JPWO2013111299A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JPWO2013111299A1
JPWO2013111299A1 JP2013516402A JP2013516402A JPWO2013111299A1 JP WO2013111299 A1 JPWO2013111299 A1 JP WO2013111299A1 JP 2013516402 A JP2013516402 A JP 2013516402A JP 2013516402 A JP2013516402 A JP 2013516402A JP WO2013111299 A1 JPWO2013111299 A1 JP WO2013111299A1
Authority
JP
Japan
Prior art keywords
injection
fuel injection
fuel
injection amount
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013516402A
Other languages
English (en)
Other versions
JP5459443B2 (ja
Inventor
雅里 池本
雅里 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5459443B2 publication Critical patent/JP5459443B2/ja
Publication of JPWO2013111299A1 publication Critical patent/JPWO2013111299A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本発明における内燃機関の制御装置は、ニードル弁(12b)のシート当接部(12b1)と当接するシート部(12a1)よりも下流側に燃料溜まり部(12d)と複数の噴孔(12e)を備えるノズルボディ(12a)を有する燃料噴射弁(12)を備える内燃機関の制御装置である。上記制御装置は、内燃機関(10)のトルク発生のためのメイン噴射に加え、1サイクル中に1または複数回の微小噴射を実行する。更に、上記制御装置は、学習制御による燃料噴射量の学習値のばらつきが認められる場合において、前記内燃機関(10)の前回のサイクルにてポスト噴射が行われておらず、かつ、今回のサイクルにおいて最初に微小噴射を行うときには、低負荷運転時であれば当該最初の微小噴射による燃料噴射量を増やし、一方、高負荷運転時であれば当該最初の微小噴射による燃料噴射量を減らす。

Description

この発明は、内燃機関の制御装置に係り、特に、筒内に燃料を直接噴射可能な燃料噴射弁を備える内燃機関の制御装置に関する。
従来、例えば特許文献1には、マルチ噴射に含まれるパイロット噴射等の微小噴射の精度向上のために、微小の燃料噴射量の学習制御を行う内燃機関の制御装置が開示されている。この微小噴射量の学習制御は、具体的には、減速時においてフューエルカットが行われる際に少量の燃料噴射(微小噴射)を実施したうえで、この時の燃料噴射量と内燃機関の発生トルクとの関係に基づいて実行されるというものである。
ところで、内燃機関に用いられる燃料噴射弁として、次のような構成を備えるものが知られている。すなわち、先端部にシート当接部を有するニードル弁と、前記シート当接部が当接するシート部を有するノズルボディとを含む燃料噴射弁であって、かつ、当該ノズルボディが、シート部よりも下流側に形成された燃料溜まり部(いわゆるサックなどが該当)と、シート部よりも下流側に形成された少なくとも1つの噴孔とを備える燃料噴射弁が知られている。
上記構成を有する燃料噴射弁では、燃料溜まり部に充填された燃料量が多い状態(液密状態)と、燃料溜まり部に充填された燃料量が少ない状態(気密状態)とで、噴射量特性などの噴射特性が変化する。従って、上記構成を有する燃料噴射弁を備える内燃機関において特許文献1に記載の微小燃料噴射量の学習制御を行った場合、燃料溜まり部の内部状態が液密状態であるか気密状態であるかによって、実際に噴孔から噴射される燃料噴射量が変動してしまう。その結果、燃料噴射量の学習値にばらつき(誤学習)が生じ得る。学習値がばらつくことでパイロット噴射等の微小噴射による燃料噴射量の補正が適切に行われないと、低負荷運転時に失火が発生したり、高負荷運転時にスモーク排出量が増加したりすることが懸念される。
尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2009−115068号公報 日本特開2004−278463号公報 日本特開2005−76529号公報
この発明は、上述のような課題を解決するためになされたもので、ニードル弁のシート当接部と当接するシート部よりも下流側に燃料溜まり部と少なくとも1つの噴孔を備えるノズルボディを有する燃料噴射弁が搭載された内燃機関において、燃料噴射量の学習値のばらつきに起因して低負荷時に失火が発生したり、高負荷時にスモーク排出量が増加したりするのを抑制することのできる内燃機関の制御装置を提供することを目的とする。
本発明は、先端部にシート当接部を有するニードル弁と、前記シート当接部が当接するシート部と、前記シート部よりも下流側に形成された燃料溜まり部と、前記シート部よりも下流側に形成された少なくとも1つの噴孔とを備えるノズルボディと、を含み、筒内に燃料を直接噴射可能な燃料噴射弁を備える内燃機関の制御装置であって、学習実行手段とマルチ噴射実行手段と燃料噴射量補正手段とを備えている。
学習実行手段は、燃料噴射量を学習する燃料噴射量の学習制御を実行するものである。
マルチ噴射実行手段は、前記燃料噴射弁を用いて、内燃機関のトルク発生のためのメイン噴射に加え、1サイクル中に1または複数回の微小噴射を実行するものである。
そして、燃料噴射量補正手段は、前記学習制御による燃料噴射量の学習値のばらつきが認められる場合において、前記内燃機関の前回のサイクルにてポスト噴射が行われておらず、かつ、今回のサイクルにおいて最初に微小噴射を行うときには、低負荷運転時であれば当該最初の微小噴射による燃料噴射量を増やし、一方、高負荷運転時であれば当該最初の微小噴射による燃料噴射量を減らすものである。
