JPWO2014017624A1 - 立体物検出装置および立体物検出方法 - Google Patents

立体物検出装置および立体物検出方法 Download PDF

Info

Publication number
JPWO2014017624A1
JPWO2014017624A1 JP2014527023A JP2014527023A JPWO2014017624A1 JP WO2014017624 A1 JPWO2014017624 A1 JP WO2014017624A1 JP 2014527023 A JP2014527023 A JP 2014527023A JP 2014527023 A JP2014527023 A JP 2014527023A JP WO2014017624 A1 JPWO2014017624 A1 JP WO2014017624A1
Authority
JP
Japan
Prior art keywords
dimensional object
luminance
object detection
detection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014527023A
Other languages
English (en)
Other versions
JP5977827B2 (ja
Inventor
早川 泰久
泰久 早川
修 深田
修 深田
雅幸 竹村
雅幸 竹村
玲 宇田川
玲 宇田川
彰二 村松
彰二 村松
耕太 入江
耕太 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd, Nissan Motor Co Ltd filed Critical Clarion Co Ltd
Publication of JPWO2014017624A1 publication Critical patent/JPWO2014017624A1/ja
Application granted granted Critical
Publication of JP5977827B2 publication Critical patent/JP5977827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両に搭載され、自車両後方の映像を結像させるレンズを備えた撮像手段10と、撮像画像に基づいて、検出領域に存在する立体物を検出する立体物検出手段33と、夜間であるか否かを判定する夜間判定手段34と、撮像画像に基づいて複数の画像領域の輝度を検出する輝度検出部35と、輝度のピークのうち所定値以上の輝度勾配を有する輝度のピークを対象輝度ピークとして検出する輝度ピーク検出手段36と、夜間と判定された場合に、検出された対象輝度ピークの検出結果に基づいて、立体物検出手段33による立体物の検出を抑制する制御手段37と、を備えることを特徴とする立体物検出装置。

