JPWO2014080818A1 - H形鋼及びその製造方法 - Google Patents

H形鋼及びその製造方法 Download PDF

Info

Publication number
JPWO2014080818A1
JPWO2014080818A1 JP2014517284A JP2014517284A JPWO2014080818A1 JP WO2014080818 A1 JPWO2014080818 A1 JP WO2014080818A1 JP 2014517284 A JP2014517284 A JP 2014517284A JP 2014517284 A JP2014517284 A JP 2014517284A JP WO2014080818 A1 JPWO2014080818 A1 JP WO2014080818A1
Authority
JP
Japan
Prior art keywords
steel
flange
rolling
section steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014517284A
Other languages
English (en)
Other versions
JP5655984B2 (ja
Inventor
昌毅 溝口
昌毅 溝口
市川 和利
和利 市川
和章 光安
和章 光安
杉山 博一
博一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014517284A priority Critical patent/JP5655984B2/ja
Application granted granted Critical
Publication of JP5655984B2 publication Critical patent/JP5655984B2/ja
Publication of JPWO2014080818A1 publication Critical patent/JPWO2014080818A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/08Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of metal, e.g. sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Abstract

このH形鋼は、特定の成分組成を有し、円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜5000個/mm2含有し、前記酸化物粒子の組成がCa、Al、Oを含み、前記酸化物粒子における、前記Oを除いた質量比で、前記Caが5%以上、前記Alが5%以上であり、前記Caと前記Alとの合計が50%以上であり、前記フランジの板厚が100〜150mmであり、前記フランジの、強度評価位置における、金属組織中のベイナイト分率が80%以上であり、前記フランジの、靭性評価位置における、金属組織中の平均旧オーステナイト粒径が200μm以下である。 このH形鋼は、円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜5000個/mm2含有し、前記酸化物粒子の組成がCa、Al、Oを含み、前記酸化物粒子における、前記Oを除いた質量比で、前記Caが、5%以上、前記Alが5%以上であり、前記Caと前記Alとの合計が50%以上であり;前記フランジの板厚が100〜150mmであり;前記フランジの、強度評価位置における、金属組織中のベイナイト分率が80%以上であり;前記フランジの、靭性評価位置における、金属組織中の平均旧オーステナイト粒径が200μm以下である。