本発明によれば、燃料溜まり部の内部状態が液密状態と気密状態との間で不規則に変化する状況下であっても、最低限の補正によって、低負荷運転時には燃料噴射量が適正値に対して不足することによる失火発生を抑制し、高負荷運転時には燃料噴射量が適正値に対して過剰であることによるスモーク排出量の増加を抑制することができる。
また、本発明における前記燃料噴射弁は、前記ニードル弁が前記シート部に着座した状態において、当該ニードル弁の先端部の一部が前記噴孔と前記燃料溜まり部との連通を遮断するように構成されたものであってもよい。
このような構成を有する燃料噴射弁を備えている場合には、ニードル弁とノズルボディとの接触において機械的な馴染みが取れていない新品状態では、燃料溜まり部の内部状態が液密状態と気密状態との間で不規則に変化してしまう。本発明によれば、このような構成を有する燃料噴射弁を備えている場合において、燃料噴射量の学習値のばらつきに起因して低負荷時に失火が発生したり、高負荷時にスモーク排出量が増加したりするのを抑制することができる。
また、本発明における前記学習実行手段は、前記学習制御による学習パラメータのばらつきが収束した場合に、前記燃料噴射量補正手段による燃料噴射量の補正を禁止する噴射量補正禁止手段を含むものであってもよい。
上記ばらつきが収束した場合には、学習時の燃料溜まり部の内部状態が液密状態で安定していると判断することができる。従って、本発明によれば、当該ばらつきが収束したか否かを把握することで、上記燃料噴射量補正手段の処理によって過補正となる事態を回避することができる。
本発明の実施の形態1の内燃機関のシステム構成を説明するための図である。 図1に示す燃料噴射弁において燃料噴射が行われる側の先端部の構成を表した断面図である。 サックの内部が液密状態である場合と気密状態である場合との間で、噴孔から噴射される燃料噴射量を比較して表した図である。 サックの内部が液密状態である場合と気密状態である場合との間で、ニードル弁のリフト量を比較して表した図である。 マルチ噴射の実行時における特徴的な微小噴射量の補正の具体例を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 微小噴射量の補正量ΔQv’を算出するためにECUが備えているマップの設定を表した図である。 VCO型の燃料噴射弁を用いた微小噴射量の学習時における、経時変化に伴う推定噴射量Qvのばらつきの変化を表した図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。
実施の形態1.
[内燃機関のシステム構成]
図1は、本発明の実施の形態1の内燃機関10のシステム構成を説明するための図である。図1に示すシステムは、内燃機関10を備えている。ここでは、内燃機関10は、4サイクルのディーゼルエンジン(圧縮着火式内燃機関)10であり、車両に搭載され、その動力源とされているものとする。本実施形態の内燃機関10は、直列4気筒型であるが、本発明における内燃機関の気筒数および気筒配置はこれに限定されるものではない。
内燃機関10の各気筒には、燃料を筒内に直接噴射するための燃料噴射弁12が設置されている。燃料噴射弁12の噴射部の詳細な構成の一例については、図2を参照して後述する。各気筒の燃料噴射弁12は、共通のコモンレール14に接続されている。コモンレール14内には、サプライポンプ(図示省略)によって加圧された高圧の燃料が供給されている。そして、このコモンレール14から各気筒の燃料噴射弁12へ燃料が供給される。各気筒から排出される排気ガスは、排気マニホールド16aによって集合され、排気通路16に流入する。
内燃機関10は、ターボ過給機18を備えている。ターボ過給機18は、排気ガスの排気エネルギによって作動するタービン18aと、連結軸を介してタービン18aと一体的に連結され、タービン18aに入力される排気ガスの排気エネルギによって回転駆動されるコンプレッサ18bとを有している。ターボ過給機18のタービン18aは、排気通路16の途中に配置されている。タービン18aよりも下流側の排気通路16には、排気ガスを浄化するために、酸化触媒20およびDPF(Diesel Particulate Filter)22が上流側から順に設置されている。
内燃機関10の吸気通路24の入口付近には、エアクリーナ26が設けられている。エアクリーナ26を通って吸入された空気は、ターボ過給機18のコンプレッサ18bで圧縮された後、インタークーラ28で冷却される。インタークーラ28を通過した吸入空気は、吸気マニホールド24aにより分配されて、各気筒に流入する。吸気通路24におけるインタークーラ28と吸気マニホールド24aとの間には、吸気絞り弁30が設置されている。
吸気通路24におけるエアクリーナ26の下流近傍には、吸入空気量を検出するためのエアフローメータ32が設置されている。コモンレール14には、コモンレール14内の燃料圧力を検出するためのコモンレール圧センサ34が設置されている。また、吸気マニホールド24aには、吸気マニホールド圧力(過給圧)を検出するための吸気圧力センサ36が設置されている。
更に、本実施形態のシステムは、ECU(Electronic Control Unit)40を備えている。ECU40の入力部には、上述したエアフローメータ32、コモンレール圧センサ34および吸気圧力センサ36に加え、エンジン回転数を検出するためのクランク角センサ42、および、筒内圧力を検出するための筒内圧センサ44等の内燃機関10の運転状態を検出するための各種センサが接続されている。また、ECU40には、内燃機関10を搭載する車両のアクセルペダルの踏み込み量(アクセル開度)を検出するためのアクセル開度センサ46が接続されている。更に、ECU40の出力部には、上述した燃料噴射弁12および吸気絞り弁30等の内燃機関10の運転を制御するための各種のアクチュエータが接続されている。ECU40は、それらのセンサ出力に基づいて、所定のプログラムに従って上記各種のアクチュエータを駆動することにより、内燃機関10の運転状態を制御するものである。