Description

本発明は、立体物検出装置および立体物検出方法に関するものである。
本出願は、2012年7月27日に出願された日本国特許出願の特願2012―166527に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
従来より、カメラで撮像した撮像画像に基づいて、自車両周辺の立体物を検出する技術が知られている(特許文献1参照)。
特開2006−311216号公報
夜間に、カメラで撮像した撮像画像に基づいて、自車両周辺の立体物を検出する際に、降雨などにより路面に水膜が形成されている場合に、街灯などの光源が路面に反射してしまい、路面に反射した光源などの光の像を立体物として誤検出してしまう場合があった。
本発明が解決しようとする課題は、立体物を適切に検出できる立体物検出装置を提供することである。
本発明は、撮像手段により撮像した撮像画像に基づいて立体物を検出する立体物検出装置において、撮像画像に基づいて複数の画像領域の輝度を検出し、検出された輝度のピークのうち、所定値以上の輝度勾配を有する輝度のピークを対象輝度ピークとして検出し、夜間である場合に、対象輝度ピークの検出結果に基づいて、立体物の検出を抑制することで、上記課題を解決する。
本発明によれば、路面に反射した街灯などの光源に起因する特定輝度ピークに基づいて、立体物の検出を抑制することで、路面に反射した街灯などの光源を、立体物として誤認識してしまうことを有効に防止することができる。
立体物検出装置を搭載した車両の概略構成図である。 図1の車両の走行状態を示す平面図である。 計算機の詳細を示すブロック図である。 位置合わせ部の処理の概要を説明するための図であり、(a)は車両の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。 立体物検出部による差分波形の生成の様子を示す概略図である。 差分波形および立体物を検出するための閾値αの一例を示す図である。 立体物検出部によって分割される小領域を示す図である。 立体物検出部により得られるヒストグラムの一例を示す図である。 立体物検出部による重み付けを示す図である。 立体物検出部により得られるヒストグラムの他の例を示す図である。 輝度検出部による輝度の検出方法を説明するための図である。 自車両が走行している場面の一例を示す図である。 図12に示す場面例において生成される輝度ヒストグラムの一例である。 図12に示す場面例において生成される輝度ヒストグラムに基づく、一次微分ヒストグラムおよび二次微分ヒストグラムの一例を示す図である。 特定輝度ピークに基づく立体物検出の制御方法を説明するための図である。 制御部による差分閾値thの設定方法を説明するための図である。 特定輝度ピークの輝度と立体物の検出を禁止する範囲との関係を説明するための図である。 特定輝度ピークと隣接車両V2を判定するための判定回数との関係を示す図である。 エッジの強度に基づくヒストグラムの一例を示す図である。 第1実施形態に係る隣接車両検出処理を示すフローチャートである。 第1実施形態に係る立体物検出制御処理を示すフローチャートである。 第2実施形態に係る計算機の詳細を示すブロック図である。 車両の走行状態を示す図であり、(a)は検出領域等の位置関係を示す平面図、(b)は実空間における検出領域等の位置関係を示す斜視図である。 第2実施形態に係る輝度差算出部の動作を説明するための図であり、(a)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図、(b)は実空間における注目線、参照線、注目点及び参照点の位置関係を示す図である。 第2実施形態に係る輝度差算出部の詳細な動作を説明するための図であり、(a)は鳥瞰視画像における検出領域を示す図、(b)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図である。 エッジ検出動作を説明するための画像例を示す図である。 エッジ線とエッジ線上の輝度分布を示す図であり、(a)は検出領域に立体物(隣接車両)が存在している場合の輝度分布を示す図、(b)は検出領域に立体物が存在しない場合の輝度分布を示す図である。 第2実施形態に係る隣接車両検出方法を示すフローチャートである。
≪第1実施形態≫
図1は、本実施形態に係る立体物検出装置1を搭載した車両の概略構成図である。本実施形態に係る立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車線に存在する立体物(隣接車両V2などの立体物)を検出することを目的とする。本実施形態に係る立体物検出装置1は、図1に示すように、カメラ10と、車速センサ20と、計算機30とを備える。
カメラ10は、図1に示すように、自車両V1の後方における高さhの箇所において、光軸が水平から下向きに角度θとなるように車両V1に取り付けられている。カメラ10は、この位置から自車両V1の周囲環境のうちの所定領域を撮像する。車速センサ20は、自車両V1の走行速度を検出するものであって、例えば車輪に回転数を検知する車輪速センサで検出した車輪速から車速度を算出する。計算機30は、自車両後方の隣接車線に存在する隣接車両の検出を行う。
図2は、図1の自車両V1の走行状態を示す平面図である。同図に示すように、カメラ10は、所定の画角aで車両後方側を撮像する。このとき、カメラ10の画角aは、自車両V1が走行する車線に加えて、その左右の車線(隣接車線)についても撮像可能な画角に設定されている。
図3は、図1の計算機30の詳細を示すブロック図である。なお、図3においては、接続関係を明確とするためにカメラ10、車速センサ20についても図示する。
図3に示すように、計算機30は、視点変換部31と、位置合わせ部32と、立体物検出部33と、夜間判定部34と、輝度検出部35と、特定輝度ピーク検出部36と、制御部37と、白濁度算出部38と、路面状態推測部39と、ヘッドライト検出部40とを備える。以下に、それぞれの構成について説明する。
視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力し、入力した撮像画像データを鳥瞰視される状態の鳥瞰画像データに視点変換する。鳥瞰視される状態とは、上空から例えば鉛直下向きに見下ろす仮想カメラの視点から見た状態である。この視点変換は、例えば特開2008−219063号公報に記載されるようにして実行することができる。撮像画像データを鳥瞰視画像データに視点変換するのは、立体物に特有の鉛直エッジは鳥瞰視画像データへの視点変換により特定の定点を通る直線群に変換されるという原理に基づき、これを利用すれば平面物と立体物とを識別できるからである。
位置合わせ部32は、視点変換部31の視点変換により得られた鳥瞰視画像データを順次入力し、入力した異なる時刻の鳥瞰視画像データの位置を合わせる。図4は、位置合わせ部32の処理の概要を説明するための図であり、(a)は自車両V1の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。
図4(a)に示すように、現時刻の自車両V1がPに位置し、一時刻前の自車両V1がP’に位置していたとする。また、自車両V1の後側方向に隣接車両V2が位置して自車両V1と並走状態にあり、現時刻の隣接車両V2がPに位置し、一時刻前の隣接車両V2がP’に位置していたとする。さらに、自車両V1は、一時刻で距離d移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。
このような状態において、現時刻における鳥瞰視画像PBは図4(b)に示すようになる。この鳥瞰視画像PBでは、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P)については倒れ込みが発生する。また、一時刻前における鳥瞰視画像PBt−1についても同様に、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P’)については倒れ込みが発生する。既述したとおり、立体物の鉛直エッジ(厳密な意味の鉛直エッジ以外にも路面から三次元空間に立ち上がったエッジを含む)は、鳥瞰視画像データへの視点変換処理によって倒れ込み方向に沿った直線群として現れるのに対し、路面上の平面画像は鉛直エッジを含まないので、視点変換してもそのような倒れ込みが生じないからである。
位置合わせ部32は、上記のような鳥瞰視画像PB,PBt−1の位置合わせをデータ上で実行する。この際、位置合わせ部32は、一時刻前における鳥瞰画像PBt−1をオフセットさせ、現時刻における鳥瞰視画像PBと位置を一致させる。図4(b)の左側の画像と中央の画像は、移動距離d’だけオフセットした状態を示す。このオフセット量d’は、図4(a)に示した自車両V1の実際の移動距離dに対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。
また、位置合わせ後において位置合わせ部32は、鳥瞰視画像PB,PBt−1の差分をとり、差分画像PDのデータを生成する。ここで、本実施形態において、位置合わせ部32は、照度環境の変化に対応するために、鳥瞰視画像PB,PBt−1の画素値の差を絶対値化し、当該絶対値が所定の差分閾値th以上であるときに、差分画像PDの画素値を「1」とし、絶対値が所定の差分閾値th未満であるときに、差分画像PDの画素値を「0」とすることで、図4(b)の右側に示すような差分画像PDのデータを生成することができる。なお、本実施形態において、差分閾値thの値は、後述する制御部37により変更される場合があり、制御部37により差分閾値thが変更された場合には、制御部37により変更された差分閾値thを用いて、差分画像PDの画素値が検出される。
また、本実施形態において、位置合わせ部32は、異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、その位置合わせされた鳥瞰視画像を得るが、この「位置合わせ」処理は、検出対象の種別や要求される検出精度に応じた精度で行うことができる。たとえば、同一時刻及び同一位置を基準に位置を合わせるといった厳密な位置合わせ処理であってもよいし、各鳥瞰視画像の座標を把握するという程度の緩い位置合わせ処理であってもよい。
そして、立体物検出部33は、図4(b)に示す差分画像PDのデータに基づいて、差分波形を生成する。この際、立体物検出部33は、実空間上における立体物の移動距離についても算出する。立体物の検出および移動距離の算出にあたり、立体物検出部33は、まず差分波形を生成する。
差分波形の生成にあたって立体物検出部33は、差分画像PDにおいて検出領域(検出枠)を設定する。本例の立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車両について移動距離を算出することを目的とするものである。このため、本例では、図2に示すように自車両V1の後側方に矩形状の検出領域(検出枠)A1,A2を設定する。なお、このような検出領域A1,A2は、自車両V1に対する相対位置から設定してもよいし、白線の位置を基準に設定してもよい。白線の位置を基準に設定する場合に、立体物検出装置1は、例えば既存の白線認識技術等を利用するとよい。
また、立体物検出部33は、図2に示すように、設定した検出領域A1,A2の自車両V1側における辺(走行方向に沿う辺)を接地線L1,L2として認識する。一般に接地線は立体物が地面に接触する線を意味するが、本実施形態では地面に接触する線でなく上記の如くに設定される。なおこの場合であっても、経験上、本実施形態に係る接地線と、本来の隣接車両V2の位置から求められる接地線との差は大きくなり過ぎず、実用上は問題が無い。
図5は、立体物検出部33による差分波形の生成の様子を示す概略図である。図5に示すように、立体物検出部33は、位置合わせ部32で算出した差分画像PD(図4(b)の右図)のうち検出領域A1,A2に相当する部分から、差分波形DWを生成する。この際、立体物検出部33は、視点変換により立体物が倒れ込む方向に沿って、差分波形DWを生成する。なお、図5に示す例では、便宜上検出領域A1のみを用いて説明するが、検出領域A2についても同様の手順で差分波形DWを生成する。
具体的に説明すると、まず立体物検出部33は、差分画像PDのデータ上において立体物が倒れ込む方向上の線Laを定義する。そして、立体物検出部33は、線La上において所定の差分を示す差分画素DPの数をカウントする。本実施形態では、所定の差分を示す差分画素DPは、差分画像PDの画素値が「0」「1」で表現されており、「1」を示す画素が、差分画素DPとしてカウントされる。
立体物検出部33は、差分画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、立体物検出部33は、交点CPとカウント数とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図5右図の上下方向軸における位置を決定するとともに、カウント数から縦軸位置、すなわち図5右図の左右方向軸における位置を決定し、交点CPにおけるカウント数としてプロットする。
以下同様に、立体物検出部33は、立体物が倒れ込む方向上の線Lb,Lc…を定義して、差分画素DPの数をカウントし、各交点CPの位置に基づいて横軸位置を決定し、カウント数(差分画素DPの数)から縦軸位置を決定しプロットする。立体物検出部33は、上記を順次繰り返して度数分布化することで、図5右図に示すように差分波形DWを生成する。
ここで、差分画像PDのデータ上における差分画素PDは、異なる時刻の画像において変化があった画素であり、言い換えれば立体物が存在した箇所であるといえる。このため、立体物が存在した箇所において、立体物が倒れ込む方向に沿って画素数をカウントして度数分布化することで差分波形DWを生成することとなる。特に、立体物が倒れ込む方向に沿って画素数をカウントすることから、立体物に対して高さ方向の情報から差分波形DWを生成することとなる。
なお、図5左図に示すように、立体物が倒れ込む方向上の線Laと線Lbとは検出領域A1と重複する距離が異なっている。このため、検出領域A1が差分画素DPで満たされているとすると、線Lb上よりも線La上の方が差分画素DPの数が多くなる。このため、立体物検出部33は、差分画素DPのカウント数から縦軸位置を決定する場合に、立体物が倒れ込む方向上の線La,Lbと検出領域A1とが重複する距離に基づいて正規化する。具体例を挙げると、図5左図において線La上の差分画素DPは6つあり、線Lb上の差分画素DPは5つである。このため、図5においてカウント数から縦軸位置を決定するにあたり、立体物検出部33は、カウント数を重複距離で除算するなどして正規化する。これにより、差分波形DWに示すように、立体物が倒れ込む方向上の線La,Lbに対応する差分波形DWの値はほぼ同じとなっている。
差分波形DWの生成後、立体物検出部33は、生成した差分波形DWに基づいて、隣接車線に存在している隣接車両の検出を行う。ここで、図6は、立体物検出部33による立体物の検出方法を説明するための図であり、差分波形DWおよび立体物を検出するための閾値αの一例を示している。立体物検出部33は、図6に示すように、生成した差分波形DWのピークが、当該差分波形DWのピーク位置に対応する所定の閾値α以上であるか否かを判断することで、検出領域A1,A2に立体物が存在するか否かを判断する。そして、立体物検出部33は、差分波形DWのピークが所定の閾値α未満である場合には、検出領域A1,A2に立体物が存在しないと判断し、一方、差分波形DWのピークが所定の閾値α以上である場合には、検出領域A1,A2に立体物が存在すると判断する。
さらに、立体物検出部33は、現時刻における差分波形DWと一時刻前の差分波形DWt−1との対比により、立体物の移動速度を算出する。すなわち、立体物検出部33は、差分波形DW,DWt−1の時間変化から、立体物の移動速度を算出する。また、立体物検出部33は、立体物の移動速度に対する自車両V1の相対移動速度も算出する。
詳細に説明すると、立体物検出部33は、図7に示すように差分波形DWを複数の小領域DWt1〜DWtn(nは2以上の任意の整数)に分割する。図7は、立体物検出部33によって分割される小領域DWt1〜DWtnを示す図である。小領域DWt1〜DWtnは、例えば図7に示すように、互いに重複するようにして分割される。例えば小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。
次いで、立体物検出部33は、小領域DWt1〜DWtn毎にオフセット量(差分波形の横軸方向(図7の上下方向)の移動量)を求める。ここで、オフセット量は、一時刻前における差分波形DWt−1と現時刻における差分波形DWとの差(横軸方向の距離)から求められる。この際、立体物検出部33は、小領域DWt1〜DWtn毎に、一時刻前における差分波形DWt−1を横軸方向に移動させた際に、現時刻における差分波形DWとの誤差が最小となる位置(横軸方向の位置)を判定し、差分波形DWt−1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。そして、立体物検出部33は、小領域DWt1〜DWtn毎に求めたオフセット量をカウントしてヒストグラム化する。
図8は、立体物検出部33により得られるヒストグラムの一例を示す図である。図8に示すように、各小領域DWt1〜DWtnと一時刻前における差分波形DWt−1との誤差が最小となる移動量であるオフセット量には、多少のバラつきが生じる。このため、立体物検出部33は、バラつきを含んだオフセット量をヒストグラム化し、ヒストグラムから移動距離を算出する。この際、立体物検出部33は、ヒストグラムの極大値から立体物(隣接車両V2)の移動距離を算出する。すなわち、図8に示す例において、立体物検出部33は、ヒストグラムの極大値を示すオフセット量を移動距離τと算出する。このように、本実施形態では、オフセット量にバラつきがあったとしても、その極大値から、より正確性の高い移動距離を算出することが可能となる。なお、移動距離τは、自車両に対する立体物(隣接車両V2)の相対移動距離である。このため、立体物検出部33は、絶対移動距離を算出する場合には、得られた移動距離τと車速センサ20からの信号とに基づいて、絶対移動距離を算出することとなる。