Description

本発明は、建築構造物の構造部材などに用いられる、靭性に優れた高強度極厚H形鋼及びその製造方法に関する。
本願は、2012年11月26日に、日本に出願された特願2012−257892号に基づき優先権を主張し、その内容をここに援用する。
建築構造物、特に、超高層化された建築物には、肉厚が100mm以上のH形鋼(以下、極厚H形鋼という。)の使用が望まれている。一般に鉄鋼材料において、強度が増すほど、もしくは製品の厚さが増大するほど、靭性は低下する傾向にある。そのため、高強度で厚い鋼材の靭性の確保は困難である。
また、H形鋼は、鋼板等に比べて形状が特異である。H形鋼は、ユニバーサル圧延で製造することが好ましいが、ユニバーサル圧延では圧延条件(温度、圧下率)が制限される。そのため、特に、極厚H形鋼の製造においては、ウェブ、フランジ、フィレットの各部位において、圧延中の温度履歴、圧下率、加速冷却時の冷却速度に大きな差が生じる。その結果、極厚H形鋼の断面内では、位置によって強度、延性、靭性に大きな差が生じる。
特に、連続鋳造によって得られた鋳片を熱間圧延し、極厚H形鋼を製造する場合、結晶粒の微細化によって靭性を確保することが困難である。これは、極厚H形鋼の圧延は、通常の厚鋼板の圧延に比べて時間が掛かり、圧延終了時の内部の温度が表層の温度よりも非常に高くなりやすいためである。
従来、H形鋼の靭性向上に関して、例えば特許文献1には、Ti系酸化物を鋼中に分散させて、粒内フェライトを生成させることによって、結晶粒を微細化する方法が提案されている。更に、例えば特許文献2〜4には、Ti酸化物及びTiNの微細分散に加え、温度制御圧延及び加速冷却によって高強度で靭性に優れた圧延形鋼を製造する方法が提案されている。
また、例えば特許文献5〜7には、酸化物を分散させ、分散した酸化物のピニング効果により組織を微細化して、靭性を向上させる方法が提案されている。特許文献5はMgを含む微細な酸化物を利用して極厚H形鋼の靭性を向上させる技術であり、特許文献6及び7はTi酸化物を利用して極厚H形鋼の靭性を向上させる技術である。
日本国特開平5−263182号公報 日本国特開平10−147835号公報 日本国特開2000−54060号公報 日本国特開2001−3136号公報 日本国特開2000−328174号公報 国際公開2010−013358号パンフレット 国際公開2011−065479号パンフレット
鋼材の表面近傍の強度を確保するためには、表面近傍が変態開始温度(Ar点)に到達する前に圧延を終了し、次いで水冷を開始することによって、ベイナイトなどの低温変態組織を生成させることが必要である。しかし、フランジ厚が100mm以上の極厚H形鋼を製造する場合、圧延過程において表面と内部との温度差が大きくなる傾向にある。本発明者らは、計算機シミュレーションによる検討の結果、例えば、フランジ厚125mmのH形鋼を製造する場合、表面と内部との温度差が200℃以上に達することを明らかにした。
したがって、極厚H形鋼では、鋼材表面がフェライト変態開始温度(Ar点)に到達する前に圧延を終了すると、鋼材内部の温度は1100℃以上になる場合があり、オーステナイト粒の粗大化を招くことが懸念される。そのため、極厚H形鋼の内部から試料を採取すると、靭性が著しく低いことがある。
更に、熱間圧延後に水冷を行う場合、鋼材内部の冷却速度を高めることは難しい。そのため、鋼材内部において、組織を微細化することは困難である。
本発明は、このような実情に鑑みてなされたものであり、靭性に優れた高強度極厚H形鋼及びその製造方法を提供することを目的とする。なお、本発明のH形鋼は、鋼板を溶接して形成されるビルドアップH形鋼ではなく、熱間圧延、特にユニバーサル圧延によって成形され、焼入れ、焼戻しなどの調質処理を必要としない、非調質の圧延H形鋼である。
なお、本発明において、高強度とは、引張強度で550MPa以上を示す。
H形鋼の靭性を高めるには、オーステナイト粒を微細化するとともに、合金元素を含有させることによって焼入性を高めて粒界フェライトの生成を抑制し、ベイナイト主体の組織とすることが望ましい。本発明者らは、極厚H形鋼の靭性を確保するため、熱間圧延においてオーステナイト粒径の微細化するのに必要な酸化物粒子の種類、サイズ及び密度と、水冷時に組織を微細化させるために必要な化学組成とについて詳細に検討を行った。
その結果、鋼中にAl及びCaを含む酸化物を生成させて、これら酸化物のピニング効果によりオーステナイトの粒径を200μm以下とすれば、フランジ厚が100mm以上の極厚H形鋼の靭性を大幅に向上できることがわかった。更に、オーステナイト粒径の低減に加えて、Si、Mn、V、Ni等の成分を適正に制御することで、高強度極厚H形鋼の靭性が更に向上することを見出し、本発明を完成した。
本発明の要旨は以下のとおりである。
(1)すなわち、本発明の一態様に係るH形鋼は、フランジと、ウェブとを備え;化学組成が、質量%で、C:0.05〜0.16%、Si:0.01〜0.50%、Mn:0.80〜2.00%、Ni:0.05〜0.50%、V:0.01〜0.20%、Al:0.005〜0.100%、Ti:0.005〜0.030%、N:0.0010〜0.0200%、O:0.0001〜0.0100%、Ca:0.0003〜0.0040%、Cr:0〜0.50%、Cu:0〜0.50%、Mo:0〜0.20%、Nb:0〜0.05%、を含有し、残部がFe及び不純物であり、下記式(a)によって求められる炭素当量Ceqが0.35〜0.50%であり;円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜5000個/mm含有し、前記酸化物粒子の組成がCa、Al、Oを含み、前記酸化物粒子における、前記Oを除いた質量比で、前記Caが、5%以上、前記Alが5%以上であり、前記Caと前記Alとの合計が50%以上であり;前記フランジの板厚が100〜150mmであり;前記フランジの、前記フランジの長さ方向で表面から1/6の位置、かつ、前記フランジの厚さ方向で表面から1/4の位置である強度評価位置における、金属組織中のベイナイト分率が80%以上であり;前記フランジの、前記フランジの前記長さ方向で前記表面から1/2の位置、かつ、前記フランジの前記厚さ方向で前記表面から3/4の位置である靭性評価位置における、金属組織中の平均旧オーステナイト粒径が200μm以下である。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・式(a)
ここで、式中のC、Mn、Cr、Mo、V、Ni、Cuは各元素の質量%の含有量で、含有されない場合は0とする。
(2)上記(1)に記載のH形鋼は、前記化学組成において、質量%で、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Mo:0.001〜0.20%、Nb:0.001〜0.05%、であってもよい。
(3)上記(1)または(2)に記載のH形鋼は、前記強度評価位置における、降伏強度又は0.2%耐力が450MPa以上、引張強度が550MPa以上、21℃でのシャルピー吸収エネルギーが100J以上であってもよい。
(4)上記(1)〜(3)のいずれか一項に記載のH形鋼は、さらに、前記介在物粒子が、Tiを含有してもよい。
(5)上記(1)〜(4)のいずれか一項に記載のH形鋼は、ユニバーサル圧延によって製造されてもよい。