図2は、図1に示す燃料噴射弁12において燃料噴射が行われる側の先端部の構成を表した断面図である。
図2に示すように、燃料噴射弁12は、ノズルボディ12aを備えている。ノズルボディ12aの内部には、円錐状の先端部を有するニードル弁12bが往復移動自在に配置されている。ノズルボディ12aの内周面とニードル弁12bの外周面との間には、燃料が流通する内部燃料通路12cが形成されている。内部燃料通路12cには、図2における内部燃料通路12cの上方側から高圧の燃料が供給されるようになっている。
ニードル弁12bの円錐状の先端部付近のノズルボディ12aの内周面には、ニードル弁12bのシート当接部12b1が着座可能なシート部12a1が形成されている。より具体的には、ニードル弁12bは、燃料噴射弁12が備える電磁石(図示省略)が磁力を発していない場合には、シート部12a1に着座するように構成されている。この場合には、シート部12a1の下流側に向けての燃料の流れが遮断される。一方、ニードル弁12bは、励磁電流の供給を受けて電磁石が磁力を発した場合には、シート部12a1から離座するように構成されている。その結果、シート部12a1の上流に蓄えられていた高圧の燃料がシート部12a1の下流側に供給される。
また、ノズルボディ12aにおけるシート部12a1よりも下流側には、図2に示すように、燃料溜まり部(以下、「サック」とも称する)12dおよび複数の噴孔(図2においてそのうちの2つが図示)12eがそれぞれ形成されている。サック12dは、ニードル弁12bの開弁時に上流側から燃料が供給されることによって燃料が溜まり得る部位である。噴孔12eは、このようなサック12dとシート部12a1との間においてノズルボディ12aに形成されている。尚、複数の噴孔12eは、燃料噴射弁12の中心軸線を中心として、放射状に燃料が噴射できるように所定の角度間隔をおいて設置されている。
更に、ニードル弁12bの先端部の一部は、図2に示すようにニードル弁12bがシート部12a1に着座した状態(閉弁状態)において、噴孔12eよりもサック12d側のノズルボディ12aの壁面12fと接触するように構成されている。これにより、ニードル弁12bがシート部12a1に着座した状態では、サック12dと各噴孔12eとの連通についても遮断されることになる。すなわち、本実施形態の燃料噴射弁12は、いわゆるVCO(Valve Covered Orifice)型の燃料噴射弁である。
[微小噴射量の学習制御]
排気ガス規制が強化される中、パイロット噴射等の微小量での燃料噴射への要求精度が高まってきた。そこで、本実施形態の内燃機関10では、燃料噴射弁の個体差や経時劣化による微小噴射量の変化を補正するために、運転中に微小噴射量の学習制御を行うようにしている。
具体的には、本学習制御では、減速時におけるフューエルカットの実行中にエンジン回転数が所定値に下がった時に、1気筒ずつ順に所定の微小な噴射量での燃料噴射が実行される。この燃料噴射は、燃焼が可能なタイミング(例えば、圧縮上死点近傍)において実行される。この微小な噴射量は、アイドル運転に必要となる燃料量よりも少ない量である。本学習制御では、このような噴射量での燃料噴射に伴うエンジン回転数の変動ΔNeを計測し、当該回転数変動ΔNeを生じさせるトルクに相当する推定噴射量Qvが算出される。そして、この推定噴射量Qvと、燃料噴射弁12に対して指令される噴射量との差を無くすために必要な燃料噴射量の補正量ΔQvが学習値として算出され、ECU40に記憶される。そして、パイロット噴射等の微小噴射が実行される時に、上記補正量(学習値)ΔQvに基づく補正後の噴射量で燃料噴射が行われるようにする。このようにして、微小噴射量の学習制御が実行される。
[実施の形態1における課題]
上述したように、VCO型の燃料噴射弁12では、ニードル弁12bのリフト終了時に、ニードル弁12bがシート部12a1に着座することによって内部燃料通路12cからの燃料供給が遮断されるとともに、ニードル弁12bの先端部が壁面12fと接触することによってサック12dと噴孔12eとの連通も遮断される。このため、閉弁中のサック12dの内部は、基本的には、液体で満たされた状態(以下、「液密状態」と称する)となることが予定されている。
しかしながら、燃料噴射弁12が新品状態である時には、ニードル弁12bとノズルボディ12aとの接触において機械的な馴染み(摺り合わせ)がとれていない。また、ニードル弁12bは、一般的に、ノズルボディ12aの内部において回転方向の変位は規制されていないため、リフト動作を行う毎にノズルボディ12aに対するニードル弁12bの回転位置が変化し得る。このような背景によって、新品状態においては、ニードル弁12bがシート部12a1に着座した際に、上記回転位置次第でニードル弁12bの先端部と壁面12fとの間に隙間が生じ、サック12dと噴孔12eとの連通が遮断されなくなることがある。
また、燃料噴射弁12からは、何十から何百MPaという高圧の燃料が勢い良く噴射される。このため、上記隙間が生じているような場合には、ニードル弁12bがシート部12a1に着座した後においても、サック12d内の燃料の一部が慣性によって上記隙間を介して外部に出て行こうとする。その結果、実際にサック12dから出て行った燃料と入れ替わりでガスがサック12dに浸入し、サック12d内に気泡が生じ得る。
上記のようにサック12d内に気泡が生じている状況下において膨張行程が到来し、筒内圧力(すなわち、噴孔12eの外側の圧力)が低下していくと、サック12d内のガスが膨張する。その結果、膨張したガスによってサック12dの燃料が上記隙間を通って押し出されると、サック12dの内部が気体で満たされた状態(以下、「気密状態」と称する)となる。
図3は、サック12dの内部が液密状態である場合と気密状態である場合との間で、噴孔12eから噴射される燃料噴射量を比較して表した図である。また、図4は、サック12dの内部が液密状態である場合と気密状態である場合との間で、ニードル弁12bのリフト量を比較して表した図である。尚、図3および図4は、微小噴射を行った際のデータである。