このように、本実施形態では、異なる時刻に生成された差分波形DWの誤差が最小となるときの差分波形DWのオフセット量から立体物(隣接車両V2)の移動距離を算出することで、波形という1次元の情報のオフセット量から移動距離を算出することとなり、移動距離の算出にあたり計算コストを抑制することができる。また、異なる時刻に生成された差分波形DWを複数の小領域DWt1〜DWtnに分割することで、立体物のそれぞれの箇所を表わした波形を複数得ることができ、これにより、立体物のそれぞれの箇所毎にオフセット量を求めることができ、複数のオフセット量から移動距離を求めることができるため、移動距離の算出精度を向上させることができる。また、本実施形態では、高さ方向の情報を含む差分波形DWの時間変化から立体物の移動距離を算出することで、単に1点の移動のみに着目するような場合と比較して、時間変化前の検出箇所と時間変化後の検出箇所とが高さ方向の情報を含んで特定されるため立体物において同じ箇所となり易く、同じ箇所の時間変化から移動距離を算出することとなり、移動距離の算出精度を向上させることができる。
なお、ヒストグラム化にあたり立体物検出部33は、複数の小領域DWt1〜DWtn毎に重み付けをし、小領域DWt1〜DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化してもよい。図9は、立体物検出部33による重み付けを示す図である。
図9に示すように、小領域DW(mは1以上n−1以下の整数)は平坦となっている。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が小さくなっている。立体物検出部33は、このような小領域DWについて重みを小さくする。平坦な小領域DWについては、特徴がなくオフセット量の算出にあたり誤差が大きくなる可能性が高いからである。
一方、小領域DWm+k(kはn−m以下の整数)は起伏に富んでいる。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が大きくなっている。立体物検出部33は、このような小領域DWについて重みを大きくする。起伏に富む小領域DWm+kについては、特徴的でありオフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。
なお、移動距離の算出精度を向上するために上記実施形態では差分波形DWを複数の小領域DWt1〜DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1〜DWtnに分割しなくてもよい。この場合に、立体物検出部33は、差分波形DWと差分波形DWt−1との誤差が最小となるときの差分波形DWのオフセット量から移動距離を算出することとなる。すなわち、一時刻前における差分波形DWt−1と現時刻における差分波形DWとのオフセット量を求める方法は上記内容に限定されない。
なお、本実施形態において立体物検出部33は、自車両V1(カメラ10)の移動速度を求め、求めた移動速度から静止物についてのオフセット量を求める。静止物のオフセット量を求めた後、立体物検出部33は、ヒストグラムの極大値のうち静止物に該当するオフセット量を無視したうえで、立体物の移動距離を算出する。
図10は、立体物検出部33により得られるヒストグラムの他の例を示す図である。カメラ10の画角内に立体物の他に静止物が存在する場合に、得られるヒストグラムには2つの極大値τ1,τ2が現れる。この場合、2つの極大値τ1,τ2のうち、いずれか一方は静止物のオフセット量である。このため、立体物検出部33は、移動速度から静止物についてのオフセット量を求め、そのオフセット量に該当する極大値について無視し、残り一方の極大値を採用して立体物の移動距離を算出する。これにより、静止物により立体物の移動距離の算出精度が低下してしまう事態を防止することができる。
なお、静止物に該当するオフセット量を無視したとしても、極大値が複数存在する場合、カメラ10の画角内に立体物が複数台存在すると想定される。しかし、検出領域A1,A2内に複数の立体物が存在することは極めて稀である。このため、立体物検出部33は、移動距離の算出を中止する。これにより、本実施形態では、極大値が複数あるような誤った移動距離を算出してしまう事態を防止することができる。
このように、本実施形態では、検出領域A1,A2内に存在する立体物を検出し、検出した立体物が隣接車両V2であるか否かを判断することで、隣接車線に存在する隣接車両V2を検出することができる。
また、本実施形態は、降雨などにより路面に水膜が形成されている場合に、夜間において、街灯などの光源が路面に反射してしまい、このような光源による像を、立体物として誤検出してしまうことを有効に防止するための機能を備える。このような機能を実現するため、本実施形態の計算機30は、夜間判定部34、輝度検出部35、特定輝度ピーク検出部36、制御部37、白濁度算出部38、路面状態推測部39、およびヘッドライト検出部40を備えている。以下に、これらの各構成について説明する。
夜間判定部34は、カメラ10により撮像された撮像画像に基づいて、夜間であるか否かの判定を行う。夜間判定部34による夜間判定方法は、特に限定されないが、たとえば、夜間判定部34は、カメラ10により撮像した撮像画像全体の輝度が所定値以下である場合に夜間であると判断することができる。また、夜間判定部34は、照度計や時刻に基づいて、夜間であるか否かを判断してもよい。
輝度検出部35は、撮像画像から被写体の輝度を検出する。ここで、図11は、輝度検出部35による輝度の検出方法を説明するための図である。具体的には、輝度検出部35は、検出領域A1,A2を、カメラ10を原点とする放射状の画素領域に分割する。そして、輝度検出部35は、分割した各画素領域に対応する各画素の輝度値を累積する。そして、輝度検出部35は、各画素領域の累積輝度値を算出した後に、各画素領域と接地線L1との交点CPを求める。そして、輝度検出部35は、交点CPと各画素領域の累積輝度値とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図11右図の上下方向軸における位置を決定するとともに、各画素領域の累積輝度値から縦軸位置、すなわち図11右図の左右方向軸における位置を決定し、交点CPにおける累積輝度値としてプロットすることで、図11右図に示すような、輝度ヒストグラムを生成する。なお、図11においては、検出領域A1における輝度の検出方法を例示して説明したが、輝度検出部35は、検出領域A1と同様に、検出領域A2においても輝度の検出を行い、検出領域A2における輝度ヒストグラムを生成する。また、輝度検出部35は、輝度ヒストグラムを生成する際に、輝度ヒストグラムの平滑化のために、隣接する2つの画素領域間の累積輝度値を足し合わせて、1画素領域の累積輝度値としてプロットしてもよい。
特定輝度ピーク検出部36は、輝度検出部35により生成された輝度ヒストグラムに基づいて、街灯などの光源に起因する輝度のピークを、特定輝度ピークとして検出する。具体的には、特定輝度ピーク検出部36は、輝度ヒストグラムで検出される輝度のピークのうち、輝度勾配が所定の判定勾配値以上である輝度のピークを、街灯などの光源に起因する特定輝度ピークとして検出する。なお、特定輝度ピーク検出部36は、検出領域A1および検出領域A2のそれぞれにおいて、特定輝度ピークの検出を行う。
ここで、図12は、自車両V1が走行している場面の一例を示す図であり、路外に存在する街灯からの光Ls,Lsが検知領域A1が設定されている路面に反射しているため、検出領域A1において街灯の光Ls,Lsが検出されるとともに、検出領域A2において、隣接車両V2のヘッドライトlhの光が検出される場面を例示している。
また、図13は、図12に示す場面例において生成される輝度ヒストグラムの一例である。図12に示すように、検出領域A1において路面に反射した街灯の光Ls,Lsが検出された場合、図13(A)に示すように、検出領域A1の輝度ヒストグラムにおいて、路面に反射した街灯からの光Ls,Lsに応じた鋭い輝度のピークが検出される。一方、図12に示すように、検出領域A2において隣接車両V2のヘッドライトの光lhが検出された場合、図13(B)に示すように、検出領域A2の輝度ヒストグラムにおいて、隣接車両V2のヘッドライトlhに応じた緩やかな輝度のピークが検出される。このように、街灯などの光源が路面に反射した光は、輝度ヒストグラムにおいて鋭い輝度のピークを有する傾向にあり、一方、隣接車両V2のヘッドライトの光は、輝度ヒストグラムにおいて緩い輝度のピークを有する傾向にある。そのため、特定輝度ピーク検出部36は、輝度のピークの輝度勾配に基づいて、路面に反射した街灯などの光源に対応する特定輝度ピークを検出する。
具体的には、特定輝度ピーク検出部36は、図14(A)に示すような輝度ヒストグラムに基づいて、図14(B)に示すように、一次微分ヒストグラムを生成する。具体的には、特定輝度ピーク検出部36は、最新の輝度ヒストグラムと一時刻前(一処理周期前)の輝度ヒストグラムとの差分を、一次微分ヒストグラムとして算出する。さらに、特定輝度ピーク検出部36は、図14(C)に示すように、生成した一次微分ヒストグラムに基づいて、二次微分ヒストグラムを生成する。具体的には、特定輝度ピーク検出部36は、一次微分ヒストグラムと同様に、最新の一次微分ヒストグラムと一時刻前(一処理周期前)の一次微分ヒストグラムとの差分を、二次微分ヒストグラムとして算出する。なお、図14は、図12に示す場面例において生成される輝度ヒストグラムに基づく、一次微分ヒストグラムおよび二次微分ヒストグラムを示す図である。
そして、特定輝度ピーク検出部36は、二次微分ヒストグラムにおける輝度勾配の変化量に基づいて、輝度ヒストグラムにおける輝度のピークの輝度勾配を検出する。ここで、図14(A)に示すような輝度ヒストグラムを、図14(B),(C)に示すように、一次ヒストグラムまたは二次ヒストグラムに変換した場合、路面に反射した街灯などの光源に起因する輝度勾配が大きく、鋭い輝度のピークほど、一次ヒストグラムおよび二次ヒストグラムでの大きなピークとなって現れ、反対に、隣接車両V2のヘッドライトに起因する輝度勾配が小さく、緩い輝度のピークほど、一次ヒストグラムおよび二次ヒストグラムでの小さなピークとなって現れる。そこで、特定輝度ピーク検出部36は、二次微分ヒストグラムにおける輝度勾配の変化量の絶対値が、所定の第1変化量以上である場合には、輝度ヒストグラムにおける輝度のピークの輝度勾配は大きく、該輝度のピークは鋭く突出しているものと判断し、該輝度のピークを、中輝度の特定輝度ピークとして検出する。さらに、特定輝度ピーク検出部36は、二次微分ヒストグラムにおける輝度勾配の変化量の絶対値が、第1変化量よりも大きい第2変化量以上である場合には、該輝度のピークは大きく突出しているものと判断し、該輝度のピークを高輝度の特定輝度ピークとして検出する。また、特定輝度ピーク検出部36は、特定輝度ピークの検出を行う際に、特定輝度ピークの位置および数も検出する。
図3に戻り、制御部37は、特定輝度ピーク検出部36により検出された特定輝度ピークに基づいて、立体物検出部33による立体物の検出を制御する。具体的には、制御部37は、図15に示すように、特定輝度ピーク検出部36により検出された特定輝度ピークの数および輝度値の大きさに基づいて、立体物検出部33による立体物検出の制御を行う。
具体的には、制御部37は、検出された特定輝度ピークの数が、所定の第1判定数以上であり、かつ、第1判定数よりも大きい第2判定数未満である場合には、検出領域A1,A2のうち、特定輝度ピークが検出された領域において、立体物の検出が抑制されるように、差分閾値thを高い値に変更することで、立体物検出部33による立体物の検出を抑制する。ここで、図16は、制御部37による差分閾値thの設定方法を説明するための図である。制御部37は、検出領域A1,A2のうち特定輝度ピークが検出された領域において、図16に示すように、各画素領域の輝度値に基づいて、各画素領域における差分閾値thを設定する。具体的には、制御部37は、図16に示すように、特定輝度ピークが検出された領域における各画素領域の輝度値が高いほど、該画素領域における差分閾値thを高い値に設定する。これにより、特定輝度ピークが検出された領域で立体物が検出し難くなり、その結果、路面に反射した街灯などの光源を立体物として誤検出してしまうことを有効に防止することができる。
また、制御部37は、図16に示すように、特定輝度ピークが検出された領域で差分閾値thを変更する際に、高輝度の特定輝度ピークであるか、中輝度の特定輝度ピークであるかに応じて、設定する差分閾値thを値を異ならせる。具体的には、制御部37は、図16に示すように、検出された特定輝度ピークが高輝度の特定輝度ピークである場合には、検出された特定輝度ピークが中輝度の特定輝度ピークである場合と比べて、同一の画素領域の輝度値に対して、差分閾値thが高い値で設定されるように、差分閾値thと画素領域の輝度値との関係を変化させる。高輝度の特定輝度ピーク、すなわち、輝度勾配が大きく、鋭く突出した輝度のピークほど、路面に反射した街灯などの光源に起因するものである可能性が高いため、高輝度の特定輝度ピークが検出された領域において、中輝度の特定輝度ピークが検出された領域よりも、差分閾値thを高くし、立体物検出の抑制度合いを高くすることで、路面に反射した街灯などの光源を立体物として誤検出してしまうことをより有効に防止することができる。
また、制御部37は、検出された特定輝度ピークの数が所定の第2判定数以上である場合には、検出領域A1,A2のうち、特定輝度ピークが検出された領域において、立体物検出部33による立体物の検出を禁止する。ここで、特定輝度ピークは、路面に反射した街灯などの光源に起因するものと考えられ、検出される特定輝度ピークの数が多いほど、街灯などの光源を反射する路面が立体物により遮られていない状態であると判断できる。すなわち、検出される特定輝度ピークの数が多いほど、街灯などの光源を反射する路面上に立体物が存在しないものと判断できる。そのため、検出された特定輝度ピークの数が所定の第2判定数以上である場合には、特定輝度ピークが検出された領域において、立体物検出部33による立体物の検出を禁止した場合、立体物の検出精度の低下を防止しつつ、立体物の誤検出を有効に防止することができる。
また、検出された特定輝度ピークの数が所定の第2判定数以上である場合に、制御部37は、特定輝度ピークの輝度に応じて、立体物の検出を禁止する範囲を異ならせる。具体的には、制御部37は、図17に示すように、特定輝度ピークの輝度が高輝度である場合には、特定輝度ピークの輝度が中輝度である場合よりも、立体物検出部33による立体物の検出を禁止する範囲を広く(たとえば、立体物検出部33による立体物の検出を禁止する範囲を特定輝度ピークが検出された領域よりも広い範囲とする)することができる。なお、図17は、特定輝度ピークの輝度と立体物の検出を禁止する範囲との関係を説明するための図である。
さらに、制御部37は、隣接車両V2が検知されている場合には、上述した特定輝度ピークに基づく立体物検出制御を一定時間だけ禁止する。ここで、制御部37は、立体物検出部33から立体物の移動速度に対する自車両V1の相対移動速度を繰り返し取得し、自車両V1の相対移動速度が所定速度以下である回数が、所定の判定回数以上となる場合に、立体物は、自車両V1を追い越している隣接車両V2であるものと判断し、特定輝度ピークに基づく立体物検出制御を一定時間禁止することができる。また、この場合、制御部37は、検出された特定輝度ピークの輝度値の大きさに基づいて、自車両V1の相対移動速度に基づいて立体物を判定する上記判定回数を設定することができる。たとえば、制御部37は、図18に示すように、特定輝度ピークが高輝度である場合には、特定輝度ピークが中輝度である場合と比べて、判定回数を増加させることができる。これにより、路面に反射した街灯などの光源に起因する可能性が高い高輝度の特定輝度ピークが検出された場合に、立体物と判定するための判定回数が増加されることとなり、その結果、立体物(隣接車両V2)の検出が抑制され、路面に反射した街灯などの光源を立体物(隣接車両V2)として誤検出してしまうことを有効に防止することができる。なお、上記所定速度は、特に限定されないが、たとえば、1〜2km/h以下とすることができる。上記所定速度を1〜2km/h以下とし、0km/h未満とていないのは、カメラ10のレンズに付着した雨滴の像を、隣接車線に存在する立体物として誤検出してしまうことを防止するためである。なお、図18は、特定輝度ピークと隣接車両V2を判定するための判定回数との関係を示す図である。
さらに、制御部37は、特定輝度ピークに基づいて立体物の検出を制御する際に、検出された特定輝度ピークのうち最も離れている特定輝度ピーク間の距離が所定距離以上である場合にのみ、立体物の検出を制御する構成とすることができる。ここで、隣接車両V2のヘッドライトの光lhに起因する輝度のピークは緩やかとなるため、ヘッドライトの光hlが存在する場合には、最も離れた輝度のピーク間における距離は小さくなる傾向にある。そのため、検出された特定輝度ピークのうち最も離れている特定輝度ピーク間の距離が所定距離以上である場合にのみ、特定輝度ピークに基づいて立体物の検出を制御することで、隣接車両V2のヘッドライトの光に起因する輝度のピークを特定輝度ピークとして誤検出して、立体物の検出を抑制してしまうことを有効に防止することができる。
図3に戻り、白濁度算出部38は、レンズに水垢などの異物が付着しており、レンズが白濁している(レンズ表面に白色の薄膜が形成されている)度合いをレンズの白濁度として算出する。具体的には、白濁度算出部38は、まず、地平線や道路端など所定量のエッジの抽出が期待される領域から被写体のエッジを抽出し、抽出したエッジの強度に基づいてヒストグラムを生成する。ここで、図19は、エッジの強度に基づくヒストグラムの一例を示す図であり、レンズが白濁している場合のヒストグラムを実線で、レンズが白濁していない場合のヒストグラムを破線で示している。
レンズに水垢などの異物が付着しており、レンズが白濁している場合には、被写体からの光束の一部が異物により遮られ、あるいは乱反射することで、被写体の輪郭(エッジ)がぼやけてしまい、図19に示すように、レンズが白濁していない場合と比べて、被写体から抽出されるエッジの強度が小さくなる傾向にある。そこで、本実施形態において、白濁度算出部38は、抽出したエッジの強度の平均値Saveを算出するとともに、抽出したエッジの強度の標準偏差σを算出し、エッジの強度の平均値Saveに標準偏差σを加算した値を、レンズの白濁度として算出する。