(6)本発明の一態様に係るH形鋼の製造方法は、脱酸処理を行う前の溶鋼の酸素量を90ppm以下に調整し、Ti、Al、Caを順に前記溶鋼に添加した後、化学組成が、質量%で、C:0.05〜0.16%、Si:0.01〜0.50%、Mn:0.80〜2.00%、Ni:0.05〜0.50%、V:0.01〜0.20%、Al:0.005〜0.100%、Ti:0.005〜0.030%、N:0.0010〜0.0200%、O:0.0001〜0.0100%、Ca:0.0003〜0.0040%、Cr:0〜0.50%、Cu:0〜0.50%、Mo:0〜0.20%、Nb:0〜0.05%、を含有し、残部がFe及び不純物であり、下記式(a)によって求められる炭素当量Ceqが0.35〜0.50%となるように前記溶鋼の成分組成を調整する精錬工程と;前記精錬工程で得られた前記溶鋼を鋳造して鋼片を得る鋳造工程と;前記鋳造工程で得られた前記鋼片を1100〜1350℃に加熱する加熱工程と;加熱された前記鋼片に、圧延終了温度が表面温度で800℃以上となるように熱間圧延を行ってH形鋼を得る熱間圧延工程と;前記H形鋼を、水冷停止後に前記H形鋼の表面温度が100〜700℃の温度範囲内に復熱するように水冷する水冷工程と;を有する。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・式(a)
ここで、式中のC、Mn、Cr、Mo、V、Ni、Cuは各元素の質量%の含有量で、含有されない場合は0とする。
(7)上記(6)に記載のH形鋼の製造方法では、前記化学組成において、質量%で、Cr:0.01〜0.50%、Cu:0.01〜0.50%、Mo:0.001〜0.20%、Nb:0.001〜0.05%、であってもよい。
本発明の上記態様によれば、フランジ厚が100〜150mmであり、降伏強度又は0.2%耐力が450MPa以上、引張強度が550MPa以上、21℃でのシャルピー吸収エネルギーは100J以上という、靭性に優れた高強度極厚H形鋼を得ることができる。本発明のH形鋼(靭性に優れた高強度極厚H形鋼)は、多量の合金の含有を必要とせず、また、製鋼負荷の大きい極低炭素化を行わずに、製造することが可能である。そのため、製造コスト低減、工期の短縮による大幅なコスト削減を図ることができる。したがって、経済性を損なうことなく、大型建造物の信頼性を向上させることができるなど、産業上の貢献が極めて顕著である。
本実施形態に係るH形鋼において、試験片を採取した位置を説明する図である。 本実施形態に係るH形鋼の製造装置の一例を示す図である。
本発明者らは、脱酸時にTi、Al及びCaを添加して、少なくともCa、Al、Oを含む酸化物を鋼中に微細に分散させることと、炭素当量Ceqを適正な範囲とすることとが、フランジ厚が100mm以上の極厚H形鋼においても、良好な靭性を確保するために有効であることを見出した。
更に、このような成分組成の鋼を熱間圧延した後、水冷による加速冷却を施して極厚H形鋼を製造すると、オーステナイト粒界から変態するフェライトの生成が抑制されることによって、極厚H形鋼の金属組織におけるベイナイトの面積分率が80%以上となり、その結果、靭性を損なうことなく、十分な強度も確保できることを見出した。
以下、本発明の一実施形態に係るH形鋼(以下本実施形態に係るH形鋼という場合がある。)及びその製造方法について説明する。まず、本実施形態に係るH形鋼の成分範囲の限定理由について述べる。ここで、成分元素についての「%」は質量%を意味する。
C:0.05〜0.16%
Cは、鋼の強化に有効な元素であり、その効果を得るため、C含有量の下限を0.05%とする。C含有量の好ましい下限は、0.08%である。一方、C含有量が0.16%を超えると炭化物が生成し、靭性が低下する。そのため、C含有量の上限を0.16%とする。より靭性を向上させるためには、C含有量の上限を0.13%とすることが好ましい。
Si:0.01〜0.50%
Siは、脱酸元素であり、強度の向上にも寄与する。これらの効果を得るため、Si含有量の下限を0.01%とする。一方、Si含有量が過剰であるとマルテンサイト−オーステナイト混合物(以下、MAと呼称)の生成を助長する。このMAは、靭性を劣化させるため、Si含有量の上限を0.50%とする。より靭性を向上させるためには、Si含有量の上限は0.30%が好ましく、0.20%がより好ましい。
Mn:0.80〜2.00%
Mnは、焼入性を高めてベイナイトを生成させるとともに、旧オーステナイト粒界からのフェライト生成を抑制することにより、強度及び靭性の向上に寄与する。これらの効果を得るため、Mn含有量の下限を0.80%とする。強度を高めるには、Mn量の下限を1.10%にすることが好ましく、1.20%にすることが更に好ましい。一方、Mn含有量が2.00%を超えると、鋼材の靭性、割れ性などを損なうため、Mn含有量の上限を2.00%とする。Mn含有量の好ましい上限は1.80%であり、より好ましい上限は1.60%である。
Ni:0.05〜0.50%
Niは、鋼材の強度及び靭性を高めるために、極めて有効な元素である。これらの効果を得るため、Ni含有量の下限を0.05%とする。より靭性を高めるためにはNi含有量の下限は、0.10%であることが好ましい。一方、Ni含有量が0.50%を超えると合金コストの上昇を招くため、Ni含有量の上限を0.50%とする。好ましくはNi含有量の上限を0.30%とする。
V:0.01〜0.20%
Vは、焼入性の向上に寄与し、更には炭窒化物を生成し、組織の微細化及び析出強化にも寄与する元素である。これらの効果を得るため、V含有量の下限を0.01%とする。好ましいV含有量の下限は、0.05%である。しかし、Vを過剰に含有すると、析出物の粗大化に起因して鋼材の靭性が劣化することがある。そのため、V含有量の上限を0.20%とする。好ましくは、V含有量の上限を0.08%とする。
Al:0.005〜0.100%
Alは、ピニング効果によってオーステナイトを細粒化する酸化物粒子を形成するために重要な元素である。その効果を得るため、Al含有量の下限を0.005%とする。好ましくは、Al含有量の下限を0.010%とする。一方、Al含有量が過剰となると、粗大な酸化物が生成する。従って、Al含有量の上限を0.100%とする。好ましくはAl量の上限を0.060%とし、より好ましくは0.040%とする。
Ti:0.005〜0.030%
Tiは、Alと同様に、ピニング効果によってオーステナイトを細粒化する酸化物粒子を形成するために必要な元素である。その効果を得るため、Ti含有量の下限を0.005%とする。Ti含有量の好ましい下限は0.010%である。一方、Ti含有量が0.030%を超えると、鋼中に粗大なTiNが生成し、靭性が損なわれる。そのため、Ti含有量の上限を0.030%とする。また、TiCの析出を抑制し、析出強化による靭性の低下を抑制するためには、Ti量の上限を0.020%にすることが好ましい。
N:0.0010〜0.0200%
Nは、TiNやVNを形成する重要な元素であり、組織の細粒化や析出強化に寄与する元素である。これらの効果を得るため、N含有量の下限を0.0010%とする。しかし、N含有量が過剰になると、鋼材の靭性が低下するとともに、鋳造時の表面割れや、製造された鋼材において歪時効等の材質不良の原因となる。従って、N含有量の上限を0.0200%とする。好ましくは、N含有量の上限を0.0100%とする。
O:0.0001〜0.0100%