気密状態である時に微小噴射を行った場合には、液密状態である時に同様の噴射を行った場合と比べ、図3に示すように、噴孔12eから実際に噴射される燃料量が減少する。その理由の1つは、気密状態である時ではサック12d内への補充のために燃料が消費されるためである。また、更なる理由として、気密状態である時には、サック12d内の燃料によるニードル弁12bの押上げ力の低下によって、図4に示すように、液密状態である時と比べ、ニードル弁12bのリフト量が低下することが挙げられる。尚、ここでは、燃料噴射量の変化を例に挙げたが、燃料噴射開始時のサック12dの内部状態が液密状態であるか気密状態であるかの違いによって、燃料噴射量以外の噴射量特性や噴霧も大きく変化する。
また、上述したように、燃料噴射弁12が新品状態である時には、リフト動作を行う毎にノズルボディ12aに対するニードル弁12bの回転位置が変化し得る。このため、新品状態においては、上記回転位置次第で上記隙間が生ずることとなる。その結果、燃料噴射の開始時のサック12dの内部状態が液密状態と気密状態との間で変化するという現象が生ずる。より具体的には、液密状態と気密状態とが不規則に現れることとなり、その結果、学習値のばらつきの分布は、液密状態と気密状態とで二極化したばらつきを有するものとなる。
従って、このような現象が生ずる状況下において微小噴射量の学習制御を行った場合、サック12dの内部状態が液密状態であるか気密状態であるかによって、実際に噴孔12eから噴射される燃料噴射量が変動してしまうこととなる。その結果、微小噴射量の学習値にばらつき(誤学習)が生じ得る。
ところで、本実施形態の内燃機関10では、運転条件に応じた態様でマルチ噴射が実行されることがある。ここでいうマルチ噴射とは、トルク発生のためのメイン噴射と、当該メイン噴射の前後において適宜実行される所定の微小噴射とを含む燃料噴射のことである。より具体的には、本実施形態では、マルチ噴射に含まれる微小噴射として、1回もしくは2回のパイロット噴射とアフター噴射とが実行され、更には、それらに加えて必要に応じてポスト噴射が実行されるようになっている。尚、パイロット噴射は、メイン噴射による燃料の着火性向上のために圧縮行程においてメイン噴射に先立って実行される微小量の噴射である。アフター噴射は、メイン噴射の後に当該メイン噴射に近接して実行される微小量の噴射であり、メイン噴射により生じたすすの再燃焼を促進することなどを目的として実行されるものである。ポスト噴射は、触媒(酸化触媒20等)の暖機を目的として、これ自体は燃焼に付されずに排気通路16への未燃燃料の投入のために膨張行程の後期もしくは排気行程において実行されるものである。
マルチ噴射に含まれる各微小噴射の開始時のサック12dの内部状態は、次のようになる。すなわち、既述したように、ノズルボディ12aに対するニードル弁12bの回転位置次第で上記隙間が生じ得る状況下においては、筒内圧力の低下率が高い膨張行程中の期間(主に前期)を経過することで、サック12dの内部状態が液密状態であるか気密状態であるか分からなくなる。上記期間の経過直後にポスト噴射が実行される場合であれば、このポスト噴射によってサック12dの内部状態が液密状態となる。その結果、当該ポスト噴射の次のサイクルにおけるパイロット噴射、メイン噴射およびアフター噴射の開始時のサック12dの内部状態は、何れも液密状態となる。
一方、ポスト噴射が実行されない場合には、マルチ噴射の1回目の微小噴射(噴射した燃料が排気通路16に排出されないタイミングで行われる1回目の微小噴射)の開始時には、サック12dの内部状態が液密状態であるか気密状態であるか分からない状態となる。尚、ポスト噴射が実行されない場合であってもマルチ噴射の2回目以降の燃料噴射の開始時には、サック12dの内部状態は液密状態であることが想定される。
上記のポスト噴射が実行されない場合におけるマルチ噴射の1回目の微小噴射の場合であっても、当該燃料噴射に反映される微小噴射量の学習制御の実行時と当該燃料噴射の実際の開始時とで、サック12dの内部状態が一致していれば問題がない。しかしながら、気密状態下においては、液密状態下と比べ、微小噴射量を増やすように学習が実行されることになる。従って、気密状態下において学習が実行された後に、液密状態下において微小噴射が実行されると、本来の適正な燃料噴射量よりも多い燃料噴射量を燃料噴射弁12に対して指令する結果となる。このため、高負荷運転時であれば、スモーク排出量の増加を招くこととなる。逆に、液密状態下において学習が実行された後に、気密状態下において微小噴射が実行されると、本来の適正な燃料噴射量よりも少ない燃料噴射量を燃料噴射弁12に対して指令する結果となる。このため、低負荷運転時であれば、失火の発生が懸念されることとなる。
[実施の形態1における特徴的な制御]
そこで、本実施形態では、微小噴射量の学習制御によって得られた学習値のばらつきが認められる場合において、前回のサイクルにてポスト噴射が行われておらず、かつ、今回のサイクルにおいて最初に微小噴射を行うときには、次のような制御を行うようにした。すなわち、エンジン負荷が所定の低負荷側閾値よりも低い低負荷運転時であれば当該最初の微小噴射による燃料噴射量を増やし、一方、エンジン負荷が前記低負荷側閾値よりも大きい所定の高負荷側閾値よりも高い高負荷運転時であれば当該最初の微小噴射による燃料噴射量を減らすようにした。
図5は、マルチ噴射の実行時における特徴的な微小噴射量の補正の具体例を説明するための図である。
マルチ噴射の具体例として、図5には3つの例が挙げられている。「例1」は、1回のパイロット噴射とメイン噴射とを行うものであり、「例2」は、2回のパイロット噴射とメイン噴射とアフター噴射とを行うものであり、「例3」は、例2に加えてポスト噴射を行うものである。
「例3」は前回のサイクルにおいてポスト噴射が実行されるものであるので、図9に示すように、この場合には本実施形態における微小噴射量の補正は実施されない。一方、「例1」および「例2」は、前回のサイクルにおいてポスト噴射が実行されないものであるので、本実施形態の微小噴射量の補正の対象となる。具体的には、「例1」では、1回だけ行われるパイロット噴射が上記補正の対象となり、「例2」では、2回行われるパイロット噴射のうちの1回目のパイロット噴射が上記補正の対象となる。
図6は、マルチ噴射の実行時における本実施の形態1の微小噴射量の補正を実現するために、ECU40が実行するルーチンを示すフローチャートである。尚、本ルーチンは、所定の制御周期毎に繰り返し実行されるものとする。
図6に示すルーチンでは、先ず、微小噴射量の学習制御によって得られる学習値にばらつきが生じているか否かが判定される(ステップ100)。具体的には、過去の所定回数の学習結果を参照して、既述した手法によって算出される学習値(微小噴射量の補正量)ΔQvにばらつきが生じているか(例えば、ばらつき幅が所定値以上であるか)否かが判断される。
上記ステップ100において学習値にばらつきが生じていると判定された場合には、微小噴射の要求噴射量(燃料噴射弁12への指令値)Qvreqが取得される(ステップ102)。要求噴射量Qvreq自体は、内燃機関10の運転条件に応じて予め設定されているものであり、ここでは、現在の運転条件に応じた値が取得される。次いで、噴射圧力(コモンレール14内の燃料圧力)Pcrがコモンレール圧センサ34を用いて検出される(ステップ104)。
次に、下記の特定の条件下(ステップ110または114の判定が成立するとき)において使用するための微小噴射量の補正量(学習値)ΔQv’が算出される(ステップ106)。図7は、微小噴射量の補正量ΔQv’を算出するためにECU40が備えているマップの設定を表した図である。
既述したように、気密状態における微小噴射量が液密状態と比べて減少する要因としては、サック12d内への補充のための燃料の消費と、押上げ力の低下によるニードル弁12bのリフト量が低下とが挙げられる。そこで、補正量ΔQv’は、図7に示すように、サック12dの容積相当分(一定値)と、ニードル弁12bのリフト量変化に応じた分とからなる値(変動値)として設定されている。噴射圧力Pcrが高くなると、ニードル弁12bのリフト量の低下に起因する燃料噴射量の低下代が大きくなる。このため、図7に示す設定は、噴射圧力Pcrが高くなるほど、補正量ΔQv’が大きくなるようになっている。また、上記設定は、要求噴射量Qvreqが多いほど、補正量ΔQv’が大きくなるようになっている。本ステップ104では、上記マップを参照して、上記ステップ102および104において取得された要求噴射量Qvreqと噴射圧力Pcrとに基づいて、現在の運転状態に適した補正量ΔQv’が算出される。
次に、燃料噴射条件が判定される(ステップ108)。具体的には、前回のサイクルにおいてポスト噴射が実行されていない状況下においてマルチ噴射における1回目の微小噴射を行う時期が到来したか否かが判定される。その結果、本判定が成立する場合には、現在のエンジン負荷が所定の低負荷側閾値よりも低い低負荷運転時であるか否かが判定される(ステップ110)。
上記ステップ110において低負荷運転時であると判定された場合には、今回の微小噴射(マルチ噴射における1回目の微小噴射)の指令値として、補正後の要求噴射量Qvlowが算出される(ステップ112)。この補正後の要求噴射量Qvlowは、上記ステップ102において取得された要求噴射量Qvreqに対して上記ステップ106において算出された補正量ΔQv’を加算して得た値(Qvreq+ΔQv’)である。
一方、上記ステップ110において低負荷運転時ではないと判定された場合には、現在のエンジン負荷が所定の高負荷側閾値(>上記低負荷側閾値)よりも高い高負荷運転時であるか否かが判定される(ステップ114)。その結果、本判定が成立する場合には、今回の微小噴射(マルチ噴射における1回目の微小噴射)の指令値として、補正後の要求噴射量Qvhighが算出される(ステップ116)。この補正後の要求噴射量Qvhighは、上記ステップ102において取得された要求噴射量Qvreqに対して上記ステップ106において算出された補正量ΔQv’を減算して得た値(Qvreq−ΔQv’)である。尚、上記ステップ114の判定が不成立である場合、すなわち、中負荷運転時では、要求噴射量Qvreqの補正は実行されない。
以上説明した図6に示すルーチンによれば、微小噴射量の学習制御によって得られた学習値のばらつきが認められる場合において、前回のサイクルにてポスト噴射が行われておらず、かつ、今回のサイクルにおける1回目の微小噴射を行うときには、低負荷運転時であれば当該1回目の微小噴射による燃料噴射量が増やされ、高負荷運転時であれば当該1回目の微小噴射による燃料噴射量が減らされる。
つまり、上記ルーチンによれば、学習値にばらつきが生じているか否かを判定することによって、サック12dの内部状態が液密状態と気密状態との間で不規則に変化している状況下にあるか否かを判断することができる。そのうえで、上記ルーチンによる微小噴射量の補正によれば、サック12dの内部状態が上記のように不規則に変化していることが微小噴射量に与える影響が、各運転条件(低負荷もしくは高負荷運転条件)において内燃機関10の性能上最も悪い方向に作用された時を想定した対策をとることができる。具体的には、低負荷運転条件であれば、マルチ噴射の1回目の微小噴射(パイロット噴射)による燃料噴射量を増やしておくことで、最低限の補正によって最悪の事態(失火発生)を抑制することができる。また、高負荷運転条件であれば、マルチ噴射の1回目の微小噴射(パイロット噴射)による燃料噴射量を減らしておくことで、最低限の補正によって最悪の事態(スモーク排出量の増加)を抑制することができる。
尚、上述した実施の形態1においては、ECU40が上述した微小噴射量の学習制御を実行することにより本発明における「学習実行手段」が実現され、ECU40が上記図5に例示したように内燃機関10の運転条件に応じた態様で所定のマルチ噴射を実行することにより本発明における「マルチ噴射実行手段」が実現され、ECU40が上記図6に示すルーチンの一連の処理を実行することにより本発明における「燃料噴射量補正手段」が実現されている。
実施の形態2.