そして、白濁度算出部38は、算出したレンズの白濁度を、制御部37に出力する。これにより、制御部37は、レンズの白濁度に応じて、特定輝度ピークを検出するための第1変化量および第2変化量を変化させる。具体的には、制御部37は、レンズの白濁度が高いほど、特定輝度ピークを検出するための第1変化量および第2変化量を小さくする。これにより、レンズが白濁しており、路面に反射した街灯などの光源に起因する輝度のピークの輝度勾配が小さくなる場面でも、路面に反射した街灯などの光源に起因する輝度のピークを特定輝度ピークとして検出することができる。
路面状態推測部39は、降雨などにより路面に水膜が形成されている状態であるか否かを推測する。具体的には、路面状態推測部39は、ワイパーの動作状況に基づいて、降雨などにより路面に水膜が形成されているか否かを推測することができる。たとえば、路面状態推測部39は、ワイパーの動作頻度を三段階(Off,Low,Hi)で設定可能な場合に、ワイパーがHiからLow、またはHiまたはLowからOffに切り替えられた場合には、今まで雨が降っており、路面に水膜(水たまり)が形成されている可能性が高いものと推測する。また、路面状態推測部39は、ワイパーの動作頻度がHiである場合には、強い雨が降っているために、路面に水膜が形成されている可能性が高いものと推測してもよい。このように、路面状態推測部39は、ワイパーの動作状態に基づいて降雨状態を推測することで、路面に水膜が形成されているか否かを適切に推測することができる。
また、路面状態推測部39による路面の状態の推測方法は、上記方法に限定されず、たとえば、以下のように、路面に水膜が形成されている状態であるか否かを判定することができる。具体的には、路面状態推測部39は、雨滴センサ(不図示)に、赤外光をレンズに向けて照射させて、照射した赤外光が雨滴により減衰した減衰量を検出させることで、レンズ表面における雨滴量を検出させることができ、この検出の結果、雨滴量が一定量以上である場合に、降雨により路面に水膜が形成されていると推測してもよい。あるいは、ナビゲーション装置を介して、天気情報を取得することで、降雨により路面に水膜が形成されているか否かを推測してもよい。
さらに、路面状態推測部39は、画像のテクスチャ分析の結果から、路面に形成された水膜などに建物などの像が移り込んだ虚像であるか否かを判断することで、路面に水膜が形成されているか否かを判断することができる。
具体的には、路面状態推測部39は、鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿う判定線(図5のLa,Lbなど)のうち、差分波形情報においてカウントされた度数が所定値以上である一つの基準判定線(例えばLa)を特定し、基準判定線(La)上の画像領域の輝度と基準判定線と隣り合う判定線を含む一又は複数の比較判定線(Lb,Lc,・・・)上の画像領域の輝度との輝度差が所定値未満であるか否かを判断し、輝度差が所定値未満である場合には、画像領域を含む領域において検出された立体物は虚像であると判断する。輝度差の比較は、基準判定線(La)上のある一画素又はこの画素を含む画像領域の輝度と、比較判定線(Lb,Lc,・・・)のある一画素又はこの画素を含む画像領域の輝度とを比較することができる。また、輝度差は、図5に示す差分波形情報における所定の差分を示す画素数又は度数分布化された値に基づいて判断することができる。このように、路面状態推測部39は、路面の水膜に周囲構造物が映り込んだ虚像の画像は、コントラストが低いという特徴を利用して、検出された立体物に対応する像が実像であるのか虚像であるのかを判断し、これにより、路面に水膜が形成されている状態であるか否かを適切に推測することができる。
そして、路面状態推測部40により推測された路面状態の推測結果は、制御部37に出力される。これにより、制御部37は、路面状態推測部40により推測された路面状態に基づいて、立体物検出部33による立体物の検出を制御する。具体的には、路面に水膜が形成されていると推測された場合、街灯などの光源が路面に反射する可能性が高いものと判断し、特定輝度ピークを検出するための第1変化量および第2変化量を小さくする。これにより、路面に水膜が形成されており、街灯などの光源が路面に反射する可能性が高い場合に、路面に反射した街灯などの光源に起因する輝度のピークを特定輝度ピークとして適切に検出することができるため、路面に反射した街灯などの光源を立体物として誤検出してしまうことを有効に防止することができる。また、制御部37は、図17に示すように、特定輝度ピークの輝度に応じて、立体物の検出を禁止する範囲を変えている場合に、路面に水膜が形成されていると推測された場合には、立体物の検出を禁止する範囲をさらに広げる構成としてもよい。
図3に戻り、ヘッドライト検出部40は、カメラ10により撮像された撮像画像に基づいて、自車両V1の後方を走行する隣接車両V2のヘッドライトを検出する。具体的には、ヘッドライト検出部36は、周辺との明るさの差が所定値以上であり、かつ、所定以上の大きさである画像領域を、隣接車両V2のヘッドライトの光源に対応する候補領域として検出することで、隣接車両V2のヘッドライトを検出する。さらに、隣接車両V2は自車両V1の走行車線に隣接する隣接車線を走行する他車両であるため、ヘッドライト検出部40は、自車両V1から光源までの車幅方向における距離が所定距離未満である場合に、検出した光源は隣接車両V2のヘッドライトの光源であるとして検出する。
そして、ヘッドライト検出部40のヘッドライトの検出結果は、制御部37に送信される。これにより、制御部37は、ヘッドライト検出部40のヘッドライトの検出結果に基づいて、立体物検出部33による立体物の検出を制御する。具体的には、制御部37は、ヘッドライト検出部40により隣接車両V2のヘッドライトが検出された場合には、立体物検出の抑制を禁止する。これにより、隣接車両V2が隣接車線に存在する場面には、隣接車両V2を適切に検出することができる。また、上記の構成に限定されず、制御部37は、ヘッドライト検出部40により隣接車両V2のヘッドライトが検出された場合に、たとえば、第1変化量および/または第2変化量を大きくすることで、立体物検出の抑制度合いを小さくする構成としてもよい。なお、自車両V1の走行車線の2車線隣(隣隣接車線)に存在する他車両(隣隣接車両)のヘッドライトの光は、隣接車両V2のヘッドライトの光と比べて、輝度のピークが鋭く突出する傾向にある。そのため、本実施形態において、隣隣接車両のヘッドライトの光は、特定輝度ピークとして検出され、その結果、隣隣接車両を隣接車両V2として誤検出してしまうことを有効に防止することができる。
次に、本実施形態に係る隣接車両検出処理について説明する。図20は、第1実施形態の隣接車両検出処理を示すフローチャートである。図20に示すように、まず、計算機30により、カメラ10から撮像画像のデータの取得が行われ(ステップS101)、視点変換部31により、取得した撮像画像のデータに基づいて、鳥瞰視画像PBのデータが生成される(ステップS102)。
次いで、位置合わせ部32は、鳥瞰視画像PBのデータと、一時刻前の鳥瞰視画像PBt−1のデータとを位置合わせをし、差分画像PDのデータを生成する(ステップS103)。具体的には、位置合わせ部32は、鳥瞰視画像PB,PBt−1の画素値の差を絶対値化し、当該絶対値が所定の差分閾値th以上であるときに、差分画像PDの画素値を「1」とし、絶対値が所定の差分閾値th未満であるときに、差分画像PDの画素値を「0」とする。なお、差分画像PDの画素値を算出するための差分閾値thは、後述する立体物検出制御処理において変更される場合があり、差分閾値thが変更された場合には、変更された差分閾値thが、このステップS103で用いられることとなる。また、後述する立体物検出制御処理においては、検出領域A1,A2のうち特定輝度ピークが検出された画素領域において立体物の検出が禁止される場合があり、この場合、立体物の検出が禁止された領域において差分画像PDの画素値が「0」と算出され、これにより、立体物の検出が禁止されることとなる。
その後、立体物検出部33は、差分画像PDのデータから、画素値が「1」の差分画素DPの数をカウントして、差分波形DWを生成する(ステップS104)。そして、立体物検出部33は、差分波形DWのピークが所定の閾値α以上であるか否かを判断する(ステップS105)。差分波形DWのピークが閾値α以上でない場合、すなわち差分が殆どない場合には、撮像画像内には立体物が存在しないと考えられる。このため、差分波形DWのピークが閾値α以上でないと判断した場合には(ステップS105=No)、立体物検出部33は、立体物が存在せず隣接車両V2が存在しないと判断する(ステップS114)。そして、ステップS101に戻り、図20に示す処理を繰り返す。
一方、差分波形DWのピークが閾値α以上であると判断した場合には(ステップS105=Yes)、立体物検出部33により、隣接車線に立体物が存在すると判断され、ステップS106に進み、立体物検出部33により、差分波形DWが、複数の小領域DWt1〜DWtnに分割される。次いで、立体物検出部33は、小領域DWt1〜DWtn毎に重み付けを行い(ステップS107)、小領域DWt1〜DWtn毎のオフセット量を算出し(ステップS108)、重みを加味してヒストグラムを生成する(ステップS109)。
そして、立体物検出部33は、ヒストグラムに基づいて自車両V1に対する立体物の移動距離である相対移動距離を算出する(ステップS110)。次に、立体物検出部33は、相対移動距離から立体物の絶対移動速度を算出する(ステップS111)。このとき、立体物検出部33は、相対移動距離を時間微分して相対移動速度を算出するとともに、車速センサ20で検出された自車速を加算して、絶対移動速度を算出する。
その後、立体物検出部33は、立体物の絶対移動速度が10km/h以上、且つ、自車両V1に対する立体物の相対移動速度が+60km/h以下であるか否かを判断する(ステップS112)。双方を満たす場合には(ステップS112=Yes)、立体物検出部33は、検出した立体物は隣接車線に存在する隣接車両V2であり、隣接車線に隣接車両V2が存在すると判断する(ステップS113)。そして、図20に示す処理を終了する。一方、いずれか一方でも満たさない場合には(ステップS112=No)、立体物検出部33は、隣接車線に隣接車両V2が存在しないと判断する(ステップS114)。そして、ステップS101に戻り、図20に示す処理を繰り返す。
なお、本実施形態では自車両V1の左右後方を検出領域A1,A2とし、自車両V1が車線変更した場合に接触する可能性があるか否かに重点を置いている。このため、ステップS112の処理が実行されている。すなわち、本実施形態にけるシステムを高速道路で作動させることを前提とすると、隣接車両V2の速度が10km/h未満である場合、たとえ隣接車両V2が存在したとしても、車線変更する際には自車両V1の遠く後方に位置するため問題となることが少ない。同様に、隣接車両V2の自車両V1に対する相対移動速度が+60km/hを超える場合(すなわち、隣接車両V2が自車両V1の速度よりも60km/hより大きな速度で移動している場合)、車線変更する際には自車両V1の前方に移動しているため問題となることが少ない。このため、ステップS112では車線変更の際に問題となる隣接車両V2を判断しているともいえる。
また、ステップS112において隣接車両V2の絶対移動速度が10km/h以上、且つ、隣接車両V2の自車両V1に対する相対移動速度が+60km/h以下であるかを判断することにより、以下の効果がある。例えば、カメラ10の取り付け誤差によっては、静止物の絶対移動速度を数km/hであると検出してしまう場合があり得る。よって、10km/h以上であるかを判断することにより、静止物を隣接車両V2であると判断してしまう可能性を低減することができる。また、ノイズによっては隣接車両V2の自車両V1に対する相対速度を+60km/hを超える速度に検出してしまうことがあり得る。よって、相対速度が+60km/h以下であるかを判断することにより、ノイズによる誤検出の可能性を低減できる。
さらに、ステップS112の処理に代えて、隣接車両V2の絶対移動速度がマイナスでないことや、0km/hでないことを判断してもよい。また、本実施形態では自車両V1が車線変更した場合に接触する可能性がある否かに重点を置いているため、ステップS113において隣接車両V2が検出された場合に、自車両の運転者に警告音を発したり、所定の表示装置により警告相当の表示を行ったりしてもよい。
次に、図21を参照して、第1実施形態に係る立体物検出制御処理について説明する。図21は、第1実施形態に係る立体物検出制御処理を示すフローチャートである。なお、以下に説明する立体物検出制御処理は、図20に示す隣接車両検出処理と並行して行われる。これにより、図20に示す隣接車両検出処理において、この立体物検出制御処理による制御に従って、立体物の検出が行われることとなる。
図21に示すように、まず、ステップS201では、夜間判定部34により夜間であるか否かの判定が行われる。夜間であると判定された場合には、ステップS202に進み、一方、夜間ではないと判定された場合には、ステップS201で待機する。
ステップS202では、制御部37により、隣接車両V2を検知しているか否かの判定が行われる。制御部37は、立体物に対する自車両V1の移動速度に基づいて、立体物が自車両V1を追い越している隣接車両V2であるか否かを判断することで、隣接車両V2を検知しているか否かを判断することができる。また、制御部37は、図20に示す隣接車両検出処理の処理結果に基づいて、隣接車両V2を検知しているか否かを判断することができる。隣接車両V2を検知していると判断された場合は、ステップS201に戻り、一方、隣接車両V2を検知していないと判断された場合は、ステップS203に進む。
ステップS203では、輝度検出部35により、被写体の輝度の検出が行われる。具体的には、輝度検出部35は、図11に示すように、検出領域A1,A2を複数の画素領域に分割し、各画素領域における輝度の累積値を算出する。そして、続くステップS204において、輝度検出部35は、ステップS203で検出された画素領域ごとの輝度を車両進行方向においてプロットし、図14(A)に示すような輝度ヒストグラムを生成する。
ステップS205では、特定輝度ピーク検出部36により、ステップS204で生成された輝度ヒストグラムに基づいて、一次微分ヒストグラムの生成が行われ、続くステップS206では、ステップS205で生成された一次微分ヒストグラムに基づいて、二次微分ヒストグラムの生成が行われる。
そして、ステップS207では、特定輝度ピーク検出部36により、ステップS206で生成された二次微分ヒストグラムに基づいて、特定輝度ピークの検出が行われる。具体的には、特定輝度ピーク検出部36は、二次微分ヒストグラムに変換した際に、輝度勾配の変化量が所定の第1変化量を超える輝度のピークを、中輝度の特定輝度ピークとして検出し、第1変化量よりも大きい第2変化量を超える輝度のピークを、高輝度の特定輝度ピークとして検出する。
ステップS208では、制御部37により、ステップS207で検出された特定輝度ピークに基づいて、立体物検出部33による立体物の検出を抑制するための処理が行われる。具体的には、制御部37は、図17に示すように、検出された特定輝度ピークの数および輝度値の大きさに基づいて、特定輝度ピークが検出された画素領域において、差分閾値thを高い値に変更し、あるいは、立体物の検出を禁止する。これにより、路面に反射した街灯などの光源に起因する特定輝度ピークが検出された領域で、立体物の検出が抑制され、これにより、路面に反射した街灯などの光源を立体物として誤検出してしまうことを有効に防止することができる。
なお、ステップS208において、制御部37は、立体物検出部33による立体物の検出を抑制する際に、路面に反射した街灯などの光源の検出し易さなどに応じて、立体物の検出を抑制する際の抑制度合いを変更する。たとえば、カメラ10のレンズが白濁している場合には、路面に反射した街灯などの光源に起因する輝度のピークを検出し難いため、制御部37は、立体物の検出を抑制する際の抑制度合いを低くする。また、路面に水膜が形成されている場合には、街灯などの光源が路面に反射する可能性が高いため、制御部37は、立体物の検出を抑制する際の抑制度合いを高くする。さらに、隣接車線に隣接車両V2が存在する場合には、隣接車両V2を適切に検出するために、制御部37は、立体物の検出の抑制を禁止する。
以上のように、第1実施形態では、路面に反射した街灯などの光源に起因する輝度のピークを特定輝度ピークとして検出し、検出領域A1,A2のうち、特定輝度ピークが検出された領域で、立体物の検出を抑制することで、路面に反射した街灯などの光源を立体物として誤検出してしまうことを有効に防止することができる。
《第2実施形態》
続いて、第2実施形態に係る立体物検出装置1aについて説明する。第2実施形態に係る立体物検出装置1aは、図22に示すように、第1実施形態の計算機30に代えて、計算機30aを備えており、以下に説明するように動作すること以外は、第1実施形態と同様である。ここで、図22は、第2実施形態に係る計算機30aの詳細を示すブロック図である。
第2実施形態にかかる立体物検出装置1aは、図22に示すように、カメラ10と計算機30aとを備えており、計算機30aは、視点変換部31、輝度差算出部41、エッジ線検出部42、立体物検出部33a、夜間判定部34、輝度検出部35、特定輝度ピーク検出部36、制御部37a、白濁度算出部38、路面状態推測部39、ヘッドライト検出部40から構成されている。以下に、第2実施形態に係る立体物検出装置1aの各構成について説明する。なお、視点変換部31、夜間判定部34、輝度検出部35、特定輝度ピーク検出部36、および、白濁度算出部38、路面状態推測部39、ヘッドライト検出部40については、第1実施形態と同様の構成であるため、その説明は省略する。
図23は、図22のカメラ10の撮像範囲等を示す図であり、図23(a)は平面図、図23(b)は、自車両V1から後側方における実空間上の斜視図を示す。図23(a)に示すように、カメラ10は所定の画角aとされ、この所定の画角aに含まれる自車両V1から後側方を撮像する。カメラ10の画角aは、図2に示す場合と同様に、カメラ10の撮像範囲に自車両V1が走行する車線に加えて、隣接する車線も含まれるように設定されている。
本例の検出領域A1,A2は、平面視(鳥瞰視された状態)において台形状とされ、これら検出領域A1,A2の位置、大きさ及び形状は、距離d〜dに基づいて決定される。なお、同図に示す例の検出領域A1,A2は台形状に限らず、図2に示すように鳥瞰視された状態で矩形など他の形状であってもよい。
ここで、距離d1は、自車両V1から接地線L1,L2までの距離である。接地線L1,L2は、自車両V1が走行する車線に隣接する車線に存在する立体物が地面に接触する線を意味する。本実施形態においては、自車両V1の後側方において自車両V1の車線に隣接する左右の車線を走行する隣接車両V2等(2輪車等を含む)を検出することが目的である。このため、自車両V1から白線Wまでの距離d11及び白線Wから隣接車両V2が走行すると予測される位置までの距離d12から、隣接車両V2の接地線L1,L2となる位置である距離d1を略固定的に決定しておくことができる。
また、距離d1については、固定的に決定されている場合に限らず、可変としてもよい。この場合に、計算機30aは、白線認識等の技術により自車両V1に対する白線Wの位置を認識し、認識した白線Wの位置に基づいて距離d11を決定する。これにより、距離d1は、決定された距離d11を用いて可変的に設定される。以下の本実施形態においては、隣接車両V2が走行する位置(白線Wからの距離d12)及び自車両V1が走行する位置(白線Wからの距離d11)は大凡決まっていることから、距離d1は固定的に決定されているものとする。
距離d2は、自車両V1の後端部から車両進行方向に伸びる距離である。この距離d2は、検出領域A1,A2が少なくともカメラ10の画角a内に収まるように決定されている。特に本実施形態において、距離d2は、画角aに区分される範囲に接するよう設定されている。距離d3は、検出領域A1,A2の車両進行方向における長さを示す距離である。この距離d3は、検出対象となる立体物の大きさに基づいて決定される。本実施形態においては、検出対象が隣接車両V2等であるため、距離d3は、隣接車両V2を含む長さに設定される。
距離d4は、図23(b)に示すように、実空間において隣接車両V2等のタイヤを含むように設定された高さを示す距離である。距離d4は、鳥瞰視画像においては図23(a)に示す長さとされる。なお、距離d4は、鳥瞰視画像において左右の隣接車線よりも更に隣接する車線(すなわち2車線隣りの隣隣接車線)を含まない長さとすることもできる。自車両V1の車線から2車線隣の車線を含んでしまうと、自車両V1が走行している車線である自車線の左右の隣接車線に隣接車両V2が存在するのか、2車線隣りの隣隣接車線に隣隣接車両が存在するのかについて、区別が付かなくなってしまうためである。
以上のように、距離d1〜距離d4が決定され、これにより検出領域A1,A2の位置、大きさ及び形状が決定される。具体的に説明すると、距離d1により、台形をなす検出領域A1,A2の上辺b1の位置が決定される。距離d2により、上辺b1の始点位置C1が決定される。距離d3により、上辺b1の終点位置C2が決定される。カメラ10から始点位置C1に向かって伸びる直線L3により、台形をなす検出領域A1,A2の側辺b2が決定される。同様に、カメラ10から終点位置C2に向かって伸びる直線L4により、台形をなす検出領域A1,A2の側辺b3が決定される。距離d4により、台形をなす検出領域A1,A2の下辺b4の位置が決定される。このように、各辺b1〜b4により囲まれる領域が検出領域A1,A2とされる。この検出領域A1,A2は、図23(b)に示すように、自車両V1から後側方における実空間上では真四角(長方形)となる。
輝度差算出部41は、鳥瞰視画像に含まれる立体物のエッジを検出するために、視点変換部31により視点変換された鳥瞰視画像データに対して、輝度差の算出を行う。輝度差算出部41は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素間の輝度差を算出する。輝度差算出部41は、実空間における鉛直方向に伸びる鉛直仮想線を1本だけ設定する手法と、鉛直仮想線を2本設定する手法との何れかによって輝度差を算出することができる。
ここでは、鉛直仮想線を2本設定する具体的な手法について説明する。輝度差算出部41は、視点変換された鳥瞰視画像に対して、実空間で鉛直方向に伸びる線分に該当する第1鉛直仮想線と、第1鉛直仮想線と異なり実空間で鉛直方向に伸びる線分に該当する第2鉛直仮想線とを設定する。輝度差算出部41は、第1鉛直仮想線上の点と第2鉛直仮想線上の点との輝度差を、第1鉛直仮想線及び第2鉛直仮想線に沿って連続的に求める。以下、この輝度差算出部41の動作について詳細に説明する。
輝度差算出部41は、図24(a)に示すように、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第1鉛直仮想線La(以下、注目線Laという)を設定する。また輝度差算出部41は、注目線Laと異なり、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第2鉛直仮想線Lr(以下、参照線Lrという)を設定する。ここで参照線Lrは、実空間における所定距離だけ注目線Laから離間する位置に設定される。なお、実空間で鉛直方向に伸びる線分に該当する線とは、鳥瞰視画像においてはカメラ10の位置Psから放射状に広がる線となる。この放射状に広がる線は、鳥瞰視に変換した際に立体物が倒れ込む方向に沿う線である。
輝度差算出部41は、注目線La上に注目点Pa(第1鉛直仮想線上の点)を設定する。また輝度差算出部41は、参照線Lr上に参照点Pr(第2鉛直板想線上の点)を設定する。これら注目線La、注目点Pa、参照線Lr、参照点Prは、実空間上において図24(b)に示す関係となる。図24(b)から明らかなように、注目線La及び参照線Lrは、実空間上において鉛直方向に伸びた線であり、注目点Paと参照点Prとは、実空間上において略同じ高さに設定される点である。なお、注目点Paと参照点Prとは必ずしも厳密に同じ高さである必要はなく、注目点Paと参照点Prとが同じ高さとみなせる程度の誤差は許容される。
輝度差算出部41は、注目点Paと参照点Prとの輝度差を求める。仮に、注目点Paと参照点Prとの輝度差が大きいと、注目点Paと参照点Prとの間にエッジが存在すると考えられる。特に、第2実施形態では、検出領域A1,A2に存在する立体物を検出するために、鳥瞰視画像に対して実空間において鉛直方向に伸びる線分として鉛直仮想線を設定しているため、注目線Laと参照線Lrとの輝度差が高い場合には、注目線Laの設定箇所に立体物のエッジがある可能性が高い。このため、図22に示すエッジ線検出部42は、注目点Paと参照点Prとの輝度差に基づいてエッジ線を検出する。
この点をより詳細に説明する。図25は、輝度差算出部41の詳細動作を示す図であり、図25(a)は鳥瞰視された状態の鳥瞰視画像を示し、図25(b)は、図25(a)に示した鳥瞰視画像の一部B1を拡大した図である。なお図25についても検出領域A1のみを図示して説明するが、検出領域A2についても同様の手順で輝度差を算出する。
カメラ10が撮像した撮像画像内に隣接車両V2が映っていた場合に、図25(a)に示すように、鳥瞰視画像内の検出領域A1に隣接車両V2が現れる。図25(b)に図25(a)中の領域B1の拡大図を示すように、鳥瞰視画像上において、隣接車両V2のタイヤのゴム部分上に注目線Laが設定されていたとする。この状態において、輝度差算出部41は、先ず参照線Lrを設定する。参照線Lrは、注目線Laから実空間上において所定の距離だけ離れた位置に、鉛直方向に沿って設定される。具体的には、本実施形態に係る立体物検出装置1aにおいて、参照線Lrは、注目線Laから実空間上において10cmだけ離れた位置に設定される。これにより、参照線Lrは、鳥瞰視画像上において、例えば隣接車両V2のタイヤのゴムから10cm相当だけ離れた隣接車両V2のタイヤのホイール上に設定される。
次に、輝度差算出部41は、注目線La上に複数の注目点Pa1〜PaNを設定する。図25(b)においては、説明の便宜上、6つの注目点Pa1〜Pa6(以下、任意の点を示す場合には単に注目点Paiという)を設定している。なお、注目線La上に設定する注目点Paの数は任意でよい。以下の説明では、N個の注目点Paが注目線La上に設定されたものとして説明する。
次に、輝度差算出部41は、実空間上において各注目点Pa1〜PaNと同じ高さとなるように各参照点Pr1〜PrNを設定する。そして、輝度差算出部41は、同じ高さ同士の注目点Paと参照点Prとの輝度差を算出する。これにより、輝度差算出部41は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置(1〜N)ごとに、2つの画素の輝度差を算出する。輝度差算出部41は、例えば第1注目点Pa1とは、第1参照点Pr1との間で輝度差を算出し、第2注目点Pa2とは、第2参照点Pr2との間で輝度差を算出することとなる。これにより、輝度差算出部41は、注目線La及び参照線Lrに沿って、連続的に輝度差を求める。すなわち、輝度差算出部41は、第3〜第N注目点Pa3〜PaNと第3〜第N参照点Pr3〜PrNとの輝度差を順次求めていくこととなる。
輝度差算出部41は、検出領域A1内において注目線Laをずらしながら、上記の参照線Lrの設定、注目点Pa及び参照点Prの設定、輝度差の算出といった処理を繰り返し実行する。すなわち、輝度差算出部41は、注目線La及び参照線Lrのそれぞれを、実空間上において接地線L1の延在方向に同一距離だけ位置を変えながら上記の処理を繰り返し実行する。輝度差算出部41は、例えば、前回処理において参照線Lrとなっていた線を注目線Laに設定し、この注目線Laに対して参照線Lrを設定して、順次輝度差を求めていくことになる。
このように、第2実施形態では、実空間上で略同じ高さとなる注目線La上の注目点Paと参照線Lr上の参照点Prとから輝度差を求めることで、鉛直方向に伸びるエッジが存在する場合における輝度差を明確に検出することができる。また、実空間において鉛直方向に伸びる鉛直仮想線同士の輝度比較を行うために、鳥瞰視画像に変換することによって立体物が路面からの高さに応じて引き伸ばされてしまっても、立体物の検出処理が影響されることはなく、立体物の検出精度を向上させることができる。
図22に戻り、エッジ線検出部42は、輝度差算出部41により算出された連続的な輝度差から、エッジ線を検出する。例えば、図25(b)に示す場合、第1注目点Pa1と第1参照点Pr1とは、同じタイヤ部分に位置するために、輝度差は、小さい。一方、第2〜第6注目点Pa2〜Pa6はタイヤのゴム部分に位置し、第2〜第6参照点Pr2〜Pr6はタイヤのホイール部分に位置する。したがって、第2〜第6注目点Pa2〜Pa6と第2〜第6参照点Pr2〜Pr6との輝度差は大きくなる。このため、エッジ線検出部42は、輝度差が大きい第2〜第6注目点Pa2〜Pa6と第2〜第6参照点Pr2〜Pr6との間にエッジ線が存在することを検出することができる。
具体的には、エッジ線検出部42は、エッジ線を検出するにあたり、先ず下記式1に従って、i番目の注目点Pai(座標(xi,yi))とi番目の参照点Pri(座標(xi’,yi’))との輝度差から、i番目の注目点Paiに属性付けを行う。
[式1]
I(xi,yi)>I(xi’,yi’)+tのとき
s(xi,yi)=1
I(xi,yi)<I(xi’,yi’)−tのとき
s(xi,yi)=−1
上記以外のとき
s(xi,yi)=0
上記式1において、tはエッジ閾値を示し、I(xi,yi)はi番目の注目点Paiの輝度値を示し、I(xi’,yi’)はi番目の参照点Priの輝度値を示す。上記式1によれば、注目点Paiの輝度値が、参照点Priに閾値tを加えた輝度値よりも高い場合には、当該注目点Paiの属性s(xi,yi)は‘1’となる。一方、注目点Paiの輝度値が、参照点Priからエッジ閾値tを減じた輝度値よりも低い場合には、当該注目点Paiの属性s(xi,yi)は‘−1’となる。注目点Paiの輝度値と参照点Priの輝度値とがそれ以外の関係である場合には、注目点Paiの属性s(xi,yi)は‘0’となる。なお、本実施形態において、エッジ閾値tは、後述する制御部37aにより変更される場合があり、制御部37aによりエッジ閾値tが変更された場合には、制御部部37aにより変更されたエッジ閾値tを用いて、注目点Paiの属性s(xi,yi)が検出される。
次にエッジ線検出部42は、下記式2に基づいて、注目線Laに沿った属性sの連続性c(xi,yi)から、注目線Laがエッジ線であるか否かを判定する。
[式2]
s(xi,yi)=s(xi+1,yi+1)のとき(且つ0=0を除く)、
c(xi,yi)=1
上記以外のとき、
c(xi,yi)=0
注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じである場合には、連続性c(xi,yi)は‘1’となる。注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じではない場合には、連続性c(xi,yi)は‘0’となる。
次にエッジ線検出部42は、注目線La上の全ての注目点Paの連続性cについて総和を求める。エッジ線検出部42は、求めた連続性cの総和を注目点Paの数Nで割ることにより、連続性cを正規化する。そして、エッジ線検出部42は、正規化した値が閾値θを超えた場合に、注目線Laをエッジ線と判断する。なお、閾値θは、予め実験等によって設定された値である。
すなわち、エッジ線検出部42は、下記式3に基づいて注目線Laがエッジ線であるか否かを判断する。そして、エッジ線検出部42は、検出領域A1上に描かれた注目線Laの全てについてエッジ線であるか否かを判断する。
[式3]
Σc(xi,yi)/N>θ
このように、第2実施形態では、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差に基づいて注目点Paに属性付けを行い、注目線Laに沿った属性の連続性cに基づいて当該注目線Laがエッジ線であるかを判断するので、輝度の高い領域と輝度の低い領域との境界をエッジ線として検出し、人間の自然な感覚に沿ったエッジ検出を行うことができる。この効果について詳細に説明する。図26は、エッジ線検出部42の処理を説明する画像例を示す図である。この画像例は、輝度の高い領域と輝度の低い領域とが繰り返される縞模様を示す第1縞模様101と、輝度の低い領域と輝度の高い領域とが繰り返される縞模様を示す第2縞模様102とが隣接した画像である。また、この画像例は、第1縞模様101の輝度が高い領域と第2縞模様102の輝度の低い領域とが隣接すると共に、第1縞模様101の輝度が低い領域と第2縞模様102の輝度が高い領域とが隣接している。この第1縞模様101と第2縞模様102との境界に位置する部位103は、人間の感覚によってはエッジとは知覚されない傾向にある。
これに対し、輝度の低い領域と輝度が高い領域とが隣接しているために、輝度差のみでエッジを検出すると、当該部位103はエッジとして認識されてしまう。しかし、エッジ線検出部42は、部位103における輝度差に加えて、当該輝度差の属性に連続性がある場合にのみ部位103をエッジ線として判定するので、エッジ線検出部42は、人間の感覚としてエッジ線として認識しない部位103をエッジ線として認識してしまう誤判定を抑制でき、人間の感覚に沿ったエッジ検出を行うことができる。
図22に戻り、立体物検出部33aは、エッジ線検出部42により検出されたエッジ線の量に基づいて立体物を検出する。上述したように、本実施形態に係る立体物検出装置1aは、実空間上において鉛直方向に伸びるエッジ線を検出する。鉛直方向に伸びるエッジ線が多く検出されるということは、検出領域A1,A2に立体物が存在する可能性が高いということである。このため、立体物検出部33aは、エッジ線検出部42により検出されたエッジ線の量に基づいて立体物を検出する。具体的には、立体物検出部33aは、エッジ線検出部42により検出されたエッジ線の量が、所定の閾値β以上であるか否かを判断し、エッジ線の量が所定の閾値β以上である場合には、エッジ線検出部42により検出されたエッジ線は、立体物のエッジ線であるものと判断する。
さらに、立体物検出部33aは、立体物を検出するに先立って、エッジ線検出部42により検出されたエッジ線が正しいものであるか否かを判定する。立体物検出部33aは、エッジ線上の鳥瞰視画像のエッジ線に沿った輝度変化が所定の閾値tb以上である否かを判定する。エッジ線上の鳥瞰視画像の輝度変化が閾値tb以上である場合には、当該エッジ線が誤判定により検出されたものと判断する。一方、エッジ線上の鳥瞰視画像の輝度変化が閾値tb未満である場合には、当該エッジ線が正しいものと判定する。なお、この閾値tbは、実験等により予め設定された値である。
図27は、エッジ線の輝度分布を示す図であり、図27(a)は検出領域A1に立体物としての隣接車両V2が存在した場合のエッジ線及び輝度分布を示し、図27(b)は検出領域A1に立体物が存在しない場合のエッジ線及び輝度分布を示す。
図27(a)に示すように、鳥瞰視画像において隣接車両V2のタイヤゴム部分に設定された注目線Laがエッジ線であると判断されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化はなだらかなものとなる。これは、カメラ10により撮像された画像が鳥瞰視画像に視点変換されたことにより、隣接車両のタイヤが鳥瞰視画像内で引き延ばされたことによる。一方、図27(b)に示すように、鳥瞰視画像において路面に描かれた「50」という白色文字部分に設定された注目線Laがエッジ線であると誤判定されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化は起伏の大きいものとなる。これは、エッジ線上に、白色文字における輝度が高い部分と、路面等の輝度が低い部分とが混在しているからである。
以上のような注目線La上の輝度分布の相違に基づいて、立体物検出部33aは、エッジ線が誤判定により検出されたものか否かを判定する。たとえば、カメラ10により取得された撮像画像を鳥瞰視画像に変換した場合、当該撮像画像に含まれる立体物は、引き伸ばされた状態で鳥瞰視画像に現れる傾向がある。上述したように、隣接車両V2のタイヤが引き伸ばされた場合に、タイヤという1つの部位が引き伸ばされるため、引き伸ばされた方向における鳥瞰視画像の輝度変化は小さい傾向となる。これに対し、路面に描かれた文字等をエッジ線として誤判定した場合に、鳥瞰視画像には、文字部分といった輝度が高い領域と路面部分といった輝度が低い領域とが混合されて含まれる。この場合に、鳥瞰視画像において、引き伸ばされた方向の輝度変化は大きくなる傾向がある。そのため、立体物検出部33aは、エッジ線に沿った輝度変化が所定の閾値tb以上である場合には、当該エッジ線が誤判定により検出されたものであり、当該エッジ線は、立体物に起因するものではないと判断する。これにより、路面上の「50」といった白色文字や路肩の雑草等がエッジ線として判定されてしまい、立体物の検出精度が低下することを抑制する。一方、立体物検出部33aは、エッジ線に沿った輝度変化が所定の閾値tb未満である場合には、当該エッジ線は、立体物のエッジ線であると判断し、立体物が存在するものと判断する。
具体的には、立体物検出部33aは、下記式4,5の何れかにより、エッジ線の輝度変化を算出する。このエッジ線の輝度変化は、実空間上における鉛直方向の評価値に相当する。下記式4は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の二乗の合計値によって輝度分布を評価する。下記式5は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の絶対値の合計値よって輝度分布を評価する。
[式4]
鉛直相当方向の評価値=Σ[{I(xi,yi)−I(xi+1,yi+1)}
[式5]
鉛直相当方向の評価値=Σ|I(xi,yi)−I(xi+1,yi+1)|
なお、上記式5に限らず、下記式6のように、閾値t2を用いて隣接する輝度値の属性bを二値化して、当該二値化した属性bを全ての注目点Paについて総和してもよい。
[式6]
鉛直相当方向の評価値=Σb(xi,yi)
但し、|I(xi,yi)−I(xi+1,yi+1)|>t2のとき、
b(xi,yi)=1
上記以外のとき、
b(xi,yi)=0
注目点Paiの輝度値と参照点Priの輝度値との輝度差の絶対値が閾値t2よりも大きい場合、当該注目点Pa(xi,yi)の属性b(xi,yi)は‘1’となる。それ以外の関係である場合には、注目点Paiの属性b(xi,yi)は‘0’となる。この閾値t2は、注目線Laが同じ立体物上にないことを判定するために実験等によって予め設定されている。そして、立体物検出部33aは、注目線La上の全注目点Paについての属性bを総和して、鉛直相当方向の評価値を求めることで、エッジ線が立体物に起因するものであり、立体物が存在するか否かを判定する。
制御部37aは、立体物検出部33aによる立体物の検出を制御する。具体的には、制御部37aは、特定輝度ピーク検出部36により検出された特定輝度ピークの数および輝度値の大きさに基づいて、検出領域A1,A2のうち特定輝度ピークが検出された領域において、上述したエッジ閾値tを高い値に変更し、また、立体物の検出を禁止することで、立体物の検出を抑制する。
また、制御部37は、立体物検出部33による立体物の検出を抑制する際に、白濁度算出部38からレンズの白濁度を取得し、カメラ10のレンズが白濁している場合には、立体物の検出を抑制する際の抑制度合いを低くする。さらに、制御部37は、路面状態推測部39により路面に水膜が形成されていると推測された場合には、立体物の検出を抑制する際の抑制度合いを高くする。また、制御部37は、ヘッドライト検出部40により隣接車両V2のヘッドライトが検出された場合には、立体物の検出の抑制を禁止する。
次に、図28を参照して、第2実施形態に係る隣接車両検出方法について説明する。図28は、第2実施形態に係る隣接車両検出方法の詳細を示すフローチャートである。なお、図28においては、便宜上、検出領域A1を対象とする処理について説明するが、検出領域A2についても同様の処理が実行される。
ステップS301では、カメラ10により、画角a及び取付位置によって特定された所定領域の撮像が行われ、計算機30aにより、カメラ10により撮像された撮像画像Pの画像データが取得される。次に視点変換部31は、ステップS302において、取得した画像データについて視点変換を行い、鳥瞰視画像データを生成する。
次に輝度差算出部41は、ステップS303において、検出領域A1上に注目線Laを設定する。このとき、輝度差算出部41は、実空間上において鉛直方向に伸びる線に相当する線を注目線Laとして設定する。次に輝度差算出部41は、ステップS304において、検出領域A1上に参照線Lrを設定する。このとき、輝度差算出部41は、実空間上において鉛直方向に伸びる線分に該当し、且つ、注目線Laと実空間上において所定距離離れた線を参照線Lrとして設定する。
次に輝度差算出部41は、ステップS305において、注目線La上に複数の注目点Paを設定する。この際に、輝度差算出部41は、エッジ線検出部42によるエッジ検出時に問題とならない程度の数の注目点Paを設定する。また、輝度差算出部41は、ステップS306において、実空間上において注目点Paと参照点Prとが略同じ高さとなるように、参照点Prを設定する。これにより、注目点Paと参照点Prとが略水平方向に並ぶこととなり、実空間上において鉛直方向に伸びるエッジ線を検出しやすくなる。
次に輝度差算出部41は、ステップS307において、実空間上において同じ高さとなる注目点Paと参照点Prとの輝度差を算出する。そして、エッジ線検出部42は、輝度差算出部41により算出された輝度差に基づいて、上記式1に従って、各注目点Paの属性sを算出する。なお、本実施形態では、立体物のエッジを検出するためのエッジ閾値tを用いて、各注目点Paの属性sが算出される。このエッジ閾値tは、後述する立体物検出制御処理において変更される場合があり、エッジ閾値tが変更された場合には、変更されたエッジ閾値が、このステップS307で用いられることとなる。また、後述する立体物検出制御処理においては、検出領域A1,A2のうち特定輝度ピークが検出された画素領域において立体物の検出が禁止される場合があり、この場合、立体物の検出が禁止された領域において差分画像PDの画素値が「0」と算出され、これにより、立体物の検出が禁止されることとなる。
次にエッジ線検出部42は、ステップS308において、上記式2に従って、各注目点Paの属性sの連続性cを算出する。そして、エッジ線検出部42は、ステップS309において、上記式3に従って、連続性cの総和を正規化した値が閾値θより大きいか否かを判定する。そして、正規化した値が閾値θよりも大きいと判断した場合(ステップS309=Yes)、エッジ線検出部42は、ステップS310において、当該注目線Laをエッジ線として検出する。そして、処理はステップS311に移行する。正規化した値が閾値θより大きくないと判断した場合(ステップS309=No)、エッジ線検出部42は、当該注目線Laをエッジ線として検出せず、処理はステップS311に移行する。
ステップS311において、計算機30aは、検出領域A1上に設定可能な注目線Laの全てについて上記のステップS303〜ステップS310の処理を実行したか否かを判断する。全ての注目線Laについて上記処理をしていないと判断した場合(ステップS311=No)、ステップS303に処理を戻して、新たに注目線Laを設定して、ステップS311までの処理を繰り返す。一方、全ての注目線Laについて上記処理をしたと判断した場合(ステップS311=Yes)、処理はステップS312に移行する。
ステップS312において、立体物検出部33aは、ステップS310において検出された各エッジ線について、当該エッジ線に沿った輝度変化を算出する。立体物検出部33aは、上記式4,5,6の何れかの式に従って、エッジ線の輝度変化を算出する。次に立体物検出部33aは、ステップS313において、エッジ線のうち、輝度変化が所定の閾値tb以上のエッジ線を除外する。すなわち、輝度変化の大きいエッジ線は正しいエッジ線ではないと判定し、エッジ線を立体物の検出には使用しない。これは、上述したように、検出領域A1に含まれる路面上の文字や路肩の雑草等がエッジ線として検出されてしまうことを抑制するためである。したがって、所定の閾値tbとは、予め実験等によって求められた、路面上の文字や路肩の雑草等によって発生する輝度変化に基づいて設定された値となる。一方、立体物検出部33aは、エッジ線のうち、輝度変化が所定の閾値tb未満であるエッジ線を、立体物のエッジ線と判断し、これにより、隣接車両に存在する立体物を検出する。
次いで、ステップS314では、立体物検出部33aにより、エッジ線の量が、所定の閾値β以上であるか否かの判断が行われる。ここで、閾値βは、予め実験等によって求めておいて設定された値であり、たとえば、検出対象の立体物として四輪車を設定した場合に、当該閾値βは、予め実験等によって検出領域A1内において出現した四輪車のエッジ線の数に基づいて設定される。エッジ線の量が閾値β以上であると判定された場合(ステップS314=Yes)、立体物検出部33aは、検出領域A1内に立体物が存在するものと判断し、ステップS315に進み、隣接車両が存在すると判定される。一方、エッジ線の量が閾値β以上ではないと判定された場合(ステップS314=No)、立体物検出部33aは、検出領域A1内に立体物が存在しないものと判断し、ステップS316に進み、検出領域A1内に隣接車両が存在しないと判定される。
なお、第2実施形態においても、第1実施形態と同様に、図28に示す隣接車両検出処理と並行して、図21に示す立体物検出制御処理が実行される。そして、図28に示す隣接車両検出処理においては、この立体物検出制御処理による制御に従って、立体物の検出が行われることとなる。なお、第2実施形態では、図21に示す立体物検出制御処理において、差分閾値thを変更する代わりに、エッジ閾値tの変更が行われること以外は、第1実施形態に係る立体物検出制御処理と同様の処理であるため、その説明は省略する。
以上のように、第2実施形態では、検出領域A1,A2において被写体のエッジを検出し、該エッジに基づいて隣接車両V2を検出する際に、路面に反射した街灯などの光源に起因する輝度のピークを特定輝度ピークとして検出し、検出領域A1,A2のうち、特定輝度ピークが検出された領域で、立体物の検出を抑制することで、エッジに基づいて隣接車両V2を検出する際においても、路面に反射した街灯などの光源を立体物として誤検出してしまうことを有効に防止することができる。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
たとえば、上述した実施形態においては、図16に示すように、特定輝度ピークの数が所定の第1判定数以上かつ第2判定数未満である場合に、特定輝度ピークの輝度値の大きさに応じて、差分閾値thまたはエッジ閾値tを変更する構成を例示したが、この構成に限定されず、たとえば、差分閾値th、エッジ閾値tに代えて、あるいは、差分閾値th、エッジ閾値tに加えて、立体物を検出するための閾値α、閾値βの値を変更する構成としてもよい。あるいは、エッジ線を検出するための閾値θ、閾値t2を変更する構成としてもよいし、閾値tbを変更する構成としてもよい。また、特定輝度ピークの数が所定の第1判定数以上かつ第2判定数未満である場合に、特定輝度ピークの輝度値の大きさに応じて、各画素から出力される画素値または輝度値を低くする構成としてもよい。この場合、差分閾値thやエッジ閾値tを変更しない場合でも、特定輝度ピークに基づいて立体物の検出を抑制することができる。
さらに、上述した実施形態では、立体物の移動速度が所定の条件を満たす場合に、該立体物を隣接車両V2として検出する構成を例示したが、この構成に限定されず、たとえば、特定輝度ピークに基づいて上記の条件を変更することで、隣接車両V2の検出を抑制する構成としてもよい。たとえば、上述した実施形態では、立体物の絶対移動速度が10km/h以上、かつ、自車両V1に対する立体物の相対移動速度が+60km/h以下である場合に、立体物を隣接車両V2と判断しているが、特定輝度ピークが検出された領域においては、たとえば、立体物の絶対移動速度が20km/h以上、かつ、自車両V1に対する立体物の相対移動速度が+50km/h以下である場合に、立体物は隣接車両V2であると判断することができる。
また、上述した実施形態では、特定輝度ピークの検出結果に基づいて、立体物検出部33による立体物の検出を制御(抑制)する際に、検出領域A1,A2のうち、特定輝度ピークが検出された領域のみにおいて、立体物の検出を制御する構成を例示したが、この構成に限定されず、たとえば、特定輝度ピークの検出結果に基づいて、検出領域A1,A2の全体において立体物の検出を制御(抑制)する構成としてもよい。なお、この場合、特定輝度ピークの検出を検出領域A1,A2で別々に行い、特定輝度ピークが検出された検出領域のみにおいて、立体物の検出を制御(抑制)する構成とすることが好適である。
さらに、上述した実施形態では、特定輝度ピークの数が所定の第2判定数以上である場合に、特定輝度ピークが検出された領域において、立体物検出部33による立体物の検出を禁止する構成を例示したが、この構成に限定されず、たとえば、高輝度の特定輝度ピークが1つでも検出された場合に、高輝度の特定輝度ピークが検出された領域において、立体物検出部33による立体物の検出を禁止する構成としてもよい。
また、上述した実施形態に加えて、二次微分ヒストグラムにおける輝度勾配の変化量の絶対値を平均し、該平均値が所定の基準値を超える場合に、路面に反射した街灯などの光源による輝度のピークが多く存在すると判断して、立体物検出部33による立体物の検出を抑制する構成としてもよい。
加えて、上述した実施形態では、隣接車両V2が検知されている場合に、特定輝度ピークに基づく立体物検出制御を一定時間だけ禁止する構成を例示したが、この構成に限定されず、隣接車両V2が検知されている場合に、特定輝度ピークの検出を一定時間だけ抑制する構成としてもよい。たとえば、隣接車両V2が検知されている場合に、特定輝度ピークを検出するための第1変化量または第2変化量を一定時間高い値に変更することで、立体物の検出を抑制する際の抑制度合いを低くする構成とすることができる。また、上述した実施形態では、立体物に対する自車両V1の相対移動速度に基づいて、立体物が自車両V1を追い越している隣接車両V2であるか否かを判断し、隣接車両V2を検知しているか否かを判定する構成を例示したが、この構成に限定されず、自車両V1に対する立体物の相対移動速度、あるいは、自車両V1の絶対移動速度と立体物の絶対移動速度とを比較することで、立体物が自車両V1を追い越している隣接車両V2であるか否かを判断し、隣接車両V2を検知しているか否かを判断する構成としてもよい。
また、上述した実施形態に加えて、一次微分ヒストグラムに基づいて西日による路面反射を検出し、西日による路面反射が生じている領域において立体物の検出を抑制する構成としてもよい。ここで、西日が路面に照射している場合、街灯などの光源が路面に反射している場合と同様に、輝度勾配の大きい輝度のピークが1〜2か所で検出される場合がある。しかしながら、西日の場合、街灯などの光源と異なり、時間が経過しても西日は路面の同じ位置で検出されるため、現在の輝度ヒストグラムと一時刻前の輝度ヒストグラムの差分を一次微分ヒストグラムとして生成した際に、西日に起因するピークは検出されないこととなる。制御部37は、このような輝度のピークを検出することで、検出領域A1,A2のうち西日が路面に照射している領域を検出することができる。
さらに、上述した実施形態では、路面状態推測部39により路面に水膜が形成されていると推測された場合に、立体物の検出を抑制する際の抑制度合いを高くする構成を例示したが、この構成に限定されず、たとえば、路面状態推測部39により路面に水膜が形成されていると推測された場合に、ヘッドライト検出部40による隣接車両V2のヘッドライトの検出を抑制する構成としてもよい。たとえば、ヘッドライト検出部40が所定面積以上の高輝度領域を隣接車両V2のヘッドライトに対応する光源として検出する際に、路面状態推測部39により路面に水膜が形成されていると推測された場合に、上記所定面積を大きくすることで、ヘッドライト検出部40による隣接車両V2のヘッドライトの検出を抑制する構成としてもよい。あるいは、路面状態推測部39により路面に水膜が形成されていると推測された場合に、隣接車両V2のヘッドライトに対応する光源の検出対象領域を隣接車線に対応する領域に限定することで、ヘッドライト検出部40による隣接車両V2のヘッドライトの検出を抑制する構成としてもよい。さらに、ヘッドライト検出部40が周囲との輝度差が所定輝度差以上である所定面積以上の領域を隣接車両V2のヘッドライトに対応する光源として検出する際に、光源の時間変化に基づいて光源の移動速度を算出し、自車両V1に対して光源の移動速度が遅く、自車両V1から後方に離れていく光源については、上記輝度差および面積を大きくすることで、ヘッドライト検出部40による隣接車両V2のヘッドライトの検出を抑制する構成としてもよい。これにより、路面に水膜が形成されており、路面に反射した街灯などの光源を検出し易い場合に、隣接車両V2のヘッドライトに対応する光源の検出を抑制することができ、その結果、立体物の検出を抑制することができるため、路面に反射した街灯などの光源を、立体物として誤検出してしまうことを有効に防止することができる。
なお、上述した実施形態のカメラ10は本発明の撮像手段に相当し、視点変換部31は本発明の画像変換手段に相当し、位置合わせ部32、立体物検出部33,33a、輝度差算出部41、およびエッジ線検出部42は本発明の立体物検出手段に相当し、夜間判定部34は本発明の夜間判定手段に、輝度検出部35は本発明の輝度検出手段に、特定輝度ピーク検出部36は本発明の輝度ピーク検出手段に、制御部37,37aは本発明の制御手段に、白濁度算出部38は本発明のレンズ状態判定手段に、立体物検出部33,33aは本発明の移動速度取得手段および立体物判断手段に、路面状態推測部39は本発明の路面状態推測手段に、ヘッドライト検出部40は本発明の光源検出手段にそれぞれ相当する。
1,1a…立体物検出装置
10…カメラ
20…車速センサ
30,30a…計算機
31…視点変換部
32…位置合わせ部
33,33a…立体物検出部
34…夜間判定部
35…輝度検出部
36…特定輝度ピーク検出部
37,37a…制御部
38…白濁度算出部
39…路面状態推測部
40…ヘッドライト検出部
41…輝度差算出部
42…エッジ線検出部
a…画角
A1,A2…検出領域
CP…交点
DP…差分画素
DW,DW’…差分波形
DWt1〜DW,DWm+k〜DWtn…小領域
L1,L2…接地線
La,Lb…立体物が倒れ込む方向上の線
P…撮像画像
PB…鳥瞰視画像
PD…差分画像
V1…自車両
V2…隣接車両

Claims (19)

  1. 車両に搭載され、自車両後方の映像を結像させるレンズを備えた撮像手段と、
    前記撮像手段により取得された撮像画像に基づいて、前記検出領域に存在する立体物を検出する立体物検出手段と、
    夜間であるか否かを判定する夜間判定手段と、
    前記撮像画像に基づいて複数の画像領域の輝度を検出する輝度検出手段と、
    前記輝度検出手段により検出された前記輝度のピークのうち、所定の基準値以上の輝度勾配を有する輝度のピークを、対象輝度ピークとして検出する輝度ピーク検出手段と、
    前記夜間判定手段により夜間と判定された場合に、前記輝度ピーク検出手段による前記対象輝度ピークの検出結果に基づいて、前記立体物検出手段による前記立体物の検出を抑制する制御手段と、を備えることを特徴とする立体物検出装置。
  2. 請求項1に記載の立体物検出装置であって、
    前記立体物検出手段は、
    前記撮像手段により得られた前記撮像画像を鳥瞰視画像に視点変換する画像変換手段を有し、
    前記画像変換手段により得られた異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上で、所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成し、該差分波形情報に基づいて前記立体物を検出することを特徴とする立体物検出装置。
  3. 請求項2に記載の立体物検出装置であって、
    前記立体物検出手段は、前記鳥瞰視画像の差分画像上で、所定の第1閾値以上の差分を示す画素数をカウントして度数分布化することで前記差分波形情報を生成し、前記差分波形情報のピークの値が所定の第2閾値以上の場合に、前記差分波形に基づいて前記立体物を検出し、
    前記制御手段は、前記対象輝度ピークの検出結果に基づいて、前記第1閾値または前記第2閾値を高い値に変更することで、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  4. 請求項2に記載の立体物検出装置であって、
    前記制御手段は、前記立体物検出手段が前記差分波形情報を生成する際に、前記立体物検出手段に、前記鳥瞰視画像の差分画像上で所定の差分を示す画素数をカウントして度数分布化した値を低く算出させることで、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  5. 請求項1に記載の立体物検出装置であって、
    前記立体物検出手段は、
    前記撮像手段により得られた前記撮像画像を鳥瞰視画像に視点変換する画像変換手段を有し、
    前記画像変換手段により得られた前記鳥瞰視画像からエッジ情報を検出し、該エッジ情報に基づいて前記立体物を検出することを特徴とする立体物検出装置。
  6. 請求項5に記載の立体物検出装置であって、
    前記立体物検出手段は、前記鳥瞰視画像に基づいて、隣接する画素領域間の輝度差が所定の第1閾値以上のエッジ成分を検出し、前記エッジ成分に基づく前記エッジ情報の量が所定の第2閾値以上の場合に、前記エッジ情報に基づいて前記立体物を検出し、
    前記制御手段は、前記対象輝度ピークの検出結果に基づいて、前記第1閾値または前記第2閾値を高い値に変更することで、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  7. 請求項5に記載の立体物検出装置であって、
    前記制御手段は、前記立体物検出手段が前記エッジ情報を検出する際に、前記立体物検出手段に前記エッジ情報を低く出力させることで、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  8. 請求項1,2または5に記載の立体物検出装置であって、
    前記制御手段は、前記対象輝度ピークの検出結果に基づいて、前記立体物検出手段による前記立体物の検出を禁止することで、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  9. 請求項1〜8のいずれかに記載の立体物検出装置であって、
    前記制御手段は、前記対象輝度ピークの数および/または前記対象輝度ピークの輝度値の大きさに基づいて、前記立体物検出手段による前記立体物の検出を抑制することを特徴とする立体物検出装置。
  10. 請求項1〜9のいずれかに記載の立体物検出装置であって、
    前記撮像画像に基づいて、前記レンズの汚れ度合いを判定するレンズ状態判定手段をさらに備え、
    前記制御手段は、前記汚れ度合いが高いほど、前記輝度ピーク検出手段による前記対象輝度ピークの検出を促進することで、前記立体物の検出を抑制する際の抑制度合いを高くすることを特徴とする立体物検出装置。
  11. 請求項1〜10のいずれかに記載の立体物検出装置であって、
    前記立体物の移動速度と自車両の移動速度とを取得する移動速度取得手段と、
    前記立体物の移動速度および前記自車両の移動速度に基づいて、前記立体物が他車両であるか否かを判断する立体物判断手段と、をさらに備え、
    前記制御手段は、前記立体物判断手段により前記立体物が前記他車両と判断された場合に、前記立体物の検出を抑制する際の抑制度合いを低くすることを特徴とする立体物検出装置。
  12. 請求項1〜11のいずれかに記載の立体物検出装置であって、
    前記撮像画像に基づいて、周辺との輝度差が所定の輝度差以上であり、かつ、所定の面積以上の大きさを有する画像領域を、他車両のヘッドライトに対応する光源として検出する光源検出手段をさらに備え、
    前記制御手段は、前記光源を検出した場合に、前記立体物検出手段による前記立体物の検出を抑制する抑制度合いを低くすることを特徴とする立体物検出装置。
  13. 請求項1〜12のいずれかに記載の立体物検出装置であって、
    路面に水膜が形成されている状態であるか否かを推測する路面状態推測手段をさらに備え、
    前記制御手段は、前記路面状態推測手段により路面に水膜が形成されている状態であると推測された場合に、前記輝度ピーク検出手段による前記対象輝度ピークの検出を促進することで、前記立体物の検出を抑制する際の抑制度合いを高くすることを特徴とする立体物検出装置。
  14. 請求項12に記載の立体物検出装置であって、
    路面に水膜が形成されている状態であるか否かを推測する路面状態推測手段をさらに備え、
    前記制御手段は、前記路面状態推測手段により路面に水膜が形成されている状態であると推測された場合に、前記光源検出手段による前記他車両のヘッドライトに対応する光源の検出を抑制することを特徴とする立体物検出装置。
  15. 請求項13または14に記載の立体物検出装置であって、
    前記路面状態推測手段は、ワイパーの動作状態に基づいて、自車両周辺が降雨状態であるか否かを判定することで、路面に水膜が形成されている状態であるか否かを推測することを特徴とする立体物検出装置。
  16. 請求項13〜15のいずれかに記載の立体物検出装置であって、
    前記路面状態推測手段は、ワイパーの動作状態が動作頻度の高い状態から動作頻度の低い状態に変化した場合に、路面に水膜が形成されている状態であると推測することを特徴とする立体物検出装置。
  17. 請求項13〜16のいずれかに記載の立体物検出装置であって、
    前記路面状態推測手段は、前記鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿う複数の判定線のうち一つの判定線を基準判定線として特定し、前記基準判定線上の画像領域の輝度と前記基準判定線と隣り合う判定線を含む一または複数の比較判定線上の画像領域の輝度との輝度差が所定値未満である場合に、路面に水膜が形成されている状態であると推測することを特徴とする立体物検出装置。
  18. 撮像画像を鳥瞰視画像に視点変換し、異なる時刻の前記鳥瞰視画像の位置を鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上で、所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成し、該差分波形情報に基づいて立体物を検出する立体物検出方法であって、
    夜間であるか否かを判定するとともに、前記撮像画像に基づいて複数の画像領域の輝度を検出し、前記輝度のピークのうち、所定値以上の輝度勾配を有する輝度のピークを、対象輝度ピークとして検出し、夜間と判定された場合に、前記対象輝度ピークの検出結果に基づいて、前記立体物の検出を抑制することを特徴とする立体物検出方法。
  19. 撮像画像を鳥瞰視画像に視点変換し、前記鳥瞰視画像からエッジ情報を検出し、該エッジ情報に基づいて立体物を検出する立体物検出方法であって、
    夜間であるか否かを判定するとともに、前記撮像画像に基づいて複数の画像領域の輝度を検出し、前記輝度のピークのうち、所定値以上の輝度勾配を有する輝度のピークを、対象輝度ピークとして検出し、夜間と判定された場合に、前記対象輝度ピークの検出結果に基づいて、前記立体物の検出を抑制することを特徴とする立体物検出方法。
JP2014527023A 2012-07-27 2013-07-26 立体物検出装置および立体物検出方法 Active JP5977827B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012166527 2012-07-27
JP2012166527 2012-07-27
PCT/JP2013/070308 WO2014017624A1 (ja) 2012-07-27 2013-07-26 立体物検出装置および立体物検出方法

Publications (2)

Publication Number Publication Date
JPWO2014017624A1 true JPWO2014017624A1 (ja) 2016-07-11
JP5977827B2 JP5977827B2 (ja) 2016-08-24

Family

ID=49997429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014527023A Active JP5977827B2 (ja) 2012-07-27 2013-07-26 立体物検出装置および立体物検出方法

Country Status (10)

Country Link
US (1) US9558546B2 (ja)
EP (1) EP2879384B8 (ja)
JP (1) JP5977827B2 (ja)
CN (1) CN104685866B (ja)
BR (1) BR112015001745B1 (ja)
IN (1) IN2015KN00490A (ja)
MX (1) MX343203B (ja)
MY (1) MY170950A (ja)
RU (1) RU2619059C2 (ja)
WO (1) WO2014017624A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649972B2 (en) 2011-04-07 2017-05-16 Pioneer Corporation System for detecting surrounding conditions of moving body
WO2014061123A1 (ja) * 2012-10-17 2014-04-24 富士通株式会社 画像処理装置、画像処理プログラムおよび画像処理方法
JP6245875B2 (ja) * 2013-07-26 2017-12-13 クラリオン株式会社 レンズ汚れ検出装置およびレンズ汚れ検出方法
DE102014203544A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Analysieren einer Lichtaussendung eines Scheinwerfers eines Fahrzeugs
JP6337601B2 (ja) * 2014-05-08 2018-06-06 日産自動車株式会社 立体物検出装置
JP6453571B2 (ja) * 2014-07-24 2019-01-16 株式会社Soken 立体物認識装置
KR101860610B1 (ko) * 2015-08-20 2018-07-02 엘지전자 주식회사 디스플레이 장치 및 이를 포함하는 차량
JP6668895B2 (ja) * 2016-04-01 2020-03-18 株式会社デンソー 走行支援装置
JP6512164B2 (ja) * 2016-04-22 2019-05-15 株式会社デンソー 物体検出装置、物体検出方法
DE102016114168A1 (de) * 2016-08-01 2018-02-01 Connaught Electronics Ltd. Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Vorhersage der Bewegung des Objekts, Kamerasystem sowie Kraftfahrzeug
US11238281B1 (en) * 2017-02-27 2022-02-01 Amazon Technologies, Inc. Light source detection in field of view
JP2019029897A (ja) 2017-08-01 2019-02-21 パナソニックIpマネジメント株式会社 画像監視装置、画像監視方法および画像監視プログラム
JP6741039B2 (ja) * 2018-04-04 2020-08-19 株式会社デンソー 光測距装置
US11565698B2 (en) * 2018-04-16 2023-01-31 Mitsubishi Electric Cornoration Obstacle detection apparatus, automatic braking apparatus using obstacle detection apparatus, obstacle detection method, and automatic braking method using obstacle detection method
CN113826128B (zh) * 2019-05-20 2023-08-08 三菱电机株式会社 状态推定装置及状态推定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074368A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 移動物体認識追跡装置
JP2002358595A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 道路交通流計測装置および道路交通流計測方法
JP2006311216A (ja) * 2005-04-28 2006-11-09 Aisin Seiki Co Ltd 車両周辺監視システム
JP2008219063A (ja) * 2007-02-28 2008-09-18 Sanyo Electric Co Ltd 車両周辺監視装置及び方法
JP2009065360A (ja) * 2007-09-05 2009-03-26 Denso Corp 画像処理装置、車載用画像処理装置、車載用画像表示装置及び車両制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759280B2 (ja) * 1997-04-15 2006-03-22 富士通株式会社 道路監視用事象検知装置
AUPP839199A0 (en) * 1999-02-01 1999-02-25 Traffic Pro Pty Ltd Object recognition & tracking system
JP4258385B2 (ja) * 2004-01-14 2009-04-30 株式会社デンソー 路面反射検出装置
JP5022609B2 (ja) * 2006-02-27 2012-09-12 日立オートモティブシステムズ株式会社 撮像環境認識装置
JP2007265016A (ja) 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 車両検出装置及び車両検出方法
KR101134857B1 (ko) 2006-07-06 2012-04-13 포항공과대학교 산학협력단 주간 및 야간 주행 차량을 조도상황에 따라 검출하는 방법및 장치
JP5251927B2 (ja) * 2010-06-21 2013-07-31 日産自動車株式会社 移動距離検出装置及び移動距離検出方法
JP5556508B2 (ja) 2010-08-30 2014-07-23 株式会社デンソー 物体検出装置
CN103975585B (zh) * 2011-12-16 2016-10-12 本田技研工业株式会社 图像处理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074368A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 移動物体認識追跡装置
JP2002358595A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 道路交通流計測装置および道路交通流計測方法
JP2006311216A (ja) * 2005-04-28 2006-11-09 Aisin Seiki Co Ltd 車両周辺監視システム
JP2008219063A (ja) * 2007-02-28 2008-09-18 Sanyo Electric Co Ltd 車両周辺監視装置及び方法
JP2009065360A (ja) * 2007-09-05 2009-03-26 Denso Corp 画像処理装置、車載用画像処理装置、車載用画像表示装置及び車両制御装置

Also Published As

Publication number Publication date
EP2879384A1 (en) 2015-06-03
RU2619059C2 (ru) 2017-05-11
US20150324972A1 (en) 2015-11-12
JP5977827B2 (ja) 2016-08-24
BR112015001745B1 (pt) 2021-11-23
CN104685866B (zh) 2018-12-14
MX2015001240A (es) 2016-01-12
EP2879384A4 (en) 2016-04-20
MX343203B (es) 2016-10-28
US9558546B2 (en) 2017-01-31
IN2015KN00490A (ja) 2015-07-17
EP2879384B8 (en) 2024-05-01
RU2015106693A (ru) 2016-09-20
EP2879384B1 (en) 2024-03-27
CN104685866A (zh) 2015-06-03
WO2014017624A1 (ja) 2014-01-30
MY170950A (en) 2019-09-20
BR112015001745A2 (pt) 2018-05-22

Similar Documents

Publication Publication Date Title
JP5977827B2 (ja) 立体物検出装置および立体物検出方法
JP5997276B2 (ja) 立体物検出装置及び異物検出装置
JP5787024B2 (ja) 立体物検出装置
JP5896027B2 (ja) 立体物検出装置及び立体物検出方法
JP5804180B2 (ja) 立体物検出装置
JP5981550B2 (ja) 立体物検出装置および立体物検出方法
JP6020567B2 (ja) 立体物検出装置および立体物検出方法
JP5943077B2 (ja) 立体物検出装置および立体物検出方法
JP5743020B2 (ja) 立体物検出装置
JP5874831B2 (ja) 立体物検出装置
JP5682735B2 (ja) 立体物検出装置
JP5835459B2 (ja) 立体物検出装置
JP5783319B2 (ja) 立体物検出装置及び立体物検出方法
JP6337601B2 (ja) 立体物検出装置
JP5790867B2 (ja) 立体物検出装置
JP6011110B2 (ja) 立体物検出装置および立体物検出方法
JP5999183B2 (ja) 立体物検出装置および立体物検出方法
JP6020568B2 (ja) 立体物検出装置および立体物検出方法
JP5668891B2 (ja) 立体物検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5977827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117