Oは、Ti、Al、Caと酸化物を形成する元素であり、本実施形態において、ピニング効果によるオーステナイトの細粒化を図るために必要な元素である。その効果を得るため、O含有量の下限を0.0001%とする。好ましくは、O量の下限を0.0005%とする。しかし、O含有量が過剰であると、固溶Oの影響や酸化物粒子の粗大化によって靭性が低下する。そのため、O含有量の上限を0.0100%とする。好ましくはO含有量の上限を0.0050%とする。
Ca:0.0003〜0.0040%
Caは、Ti、Alとともに複合酸化物を形成する元素であり、本実施形態において、ピニング効果によるオーステナイトの細粒化に必要な元素である。その効果を得るために、Ca含有量の下限を0.0003%とする。Ca含有量の下限を0.0005%とすることが好ましく、0.0010%とすることがより好ましい。しかし、Ca含有量が過剰であると酸化物粒子が粗大化し、靭性が低下する。そのため、Ca含有量の上限を0.0040%とする。好ましくは、Ca量の上限を0.0030%とする。
本実施形態に係るH形鋼は、上述の元素を含有することを基本とするが、不純物として、特性を損なわない範囲であれば上記以外の元素を含んでも構わない。不純物とは、鉱石やスクラップ等の原材料や、製造環境から混入するものを指す。
例えば、P、Sは不純物であり、鋼中に不可避的に含まれる。本実施形態においてはこれらの含有量を特に限定しないが、P、Sは、凝固偏析による溶接割れ、靭性低下の原因となるので、低減することが好ましい。P含有量は0.03%以下に制限することが好ましく、0.01%以下に制限することが更に好ましい。また、S含有量は、0.02%以下に制限することが好ましい。
更に、焼入性を高めるために、Cr、Cu、Mo、Nbの1種又は2種以上を以下に示す範囲で含有させてもよい。なお、Cr、Cu、Mo、Nbは、任意元素であり、必ずしも含有させる必要がない。そのため、これらの元素の下限は、いずれも0%である。
Cr:0.50%以下
Crは、焼入性を向上させて強度上昇に寄与する元素である。焼入性の向上効果を得るためには、Cr含有量を0.01%以上とすることが好ましく、0.10%以上とすることがより好ましい。一方、Cr含有量が0.50%を超えるとMAの生成が助長されたり、Cr炭化物が粗大化したりして、靭性が低下することがある。そのため、Crを含有させる場合でも、Cr含有量の上限は0.50%に制限することが好ましい。より好ましくは、Cr含有量の上限を0.30%とする。
Cu:0.50%以下
Cuは、焼入性を向上と、析出強化とによって鋼材の強化に寄与する元素である。これらの効果を得る為にはCu含有量を0.01%以上とすることが好ましく、0.10%以上とすることがより好ましい。しかし、Cu含有量が過剰であると、MAの生成が助長されたり、強度が過剰となって、低温靭性が低下することがある。したがって、Cuを含有させる場合でも、Cu含有量の上限を0.50%とすることが好ましい。より好ましくは、Cu含有量の上限を0.30%とし、更に好ましくは0.20%とする。
Mo:0.20%以下
Moは、鋼中に固溶して焼入性を高める元素であり、強度の向上に寄与する。その効果を得るためには、Mo含有量を0.001%以上とすることが好ましい。Mo含有量を0.01%以上とすることがより好ましく、0.03%以上とすることが更に好ましい。しかし、Mo含有量が0.20%を超えるとMAの生成が助長されて靭性が低下することがある。そのため、Moを含有させる場合でも、Mo含有量の上限は0.20%とすることが好ましい。靭性の低下を防ぐにはMo含有量の上限を0.10%とすることがより好ましい。
Nb:0.05%以下
Nbは、Moと同様、焼入性を高める元素である。その効果を得るためには、Nb含有量を、0.001%以上とすることが好ましく、0.005%以上とすることがより好ましく、0.010%以上とすることが更に好ましい。ただし、Nb含有量が過剰であると、靭性が低下することがあるため、Nbを含有させる場合でも、Nb含有量の上限を0.05%とすることが好ましい。より好ましいNb含有量の上限は0.03%である。
本実施形態では、各元素を上述の範囲に制御した上で、焼入性を高めてベイナイトを生成させるために、下記式(1)で示す炭素当量Ceqを0.35〜0.50%とする。Ceqが0.35%未満であるとベイナイトの生成が不十分になり、強度及び靭性が低下する。そのため、Ceqの下限を0.35%とする。Ceqの下限は、好ましくは0.38%であり、より好ましくは0.40%である。一方、Ceqが0.50%を超えると、強度が高くなりすぎて、靭性が低下する。そのため、Ceqの上限を0.50%とする。Ceqの上限は、好ましくは0.45%であり、より好ましくは、0.43%である。
Ceqは、焼入性の指標(炭素当量)であって、公知の次式(1)で求められる。ここで、C、Mn、Cr、Mo、V、Ni、Cuは鋼中の各元素の単位質量%での含有量であり、含有されない元素は0とする。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15・・・式(1)
次に、本実施形態に係るH形鋼のミクロ組織(金属組織)について説明する。一般に、極厚H形鋼の場合、表面近傍は、圧延仕上温度が低くなり、また、水冷時の冷速が大きいため、オーステナイト粒が微細になる。一方、内部は、圧延仕上温度が高くなり、また、水冷時の冷速が小さいため、オーステナイト粒が粗大になる。
本実施形態においては、平均的な組織が得られると考えられる部位において強度の評価に使用する試料を採取し、強度の評価とともに、ミクロ組織の観察、及びベイナイトの面積率の測定を行う(強度評価位置)。図1に示すように、強度評価位置7は、フランジの長さ方向で表面(H形鋼の端面)からフランジ長さの1/6の位置、フランジの厚さ方向で表面からフランジの板厚の1/4の位置である。各組織は、光学顕微鏡による観察で判別することができる。ミクロ組織における面積率は、200倍で撮影した光学顕微鏡による組織写真を用いて、一辺が50μmの格子状に測定点を配置し、300の測定点で組織を判別することによって、各組織の粒の数の割合として算出する。
ベイナイトは、強度の上昇及び組織の微細化に寄与する。強度を確保するためには、強度評価位置において、鋼材組織(金属組織)がベイナイトを面積分率で80%以上含むことが必要である。なお、残部は、フェライト、パーライト、MAの1種又は2種以上である。ベイナイト面積分率の増加は強度の向上に寄与するため、ベイナイト面積分率の上限は特に規定せず、100%でも良い。ベイナイト面積分率の上限は97%以下が好ましい。
また、本実施形態に係るH形鋼では、板厚中心付近において、圧延仕上温度が高いのでオーステナイト粒が粗大となり、更に、水冷時の冷速が小さいために粒界フェライトが粗大化しやすい。したがって、本実施形態では、靭性が最も低下する部位から試料を採取して靭性を評価し、同じ部位でミクロ組織を観察し、オーステナイトの粒径の評価を行う(靭性評価位置)。図1に示すように、靭性評価位置8は、フランジの長さ方向で表面からフランジ長さの1/2の位置、かつ、厚さ方向で表面からフランジ板厚の3/4の位置である。冷却後のオーステナイト粒径(旧オーステナイト粒径)は、1000μm×1000μm以上の視野について光学顕微鏡写真またはEBSP像を撮影し、その中に含まれる旧オーステナイトの数をカウントし(境界は0.5個とカウント)、旧オーステナイト粒径1個あたりの面積を算出した上で、同面積の円の直径に換算する方法で測定できる。