次に、図8および図9を参照して、本発明の実施の形態2について説明する。
本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU40に図6に示すルーチンとともに後述の図9に示すルーチンを実行させることにより実現することができるものである。
既述したように、VCO型の燃料噴射弁12では、ニードル弁12bとノズルボディ12aとの接触において機械的な馴染みがとれていない新品状態においては、シート部12a1に対する着座時のニードル弁12bの回転位置次第で、サック12dの内部状態が液密状態と気密状態との間で変化し得る。しかしながら、膨張行程における筒内圧力の低下時におけるサック12d内からの燃料の流出の度合いは、経時的に変化し得るものである。例えば、VCO型の場合には、ニードル弁12bがリフト動作を繰り返すことによってニードル弁12bとノズルボディ12aとの馴染みがとれていく。その結果、閉弁時にサック12dと噴孔12eとの連通が安定して遮断されるようになる。そうすると、微小噴射量の学習時のサック12dの内部状態が液密状態で安定するようになる。
図8は、VCO型の燃料噴射弁12を用いた微小噴射量の学習時における、経時変化に伴う推定噴射量Qvのばらつきの変化を表した図である。
サック12dからの燃料の流出度合いは、上述した理由により、経時変化(例えば、上記馴染みが経時的にとれていくこと)によって変化する。
具体的には、学習回数の少ない学習初期段階(図8中の「X」)においては、サック12dの内部状態が安定しないことにより、サック12dからの燃料の流出度合いのばらつきが大きい。このため、図8(A)および(B)に示すように、微小噴射量の学習時の推定噴射量Qvのばらつきが大きくなり(二極化し)、その結果、要求噴射量Qvreqが得られるようにするための補正量(学習値)ΔQvもばらつくことになる。
一方、多くの学習回数を経ると、形状の馴染みによってサック12dの内部が安定した状態(図8中の「Y」)となり、図8(A)に示すように、ばらつきの二極化が解消する。その結果、図8(C)に示すように、推定噴射量Qv(学習値ΔQvも同様)のばらつきの発生頻度fは、経時的に低下していき、図8(D)に示すように、当該ばらつきの幅についても、経時的に減少していく。
そこで、本実施形態では、過去の所定回数の推定噴射量Qv(学習パラメータ)の履歴に基づいて、当該推定噴射量Qvのばらつきの発生頻度fを算出するようにした。そして、当該ばらつきの発生頻度fが所定値aよりも低くなった場合に、当該ばらつきが収束したと判定し、上述した実施の形態1における微小噴射量の補正を禁止するようにした。
図9は、本発明の実施の形態2における制御を実現するために、ECU40が実行するルーチンを示すフローチャートである。尚、本ルーチンの処理は、微小噴射量の学習制御を実施する前に毎回、或いは当該学習制御を所定の複数回実施する毎に1回行われるものである。
図9に示すルーチンでは、先ず、微小噴射量の学習制御が実行される(ステップ200)。その結果、今回の学習用噴射に伴う回転数変動ΔNeに基づく推定噴射量Qvが算出される。次いで、過去の所定回数(例えば、10回)の推定噴射量Qvのばらつきの発生頻度fが算出される(ステップ202)。
次に、上記ステップ202において算出されたばらつきの発生頻度fが所定値aよりも低いか否かが判定される(ステップ204)。本ステップ204における所定値aは、経時変化によりサック12dの内部状態が液密状態で安定した状態になったか否かを判断するための発生頻度fの閾値として予め設定された値である。
上記ステップ204においてばらつきの発生頻度fが上記所定値aよりも低いと判定された場合には、実施の形態1の図6に示すルーチンによる微小噴射量の補正が禁止される(ステップ206)。
以上説明した図9に示すルーチンによれば、経時変化によって推定噴射量Qvのばらつき(言い換えれば、学習値のばらつき)が収束した場合には、上述した実施の形態1の微小噴射量の補正が禁止される。当該ばらつきが収束した場合には、学習時のサック12dの内部状態が液密状態で安定していると判断することができる。従って、上記ルーチンによれば、当該ばらつきが収束したか否かを把握することで、実施の形態1の処理によって過補正となる事態を回避することができる。
ところで、上述した実施の形態2においては、微小噴射量学習時の推定噴射量Qvのばらつきの発生頻度fに基づいて、当該ばらつきが収束したか否かを判定するようにしている。しかしながら、本発明において学習パラメータのばらつきが収束したか否かを判定するための手法は、上述したものに限定されない。すなわち、上記学習パラメータとしては、推定噴射量Qvに代え、上述した学習値(補正量)ΔQvを用いるようにしてもよい。また、例えば、上記ばらつきの発生頻度fに代え、或いはそれとともに当該ばらつきの幅を利用して、上記ばらつきが収束したか否かが判定するようにしてもよい。
尚、上述した実施の形態2においては、ECU40が上記図9に示すルーチンの一連の処理を実行することにより本発明における「噴射量補正禁止手段」が実現されている。
ところで、上述した実施の形態1および2においては、圧縮着火式内燃機関の一例としてディーゼルエンジンである内燃機関10を例に挙げて説明を行った。しかしながら、本発明の対象となる内燃機関は、圧縮着火式内燃機関に限定されるものではない。すなわち、本発明における燃料噴射弁を備え、かつ、トルク発生のためのメイン噴射に加え、1サイクル中に1または複数回の微小噴射を実行するものであれば、ガソリンエンジン等の火花点火式内燃機関であってもよい。
また、上述した実施の形態1および2においては、VCO型の燃料噴射弁12(図2参照)を例に挙げて、本実施形態の制御について説明を行った。このようなVCO型の燃料噴射弁12においては、既述したように、特に新品状態には、シート部12a1に対する着座時のニードル弁12bの回転位置次第で、ニードル弁12bの先端部と壁面12fとの間に隙間が生じ得る。その結果、燃料噴射の開始時のサック12dの内部状態が液密状態と気密状態との間で変化するという現象が生ずる。しかしながら、本発明の対象となる燃料噴射弁の構成は、上述したVCO型のものに限られない。
すなわち、本発明の対象となる燃料噴射弁は、ニードル弁のシート当接部と当接するシート部の下流側に燃料溜まり部と少なくとも1つの噴孔とを備えるノズルボディを含むものであればよい。例えば、VCO型のように噴孔と燃料溜まり部(サック)との連通を遮断できるまでにはニードル弁の先端部が延びておらず、かつ、小容積のサック(燃料溜まり部)に噴孔が接続された構成を備える燃料噴射弁(いわゆる、MS(Mini Sac)ノズル型の燃料噴射弁)を用いるようにしてもよい。このような構成を有する燃料噴射弁であっても、噴射後にサック内に入っている気泡の量がばらつくことによって、膨張行程の前期において当該気泡の膨張によってサック内から押し出される燃料量が変化する。このことが、微小噴射量などの燃料噴射量の学習制御の実行時における学習値のばらつき要因となる。更に、そのような学習値のばらつきは、経時的に変化し得るものでもある。従って、このような構成を有する燃料噴射弁を備える内燃機関においても、上述した実施の形態1および2の制御を適用することは有効である。
10 内燃機関
12 燃料噴射弁
12a 燃料噴射弁のノズルボディ
12a1 ノズルボディのシート部
12b 燃料噴射弁のニードル弁
12b1 ニードル弁のシート当接部
12c 内部燃料通路
12d サック
12e 噴孔
12f ノズルボディの壁面
14 コモンレール
16 排気通路
18 ターボ過給機
20 酸化触媒
22 DPF
24 吸気通路
26 エアクリーナ
28 インタークーラ
30 吸気絞り弁
32 エアフローメータ
34 コモンレール圧センサ
36 吸気圧力センサ
40 ECU(Electronic Control Unit)
42 クランク角センサ
44 筒内圧センサ
46 アクセル開度センサ
既述したように、気密状態における微小噴射量が液密状態と比べて減少する要因としては、サック12d内への補充のための燃料の消費と、押上げ力の低下によるニードル弁12bのリフト量低下とが挙げられる。そこで、補正量ΔQv’は、図7に示すように、サック12dの容積相当分(一定値)と、ニードル弁12bのリフト量変化に応じた分とからなる値(変動値)として設定されている。噴射圧力Pcrが高くなると、ニードル弁12bのリフト量の低下に起因する燃料噴射量の低下代が大きくなる。このため、図7に示す設定は、噴射圧力Pcrが高くなるほど、補正量ΔQv’が大きくなるようになっている。また、上記設定は、要求噴射量Qvreqが多いほど、補正量ΔQv’が大きくなるようになっている。本ステップ104では、上記マップを参照して、上記ステップ102および104において取得された要求噴射量Qvreqと噴射圧力Pcrとに基づいて、現在の運転状態に適した補正量ΔQv’が算出される。
また、上述した実施の形態1および2においては、VCO型の燃料噴射弁12(図2参照)を例に挙げて、本発明の制御について説明を行った。このようなVCO型の燃料噴射弁12においては、既述したように、特に新品状態には、シート部12a1に対する着座時のニードル弁12bの回転位置次第で、ニードル弁12bの先端部と壁面12fとの間に隙間が生じ得る。その結果、燃料噴射の開始時のサック12dの内部状態が液密状態と気密状態との間で変化するという現象が生ずる。しかしながら、本発明の対象となる燃料噴射弁の構成は、上述したVCO型のものに限られない。

Claims (3)

  1. 先端部にシート当接部を有するニードル弁と、
    前記シート当接部が当接するシート部と、前記シート部よりも下流側に形成された燃料溜まり部と、前記シート部よりも下流側に形成された少なくとも1つの噴孔とを備えるノズルボディと、
    を含み、筒内に燃料を直接噴射可能な燃料噴射弁を備える内燃機関の制御装置であって、
    燃料噴射量を学習する燃料噴射量の学習制御を実行する学習実行手段と、
    前記燃料噴射弁を用いて、内燃機関のトルク発生のためのメイン噴射に加え、1サイクル中に1または複数回の微小噴射を実行するマルチ噴射実行手段と、
    前記学習制御による燃料噴射量の学習値のばらつきが認められる場合において、前記内燃機関の前回のサイクルにてポスト噴射が行われておらず、かつ、今回のサイクルにおいて最初に微小噴射を行うときには、低負荷運転時であれば当該最初の微小噴射による燃料噴射量を増やし、一方、高負荷運転時であれば当該最初の微小噴射による燃料噴射量を減らす燃料噴射量補正手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記燃料噴射弁は、前記ニードル弁が前記シート部に着座した状態において、当該ニードル弁の先端部の一部が前記噴孔と前記燃料溜まり部との連通を遮断するように構成されたものであることを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記学習実行手段は、前記学習制御による学習パラメータのばらつきが収束した場合に、前記燃料噴射量補正手段による燃料噴射量の補正を禁止する噴射量補正禁止手段を含むことを特徴とする請求項1または2記載の内燃機関の制御装置。
JP2013516402A 2012-01-26 2012-01-26 内燃機関の制御装置 Expired - Fee Related JP5459443B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051664 WO2013111299A1 (ja) 2012-01-26 2012-01-26 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP5459443B2 JP5459443B2 (ja) 2014-04-02
JPWO2013111299A1 true JPWO2013111299A1 (ja) 2015-05-11

Family

ID=48873067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013516402A Expired - Fee Related JP5459443B2 (ja) 2012-01-26 2012-01-26 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9341134B2 (ja)
EP (1) EP2808525A4 (ja)
JP (1) JP5459443B2 (ja)
CN (1) CN104066961A (ja)
WO (1) WO2013111299A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225938B2 (ja) * 2015-04-03 2017-11-08 トヨタ自動車株式会社 内燃機関の制御装置
DE102015220397A1 (de) * 2015-10-20 2017-04-20 Robert Bosch Gmbh Verfahren zum Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors bei negativer Lastdynamik
EP3165748A1 (de) * 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit einspritzmengensteuerung
US10330040B2 (en) * 2016-06-14 2019-06-25 Ford Global Technologies, Llc Method and system for air-fuel ratio control
CN106089465B (zh) * 2016-08-24 2018-10-02 湖南大学 一种实现喷油器喷射控制策略的装置
JP6972809B2 (ja) * 2017-09-12 2021-11-24 いすゞ自動車株式会社 車輌
JP7206601B2 (ja) * 2018-03-08 2023-01-18 株式会社デンソー 燃料噴射弁および燃料噴射システム
CN113153555B (zh) * 2021-05-18 2023-03-21 潍柴动力股份有限公司 一种发动机瞬态工况的控制方法、发动机及工程机械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882068A (ja) * 1981-11-09 1983-05-17 Nissan Motor Co Ltd 燃料噴射ノズル
JP2000008883A (ja) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd ディーゼルエンジンの燃料噴射装置および制御装置
JP4147989B2 (ja) 2003-03-18 2008-09-10 日産自動車株式会社 ディーゼルエンジンの制御装置
JPWO2004109082A1 (ja) * 2003-06-03 2006-07-20 株式会社日立製作所 可変吸気弁を備えた内燃機関
JP2005076529A (ja) 2003-08-29 2005-03-24 Nissan Motor Co Ltd 内燃機関の空燃比学習制御装置
JP4428160B2 (ja) * 2004-07-08 2010-03-10 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4333536B2 (ja) * 2004-09-14 2009-09-16 株式会社デンソー ディーゼルエンジン制御システム
JP4174502B2 (ja) * 2005-08-24 2008-11-05 三菱電機株式会社 内燃機関の燃料噴射量制御装置
JP4404841B2 (ja) * 2005-11-16 2010-01-27 本田技研工業株式会社 内燃機関の制御装置
JP4770742B2 (ja) * 2007-01-17 2011-09-14 株式会社デンソー エンジンの燃料噴射制御装置及び燃焼装置
JP4710892B2 (ja) * 2007-09-20 2011-06-29 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4877205B2 (ja) * 2007-10-17 2012-02-15 トヨタ自動車株式会社 内燃機関の制御装置
JPWO2011121771A1 (ja) * 2010-03-31 2013-07-04 トヨタ自動車株式会社 内燃機関の異常燃焼検出装置及び内燃機関の制御装置

Also Published As

Publication number Publication date
CN104066961A (zh) 2014-09-24
US20140366846A1 (en) 2014-12-18
JP5459443B2 (ja) 2014-04-02
EP2808525A1 (en) 2014-12-03
US9341134B2 (en) 2016-05-17
EP2808525A4 (en) 2016-04-06
WO2013111299A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5459443B2 (ja) 内燃機関の制御装置
US6962140B1 (en) Diesel engine control system and control method
JP4525729B2 (ja) Egr分配ばらつき検出装置
JP4462315B2 (ja) 内燃機関制御装置
JP2013160194A (ja) 内燃機関の燃料噴射制御装置
JP5884834B2 (ja) 内燃機関の制御装置
JP6439660B2 (ja) 燃焼システムの推定装置及び制御装置
JP6287740B2 (ja) エンジンの燃料制御装置
JP4862873B2 (ja) 内燃機関の燃料噴射制御装置及び燃料噴射制御システム
JP5720479B2 (ja) 内燃機関の制御装置
WO2013144696A1 (en) Engine fuel property estimation apparatus
EP3557033B1 (en) Control device for internal combustion engine
CN101876276B (zh) 响应检测到超范围压力信号控制发动机的控制系统和方法
JP6605968B2 (ja) 内燃機関制御装置
JP2014020205A (ja) 内燃機関の制御装置
JP4510704B2 (ja) 内燃機関の燃料噴射制御装置
JP5720513B2 (ja) 内燃機関の制御装置
JP6046370B2 (ja) エンジンの制御装置
JP2008240553A (ja) ディーゼルエンジンの燃料噴射制御装置
JP2011085064A (ja) 内燃機関の燃料噴射制御装置
JP2013133801A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5459443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees