JPWO2014097853A1 - 眼鏡レンズの製造装置及び製造方法 - Google Patents

眼鏡レンズの製造装置及び製造方法 Download PDF

Info

Publication number
JPWO2014097853A1
JPWO2014097853A1 JP2014553053A JP2014553053A JPWO2014097853A1 JP WO2014097853 A1 JPWO2014097853 A1 JP WO2014097853A1 JP 2014553053 A JP2014553053 A JP 2014553053A JP 2014553053 A JP2014553053 A JP 2014553053A JP WO2014097853 A1 JPWO2014097853 A1 JP WO2014097853A1
Authority
JP
Japan
Prior art keywords
lens
prescription
view
distance
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014553053A
Other languages
English (en)
Inventor
和磨 神津
和磨 神津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JPWO2014097853A1 publication Critical patent/JPWO2014097853A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

左右共通の基準レンズを定義し、基準レンズ上の所定の各サンプル点を通過する光線の物体側画角を計算し、処方レンズにおける物体側画角が上記計算された物体側画角と一致する光線を計算することにより、基準レンズ上の各サンプル点に対応する光線と同じ物体側画角を持つ光線が通過する処方レンズ上の夫々の位置を求め、正面視の視線と基準レンズとの交点と、基準レンズ上のサンプル点との距離と、正面視の視線と処方レンズとの交点と、処方レンズ上の光線通過位置との距離との比率を計算し、左右夫々について、各物体側画角に対応する処方レンズ上の光線通過位置における曲率を比率に基づいて補正することにより、処方レンズの曲率分布を補正する。

Description

本発明は、第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する眼鏡レンズの製造装置及び製造方法に関する。
屈折力が累進的に変化する累進屈折部を有する眼鏡レンズが知られている。例えば遠近両用の累進屈折力レンズは、装用者が遠距離から近距離まで切れ目無く連続的に明視できるように主注視線上で度数が累進的に変化するデザインとなっている。この種の眼鏡レンズの多くは、左右眼の個々の処方度数や装用状態に応じて設計されているが、装用者が不同視の場合など、左右の遠用処方度数に差がある場合に好適な設計にはなっていなかった。なお、本明細書中、不同視は、その大小に拘わらず左右眼で度数差がある場合を指す。
例えば、不同視の装用者は、遠用度数が左右で異なる眼鏡を装用したときに側方に位置する指標を両眼視すると、左右のレンズのプリズム作用の差に起因する左右の視線方向のずれを無くすため、調節緊張や調節弛緩を伴わない不自然な輻湊や開散を強いられていた。また、この種の輻湊や開散は、視線が通過するレンズ上の位置を設計上想定される位置から変えてしまうため、両眼に対する収差等を劣化させ、良好な両眼視を阻害する要因となっていた。
そこで、米国特許第8,162,478号明細書(以下、「特許文献1」と記す。)に、遠用度数が左右で異なる一対の累進屈折力レンズにおいて、良好な両眼視を保証するものが提案されている。具体的には、特許文献1には、遠用度数が左右で異なる一対の累進屈折力レンズのレンズ成分を、遠用度数と加入度数とが左右で等しい一対の累進屈折力レンズ成分と、左右異なる度数の一対の単焦点レンズ成分とに分け、単焦点レンズ成分を有するレンズを装用して両眼視をする場合に、正面遠方から所定の方位角に向かって正面以外の遠方に視線を移すときの左右眼のレンズ上の視線移動距離の比率を算出し、累進屈折力レンズ成分を有するレンズの片眼用又は両眼用のレンズ成分の平均度数分布及び非点収差分布に対し、その比率に応じた補正を加えることにより、両眼視における左右の視線に対する平均度数及び非点収差の差において、左右の遠用度数差以外の収差の発生を抑制する、という技術が開示されている。
このように、特許文献1には、遠用度数が左右で異なる一対の累進屈折力レンズにおいて、左右夫々の視線に対する収差の差を低減することで、良好な両眼視を保証するものが提案されている。しかし、良好な両眼視をより一層高いレベルで保証したいという要望は恒常的に存在する。そこで、本発明者は、鋭意検討を重ねた結果、良好な両眼視をより一層高いレベルで保証するのに好適な眼鏡レンズの製造装置及び製造方法を見出した。
本発明の一形態に係る眼鏡レンズの製造装置は、第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、第一の屈折力が左右で異なる一対の眼鏡レンズを製造する装置であり、所定の処方情報に基づき、生理的に左右眼の調節力が等しくなることに対応して左右共通の基準レンズを定義する基準レンズ定義手段と、基準レンズ上の所定の各サンプル点を通過する光線の物体側画角を計算する画角計算手段と、処方情報に基づく左右夫々の処方レンズ上の光線通過位置であって、処方レンズにおける物体側画角が画角計算手段にて求められた物体側画角と一致する光線を計算することにより、基準レンズ上の各サンプル点に対応する光線と同じ物体側画角を持つ光線が通過する処方レンズ上の夫々の位置を求める処方側通過位置計算手段と、正面視の視線と基準レンズとの交点と、基準レンズ上のサンプル点との距離を第一の距離と定義し、正面視の視線と処方レンズとの交点と、処方レンズ上の光線通過位置との距離を第二の距離と定義した場合に、左右夫々について、各物体側画角に対応する、第一の距離と第二の距離との比率を計算する比率計算手段と、左右夫々について、各物体側画角に対応する処方レンズ上の光線通過位置における曲率を比率に基づいて補正することにより、処方レンズの曲率分布を補正する曲率分布補正手段とを備える。
本発明の一形態に係る眼鏡レンズの製造装置によれば、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右の眼に実質的に作用する加入効果の差が抑えられた眼鏡レンズが製造される。これにより、左右夫々の眼に必要な調節力を同程度に保つことができ、この場合、両眼での良好な中間視及び近方視が達成される。また、このように製造された眼鏡レンズでは、左右夫々の視線上の収差の差が低減されているので、左右眼夫々の網膜上に形成される像の質を同程度にすることができ、両眼視機能を阻害する要因の抑制が達成される。これにより、例えば遠方から近方に至るまでの各物体距離で良好な両眼視を保証することが可能となる。
各物体側画角に対応する、第一の距離と第二の距離との比率は、例えば、処方レンズにおける第一の屈折力が基準レンズにおける第一の屈折力よりもマイナス側の場合、1よりも小さい値となり、かつ均一ではない。
各物体側画角に対応する、第一の距離と第二の距離との比率はまた、例えば、処方レンズにおける第一の屈折力が基準レンズにおける第一の屈折力よりもプラス側の場合、1よりも大きい値となり、かつ均一ではない。
また、本発明の一形態に係る眼鏡レンズの製造装置は、基準レンズにおける第二の屈折部での加入度を計算する第一の加入度計算手段と、曲率分布補正手段による曲率分布補正後の左右の処方レンズの夫々における第二の屈折部での加入度を計算する第二の加入度計算手段と、第二の加入度計算手段で計算された加入度を第一の加入度計算手段で計算された加入度と一致させるように、曲率分布補正後の左右の処方レンズの曲率分布の夫々を更に補正する加入度補正手段とを備えるものとしてもよい。
基準レンズは、例えば、処方情報に基づいて決定される左右共通の遠用度数及び加入度数を有している。このとき、遠用度数は、左右の遠用処方度数を平均した度数となる。
本発明の一形態に係る眼鏡レンズの製造方法は、第一の屈折力を有する第一屈折部、第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び第一屈折部から第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、第一の屈折力が左右で異なる一対の眼鏡レンズを製造する方法であり、所定の処方情報に基づき、生理的に左右眼の調節力が等しくなることに対応して左右共通の基準レンズを定義する基準レンズ定義工程と、基準レンズ上の所定の各サンプル点を通過する光線の物体側画角を計算する画角計算工程と、処方情報に基づく左右夫々の処方レンズ上の光線通過位置であって、処方レンズにおける物体側画角が画角計算工程にて求められた物体側画角と一致する光線を計算することにより、基準レンズ上の各サンプル点に対応する光線と同じ物体側画角を持つ光線が通過する処方レンズ上の夫々の位置を求める処方側通過位置計算工程と、正面視の視線と基準レンズとの交点と、基準レンズ上のサンプル点との距離を第一の距離と定義し、正面視の視線と処方レンズとの交点と、処方レンズ上の光線通過位置との距離を第二の距離と定義した場合に、左右夫々について、各物体側画角に対応する、第一の距離と第二の距離との比率を計算する比率計算工程と、左右夫々について、各物体側画角に対応する処方レンズ上の光線通過位置における曲率を比率に基づいて補正することにより、処方レンズの曲率分布を補正する曲率分布補正工程とを含む。
本発明の一形態に係る眼鏡レンズの製造装置及び製造方法によれば、第一屈折部から第二屈折部にかけての主注視線上において装用者の左右の眼に実質的に作用する加入効果の差が抑えられると共に、左右夫々の視線上の収差の差が抑えられるため、例えば遠方から近方に至るまでの各物体距離で良好な両眼視を保証することが可能な眼鏡レンズが提供される。
本発明の実施形態の眼鏡レンズ製造システムの構成を示すブロック図である。 本発明の実施形態の眼鏡レンズ設計用コンピュータによる眼鏡レンズの設計工程のフローチャートを示す図である。 主に図2の処理ステップS2を説明するための図であり、基準レンズに対応する仮想光学モデル例及び概略的なレンズレイアウトを示す。 主に図2の処理ステップS3を説明するための図であり、基準レンズモデルの各点を通過する光線の物体側画角について示す。 主に図2の処理ステップS4を説明するための図であり、参照球面上の基準加入度について示す。 主に図2の処理ステップS5及びS6を説明するための図であり、処方レンズに対応する仮想光学モデル例及び処方レンズモデルにおける光線通過位置について示す。 主に図2の処理ステップS7を説明するための図であり、補正比率について示す。 主に図2の処理ステップS8を説明するための図であり、各レンズモデルの透過度数分布を示す。 主に図2の処理ステップS10を説明するための図であり、装用状態を考慮した非球面補正を行う前後の加入度の曲線を示す。 主に図2の処理ステップS11を説明するための図であり、実質加入度の合わせ込みについて示す。 各例における左右の実質加入度の差を示す図である。 左右の実質加入度の差により装用者の眼に負担がかかるという従来の問題を説明するための図である。
以下、図面を参照して、本発明の実施形態に係る眼鏡レンズ製造システムについて説明する。
[眼鏡レンズ製造システム1]
図1は、本実施形態の眼鏡レンズ製造システム1の構成を示すブロック図である。図1に示されるように、眼鏡レンズ製造システム1は、顧客(装用者)に対する処方に応じた眼鏡レンズを発注する眼鏡店10と、眼鏡店10からの発注を受けて眼鏡レンズを製造する眼鏡レンズ製造工場20を有している。眼鏡レンズ製造工場20への発注は、インターネット等の所定のネットワークやFAX等によるデータ送信を通じて行われる。発注者には眼科医や一般消費者を含めてもよい。
[眼鏡店10]
眼鏡店10には、店頭コンピュータ100が設置されている。店頭コンピュータ100は、例えば一般的なPC(Personal Computer)であり、眼鏡レンズ製造工場20への眼鏡レンズの発注を行うためのソフトウェアがインストールされている。店頭コンピュータ100には、眼鏡店スタッフによるマウスやキーボード等の操作を通じてレンズデータ及びフレームデータが入力される。レンズデータには、例えば処方値(ベースカーブ、球面屈折力、乱視屈折力、乱視軸方向、プリズム屈折力、プリズム基底方向、加入度数、瞳孔間距離(PD:Pupillary Distance)等)、眼鏡レンズの装用条件(角膜頂点間距離、前傾角、フレームあおり角)、眼鏡レンズの種類(単焦点球面、単焦点非球面、多焦点(二重焦点、累進)、コーティング(染色加工、ハードコート、反射防止膜、紫外線カット等))、顧客の要望に応じたレイアウトデータ等が含まれる。フレームデータには、顧客が選択したフレームの形状データが含まれる。フレームデータは、例えばバーコードタグで管理されており、バーコードリーダによるフレームに貼り付けられたバーコードタグの読み取りを通じて入手することができる。店頭コンピュータ100は、発注データ(レンズデータ及びフレームデータ)を例えばインターネット経由で眼鏡レンズ製造工場20に送信する。
[眼鏡レンズ製造工場20]
眼鏡レンズ製造工場20には、ホストコンピュータ200を中心としたLAN(Local Area Network)が構築されており、眼鏡レンズ設計用コンピュータ202や眼鏡レンズ加工用コンピュータ204をはじめ多数の端末装置が接続されている。眼鏡レンズ設計用コンピュータ202、眼鏡レンズ加工用コンピュータ204は一般的なPCであり、それぞれ、眼鏡レンズ設計用のプログラム、眼鏡レンズ加工用のプログラムがインストールされている。ホストコンピュータ200には、店頭コンピュータ100からインターネット経由で送信された発注データが入力される。ホストコンピュータ200は、入力された発注データを眼鏡レンズ設計用コンピュータ202に送信する。
眼鏡レンズ製造工場20では、発注データを受けた後、未加工のブロックピースに対し、装用者の処方が満たされるように、内面、外面の両面の設計及び加工が行われる。なお、眼鏡レンズ製造工場20では、生産性を向上させるため、全製作範囲の度数を複数のグループに区分し、各グループの度数範囲に適合した外面(凸面)カーブ形状(球面形状又は非球面形状)とレンズ径を有するセミフィニッシュトブランクが眼鏡レンズの注文に備えて予め用意されていてもよい。この場合、眼鏡レンズ製造工場20では、内面(凹面)加工(及び玉型加工)を行うだけで、装用者の処方に適した眼鏡レンズが製造される。
眼鏡レンズ設計用コンピュータ202は、受注に応じた眼鏡レンズを設計するためのプログラムがインストールされており、発注データ(レンズデータ)に基づいてレンズ設計データを作成し、発注データ(フレームデータ)に基づいて玉型加工データを作成する。眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計は、後に詳細に説明する。眼鏡レンズ設計用コンピュータ202は、作成したレンズ設計データ及び玉型加工データを眼鏡レンズ加工用コンピュータ204に転送する。
オペレータは、ブロックピースをカーブジェネレータ等の加工機206にセットして、眼鏡レンズ加工用コンピュータ204に対して加工開始の指示入力を行う。眼鏡レンズ加工用コンピュータ204は、眼鏡レンズ設計用コンピュータ202から転送されたレンズ設計データ及び玉型加工データを読み込み、加工機206を駆動制御する。加工機206は、ブロックピースの内面及び外面をレンズ設計データに従って研削・研磨して、眼鏡レンズの内面形状及び外面形状を作製する。また、加工機206は、内面形状及び外面形状作製後のアンカットレンズの外周面を玉型形状に対応した周縁形状に加工する。
玉型加工後の眼鏡レンズには、発注データに従い、染色加工、ハードコート加工、反射防止膜、紫外線カット等の各種コーティングが施される。これにより、眼鏡レンズが完成して眼鏡店10に納品される。
[眼鏡レンズ設計用コンピュータ202による眼鏡レンズの具体的設計方法]
図2は、眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計工程を示すフローチャートである。以下の説明では、不同視の装用者に処方すべき、遠用度数が左右で異なる一対の眼鏡レンズであり、累進屈折要素を内面若しくは外面に持つ片面累進型、又は累進屈折要素を外面と内面の両面に配分した両面累進型、又は縦方向の累進屈折要素を外面に配分し、横方向の累進屈折要素を内面に配分した両面複合累進型の、遠近両用の各種眼鏡レンズの設計を想定する。しかし、本設計工程は、所定の基準点における度数が左右で異なる一対の眼鏡レンズであり、片面累進型、両面累進型又は両面複合累進型の中近両用累進屈折力レンズや近々累進屈折力レンズなど、屈折力が累進的に変化する累進屈折部を有する他のアイテム群の眼鏡レンズにも適用することができる。
また、眼光学上、厳密には、眼軸と視線の向きは僅かに異なるが、その差異による影響は実質的に無視できる程度である。そのため、本明細書においては、説明の便宜上、眼軸と視線の向きは眼光学上も一致するものと擬制し、眼軸と視線の向きとの相違はレンズのプリズム作用によってのみ引き起こされる前提とする。
ここで、図12を用いて、遠用度数が左右で異なる一対の眼鏡レンズにて発生する問題点を説明する。図12では、不同視の装用者が次の処方度数の眼鏡レンズを通して近方物点を両眼視する状態を示す。
処方度数(右):S+2.00 ADD2.50
処方度数(左):S+4.00 ADD2.50
なお、図12では、便宜上、左右の眼鏡レンズを1枚の共通形状のレンズにて示すが、実際には、左右の眼鏡レンズは処方度数に応じて形状が異なる。
図12に示されるように、不同視の装用者が近方物点を両眼視するとき、処方度数差に応じた左右のプリズム作用の差に起因して、左右の視線方向にずれが生じる。具体的には、装用者は、レンズ上にレイアウトされた近用基準点N(近用部の度数が設定される、加入度数が2.50Dの点)以外の点を通じて近方物点を両眼視することになる。図12の例では、右眼は、近用基準点Nよりも上方の点P(加入度数が2.50Dを下回る点)を通じて近方物点に視線を向け、左眼は、近用基準点Nよりも下方の点P(加入度数が2.50D又は2.50Dを上回る点)を通じて近方物点に視線を向ける。このように、左右の視線方向がずれることにより、左右の眼に実質的に作用する加入効果が異なる。そのため、理論上、左右の眼に対して異なる調節力が要求される。しかし、生理的には、左右の眼に働く調節力は常に等しい(ヘリングの等量神経支配の法則(Hering's law of equal innervation))。従って、装用者は、左右の眼に実質的に作用する加入効果が異なるという、眼に負担のかかる状態で近方物点を視ることを余儀なくされる。本明細書では、説明の便宜上、眼に実質的に作用する加入効果を「実質加入度」とも表現する。
本発明者は、鋭意検討を重ねた結果、左右の遠用処方度数が異なるほど、また、物体距離が近いほど左右の実質加入度の差が大きくなることを見出し、図12では、左右の実質加入度の差が大きくなる例として近方物点を視る状態を示した。すなわち、本発明者は、上記問題が近方だけでなく、近方よりも離れた距離(例えば遠方や中間距離等)においても発生することを見出している。本実施形態では、以下に説明する設計工程を実施することにより、上記問題を解消して良好な両眼視を各物体距離(例えば遠方から近方に至るまで)で保証することが可能な眼鏡レンズが設計される。以下、図2を用いて、眼鏡レンズ設計用コンピュータ202による眼鏡レンズの設計工程を具体的に説明する。
[図2のS1(基準レンズの定義)]
眼鏡レンズ設計用コンピュータ202は、ホストコンピュータ200を介して店頭コンピュータ100より受信した装用者の処方値に基づいて基準レンズを定義する。基準レンズは、生理的に左右眼の調節力が等しくなることに対応して、仮想的に定義される左右共通の眼鏡レンズであり、遠用度数が左右の遠用処方度数を平均した値に設定される。すなわち、基準レンズは累進屈折部を持つ眼鏡レンズであり、左右で共通の遠用度数及び加入度数を有するものである。以下、基準レンズの遠用度数を基準度数と定義する。例えば、
処方度数(右):S+2.00 ADD2.50
処方度数(左):S+4.00 ADD2.50
の場合、基準レンズは、
基準度数(右):S+3.00 ADD2.50
基準度数(左):S+3.00 ADD2.50
となる。なお、本実施形態では、右眼用レンズと左眼用レンズとが並行して設計される手順で説明するが、別の実施形態では、一方のレンズが設計され、その後、他方のレンズが設計される手順としてもよい。
[図2のS2(基準レンズに対応する仮想光学モデルの構築)]
眼鏡レンズ設計用コンピュータ202は、装用者が眼鏡レンズ(基準レンズ:S+3.00 ADD2.50)を装用した状態を想定した、眼球及び眼鏡レンズからなる所定の仮想光学モデルを構築する。図3(a)は、眼鏡レンズ設計用コンピュータ202によって構築される仮想光学モデル例を示す。なお、以降の説明において、右眼に対応する符号には下付き文字Rを付し、左眼に対応する符号には下付き文字Lを付す。また、左右両方の眼に対応する説明には、これらの下付き文字を付さない。
眼球の眼軸長は、遠視、近視で異なる。そこで、眼鏡レンズ設計用コンピュータ202は、遠視、近視の度合いで眼軸長がどれだけ異なるかを予め記憶している。その中から、眼鏡レンズ設計用コンピュータ202は、発注データに含まれる装用者の処方値(球面屈折力、乱視屈折力)に従って適切な眼球モデルEを選択し、図3(a)に示されるように、選択された眼球モデルEを仮想モデル空間に配置する。より詳細には、眼球モデルEと眼球モデルEは、眼球回旋中心OERと眼球回旋中心OELとが瞳孔間距離PDだけ離れた位置に配置される。
眼鏡レンズ設計用コンピュータ202は、眼球モデルE、Eの夫々に対して所定の角膜頂点間距離CVD、CVDを空けた位置に、基準レンズに対応する基準レンズモデルLBR、LBLを配置する。角膜頂点間距離CVDは、基準レンズモデルLの後方頂点と眼球モデルEの角膜頂点との距離であり、例えば12.5mmである。なお、基準レンズモデルLの中心肉厚は、処方値や硝材の屈折率等に基づいて決定される。また、基準レンズモデルLは、眼鏡レンズの傾き(前傾角、フレームあおり角)を考慮して仮想モデル空間に配置されてもよい。また、説明の便宜上、基準レンズモデルLの外面頂点での接平面を接平面TPと定義し、眼球モデルEの正面視の視線と接平面TPとの交点を基準点PTPRと定義し、眼球モデルEの正面視の視線と接平面TPとの交点を基準点PTPLと定義する。これらの基準点PTPはレンズ設計中心にあり、設計中心は一対の隠しマーク(後述)の中間点である。
図3(b)に、本設計工程にて設計される眼鏡レンズのレイアウトを概略的に示す。図3(b)に示されるように、本実施形態による眼鏡レンズは、主注視線LL’上であって、レンズ設計中心の上方に遠用基準点F(遠用部の度数が設定される点)が配置され、レンズ設計中心の下方に近用基準点Nが配置される。主注視線LL’は、累進帯の途中から近用基準点Nに向かい、眼の輻輳を考慮して鼻側へインセットされている。近用基準点N及び遠用基準点Fの位置は、レンズ面に直接刻印される一対の隠しマークMを基に特定される。本実施形態による眼鏡レンズは、後述するように、累進帯の長さ及び幅が左右で異なるため、近用基準点N及び遠用基準点Fのレンズ面上の位置も左右で異なる。
[図2のS3(基準レンズモデルLにおける物体側画角βの計算)]
図4(a)、図4(b)は夫々、基準レンズモデルLBR、LBLの各点を通過する光線の物体側画角β(単位:°)を示す図である。なお、図4以降の仮想光学モデルを示す各図においては、眼球モデルEを頭上から眺める角度(図3(a)参照)で示さず、説明の便宜上、眼球モデルEを側面から眺める角度(眼球モデルE、Eの何れにおいても主注視線LL’が紙面と平行になり、かつ近用基準点Nが下側に位置すると共に遠用基準点Fが上側に位置する角度)で示す。物体側画角βは、図4(a)、図4(b)の各図に示されるように、正面視したときの水平軸を基準とする。
眼鏡レンズ設計用コンピュータ202は、光線追跡等を用いた光学計算処理を行うことにより、基準レンズモデルL上(ここではレンズ外面上)のサンプル点Sを通過する光線の物体側画角βを計算する。ここで、本工程の実施にあたり、眼球回旋中心O及び基準レンズモデルLが既に定められているため、光線が通過する基準レンズモデルL上の位置が決まることにより、その光線の基準レンズモデルLにおける物体側画角βが一義的に求まる。そこで、本実施形態では、予め定められた基準レンズモデルL上の各サンプル点Sについて物体側画角βを計算する。サンプル点Sは、例えば基準レンズモデルLの全面に等間隔ピッチで配置されている。但し、サンプル点Sは等間隔ピッチでの配置に限らず、例えば主注視線LL’を含む明視域に密に配置され、使用頻度の低い側方域に疎に配置されるなど、領域毎に異なる重みで配置されてもよい。なお、本工程以降の工程では、便宜上、原則、各種レンズモデルの外面にのみ曲率分布(透過度数分布に対応する曲率分布)が存在するものとしてレンズ設計が行われるものとする。
図4(a)、図4(b)の各図においては、主注視線LL’上の各度数に対応するサンプル点Sを通過する光線の物体側画角βを示している。基準レンズモデルLにおいて、近用基準点Nは、例えば基準点PTPより14mm下に位置する点であり、装用者が近業目的距離(目的とする近方の作業距離であり、例えば400mm)を視るための点である。そのため、近用基準点Nを通過する光線の物体側画角βは、近業目的距離に対応する画角として定義することができる。他のサンプル点Sを通過する光線の物体側画角βについても同様に、サンプル点Sにて想定される物体距離に対応する画角として定義することができる。
[図2のS4(基準加入度ADDの計算)]
眼鏡レンズ設計用コンピュータ202は、図5(a)、図5(b)の各図に示されるように、目標とする透過度数を評価するための評価面として参照球面SRを定義する。参照球面SRは、眼球モデルEの眼球回旋中心Oを中心とし、眼球回旋中心Oから基準レンズモデルLの後方頂点までの距離を半径とした球面である。眼鏡レンズ設計用コンピュータ202は、基準レンズモデルLの近用基準点Nを通過する光線について、参照球面SR上の透過度数を計算する。ここで計算される透過度数は基準レンズモデルLにおける近用度数であり、近用度数から遠用度数を差し引いた度数が基準加入度ADDと定義される。参照球面SR上における近用度数と遠用度数との差が処方された加入度になることを想定して設計されたレンズにおいては、基準加入度ADDは左右共通の目標の度数(ADD2.50)となる。
[図2のS5(処方レンズに対応する仮想光学モデルの構築)]
眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS2(仮想光学モデルの構築)にて構築された仮想光学モデルを、装用者が眼鏡レンズ(処方レンズ(右):S+2.00 ADD2.50、処方レンズ(左):S+4.00 ADD2.50)を装用した状態を想定した、眼球及び眼鏡レンズからなる別の仮想光学モデルに変更する。図6(a)及び図6(b)は、眼鏡レンズ設計用コンピュータ202による変更後の仮想光学モデル例を示す。図6(a)、図6(b)の各図に示されるように、眼鏡レンズ設計用コンピュータ202は、眼球モデルE、Eの夫々に対して処方レンズ(右、左)に対応する処方レンズモデルLPR、LPLを配置する。処方レンズモデルLは、処方値に基づいて周知の設計方法により定義されるものであり、ここでの詳細な説明は省略する。
より詳細には、眼鏡レンズ設計用コンピュータ202は、処方レンズモデルLPRを、外面頂点が基準点PTPR上に位置しかつ外面頂点で接平面TPと接するように配置し、処方レンズモデルLPLを、外面頂点が基準点PTPL上に位置しかつ外面頂点で接平面TPと接するように配置する。なお、処方レンズモデルLの中心肉厚も、処方値や硝材の屈折率等に基づいて決定される。また、基準レンズモデルLが眼鏡レンズの傾き(前傾角、フレームあおり角)を考慮して仮想モデル空間に配置されている場合、処方レンズモデルLも同一の条件を考慮して配置される。
[図2のS6(処方レンズモデルLにおける光線通過位置の計算)]
図6(a)、図6(b)の各図に示されるように、眼鏡レンズ設計用コンピュータ202は、処方レンズモデルLにおける光線通過位置を計算する。具体的には、眼鏡レンズ設計用コンピュータ202は、処方レンズモデルLを配置した仮想光学モデルにおいて、光線追跡等を用いた光学計算処理の実行により、物体側画角が図2の処理ステップS3(基準レンズモデルLにおける物体側画角βの計算)にて求められた画角βと一致する光線を探し出す。これにより、基準レンズモデルL上の各サンプル点Sに対応する光線と同じ物体側画角を持つ光線が通過する処方レンズモデルL上の夫々の位置(以下、「処方側通過位置S’」と記す。)が求まる。処方レンズモデルL上の各処方側通過位置S’にて想定される物体距離は、対応するサンプル点Sにて想定される物体距離と等しい。
[図2のS7(補正比率Rの計算)]
図7(a)、図7(b)の各図に示されるように、基準点PTPとサンプル点Sとの距離を基準側距離DLBと定義し、基準点PTPと処方側通過位置S’との距離を処方側距離DLpと定義する。この場合、眼鏡レンズ設計用コンピュータ202は、各物体側画角βに対応する補正比率R(=ある物体側画角βに対応する処方側距離DLp/これと同一の物体側画角βに対応する基準側距離DLB)を計算する。図7(c)は、基準点PTPRと近用基準点Nとの間の主注視線LL’上の処方側距離DLpR(単位:mm)と、右眼側の補正比率R(=処方側距離DLpR/基準側距離DLBR)との関係を示す。また、図7(d)は、基準点PTPLと近用基準点Nとの間の主注視線LL’上の処方側距離DLpL(単位:mm)と、左眼側の補正比率R(=処方側距離DLpL/基準側距離DLBL)との関係を示す。
処方レンズモデルLPRは、処方度数(S+2.00)が基準度数(S+3.00)よりもマイナス側であるため、主注視線LL’上において、処方側通過位置S’の方がサンプル点Sよりも基準点PTPRに近くなる(図7(a)参照)。図7(c)の実線に示されるように、補正比率Rは、処方側距離DLPRが長くなるほど(処方側通過位置S’が基準点PTPRから離れて近用基準点Nに近付くほど)、処方レンズモデルLPRと基準レンズモデルLBRとのプリズム作用の差に応じて小さくなる。
一方、処方レンズモデルLPLは、処方度数(S+4.00)が基準度数(S+3.00)よりもプラス側であるため、主注視線LL’上において、処方側通過位置S’よりもサンプル点Sの方が基準点PTPLに近くなる(図7(b)参照)。図7(d)の実線に示されるように、補正比率Rは、処方側距離DLPLが長くなるほど(処方側通過位置S’が基準点PTPLから離れて近用基準点Nに近付くほど)、処方レンズモデルLPLと基準レンズモデルLBLとのプリズム作用の差に応じて大きくなる。
なお、参考として、図7(c)、図7(d)の夫々に、本実施形態の補正比率Rを特許文献1に適用した例を破線にて示す。特許文献1の場合、図7(c)、図7(d)に示されるように、補正比率R、補正比率Rが共に処方側通過位置S’、S’に拘わらず一定となる。
[図2のS8(補正比率Rに基づく曲率分布の補正)]
眼鏡レンズ設計用コンピュータ202は、基準レンズモデルLで想定される累進屈折作用をもたらす曲率分布(レンズ全体の曲率分布のうち累進屈折要素を付加する曲率分布のみを抽出したものであり、以下、「累進分布」と記す。)を、各物体側画角βに対応する補正比率Rに基づいて拡大縮小操作することにより、処方レンズモデルLの曲率分布を補正する。具体的には、次式に示されるように、基準となる累進分布(基準レンズモデルLの累進分布)を対応する補正比率Rに応じて拡大又は縮小させることにより補正し、補正された基準レンズモデルLの累進分布を処方レンズモデルLの累進分布として適用する。
処方レンズの累進分布の曲率K(x,y)=基準レンズの累進分布の曲率K(x/Rx,y/Ry)
ここで、x,yは、処方側通過位置S’の座標を示し、Rx、Ryはx方向及びy方向の補正比率Rを示す。
例えば、処方レンズモデルLPRにおいて、累進帯における加入度の変化が一定であり、主注視線LL’上に配置された各処方側通過位置S’における曲率を図7(c)に示される補正比率Rに基づいて補正する場合を考える。この場合、処方レンズモデルLPR上の位置S’における累進屈折作用に関連した曲率(遠用度数の分を排除した曲率であって、加入効果を付加する曲率成分)は、基準レンズモデルLBR上のサンプル点Sにおける累進屈折作用に関連した曲率と一致するように操作される。別の表現によれば、サンプル点Sにおける加入効果分の曲率が補正比率Rに応じた処方側通過位置S’に再配置される。補正比率Rは各位置によって異なるため、補正後の累進帯における加入度の変化は、補正比率Rに応じて基準レンズモデルLBRの累進帯における加入変化と異なる形になる(例えば基準点PTPRから近用基準点Nに近付くほど加入度の変化率が高くなる。)。基準度数に対してマイナス側の処方度数を持つ処方レンズモデルLPRは、累進分布全体が補正比率Rに従い、基準レンズモデルLBRの累進分布に対して縮小した形になるので、累進帯長が短くなり、また、累進帯幅が狭くなる。
また、処方レンズモデルLPLにおいて、累進帯における加入度の変化が一定であり、主注視線LL’上に配置された各処方側通過位置S’における曲率を図7(d)に示される補正比率Rに基づいて補正する場合を考える。この場合、処方レンズモデルLPL上の位置S’における累進屈折作用に関連した曲率(遠用度数の分を排除した曲率であって、加入効果を付加する曲率成分)は、基準レンズモデルLBL上のサンプル点Sにおける累進屈折作用に関連した曲率と一致するように操作される。別の表現によれば、サンプル点Sにおける加入効果分の曲率が補正比率Rに応じた処方側通過位置S’に再配置される。補正比率Rは各位置によって異なるため、補正後の累進帯における加入度の変化は、補正比率Rに応じて基準レンズモデルLBLの累進帯における加入変化と異なる形になる(例えば基準点PTPRから近用基準点Nに近付くほど加入度の変化率が低くなる。)。基準度数に対してプラス側の処方度数を持つ処方レンズモデルLPLは、累進分布全体が補正比率Rに従い、基準レンズモデルLBLの累進分布に対して拡大した形になるので、累進帯長が長くなり、また、累進帯幅が広くなる。
図12を援用して、本実施形態における曲率分布補正の説明を補足する。図7(c)の補正比率Rに基づいて処方レンズモデルLPRの曲率分布(累進分布)が補正されると累進帯が短くなるため、加入度が実質的に2.50Dとなる点が右眼の視線通過点Pに近付く。また、図7(d)の補正比率Rに基づいて処方レンズモデルLPLの曲率分布(累進分布)が補正されると累進帯が長くなるため、加入度が実質的に2.50Dとなる点が左眼の視線通過点Pに近付く。すなわち、図12の例において、近方物点を視る装用者の左右の眼に実質的に作用する加入効果の差が軽減されるため、左右の実質加入度の差による装用者の眼に対する負担が軽減される。
また、中間距離など他の物体距離においても、近方を視るときほどでないにしろ、図12に示す問題(左右の実質加入度の差により装用者の眼に負担がかかる問題)が発生することは、先に述べた通りである。このため、本実施形態では、図7(c)及び図7(d)に示される補正比率Rから把握されるように、曲率分布(累進分布)の適切な拡大縮小操作を通じて、中間距離を視るときに生じていた左右の実質加入度の差を好適に軽減させている。
図8(a)は、基準レンズモデルLの参照球面SR上での透過度数分布を例示する。ここに示す透過度数分布は非点収差分布及び平均度数分布であり、曲率分布と等価に捉えることができる。また、図8(b)は、処方レンズモデルLPRの参照球面SR上での透過度数分布の例示し、図8(c)は、処方レンズモデルLPLの参照球面SR上での透過度数分布を例示する。
図8(b)に例示される処方レンズモデルLPRの透過度数分布(換言すると曲率分布)は、各処方側通過位置S’において補正比率Rに応じた縮小操作が施されている。すなわち、非点収差分布の等高線及び平均度数分布の等高線の形状が補正比率Rに応じて縮小され、原則的には、基準点PTPRから離れた処方側通過位置S’ほど等高線の形状が一層縮小されている。
また、図8(c)に例示される処方レンズモデルLPLの透過度数分布(換言すると曲率分布)は、各処方側通過位置S’において補正比率Rに応じた拡大操作が施されている。すなわち、非点収差分布の等高線及び平均度数分布の等高線の形状が補正比率Rに応じて拡大され、原則的には、基準点PTPLから離れた処方側通過位置S’ほど等高線の形状が一層拡大されている。
[図2のS9(各面への曲率分布の配分)]
眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS8(補正比率に基づく曲率分布の補正)にて補正された処方レンズモデルLの曲率分布を、眼鏡レンズの構造(内面非球面型、外面非球面型、両面累進型、両面複合型等)に応じて処方レンズモデルLの外面と内面に配分する。これにより、処方レンズモデルLの形状が暫定的に決まる。
[図2のS10(装用状態を考慮した非球面補正)]
眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS9(曲率分布の配分)にて暫定的に決められた処方レンズモデルLの形状に対し、装用条件(例えば角膜頂点間距離、前傾角、フレームあおり角等)に応じた非球面補正量を計算して付加する。
図9(a)、図9(b)は夫々、装用状態を考慮した非球面補正を行う前後の加入度(単位:D)と、累進帯内(主注視線LL’上)の位置(単位:mm)との関係を示す図である。図9(a)及び図9(b)中、実線は、本実施形態の眼鏡レンズの加入度を示し、破線は、従来例の眼鏡レンズの加入度を示す。ここで、従来例は、左右の遠用度数差や実質加入度の差に応じて透過度数分布を拡大又は縮小操作するという技術的思想を導入していないレンズを指す。そのため、従来例の眼鏡レンズは、図9(a)に示されるように、少なくとも非球面補正を行う前段階では、加入度の曲線が左右で一致している。一方、本実施形態の眼鏡レンズは、図9(a)に示されるように、非球面補正を行う前段階で、図2の処理ステップS8(補正比率に基づく曲率分布の補正)による曲率分布補正が実施された結果、加入度の曲線が左右で異なっている。
ところが、装用状態を考慮した非球面補正の実施後は、図9(b)に示されるように、従来の眼鏡レンズも加入度の曲線が左右で異なったものとなる。しかし、上平レンズ等の遠用度数がゼロのレンズでは、装用状態を考慮した非球面補正が実質不要である。また、遠用度数が弱いレンズでは、装用状態を考慮した非球面補正による形状の変化が軽微である。そのため、従来の眼鏡レンズでは、アイテム群のうち左右の遠用度数の合計度数が弱いアイテムについては、非球面補正の実施後であっても左右の加入度の曲線がほぼ同じに維持される。一方、本実施形態の眼鏡レンズでは、図2の処理ステップS8(補正比率に基づく曲率分布の補正)による曲率分布補正が実施されるため、左右の遠用度数の合計度数とは無関係に、アイテム群に含まれる全てのアイテム(夫々の処方に適するアイテムの全て)で加入度の曲線が左右で異なっている。
[図2のS11(基準加入度ADDへの合わせ込み)]
眼鏡レンズ設計用コンピュータ202は、図2の処理ステップS10(装用状態を考慮した非球面補正)にて非球面補正量が付加された処方レンズモデルLの近用基準点Nを通過する光線について、参照球面SR上の透過度数(近用度数)を計算することにより、実計算上の実質加入度ADDを得る。具体的には、処方レンズモデルLPRについて、参照球面SR上の透過度数(近用度数)を計算し、計算された近用度数から遠用度数(S+2.00)を差し引くことにより、実質加入度ADDを得る。また、処方レンズモデルLPLについて、参照球面SR上の透過度数(近用度数)を計算し、計算された近用度数から遠用度数(S+4.00)を差し引くことにより、実質加入度ADDを得る。実質加入度ADD及びADDは、図2の処理ステップS8(補正比率に基づく曲率分布の補正)による曲率分布補正を実施した結果、目標とする加入度数(ADD2.50)に近似する値にまで補正されている。そのため、上述したように、装用者の左右の眼に実質的に作用する加入効果の差が既に軽減されており、左右の実質加入度の差による装用者の眼に対する負担が軽減可能な状態にある。本工程では、左右の実質加入度の差を更に軽減すべく、処方レンズモデルLの曲率分布を補正することにより、図10に示されるように、実質加入度ADD及びADDを基準加入度ADDへ合わせ込む(一致させる)。これにより、近方物点を視るときの実質加入度の差がほぼゼロとなる。
図11は、左右の実質加入度の差(単位:D)と、主注視線LL’沿いの(上下方向)物体側画角β(単位:°)との関係を示す図である。図11中、実線は、本実施形態における左右の実質加入度の差を示し、破線は、特許文献1における左右の実質加入度の差を示し、点線は、従来例における左右の実質加入度の差を示す。図11における従来例も図9と同じく、左右の遠用度数差や実質加入度の差に応じて透過度数分布を拡大又は縮小操作するという技術的思想を導入していないレンズを指す。図11に示されるように、従来例では、例えば遠用基準点F側から近用基準点N側へ視線を移動させるに従い、左右の実質加入度の差が大きくなる。これに対し、特許文献1では、左右の実質加入度の差が累進帯の全域に亘って良好に抑えられている。また、本実施形態では、左右の実質加入度の差が累進帯の全域に亘ってほぼゼロとなっており、一層良好に抑えられていることが判る。すなわち、本設計工程により設計・製造された眼鏡レンズによれば、良好な両眼視を各物体距離で保証することが可能となる。
以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施例や変形例又は自明な実施例や変形例を適宜組み合わせた内容も本願の実施形態に含まれる。

Claims (6)

  1. 第一の屈折力を有する第一屈折部、該第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び該第一屈折部から該第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、該第一の屈折力が左右で異なる一対の眼鏡レンズを製造する装置であって、
    所定の処方情報に基づき、生理的に左右眼の調節力が等しくなることに対応して左右共通の基準レンズを定義する基準レンズ定義手段と、
    前記基準レンズ上の所定の各サンプル点を通過する光線の物体側画角を計算する画角計算手段と、
    前記処方情報に基づく左右夫々の処方レンズ上の光線通過位置であって、該処方レンズにおける物体側画角が前記画角計算手段にて求められた物体側画角と一致する光線を計算することにより、前記基準レンズ上の各サンプル点に対応する光線と同じ物体側画角を持つ光線が通過する該処方レンズ上の夫々の位置を求める処方側通過位置計算手段と、
    正面視の視線と前記基準レンズとの交点と、該基準レンズ上のサンプル点との距離を第一の距離と定義し、正面視の視線と前記処方レンズとの交点と、該処方レンズ上の光線通過位置との距離を第二の距離と定義した場合に、左右夫々について、各前記物体側画角に対応する、該第一の距離と該第二の距離との比率を計算する比率計算手段と、
    左右夫々について、前記各物体側画角に対応する前記処方レンズ上の光線通過位置における曲率を前記比率に基づいて補正することにより、該処方レンズの曲率分布を補正する曲率分布補正手段と、
    を備える、
    眼鏡レンズの製造装置。
  2. 前記各物体側画角に対応する前記比率は、
    前記処方レンズにおける第一の屈折力が前記基準レンズにおける第一の屈折力よりもマイナス側の場合、1よりも小さい値となり、かつ均一ではない、
    請求項1に記載の眼鏡レンズの製造装置。
  3. 前記各物体側画角に対応する前記比率は、
    前記処方レンズにおける第一の屈折力が前記基準レンズにおける第一の屈折力よりもプラス側の場合、1よりも大きい値となり、かつ均一ではない、
    請求項1又は請求項2に記載の眼鏡レンズの製造装置。
  4. 前記基準レンズにおける前記第二の屈折部での加入度を計算する第一の加入度計算手段と、
    前記曲率分布補正手段による前記曲率分布補正後の左右の処方レンズの夫々における前記第二の屈折部での加入度を計算する第二の加入度計算手段と、
    前記第二の加入度計算手段で計算された加入度を前記第一の加入度計算手段で計算された加入度と一致させるように、前記曲率分布補正後の左右の処方レンズの曲率分布の夫々を更に補正する加入度補正手段と、
    を備える、
    請求項1から請求項3の何れか一項に記載の眼鏡レンズの製造装置。
  5. 前記基準レンズは、
    前記処方情報に基づいて決定される左右共通の遠用度数及び加入度数を有しており、
    前記遠用度数は、
    左右の遠用処方度数を平均した度数である
    請求項1から請求項4の何れか一項に記載の眼鏡レンズの製造装置。
  6. 第一の屈折力を有する第一屈折部、該第一の屈折力よりも強い第二の屈折力を有する第二屈折部、及び該第一屈折部から該第二屈折部へ屈折力が累進的に変化する累進屈折部を有する、該第一の屈折力が左右で異なる一対の眼鏡レンズを製造する方法であって、
    所定の処方情報に基づき、生理的に左右眼の調節力が等しくなることに対応して左右共通の基準レンズを定義する基準レンズ定義工程と、
    前記基準レンズ上の所定の各サンプル点を通過する光線の物体側画角を計算する画角計算工程と、
    前記処方情報に基づく左右夫々の処方レンズ上の光線通過位置であって、該処方レンズにおける物体側画角が前記画角計算工程にて求められた物体側画角と一致する光線を計算することにより、前記基準レンズ上の各サンプル点に対応する光線と同じ物体側画角を持つ光線が通過する該処方レンズ上の夫々の位置を求める処方側通過位置計算工程と、
    正面視の視線と前記基準レンズとの交点と、該基準レンズ上のサンプル点との距離を第一の距離と定義し、正面視の視線と前記処方レンズとの交点と、該処方レンズ上の光線通過位置との距離を第二の距離と定義した場合に、左右夫々について、各前記物体側画角に対応する、該第一の距離と該第二の距離との比率を計算する比率計算工程と、
    左右夫々について、前記各物体側画角に対応する前記処方レンズ上の光線通過位置における曲率を前記比率に基づいて補正することにより、該処方レンズの曲率分布を補正する曲率分布補正工程と、
    を含む、
    眼鏡レンズの製造方法。
JP2014553053A 2012-12-19 2013-11-28 眼鏡レンズの製造装置及び製造方法 Pending JPWO2014097853A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012276545 2012-12-19
JP2012276545 2012-12-19
PCT/JP2013/082090 WO2014097853A1 (ja) 2012-12-19 2013-11-28 眼鏡レンズの製造装置及び製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017079396A Division JP6294990B2 (ja) 2012-12-19 2017-04-13 眼鏡レンズの製造装置及び製造方法

Publications (1)

Publication Number Publication Date
JPWO2014097853A1 true JPWO2014097853A1 (ja) 2017-01-12

Family

ID=50978192

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014553053A Pending JPWO2014097853A1 (ja) 2012-12-19 2013-11-28 眼鏡レンズの製造装置及び製造方法
JP2017079396A Active JP6294990B2 (ja) 2012-12-19 2017-04-13 眼鏡レンズの製造装置及び製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017079396A Active JP6294990B2 (ja) 2012-12-19 2017-04-13 眼鏡レンズの製造装置及び製造方法

Country Status (7)

Country Link
US (1) US20160004096A1 (ja)
EP (1) EP2937728B1 (ja)
JP (2) JPWO2014097853A1 (ja)
KR (1) KR101766564B1 (ja)
CN (1) CN105103040B (ja)
AU (1) AU2013365260B2 (ja)
WO (1) WO2014097853A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923467A (zh) * 2016-10-31 2019-06-21 株式会社尼康依视路 渐进屈光力镜片对、渐进屈光力镜片对的设计方法及渐进屈光力镜片对的制造方法
US20190293967A1 (en) * 2017-05-31 2019-09-26 Hoya Lens Thailand Ltd. Spectacle lens, spectacle lens producing apparatus, spectacle lens designing method, and spectacle lens designing program
JP7126842B2 (ja) * 2018-03-27 2022-08-29 ホヤ レンズ タイランド リミテッド 一対の眼鏡レンズの設計方法、製造方法、および一対の眼鏡レンズ
US11561414B2 (en) 2018-08-28 2023-01-24 Essilor International Method for determining an ophthalmic lens
EP4286921A1 (en) * 2021-01-28 2023-12-06 Nikon-Essilor Co., Ltd. Eyeglass lens design device, eyeglass lens design method, and program
US20230009821A1 (en) * 2021-07-01 2023-01-12 Arturos S. Chayet Evaluation and control system for cornea and intraocular refractive surgery
WO2023068022A1 (ja) * 2021-10-19 2023-04-27 株式会社ニコン・エシロール 一対の眼鏡レンズの製造方法
CN115016143A (zh) * 2022-07-12 2022-09-06 苏州派视光学有限公司 一种自适应采样点的渐变光焦度镜片设计方法及镜片

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495124C (zh) * 2003-11-27 2009-06-03 Hoya株式会社 两面非球面型渐变光焦度镜片及其设计方法
JP4437482B2 (ja) * 2003-11-27 2010-03-24 Hoya株式会社 両面非球面型累進屈折力レンズおよびその設計方法
WO2005066696A1 (ja) * 2003-11-27 2005-07-21 Hoya Corporation 両面非球面型累進屈折力レンズおよびその設計方法
EP2224276B1 (en) * 2007-12-04 2017-05-31 Hoya Corporation Method for designing a pair of progressive refractive power lens
DE102010007267B4 (de) * 2010-02-08 2020-09-03 Carl Zeiss Vision International Gmbh Linsenelement mit verbesserter prismatischer Wirkung sowie Verfahren zur Herstellung eines Linsenelements
FR2956222B1 (fr) * 2010-02-09 2012-07-27 Essilor Int Lentille ophtalmique multifocale progressive
JP2011203705A (ja) * 2010-03-01 2011-10-13 Seiko Epson Corp 眼鏡レンズ及びその設計方法
JP5822484B2 (ja) * 2011-02-23 2015-11-24 イーエイチエス レンズ フィリピン インク 眼鏡用レンズ
EP2678732B1 (en) * 2011-02-23 2020-04-22 EHS Lens Philippines, Inc. Spectacle lens
JP5822482B2 (ja) * 2011-02-23 2015-11-24 イーエイチエス レンズ フィリピン インク 眼鏡用レンズ
JP5897260B2 (ja) * 2011-02-24 2016-03-30 イーエイチエス レンズ フィリピン インク 累進屈折力レンズおよびその設計方法
JP2012215639A (ja) * 2011-03-31 2012-11-08 Hoya Corp 眼鏡レンズの製造方法
JP5140768B1 (ja) * 2012-02-20 2013-02-13 株式会社山一屋 累進多焦点レンズ、累進多焦点レンズの設計方法、累進多焦点レンズの加工方法

Also Published As

Publication number Publication date
WO2014097853A1 (ja) 2014-06-26
JP6294990B2 (ja) 2018-03-14
EP2937728A4 (en) 2016-07-27
AU2013365260A1 (en) 2015-07-16
EP2937728A1 (en) 2015-10-28
CN105103040A (zh) 2015-11-25
AU2013365260B2 (en) 2017-03-16
EP2937728B1 (en) 2023-03-08
KR101766564B1 (ko) 2017-08-08
CN105103040B (zh) 2017-07-14
US20160004096A1 (en) 2016-01-07
KR20150103036A (ko) 2015-09-09
JP2017122941A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6294990B2 (ja) 眼鏡レンズの製造装置及び製造方法
JP5969631B2 (ja) 眼鏡レンズ
CN106133584A (zh) 用于增强现实的系统和方法
WO2014097852A1 (ja) 眼鏡レンズの製造装置及び製造方法
WO2014097854A1 (ja) 乱視用眼鏡レンズの製造装置及び製造方法
EP3699675B1 (en) Computer implemented method of determining a base curve for a spectacle lens and method of manufacturing a spectacle lens
US9753307B2 (en) Spectacle lens, manufacturing method thereof and lens supply system
JPWO2018220737A1 (ja) 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム
CN112334818A (zh) 用于确定眼科镜片的方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170717