本発明者らは、靭性評価位置におけるミクロ組織を観察し旧オーステナイトの粒径の評価を行った。その結果、靭性を高めるためには、旧オーステナイト粒径を平均で200μm以下に制御する必要があることを知見した。そして、Al−Ca系酸化物(ただし、Al、Caの添加によってTiがすべて還元されなければ、Ti−Al−Ca系酸化物となる場合がある。)を所定のサイズ及び所定の個数密度で鋼中に微細分散させれば、高温で熱間圧延を終了しても、平均旧オーステナイト粒径を200μm以下にできることを見出した。旧オーステナイト粒径は小さい方が好ましいが、製造上の観点から、100μm未満とすることは好ましくない。
なお、H形鋼の製造を、連続鋳造スラブを用いて行う場合、靭性を評価する部位はスラブの中心に相当する。従って、靭性の低下を更に抑制するために、スラブの中心偏析を軽減することが好ましい。中心偏析は、連続鋳造時の軽圧下や均質化熱処理などによって、軽減することができる。
本実施形態においては、少なくともAl及びCaを含む酸化物を、圧延前の鋼片に微細に分散させておくことが必要である。本発明者らの検討によれば、円相当径で0.005〜2.0μmのAl、Caを含む酸化物粒子が100個/mm以上存在すると、ピニング効果及び圧延による再結晶の効果によって、オーステナイト粒径を200μm以下にすることが可能になることが分かった。一方、酸化物粒子が5000個/mmを超えると、破壊の発生や亀裂の伝播が促進されて靭性を損なうことがある。好ましくは、酸化物粒子の個数密度は、3000個/mm以下である。酸化物粒子の個数密度は、製造したH形鋼から抽出レプリカを作製し、それを電子顕微鏡にて観察して算出した。酸化物の組成は、電子顕微鏡に付属するエネルギー分散型X線分光分析装置(EDS)を用いて行った。
本発明者らは、上述したAl、Caを含む酸化物粒子が、Ca、Al、Oを含み、Oを除いた元素が質量比で、Ca:5%以上、Al:5%以上をそれぞれ含有し、CaとAlとの合計が50%以上である組成である場合にオーステナイト粒径の微細化に寄与するという知見を得た。本実施形態の製造方法でH形鋼を製造した場合、Oを除いたCaおよびAlの含有量の上限は通常95%となる。Alの含有量は90%以下が好ましく、85%以下がより好ましい。Caの含有量は90%以下が好ましく、85%以下がより好ましい。また、Oを除いたCaとAlとの合計量は99%以下が好ましい。
本実施形態では、鋼片が、最高温度1350℃、最長時間5時間で加熱されることを想定している。本発明者らは、酸化物が上述の組成であれば、このような条件で鋼片を加熱しても、上記の酸化物の析出密度の低下は起こらず、オーステナイト粒のピニング効果は失われないことを確認している。また、このような酸化物粒子のサイズが2.0μm以下であれば、極厚H形鋼の脆性破壊の起点にならないことも確認している。
本実施形態に係るH形鋼のフランジの板厚は、100〜150mmとする。これは、例えば、高層建築構造物に用いられるH形鋼に、板厚が100mm以上の強度部材が求められているためである。一方で、フランジの板厚が150mmを超えると十分な冷却速度が得られず、靭性の確保が難しいため、その上限を150mmとする。H形鋼のウェブの板厚は特に規定しないが、50〜150mmであることが好ましい。
フランジとウェブとの板厚比(フランジ厚/ウェブ厚)に関してはH形鋼を熱間圧延で製造する場合を想定して、0.5〜2.0とすることが好ましい。フランジとウェブとの板厚比が2.0を超えると、ウェブが波打ち状の形状に変形することがある。一方、フランジとウェブとの板厚比が0.5未満の場合は、フランジが波打ち状の形状に変形することがある。
機械特性の目標値は、常温の降伏強度又は0.2%耐力が450MPa以上、引張強度が550MPa以上である。以下に示す本実施形態に係るH形鋼の好ましい製造方法によりH形鋼を製造した場合には、通常、常温の降伏強度又は0.2%耐力は520MPa以下、引張強度が740MPa以下となる。また、21℃でのシャルピー吸収エネルギーは、100J以上である。強度が高すぎると靭性を損なうことがあるため、常温の降伏強度又は0.2%耐力は500MPa以下、引張強度は680MPa以下が好ましい。21℃でのシャルピー吸収エネルギーは、150J以上が好ましい。
次に、本実施形態に係るH形鋼の好ましい製造方法について説明する。
酸化物の組成、個数及び大きさを所定の条件に制御するためには製鋼工程における脱酸方法が重要になる。本実施形態では、脱酸方法として、溶鋼中の酸素量(溶鋼酸素量)を90ppm以下に調整した上でTiを添加して脱酸した後、Alを添加する。次いで、Caを添加する。上述の溶鋼酸素量が90ppmを超えると2.0μmを超える粗大な介在物が多数生成するようになり、靭性が劣化する。そのため、Ti添加前の溶鋼酸素量は90ppm以下とする。Ca添加後、Al含有量が所定の成分値に対して不足していれば、不足分のAlを添加し、最終成分が所定の成分値になるように調整する(精錬工程)。Ti、Al、Caの添加順が上述の順番でない場合、酸化物のサイズが粗大化し個数が減少するため、好ましくない。
製鋼工程で、溶鋼の化学組成を調整した後、鋳造し、鋼片を得る(鋳造工程)。鋳造は、生産性の観点から、連続鋳造が好ましいが、製造されるH形鋼に近い形状のビームブランクでも構わない。鋼片の厚みは、生産性の観点から、200mm以上とすることが好ましい。一方で、偏析の低減や、熱間圧延における加熱温度の均質性などを考慮すると、350mm以下が好ましい。
次に、鋼片を加熱する(加熱工程)。そして加熱された鋼片に対して、熱間圧延を行う(熱間圧延工程)。鋼片の加熱温度は、1100℃未満であると熱間圧延時の変形抵抗が高くなる。そのため、加熱温度の下限を1100℃とする。Nbなど、炭化物、窒化物を形成する元素を含有する場合、これらの炭化物、窒化物を十分に固溶させるため、加熱温度の下限を1150℃とすることが好ましい。一方、加熱温度が1350℃よりも高温になると、素材である鋼片の表面のスケールが液体化して製造に支障が出る可能性がある。そのため、加熱温度の上限は1350℃とする。
本発明では、酸化物粒子によるピニング効果によってオーステナイト粒径の上限が決まるため、熱間圧延の条件を詳細には規定しなくてもよい。ただし、強度を確保するため、仕上圧延完了温度は、鋼材表面温度で800℃以上とする。
なお、熱間圧延においては、生産性を考慮し、いわゆるユニバーサル圧延を行うことが望ましい。
仕上圧延では、圧延温度と圧下率とを制御して圧延を行うことが好ましい。熱間圧延によって、靭性を向上させるためには、圧延温度の低温化が望ましい。これは、圧延温度を低温化すると、圧延時の再結晶の効果によって、オーステナイト粒径がより微細になり、靭性が向上する可能性があるためである。一方で、強度を確保するには、焼入性を高めることが望ましい。焼入性を高めるためには、圧延温度を高温化して、オーステナイト粒を大きくすることが好ましい。すなわち、靭性の確保には圧延温度の低温化が望ましく、強度の確保には圧延温度の高温化が望ましい。そのため、焼入性が高い鋼は低温で圧延し、焼入性が低い鋼は高温で圧延するなど、鋼の化学組成に応じて、適宜、制御することが好ましい。
なお、一次圧延を行って得られた鋼片を500℃以下に冷却した後、その鋼片を再度、1100〜1350℃に加熱し、二次圧延を行う製造するプロセス、いわゆる2ヒート圧延を採用してもよい。2ヒート圧延では、熱間圧延での塑性変形量が少なく、圧延工程での温度の低下も小さくなるため、加熱温度を低めにすることができる。
圧延温度を下げる場合には、仕上圧延のうち、1パス以上をパス間水冷圧延とすることも有効である。パス間水冷圧延は、フランジ表面温度を700℃以下に冷却した後、復熱過程で圧延する方法である。パス間水冷圧延は、圧延パス間の水冷により、フランジの表層部と内部とに温度差を付与し、圧延する方法である。パス間水冷圧延では、圧下率が小さい場合でも、板厚の内部まで加工歪みを導入することができる。また、水冷により圧延温度を短時間で低下させることによって、生産性も向上する。
仕上圧延後、高い強度を得るために、フランジやウェブなどを水冷する(水冷工程)。水冷は、スプレーによる水の吹き付け、水槽での浸漬水冷によって行うことができる。本実施形態においては、フランジの長さ方向で表面(H形鋼の端面)からフランジ長さの1/6の位置、かつフランジの厚さ方向で表面からフランジ板厚の1/4の位置(強度評価位置)において800℃から500℃の冷却速度が2.2℃/秒以上となるように水冷を行うことが好ましい。2.2℃/秒未満の冷却速度では、必要な焼入れ組織が得られない場合がある。
水冷にあたっては、水冷停止後に表面温度で100〜700℃の温度まで復熱するような条件で水冷を停止することが必要である。これは、復熱温度が100℃より低いと自己焼き戻しが不足し靭性が低下すること、また復熱温度が700℃より高いと板厚中心部に焼きが入らず、旧オーステナイト粒界から生成するフェライトの粗大化によって靭性が低下したり、板厚表面近傍でも焼戻し温度が高すぎて強度が低下することがあるためである。より靭性を向上させるためには、復熱温度は300℃以上が好ましい。
なお、水冷条件を、水冷停止温度ではなく、復熱温度で制御する理由は、極厚H形鋼は表面と内部との冷却速度の乖離が大きく、表面温度では内部の温度が管理できないためである。表面温度は冷却開始後の短い時間で200℃以下まで冷却されるが、内部の冷却速度は表面に比べて小さいため、表面温度が200℃以下であっても、内部は十分に冷却されていない場合がある。これに対し、本発明者らは、水冷時間によって内部の温度を制御し、復熱温度で内部の温度を管理することが有効であることを見出した。予め、冷却速度及び冷却時間と復熱温度との関係を測定しておけば、冷却時間及び冷却速度によって極厚H形鋼の復熱温度を制御することができる。
表1に示す成分組成を有する鋼を溶製し、連続鋳造により、厚みが240〜300mmの鋼片を製造した。鋼の溶製は転炉で行い、脱酸し、合金を添加して成分を調整し、必要に応じて、真空脱ガス処理を行った。得られた鋼片を加熱し、熱間圧延を行い、H形鋼を製造した。表1に示した成分は、製造後のH形鋼から採取した試料を化学分析して求めた。
Figure 2014080818
Figure 2014080818
Figure 2014080818
H形鋼の製造工程を図2に示す。熱間圧延(粗圧延、中間圧延、仕上圧延)は、ユニバーサル圧延装置列で行った。熱間圧延をパス間水冷圧延とする場合、圧延パス間の水冷には、中間ユニバーサル圧延機(中間圧延機)1の前後面に設けた水冷装置2aを用い、フランジ外側面のスプレー冷却しながら、リバース圧延を行った。制御圧延後の水冷は、仕上ユニバーサル圧延機(仕上圧延機)3で仕上圧延を行った後、仕上圧延機3の後面に設置した冷却装置(水冷装置)2bにより、フランジ外側面を水冷して行った。
脱酸処理を行う前(Tiを添加する前)の溶鋼中の酸素量(ppm)、Ti、Ca、Alを添加する順序、熱間圧延の条件(製造条件)を表2に示す。なお、表2中の冷却速度は、フランジの長さ方向で表面から1/6の位置、厚さ方向で表面から1/4の位置での値である。ただし、この冷却速度は、直接測定したものではなく、別途実施した同サイズの鋼材をオフラインで加熱して加速冷却する実験を行った際に、該当部位に熱電対を取り付けて加速冷却の冷却速度を測定した結果及び計算機シミュレーションによる予測を基に、水冷の開始温度と停止温度、及び適用時間から算出した値である。
図1に示す強度評価位置7から、引張試験及びベイナイト分率の測定に用いる試料を採取した。この試料を用いて、降伏強度及び引張強度を評価するとともに、ベイナイト分率を測定した。また、図1に示す靭性評価位置8から、シャルピー試験及びオーステナイト粒径の測定に用いる試料を採取した。この試料を用いて、靭性を評価するとともに、オーステナイト粒径を測定した。t1はウェブの板厚、t2はフランジの板厚、Fはフランジの長さ、Hは高さである。
引張試験は、JIS Z 2241に準拠して行い、YSとTSとを求めた。なお、YSは、降伏挙動を示す場合は降伏点、降伏挙動を示さない場合は0.2%耐力とした。シャルピー衝撃試験は、JIS Z 2242に準拠し、試験温度21℃で行った。また、光学顕微鏡又はEBSPで金属組織の観察を行い、オーステナイト粒径とベイナイトの面積分率とを測定した。また、残部組織の種類を特定した。更に、抽出レプリカを作製し、電子顕微鏡及びEDSにより、酸化物粒子の個数密度及び組成を求めた。表3に示す酸化物組成は、酸素を除く、Ca、Alの割合であり、残部はTiである。なお、抽出レプリカの採取位置は図1に示す靭性評価位置8と同じ位置である。
機械試験結果及び組織観察結果を表3に示す。表3のYSは、常温の降伏点、又は0.2%耐力である。機械特性の目標値は、常温の降伏強度又は0.2%耐力(YS)が450MPa以上、引張強度(TS)が550MPa以上である。また、21℃でのシャルピー吸収エネルギー(vE21)の目標値は、100J以上である。
表3に示すように、本発明例である製造No.1〜5、7、10〜14、16及び18〜24は、ベイナイト分率、オーステナイト粒径、酸化物組成、酸化物密度が、望ましい範囲であった。その結果、YS及びTSが、それぞれ、目標の下限値である450MPa及び550MPa以上を満足していた。更に、21℃でのシャルピー吸収エネルギーは、100J以上であり、目標値を十分に満たしていた。
なお、表2、3に示したように、製造No.7及び製造No.15は復熱温度が300℃未満と低く、自己焼戻し効果が小さい。そのため、シャルピー吸収エネルギーが、100J以上ではあるものの、他の鋼に比べて比較的低い値となった。
一方、表3の製造No.6、8、9、15、17、25〜42は、化学組成、製造方法、ベイナイト分率、オーステナイト粒径又は酸化物密度のいずれかが本発明の範囲外であり、YS、TS又は靭性のいずれかが上記の目標値を満たさなかった。
製造No.8は脱酸剤の添加順序を変えた例である。Alを最後に添加した製造No.8では、酸化物組成中のAlの割合が低下した。
製造No.17は、脱酸前の溶鋼酸素量が高かった例である。製造No.17はオーステナイト粒径及び酸化物密度が本発明の範囲外となっていた。
製造No.33は脱酸材としてCaを添加しなかった例であり、酸化物組成にCaが含有されなかった例である。
本発明のH形鋼は、多量の合金の含有を必要とせず、また、製鋼負荷の大きい極低炭素化を行わずに、製造することが可能である。そのため、製造コスト低減、工期の短縮による大幅なコスト削減を図ることができる。また、本発明のH形鋼は、靭性に優れた高強度極厚H形鋼である。したがって、経済性を損なうことなく、大型建造物の信頼性を向上させることができるなど、産業上の貢献が極めて顕著である。
1 中間圧延機
2a 中間圧延機前後面の水冷装置
2b 仕上圧延機後面冷却装置
3 仕上圧延機
4 H形鋼
5 フランジ
6 ウェブ
7 強度評価位置
8 靭性評価位置
F フランジ長さ全長
H 高さ
t1 ウェブの板厚
t2 フランジの板厚
(4)上記(1)〜(3)のいずれか一項に記載のH形鋼は、さらに、前記酸化物粒子が、Tiを含有してもよい。

Claims (7)

  1. フランジと、ウェブとを備え;
    化学組成が、質量%で、
    C:0.05〜0.16%、
    Si:0.01〜0.50%、
    Mn:0.80〜2.00%、
    Ni:0.05〜0.50%、
    V:0.01〜0.20%、
    Al:0.005〜0.100%、
    Ti:0.005〜0.030%、
    N:0.0010〜0.0200%、
    O:0.0001〜0.0100%、
    Ca:0.0003〜0.0040%、
    Cr:0〜0.50%、
    Cu:0〜0.50%、
    Mo:0〜0.20%、
    Nb:0〜0.05%、
    を含有し、残部がFe及び不純物であり、
    下記式(1)によって求められる炭素当量Ceqが0.35〜0.50%であり;
    円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜5000個/mm含有し、
    前記酸化物粒子の組成がCa、Al、Oを含み、
    前記酸化物粒子における、前記Oを除いた質量比で、前記Caが、5%以上、前記Alが5%以上であり、前記Caと前記Alとの合計が50%以上であり;
    前記フランジの板厚が100〜150mmであり;
    前記フランジの、前記フランジの長さ方向で表面から1/6の位置、かつ、前記フランジの厚さ方向で表面から1/4の位置である強度評価位置における、金属組織中のベイナイト分率が80%以上であり;
    前記フランジの、前記フランジの前記長さ方向で前記表面から1/2の位置、かつ、前記フランジの前記厚さ方向で前記表面から3/4の位置である靭性評価位置における、金属組織中の平均旧オーステナイト粒径が200μm以下である;
    ことを特徴とするH形鋼。
    Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・式(1)
    ここで、式中のC、Mn、Cr、Mo、V、Ni、Cuは各元素の質量%の含有量で、含有されない場合は0とする。
  2. 前記化学組成において、質量%で、
    Cr:0.01〜0.50%、
    Cu:0.01〜0.50%、
    Mo:0.001〜0.20%、
    Nb:0.001〜0.05%、
    であることを特徴とする請求項1に記載のH形鋼。
  3. 前記強度評価位置における、降伏強度又は0.2%耐力が450MPa以上、引張強度が550MPa以上、21℃でのシャルピー吸収エネルギーが100J以上であることを特徴とする請求項1または2に記載のH形鋼。
  4. さらに、前記介在物粒子が、Tiを含有することを特徴とする請求項1〜3のいずれか一項に記載のH形鋼。
  5. ユニバーサル圧延によって製造されたことを特徴とする請求項1〜4のいずれか一項に記載のH形鋼。
  6. 脱酸処理を行う前の溶鋼の酸素量を90ppm以下に調整し、Ti、Al、Caを順に前記溶鋼に添加した後、化学組成が、質量%で、C:0.05〜0.16%、Si:0.01〜0.50%、Mn:0.80〜2.00%、Ni:0.05〜0.50%、V:0.01〜0.20%、Al:0.005〜0.100%、Ti:0.005〜0.030%、N:0.0010〜0.0200%、O:0.0001〜0.0100%、Ca:0.0003〜0.0040%、Cr:0〜0.50%、Cu:0〜0.50%、Mo:0〜0.20%、Nb:0〜0.05%、を含有し、残部がFe及び不純物であり、下記式(1)によって求められる炭素当量Ceqが0.35〜0.50%となるように前記溶鋼の成分組成を調整する精錬工程と;
    前記精錬工程で得られた前記溶鋼を鋳造して鋼片を得る鋳造工程と;
    前記鋳造工程で得られた前記鋼片を1100〜1350℃に加熱する加熱工程と;
    加熱された前記鋼片に、圧延終了温度が表面温度で800℃以上となるように熱間圧延を行ってH形鋼を得る熱間圧延工程と;
    前記H形鋼を、水冷停止後に前記H形鋼の表面温度が100〜700℃の温度範囲内に復熱するように水冷する水冷工程と;
    を有することを特徴とするH形鋼の製造方法。
    Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・式(1)
    ここで、式中のC、Mn、Cr、Mo、V、Ni、Cuは各元素の質量%の含有量で、含有されない場合は0とする。
  7. 前記化学組成において、質量%で、
    Cr:0.01〜0.50%、
    Cu:0.01〜0.50%、
    Mo:0.001〜0.20%、
    Nb:0.001〜0.05%、
    であることを特徴とする請求項6に記載のH形鋼の製造方法。
JP2014517284A 2012-11-26 2013-11-13 H形鋼及びその製造方法 Expired - Fee Related JP5655984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014517284A JP5655984B2 (ja) 2012-11-26 2013-11-13 H形鋼及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012257892 2012-11-26
JP2012257892 2012-11-26
JP2014517284A JP5655984B2 (ja) 2012-11-26 2013-11-13 H形鋼及びその製造方法
PCT/JP2013/080660 WO2014080818A1 (ja) 2012-11-26 2013-11-13 H形鋼及びその製造方法

Publications (2)

Publication Number Publication Date
JP5655984B2 JP5655984B2 (ja) 2015-01-21
JPWO2014080818A1 true JPWO2014080818A1 (ja) 2017-01-05

Family

ID=50776001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014517284A Expired - Fee Related JP5655984B2 (ja) 2012-11-26 2013-11-13 H形鋼及びその製造方法

Country Status (8)

Country Link
US (1) US9482005B2 (ja)
EP (1) EP2865779B1 (ja)
JP (1) JP5655984B2 (ja)
CN (1) CN104487604B (ja)
HK (1) HK1207672A1 (ja)
MY (1) MY167068A (ja)
SG (1) SG11201500113TA (ja)
WO (1) WO2014080818A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060002B2 (en) 2013-12-16 2018-08-28 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
WO2015110585A1 (en) * 2014-01-24 2015-07-30 Rautaruukki Oyj Hot-rolled ultrahigh strength steel strip product
US10280476B2 (en) * 2014-04-15 2019-05-07 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP6344191B2 (ja) * 2014-10-15 2018-06-20 新日鐵住金株式会社 靭性に優れた高強度極厚h形鋼及びその製造方法
JP6354572B2 (ja) * 2014-10-27 2018-07-11 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP6447286B2 (ja) * 2015-03-19 2019-01-09 新日鐵住金株式会社 H形鋼の製造方法及びh形鋼製品
CN105586534B (zh) * 2016-02-22 2017-08-25 山东钢铁股份有限公司 一种特厚低韧脆转变温度的热轧h型钢及其生产方法
KR20180102175A (ko) * 2016-03-02 2018-09-14 신닛테츠스미킨 카부시키카이샤 저온용 h형강 및 그 제조 방법
JP6662156B2 (ja) * 2016-04-04 2020-03-11 日本製鉄株式会社 低温用h形鋼及びその製造方法
WO2018115925A1 (en) * 2016-12-19 2018-06-28 Arcelormittal Steel section having a thickness of at least 100mm and method of manufacturing the same
US20190203309A1 (en) * 2016-12-21 2019-07-04 Nippon Steel & Sumitomo Metal Corporation H section and method for manufacturing same
US11041231B2 (en) * 2017-03-15 2021-06-22 Nippon Steel Corporation H-section steel and method of producing the same
CN107904368A (zh) * 2017-11-03 2018-04-13 山东钢铁股份有限公司 一种轧后微合金化h型钢低温性能挽救方法
KR20190111920A (ko) * 2018-03-23 2019-10-02 닛폰세이테츠 가부시키가이샤 압연 h형강 및 그 제조 방법
CN108642381B (zh) * 2018-05-16 2020-02-18 山东钢铁股份有限公司 一种屈服强度460MPa级热轧高韧性耐低温H型钢及其制备方法
CN108893675B (zh) * 2018-06-19 2020-02-18 山东钢铁股份有限公司 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
CN110578090A (zh) * 2019-09-25 2019-12-17 马鞍山钢铁股份有限公司 一种屈服强度500MPa级热轧H型钢及生产方法
CN110527915B (zh) * 2019-09-25 2020-12-01 马鞍山钢铁股份有限公司 一种460MPa级热轧H型钢及其生产方法
CN112458364B (zh) * 2020-11-04 2021-09-03 马鞍山钢铁股份有限公司 一种超厚规格热轧h型钢及其生产方法
CN112410665B (zh) * 2020-11-10 2021-10-29 马鞍山钢铁股份有限公司 一种抑制晶粒长大的厚重热轧h型钢及其生产方法
CN113699441B (zh) * 2021-07-29 2022-10-04 马鞍山钢铁股份有限公司 一种低温冲击韧性良好的翼缘超厚热轧h型钢及其生产方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990196A (en) 1988-06-13 1991-02-05 Nippon Steel Corporation Process for manufacturing building construction steel having excellent fire resistance and low yield ratio
JP2579841B2 (ja) 1991-03-08 1997-02-12 新日本製鐵株式会社 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JP2607796B2 (ja) 1992-03-16 1997-05-07 新日本製鐵株式会社 靭性の優れた低合金圧延形鋼の製造方法
JP3181448B2 (ja) * 1993-09-27 2001-07-03 新日本製鐵株式会社 含酸化物分散鋳片及びその鋳片による靱性の優れた圧延形鋼の製造方法
US5743972A (en) 1995-08-29 1998-04-28 Kawasaki Steel Corporation Heavy-wall structural steel and method
JP3412997B2 (ja) 1996-01-17 2003-06-03 新日本製鐵株式会社 高張力圧延鋼材及びその製造方法
JP3507259B2 (ja) 1996-11-15 2004-03-15 新日本製鐵株式会社 590MPa級圧延形鋼およびその製造方法
JP3863647B2 (ja) * 1997-10-24 2006-12-27 新日本製鐵株式会社 トンネル支保工用h形鋼およびその製造方法
JP3509603B2 (ja) * 1998-03-05 2004-03-22 Jfeスチール株式会社 靱性に優れた降伏強さが325MPa以上の極厚H形鋼
JP3718348B2 (ja) 1998-07-31 2005-11-24 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法
US6258181B1 (en) 1998-08-05 2001-07-10 Nippon Steel Corporation Structural steel excellent in wear resistance and fatigue resistance property and method of producing the same
JP2000080440A (ja) 1998-08-31 2000-03-21 Kawasaki Steel Corp 高強度冷延薄鋼板およびその製造方法
JP2000328174A (ja) 1999-05-14 2000-11-28 Nippon Steel Corp フィレット部靭性および耐ut欠陥特性の優れたh形鋼およびその製造方法
JP4464486B2 (ja) 1999-06-22 2010-05-19 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法
EP1281777B1 (en) * 2000-04-04 2010-06-23 Nippon Steel Corporation A method of producing a rolled h-shaped steel having uniform microstructure and uniform mechanical properties
JP3863413B2 (ja) 2001-11-22 2006-12-27 株式会社神戸製鋼所 高靭性高張力非調質厚鋼板およびその製造方法
US7416617B2 (en) * 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
JP3960341B2 (ja) * 2005-05-17 2007-08-15 住友金属工業株式会社 熱加工制御型590MPa級H形鋼及びその製造方法
JP4506985B2 (ja) 2006-04-06 2010-07-21 住友金属工業株式会社 極厚鋼材及びその製造方法
JP5292784B2 (ja) 2006-11-30 2013-09-18 新日鐵住金株式会社 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
WO2010013358A1 (ja) 2008-07-30 2010-02-04 新日本製鐵株式会社 靭性、溶接性に優れた高強度厚鋼材及び高強度極厚h形鋼とそれらの製造方法
CN101397627B (zh) * 2008-10-31 2010-12-22 莱芜钢铁股份有限公司 一种耐火耐候抗震钢及其生产方法
CN101407893B (zh) * 2008-11-25 2011-04-06 武汉钢铁(集团)公司 一种高强度大线能量焊接耐火抗震建筑用钢及其生产方法
JP5402560B2 (ja) 2009-11-19 2014-01-29 新日鐵住金株式会社 鋼と圧延鋼材の製造方法
WO2011065479A1 (ja) 2009-11-27 2011-06-03 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP5471523B2 (ja) * 2010-01-29 2014-04-16 新日鐵住金株式会社 靱性に優れた高強度極厚h形鋼およびその製造方法
JP5425702B2 (ja) * 2010-02-05 2014-02-26 株式会社神戸製鋼所 落重特性に優れた高強度厚鋼板
JP2011246806A (ja) 2010-04-30 2011-12-08 Nippon Steel Corp 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法

Also Published As

Publication number Publication date
US9482005B2 (en) 2016-11-01
EP2865779A4 (en) 2016-04-20
MY167068A (en) 2018-08-09
CN104487604B (zh) 2016-11-02
HK1207672A1 (en) 2016-02-05
US20150204071A1 (en) 2015-07-23
WO2014080818A1 (ja) 2014-05-30
CN104487604A (zh) 2015-04-01
JP5655984B2 (ja) 2015-01-21
EP2865779B1 (en) 2018-03-21
SG11201500113TA (en) 2015-03-30
EP2865779A1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5655984B2 (ja) H形鋼及びその製造方法
JP6225997B2 (ja) H形鋼及びその製造方法
JP5867651B2 (ja) H形鋼及びその製造方法
JP4874435B2 (ja) 厚鋼板の製造方法
JP6183545B2 (ja) H形鋼及びその製造方法
EP2305850B1 (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP5565531B2 (ja) 高強度極厚h形鋼
JP4855553B2 (ja) 高強度極厚h形鋼及びその製造方法
JP5267048B2 (ja) 溶接性と板厚方向の延性に優れた厚鋼板の製造方法
JP6409598B2 (ja) 靭性に優れた高強度極厚h形鋼及びその製造方法
JP6344191B2 (ja) 靭性に優れた高強度極厚h形鋼及びその製造方法
JP6295632B2 (ja) 靭性に優れた高強度h形鋼
JP6354571B2 (ja) 圧延h形鋼及びその製造方法
JP2010174332A (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP6135595B2 (ja) 耐衝突性に優れた鋼板の高能率製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees