含有される珪素を窒化珪素として析出させ、これをインヒビターとして利用することが可能であれば、窒化処理時の窒化量を制御することにより、窒化物形成元素(Al,Ti,Cr,V等)の多寡によらず同等の粒成長抑制力が得られるのではないかと考えた。
一方で純粋な窒化珪素は、AlN中にSiが固溶した(Al,Si)Nとは異なり、鋼の結晶格子と整合性が悪く、また共有結合性の複雑な結晶構造を有するため、粒内に微細に析出させることは極めて困難であることが知られている。したがって、従来法のように窒化後に、粒内に微細に析出させることは困難であると考えられる。
しかしながら、これを逆に利用すれば、窒化珪素を粒界に選択的に析出させることができる可能性が考えられる。そして、仮に粒界に選択的に析出させることが可能であれば、析出物が粗大となっていても十分な抑制力が得られると考えられる。
そこで、発明者らは、上記の考えに立脚し、素材の成分組成をはじめとして、窒化処理における増量窒化量や窒素を粒界に拡散させて窒化珪素を形成するための熱処理条件等について鋭意検討を重ねた。その結果、窒化珪素の有用性を新たに見出し、本発明を完成させるに至ったのである。
すなわち、本発明の要旨構成は次のとおりである。
1.質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法。

・sol.Al−N×(26.98/14.00)≦0の場合
50ppm≦ΔN≦1000ppm −−−(1)
・0<sol.Al−N×(26.98/14.00)≦30の場合
(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000)−−−(2)
2.質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、さらに一次再結晶焼鈍から二次再結晶開始までの間に、鋼板地鉄中にNを拡散させ、粒径が100nm以上のAlを含有しない窒化珪素を析出させることによって、正常粒成長抑制力として利用する方向性電磁鋼板の製造方法。

・sol.Al−N×(26.98/14.00)≦0の場合
50ppm≦ΔN≦1000ppm −−−(1)
・0<sol.Al−N×(26.98/14.00)≦30の場合
(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000)−−−(2)
3.前記鋼スラブが、さらに質量%で、
Ni:0.005〜1.50%、 Sn:0.01〜0.50%、
Sb:0.005〜0.50%、 Cu:0.01〜0.50%、
Cr:0.01〜1.50%、 P:0.0050〜0.50%、
Mo:0.01〜0.50%およびNb:0.0005〜0.0100%
のうちから選んだ1種または2種以上を含有する前記1または2に記載の方向性電磁鋼板の製造方法。
4.方向性電磁鋼板製造用の一次再結晶鋼板であって、その組成が、質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有し、S,SeおよびOがそれぞれ50ppm未満、sol.Alが100ppm未満、Nが50ppm以上1080ppm以下で、残部はFeおよび不可避的不純物の組成範囲を満足する方向性電磁鋼板製造用の一次再結晶鋼板。
5.前記一次再結晶鋼板が、さらに質量%で、
Ni:0.005〜1.50%、 Sn:0.01〜0.50%、
Sb:0.005〜0.50%、 Cu:0.01〜0.50%、
Cr:0.01〜1.50%、 P:0.0050〜0.50%、
Mo:0.01〜0.50%およびNb:0.0005〜0.0100%
のうちから選んだ1種または2種以上を含有する前記4に記載の方向性電磁鋼板製造用の一次再結晶鋼板。
本発明によれば、高温スラブ加熱の必要なしに、磁気特性のバラツキを大幅に低減して、良好な磁気特性を有する方向性電磁鋼板を、工業的に安定して製造することができる。
また、本発明では、Alとの複合析出ではない純粋な窒化珪素を利用するので、純化に際しては、比較的拡散の早い窒素のみを純化するだけで鋼の純化を達成することができる。
さらに、析出物として、従来のようなAlやTiを利用する場合には、最終的な純化と確実なインヒビター効果という観点から、ppmオーダーでの制御が必要であったが、本発明のように析出物としてSiを利用する場合には、製鋼時にそのような制御は一切不要である。
脱炭焼鈍後、窒素増量が100ppm(同図a)、500ppm(同図b)となるような窒化処理を行い、所定の昇温速度で800℃まで昇温したのち、直ちに水冷した組織の電子顕微鏡写真、および上記した組織中の析出物のEDX(エネルギー分散型X線分光法)による同定結果を示した図(同図c)である。 鋼塊A,Bの窒化処理後の電子顕微鏡写真(A−1,B−1)および昇温後の電子顕微鏡写真(A−2,B−2)である。
以下、本発明を具体的に説明する。
まず、本発明において、鋼スラブの成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」および「ppm」表示は特に断らない限り「質量%」および「質量ppm」を意味するものとする。
C:0.08%以下
Cは、一次再結晶集合組織を改善する上で有用な元素であるが、含有量が0.08%を超えるとかえって一次再結晶集合組織の劣化を招くので、C量は0.08%以下に限定した。磁気特性の観点から望ましい含有量は0.01〜0.06%の範囲である。なお、要求される磁気特性のレベルがさほど高くない場合には、一次再結晶焼鈍における脱炭を省略あるいは簡略化するために、C量を0.01%以下としてもよい。
Si:2.0〜4.5%
Siは、電気抵抗を高めることによって鉄損を改善する有用元素であるが、含有量が4.5%を超えると冷間圧延性が著しく劣化するので、Si量は4.5%以下に限定した。一方、Siは窒化物形成元素として機能させる必要があるため、2.0%以上含有させることが必要である。また鉄損の観点からも望ましい含有量は2.0〜4.5%の範囲である。
Mn:0.5%以下
Mnは、製造時における熱間加工性を向上させる効果があるので0.01%以上含有させることが好ましいが、含有量が0.5%を超えた場合には、一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mn量は0.5%以下に限定した。
S,SeおよびO:それぞれ50ppm未満
S,SeおよびO量がそれぞれ50ppm以上になると、二次再結晶が困難となる。この理由は、粗大な酸化物や、スラブ加熱によって粗大化したMnS,MnSeが一次再結晶組織を不均一にするためである。従って、S,SeおよびOはいずれも50ppm未満に抑制するものとした。これらの含有量は0ppmであってもよい。
sol.Al:100ppm未満
Alは、表面に緻密な酸化膜を形成し、窒化の際にその窒化量の制御を困難にしたり、脱炭を阻害することもあるため、Alはsol.Al量で100ppm未満に抑制する。但し、酸素親和力の高いAlは、製鋼工程で微量添加することにより鋼中の溶存酸素量を低減し、特性劣化につながる酸化物系介在物の低減などを見込めるため、磁性劣化を抑制する上では10ppm以上添加することが有利である。0ppmであってもよい。
N:80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppm
本発明では、インヒビターレスの製造方法を適用して集合組織の作り込みまでを行うため、Nは80ppm以下に抑制する必要がある。Nが80ppmを超えると粒界偏析の影響や微量窒化物の形成により、集合組織が劣化するといった弊害が生じる。また、スラブ加熱時にフクレなどの欠陥の原因となることもあるため、N量は80ppm以下に抑制する必要がある。好ましくは60ppm以下である。
本発明では、N量を単に80ppm以下に抑制するだけでは不十分で、sol.Al量との関係で、sol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmの範囲に制御する必要がある。
本発明では、窒化処理により、窒化珪素を析出させることが特徴であるが、過剰なAlが残存した場合には、窒化処理後に(Al,Si)Nの形で析出することが多く、純粋な窒化珪素を析出をさせることができない。
しかしながら、N量をsol.Al量との関係でsol.Al−N×(26.98/14.00)≦0の範囲に制御しておく、換言すれば、含有するAl量に対してAlNとして析出する以上のNが含有されていれば、窒化処理以前にAlをAlNとして析出固定しておくことが可能であり、窒化処理によって鋼中に追加したN(ΔN)は窒化珪素の形成のみに使用される。ここに、ΔNとは、窒化処理によって鋼中に増量される窒素を意味する。
一方、sol.Al−N×(26.98/14.00)の値が0を超え30以下の範囲では、窒化処理後に純粋な窒化珪素を形成するには、より過剰の窒素(ΔN)が必要となる。
さらに、sol.Al−N×(26.98/14.00)の値が30を超えた場合には、窒化処理の際に追加されるNに起因して微細析出するAlNや(Al,Si)Nの影響が大きくなり、二次再結晶温度が過剰に高くなって二次再結晶不良が生じるため、sol.Al−N×(26.98/14.00)の値は30ppm以下に抑制する必要がある。
以上、基本成分について説明したが、本発明では、工業的により安定して磁気特性を改善する成分として、以下の元素を適宜含有させることができる。
Ni:0.005〜1.50%
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働きがあり、そのためには0.005%以上含有させることが好ましいが、一方で含有量が1.50%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Niは0.005〜1.50%の範囲で含有させることが望ましい。
Sn:0.01〜0.50%
Snは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.01%以上含有させることが好ましいが、一方で0.50%を超えて含有されると冷間圧延性が劣化するので、Snは0.01〜0.50%の範囲で含有させることが望ましい。
Sb:0.005〜0.50%
Sbは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素であり、その目的のためには0.005%以上含有させることが好ましいが、一方で0.5%を超えて含有されると冷間圧延性が劣化するので、Sbは0.005〜0.50%の範囲で含有させることが望ましい。
Cu:0.01〜0.50%
Cuは、二次再結晶焼鈍中の鋼板の酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる働きがあり、そのためには0.01%以上含有させることが好ましいが、一方で0.50%を超えて含有されると熱間圧延性の劣化を招くので、Cuは0.01〜0.50%の範囲で含有させることが望ましい。
Cr:0.01〜1.50%
Crは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.01%以上含有させることが好ましいが、一方で含有量が1.50%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Crは0.01〜1.50%の範囲で含有させることが望ましい。
P:0.0050〜0.50%
Pは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.0050%以上含有させることが好ましいが、一方で含有量が0.50%を超えると冷間圧延性が劣化するので、Pは0.0050〜0.50%の範囲で含有させることが望ましい。
Mo:0.01〜0.50%、Nb:0.0005〜0.0100%
MoおよびNbはいずれも、スラブ加熱時の温度変化による割れの抑制等を介して、熱延後のヘゲを抑制する効果を有している。これらはそれぞれ、Moは0.01%以上、Nbは0.0005%以上含有させなければヘゲ抑制の効果は小さく、一方Moは0.50%を超えると、Nbは0.0100%を超えると炭化物、窒化物を形成するなどして最終製品まで残留した際、鉄損の劣化を引き起こすため、それぞれ上述の範囲とすることが望ましい。
次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整した鋼スラブを、再加熱することなくまたは再加熱したのち、熱間圧延に供する。なお、スラブを再加熱する場合には、再加熱温度は1000℃以上、1300℃以下程度とすることが望ましい。というのは、1300℃を超えるスラブ加熱は、スラブの段階で鋼中にインヒビターをほとんど含まない本発明では無意味であって、コストアップとなるだけであり、一方1000℃未満では、圧延荷重が高くなり、圧延が困難となるからである。
ついで、熱延板に、必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して、最終冷延板とする。この冷間圧延は、常温で行ってもよいし、常温より高い温度たとえば250℃程度に鋼板温度を上げて圧延する温間圧延としてもよい。
ついで、最終冷間圧延板に一次再結晶焼鈍を施す。
この一次再結晶焼鈍の目的は、圧延組織を有する冷間圧延板を一次再結晶させて、二次再結晶に最適な一次再結晶粒径に調整することである。そのためには、一次再結晶焼鈍の焼鈍温度は800℃以上、950℃未満程度とすることが望ましい。また、この時の焼鈍雰囲気を、湿水素窒素または湿水素アルゴン雰囲気とすることで脱炭焼鈍を兼ねさせても良い。
さらに、上記の一次再結晶焼鈍前、あるいは焼鈍の途中または焼鈍後に、窒化処理を施す。窒化の手法については、窒化量を制御することができればいずれでも良く、特に限定はしない。例えば、過去に実施されている、コイル形態のままNH雰囲気ガスを用いてガス窒化を行ってもよいし、走行するストリップに対して連続的なガス窒化を行ってもよい。また、ガス窒化に比べて窒化能の高い塩浴窒化を利用することも可能である。ここに、塩浴窒化を利用する場合の塩浴としては、シアン酸塩を主成分とする塩浴が好適である。
上記の窒化処理において重要な点は、表層に窒化物層を形成することである。鋼中への拡散を抑制するためには、800℃以下の温度で窒化処理を行うことが望ましいが、時間を短時間(例えば30秒程度)とすることでより高温であっても表面のみに窒化物層を形成させることができる。
本発明において、上記の窒化処理により鋼中に増量させる窒素量(ΔN:窒素増量ともいう)は、処理前のN量およびsol.Al量との関係で異なる。
すなわち、N量とsol.Al量がsol.Al−N×(26.98/14.00)≦0の関係を満足している場合は、事前に鋼中NをAlNとして析出させておくことができるため、窒化処理により増加した窒素は、Alを含有しない窒化珪素の形成のみに利用される。この場合、窒化処理による窒素増量(ΔN)は次式(1)の範囲とする。
50ppm≦ΔN≦1000ppm −−−(1)
一方、N量とsol.Al量が0<sol.Al−N×(26.98/14.00)≦30の関係を満足している場合は、窒化処理により増加したNは窒化珪素に比べ熱力学的に安定なAlNあるいはSiを固溶した(Al,Si)Nとして析出するため、適量の窒化珪素を析出させるためには、より過剰の窒素が必要となる。具体的には、次式(2)を満足する範囲とする必要がある。
(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000)−−−(2)
窒素増量(ΔN)が、(1),(2)式の下限値未満では、その効果は十分に得られず、一方上限値を超えると窒化珪素の析出量が過多となり二次再結晶が生じない。
なお、窒化処理は、一次再結晶焼鈍前、焼鈍中、焼鈍後のいずれもが適用可能であるが、最終冷間圧延前の焼鈍で一部のAlNが固溶し、sol.Alが存在した状態で冷却される場合があるため、一次再結晶焼鈍前に適用すると、残留するsol.Alの影響で析出状態が理想状態から異なった状況となる場合がある。このため、望ましくは再び固溶AlがAlNとして析出する一次再結晶焼鈍昇熱後のタイミング、すなわち一次再結晶焼鈍中あるいは焼鈍後で窒化処理を行う方が安定的に析出を制御することができる。
上記の一次再結晶焼鈍および窒化処理を施したのち、鋼板表面に焼鈍分離剤を塗布する。二次再結晶焼鈍後の鋼板表面にフォルステライト被膜を形成するためには、焼鈍分離剤の主剤をマグネシア(MgO)とする必要があるが、フォルステライト被膜の形成が必要ない場合には、焼鈍分離剤主剤として、アルミナ(Al)やカルシア(CaO)など、二次再結晶焼鈍温度より高い融点を有する適当な酸化物を用いることができる。
これに引き続き二次再結晶焼鈍を行う。この二次再結晶焼鈍では、昇温過程の300〜800℃の温度域における滞留時間を5時間以上150時間以下とする必要がある。この間に表層の窒化物層は分解し、Nが鋼中へ拡散する。本発明の成分系では、AlNを形成することができるAlが残存しないため、粒界偏析元素であるNは粒界を拡散経路として、鋼中へ拡散する。
窒化珪素は、鋼の結晶格子との整合性が悪い(misfit率が大きい)ため、析出速度は極めて遅い。とはいえ、窒化珪素の析出は、正常粒成長の抑制が目的であるため、正常粒成長が進行する800℃の段階では十分な量を粒界上に選択的に析出させておく必要がある。この点については、300〜800℃の温度域における滞留時間を5時間以上とすることにより、窒化珪素を粒内で析出させることはできないものの、粒界を拡散して来たNと結び付けて、粒界上に選択的に析出させることができる。滞留時間の上限については必ずしも設ける必要はないが、150時間を超える焼鈍を行っても効果の向上は望めないので、本発明では150時間を上限値とした。なお、焼鈍雰囲気は、N,Ar,Hあるいはこれらの混合ガスのいずれもが適合する。
上記したように、鋼中のAl量が抑制され、窒化処理によるAlNや(Al,Si)Nの析出を抑え、またMnSやMnSe等に代表されるインヒビター成分をほとんど含有しないスラブに対して、上述の工程を経て製造される方向性電磁鋼板では、二次再結晶焼鈍の昇温過程中、二次再結晶開始までの段階において、従来インヒビターに比べて粗大なサイズ(100nm以上)の窒化珪素を粒界に選択的に析出させることができる。なお、窒化珪素の粒径の上限値については特に制限はないが、5μm以下とするのが好適である。
図1(a),(b)はそれぞれ、脱炭焼鈍後、100ppm、500ppmの窒素増量となるような窒化処理を行い、300〜800℃の温度域における滞留時間が8時間となる昇温速度で800℃まで昇温したのち、直ちに水冷した組織を、電子顕微鏡により観察、同定したものである。また、図1(c)は、上記した組織中の析出物のEDX(エネルギー分散型X線分光法)による同定結果を示した図である。
同図から明らかなように、従来利用されてきた微細析出物(<100nm)とは異なり、最小のものであっても100nmを超える粗大な窒化珪素が粒界上に析出している様子が確認される。
また、鋼成分として、Si:3.2%、sol.Al<5ppm、N:10ppmで溶製した鋼塊Aと、Si:3.2%、sol.Al:150ppm、N:10ppmで溶製した鋼塊Bを用い、ラボにて脱炭を兼ねた一次再結晶焼鈍まで実施した試料に対して、NH−N混合ガスを利用し、窒素増量が200ppmとなるガス窒化処理を行った。かくして得られた窒化処理後の試料について電子顕微鏡を用いて組織を観察した。その後、窒化処理後の試料を二次再結晶焼鈍と同様のヒートパターンで800℃まで昇温したのち、水冷して得られた試料について電子顕微鏡を用いて組織を観察した。
観察結果を図2に示す。図2中、A−1,B−1が鋼塊A,Bの窒化処理後の電子顕微鏡写真、A−2,B−2が鋼塊A,Bの昇温後の電子顕微鏡写真である。
Alを含有しない鋼塊Aでは、窒化処理後(A−1)には析出物はほとんどなく、昇温・水冷後(A−2)に、粒界にSiが100nm以上の粒径で析出していることが分かる。一方、Alを含有する鋼塊Bでは、窒化処理後(B−1)は鋼塊Aと同様、析出物はほとんど確認できないが、昇温後(B−2)は、粒内に従来型の(Al,Si)Nが析出している様子が観察される。
本発明の特徴であるAlとの複合析出ではない純粋な窒化珪素を利用するという点は、鋼中に数%というオーダーで存在し、鉄損改善に効果を有するSiを有効に活用するという点において、極めて高い安定性を有している。すなわち、これまでの技術で利用されてきたAlやTiといった成分は、窒素との親和力が高く、高温まで安定な析出物であることから、最終的に鋼中に残留しやすく、また残留することにより磁気特性を劣化させる要因となるおそれがある。
しかしながら、窒化珪素を利用した場合、比較的拡散の早い窒素のみを純化するだけで磁気特性に有害となる析出物の純化を達成することができる。また、AlやTiについては、最終的に純化しなければならないという観点と、インヒビター効果を確実に得なければならないという観点から、ppmオーダーでの制御が必要であるが、Siを利用する場合には、製鋼時にそのような制御が不要であることも、本発明の重要な特徴である。
なお、製造上、窒化珪素の析出には二次再結晶昇温過程を利用するのがエネルギー効率上、最も有効であることは明白であるが、同様のヒートサイクルを利用すれば窒化珪素の粒界選択析出は可能となるため、長時間の二次再結晶焼鈍の前に、窒化珪素分散焼鈍として実施することによっても製造することはできる。
上記の二次再結晶焼鈍後、鋼板表面に、さらに絶縁被膜を塗布、焼き付けることもできる。かかる絶縁被膜の種類については、特に限定されることはなく、従来公知のあらゆる絶縁被膜が適合する。たとえば、特開昭50−79442号公報や特開昭48−39338号公報に記載されているリン酸塩−クロム酸塩−コロイダルシリカを含有する塗布液を鋼板に塗布し、800℃程度で焼き付ける方法が好適である。
また、平坦化焼鈍によって鋼板の形状を整えることも可能であり、さらにこの平坦化焼鈍を絶縁被膜の焼き付け処理と兼備させることもできる。
(実施例1)
C:0.06%、Si:3.3%、Mn:0.08%、S:0.001%、Se:5ppm以下、O:11ppm、Cu:0.05%およびSb:0.01%を含有し、かつAlとNを表1に示す割合で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、1100℃で30分加熱後、熱間圧延により2.2mm厚の熱延板とし、1000℃,1分間の焼鈍を施したのち、冷間圧延により0.23mmの最終板厚とし、ついで得られた冷間圧延コイルの中央部から100mm×400mmサイズの試料を採取し、ラボにて一次再結晶と脱炭を兼ねた焼鈍を行った。一部の試料については、一次再結晶焼鈍と脱炭と窒化(連続窒化処理:NHとN,Hの混合ガスを利用した窒化処理)を兼ねた焼鈍を行った。その後、窒化を施していない試料に対しては、表1に示す条件で窒化処理(バッチ処理:シアン酸塩を主成分とする塩を利用した塩浴による窒化処理、およびNHとNの混合ガスを利用した窒化処理)を行い、鋼中窒素量を増加させた。窒素量は、全厚を対象としたものと、表層(両面)各3μmをサンドペーパーで削り、表層を除いた試料を対象としたものについて、それぞれを化学分析によって定量した。
同一条件の鋼板は一条件につき21枚作製し、MgOを主成分としTiOを5%含有する焼鈍分離剤を水スラリ状にしてから塗布乾燥し、鋼板上に焼き付けた。そのうち20枚に対しては最終仕上げ焼鈍を行い、ついでリン酸塩系の絶縁張力コーティングを塗布焼付けて製品とした。
得られた製品について、磁化力:800A/mでの磁束密度B(T)を評価した。磁気特性は、各条件20枚の平均値で評価した。また残る1枚については、最終仕上げ焼鈍と同じヒートパターンで800℃まで昇温したのち、試料を取り出し、そのまま水焼入れした試料について、組織中の窒化珪素を電子顕微鏡により観察し、窒化珪素50個当たりの平均粒径を測定した。
表1に見られるように、発明例ではインヒビターレスの製造工程で製造されたものに比べ、磁気特性が改善していることは明らかである。
(実施例2)
表2に示す成分を含有する鋼スラブ(但し、S,Se,O含有量はいずれも50ppm未満)を、1200℃で20分加熱後、熱間圧延により2.0mm厚の熱延板とし、1000℃,1分間の焼鈍後、冷間圧延により板厚:1.5mmまでの冷間圧延したのち、1100℃,2分間の中間焼鈍後、以下に示す冷間圧延により0.27mmの最終板厚としてから、P(HO)/P(H)=0.3の雰囲気下で焼鈍温度:820℃となる条件で2分間保持する脱炭焼鈍を行った。その後、一部コイルに対してバッチ処理で窒化処理(NH雰囲気下)を行い鋼中N量を70ppmあるいは550ppm増量させたのち、MgOを主成分とし、TiOを10%添加した焼鈍分離剤を水と混ぜてスラリ状としたものを塗布してから、コイルに巻き取り、300〜800℃間の滞留時間が30時間となる昇温速度で最終仕上げ焼鈍を行い、続いてリン酸塩系の絶縁張力コーティングの塗布焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
かくして得られた製品コイルからエプスタイン試験片を採取し、磁束密度B8を測定した結果を、表2に示す。
表2から明らかなように、本発明に従い得られた発明例はいずれも、高い磁束密度が得られていることが分かる。
すなわち、本発明の要旨構成は次のとおりである。
1.質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつ0<sol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、昇温過程の300〜800℃の温度域における滞留時間が5時間以上150時間以下である二次再結晶焼鈍を施す方向性電磁鋼板の製造方法。

(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000) --- (2)
2.質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつ0<sol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、さらに一次再結晶焼鈍から二次再結晶開始までの間に、鋼板地鉄中にNを拡散させ、粒径が100nm以上のAlを含有しない窒化珪素を析出させることによって、正常粒成長抑制力として利用する方向性電磁鋼板の製造方法。

(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000) --- (2)
2.質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつ0<sol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、昇温過程の300〜800℃の温度域における滞留時間が5時間以上150時間以下である二次再結晶焼鈍を施して鋼板地鉄中にNを拡散させ、粒径が100nm以上のAlを含有しない窒化珪素を析出させることによって、正常粒成長抑制力として利用する方向性電磁鋼板の製造方法。

(N−sol.Al×14.00/26.98+100)≦ΔN≦
(N−sol.Al×14.00/26.98+1000) --- (2)

Claims (5)

  1. 質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法。

    ・sol.Al−N×(26.98/14.00)≦0の場合、
    50ppm≦ΔN≦1000ppm −−−(1)
    ・0<sol.Al−N×(26.98/14.00)≦30の場合
    (N−sol.Al×14.00/26.98+100)≦ΔN≦
    (N−sol.Al×14.00/26.98+1000)−−−(2)
  2. 質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有すると共に、S,SeおよびOをそれぞれ50ppm未満、sol.Alを100ppm未満に抑制し、さらにNを80ppm以下で、かつsol.Al(ppm)−N(ppm)×(26.98/14.00)≦30ppmを満足する範囲に制御し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、再加熱することなくまたは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍前、あるいは焼鈍中または焼鈍後に窒素増量(ΔN)が下記式(1)または式(2)で規定される窒化処理を施したのち、焼鈍分離剤を塗布し、さらに一次再結晶焼鈍から二次再結晶開始までの間に、鋼板地鉄中にNを拡散させ、粒径が100nm以上のAlを含有しない窒化珪素を析出させることによって、正常粒成長抑制力として利用する方向性電磁鋼板の製造方法。

    ・sol.Al−N×(26.98/14.00)≦0の場合
    50ppm≦ΔN≦1000ppm −−−(1)
    ・0<sol.Al−N×(26.98/14.00)≦30の場合
    (N−sol.Al×14.00/26.98+100)≦ΔN≦
    (N−sol.Al×14.00/26.98+1000)−−−(2)
  3. 前記鋼スラブが、さらに質量%で、
    Ni:0.005〜1.50%、 Sn:0.01〜0.50%、
    Sb:0.005〜0.50%、 Cu:0.01〜0.50%、
    Cr:0.01〜1.50%、 P:0.0050〜0.50%、
    Mo:0.01〜0.50%およびNb:0.0005〜0.0100%
    のうちから選んだ1種または2種以上を含有する請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 方向性電磁鋼板製造用の一次再結晶鋼板であって、その組成が、質量%または質量ppmで、C:0.08%以下、Si:2.0〜4.5%およびMn:0.5%以下を含有し、S,SeおよびOがそれぞれ50ppm未満、sol.Alが100ppm未満、Nが50ppm以上1080ppm以下で、残部はFeおよび不可避的不純物の組成範囲を満足する方向性電磁鋼板製造用の一次再結晶鋼板。
  5. 前記一次再結晶鋼板が、さらに質量%で、
    Ni:0.005〜1.50%、 Sn:0.01〜0.50%、
    Sb:0.005〜0.50%、 Cu:0.01〜0.50%、
    Cr:0.01〜1.50%、 P:0.0050〜0.50%、
    Mo:0.01〜0.50%およびNb:0.0005〜0.0100%
    のうちから選んだ1種または2種以上を含有する請求項4に記載の方向性電磁鋼板製造用の一次再結晶鋼板。
JP2014554632A 2012-12-28 2013-12-25 方向性電磁鋼板の製造方法 Active JP5983777B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012288877 2012-12-28
JP2012288877 2012-12-28
PCT/JP2013/085322 WO2014104394A1 (ja) 2012-12-28 2013-12-25 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板

Publications (2)

Publication Number Publication Date
JP5983777B2 JP5983777B2 (ja) 2016-09-06
JPWO2014104394A1 true JPWO2014104394A1 (ja) 2017-01-19

Family

ID=51021449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554632A Active JP5983777B2 (ja) 2012-12-28 2013-12-25 方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US9953752B2 (ja)
EP (1) EP2940159B1 (ja)
JP (1) JP5983777B2 (ja)
KR (2) KR101950620B1 (ja)
CN (1) CN104870665B (ja)
RU (1) RU2617308C2 (ja)
WO (1) WO2014104394A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104391A1 (ja) 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板
JP6191780B2 (ja) * 2014-09-04 2017-09-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法および窒化処理設備
JP6191564B2 (ja) * 2014-09-04 2017-09-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法および窒化処理設備
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6350398B2 (ja) 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP3385397B1 (en) * 2015-12-04 2024-04-10 JFE Steel Corporation Method for manufacturing grain-oriented electromagnetic steel sheet
WO2018021332A1 (ja) * 2016-07-29 2018-02-01 Jfeスチール株式会社 方向性電磁鋼板用熱延鋼板およびその製造方法、並びに方向性電磁鋼板の製造方法
JP6572864B2 (ja) * 2016-10-18 2019-09-11 Jfeスチール株式会社 電磁鋼板製造用の熱延鋼板およびその製造方法
KR102329385B1 (ko) * 2017-05-12 2021-11-19 제이에프이 스틸 가부시키가이샤 방향성 전기 강판과 그 제조 방법
CN110318005B (zh) * 2018-03-30 2021-12-17 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
EP3910079A4 (en) * 2019-01-08 2022-09-28 Nippon Steel Corporation CORNORIENTED ELECTROSTEEL SHEET, PROCESS FOR THE PRODUCTION OF CORNORIENTED MAGNETIC STEEL SHEET AND ANNEALING RELEASE AGENT FOR THE PRODUCTION OF CORNORIENTED MAGNETIC STEEL SHEET
WO2020149336A1 (ja) 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板の製造方法
JP6813143B1 (ja) * 2019-04-23 2021-01-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR20240035911A (ko) * 2019-04-23 2024-03-18 제이에프이 스틸 가부시키가이샤 방향성 전자 강판의 제조 방법
CN114364821B (zh) * 2019-09-06 2023-10-20 杰富意钢铁株式会社 方向性电磁钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335736A (ja) * 1998-05-21 1999-12-07 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JPH11335738A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JP2000129356A (ja) * 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001107147A (ja) * 1999-10-12 2001-04-17 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2006316314A (ja) * 2005-05-12 2006-11-24 Jfe Steel Kk 磁気特性と被膜特性に優れた一方向性電磁鋼板の製造方法
JP2007314823A (ja) * 2006-05-24 2007-12-06 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
JPS5113469B2 (ja) 1972-10-13 1976-04-28
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
IT1290172B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.
KR19990088437A (ko) 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
US6309473B1 (en) 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP4810777B2 (ja) * 2001-08-06 2011-11-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR100544537B1 (ko) * 2001-12-21 2006-01-24 주식회사 포스코 (Al,Si,Mn)N의 복합석출물을 이용한 자기특성이우수한 저온가열 방향성 전기강판의 제조방법
JP4241125B2 (ja) * 2003-03-25 2009-03-18 Jfeスチール株式会社 フォルステライト被膜を有しない方向性電磁鋼板の製造方法
SI1752549T1 (sl) 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Postopek za proizvodnjo zrnato usmerjene magnetne jeklene vzmeti
EP1752548B1 (de) * 2005-08-03 2016-02-03 ThyssenKrupp Steel Europe AG Verfahren zur Herstellung von kornorientiertem Elektroband
KR101062127B1 (ko) 2006-05-24 2011-09-02 신닛뽄세이테쯔 카부시키카이샤 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) * 2010-08-06 2015-07-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN103097563A (zh) 2010-09-10 2013-05-08 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
JP5994981B2 (ja) * 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2014104391A1 (ja) 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335736A (ja) * 1998-05-21 1999-12-07 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JPH11335738A (ja) * 1998-05-26 1999-12-07 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JP2000129356A (ja) * 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001107147A (ja) * 1999-10-12 2001-04-17 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2006316314A (ja) * 2005-05-12 2006-11-24 Jfe Steel Kk 磁気特性と被膜特性に優れた一方向性電磁鋼板の製造方法
JP2007314823A (ja) * 2006-05-24 2007-12-06 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
US9953752B2 (en) 2018-04-24
KR101977440B1 (ko) 2019-05-10
CN104870665B (zh) 2018-09-21
EP2940159A4 (en) 2016-04-13
EP2940159A1 (en) 2015-11-04
KR101950620B1 (ko) 2019-02-20
KR20170054578A (ko) 2017-05-17
CN104870665A (zh) 2015-08-26
EP2940159B1 (en) 2019-03-20
RU2015131088A (ru) 2017-02-01
JP5983777B2 (ja) 2016-09-06
RU2617308C2 (ru) 2017-04-24
US20150318094A1 (en) 2015-11-05
WO2014104394A1 (ja) 2014-07-03
KR20150096752A (ko) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5983777B2 (ja) 方向性電磁鋼板の製造方法
JP5692479B2 (ja) 方向性電磁鋼板の製造方法
JP5983776B2 (ja) 方向性電磁鋼板の製造方法
JP5907202B2 (ja) 方向性電磁鋼板の製造方法
JP5857983B2 (ja) 方向性電磁鋼板の製造方法および焼鈍分離剤用MgO
JP5862582B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP5939156B2 (ja) 方向性電磁鋼板の製造方法
JP5928362B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板
JP6209999B2 (ja) 方向性電磁鋼板の製造方法
JP5853968B2 (ja) 方向性電磁鋼板の製造方法
JP6011586B2 (ja) 方向性電磁鋼板の製造方法
JP5999040B2 (ja) 方向性電磁鋼板の製造方法
JP5904151B2 (ja) 方向性電磁鋼板の製造方法
JP6209998B2 (ja) 方向性電磁鋼板の製造方法
JP6036587B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250