JPWO2013035494A1 - 傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置 - Google Patents

傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置 Download PDF

Info

Publication number
JPWO2013035494A1
JPWO2013035494A1 JP2013532512A JP2013532512A JPWO2013035494A1 JP WO2013035494 A1 JPWO2013035494 A1 JP WO2013035494A1 JP 2013532512 A JP2013532512 A JP 2013532512A JP 2013532512 A JP2013532512 A JP 2013532512A JP WO2013035494 A1 JPWO2013035494 A1 JP WO2013035494A1
Authority
JP
Japan
Prior art keywords
magnetic field
coils
coil
gradient
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013532512A
Other languages
English (en)
Other versions
JP5894601B2 (ja
Inventor
幸信 今村
幸信 今村
充志 阿部
充志 阿部
八尾 武
武 八尾
将直 寺田
将直 寺田
竜弥 安藤
竜弥 安藤
川村 武
武 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2013532512A priority Critical patent/JP5894601B2/ja
Publication of JPWO2013035494A1 publication Critical patent/JPWO2013035494A1/ja
Application granted granted Critical
Publication of JP5894601B2 publication Critical patent/JP5894601B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • G01R33/4215Screening of main or gradient magnetic field of the gradient magnetic field, e.g. using passive or active shielding of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数のメインコイル(M1、〜M4)と、メインコイル(M1、〜M4)を挟んで撮像領域の反対側に配置され、メインコイル(M1、〜M4)が反対側に作る漏れ磁場を抑制する複数のシールドコイル(S1、〜S4)とを備える傾斜磁場コイル装置4において、複数のメインコイル(M1、〜M4)と複数のシールドコイル(S1、〜S4)とは、直列に接続され、複数のシールドコイル(S1、〜S4)それぞれに並列に接続され、シールドコイル(S1、〜S4)を流れる電流(IS1、〜IS4)を個別に調節して漏れ磁場の対称性を向上させる複数の電流調節器5を有する。これにより、メインコイル(M1、〜M4)とシールドコイル(S1、〜S4)に相対的な位置ずれがあっても、渦電流磁場の発生を抑制できる傾斜磁場コイル装置(4)を提供できる。

Description

本発明は、傾斜磁場分布を作る傾斜磁場コイル装置と、その調整方法と、それを搭載した磁気共鳴イメージング装置に関する。
磁気共鳴イメージング(MRI:Magnetic Resonance Imaging)装置は、均一な静磁場中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を示す断面画像を得る装置であり、特に、医療用として用いられている。MRI装置は、主に、被検体が挿入される撮像領域に均一な静磁場を生成する磁石装置と、その撮像領域に位置情報を付与するために空間的に強度が勾配した傾斜磁場(傾斜磁場分布)をパルス状に発生させる傾斜磁場コイル装置と、被検体に高周波パルスを照射し核磁気共鳴現象を起こすRFコイルと、被検体からの磁気共鳴信号を受信する受信コイルと、受信した磁気共鳴信号を処理して断面画像を表示するコンピュータシステムから構成されている。
MRI装置の性能向上の手段としては、磁石装置が発生する静磁場強度を向上させている。静磁場強度が高い程、より鮮明で多様な断面画像を得ることができるため、MRI装置は、より高い静磁場強度を指向して開発が続けられている。他の性能向上の手段としては、傾斜磁場の強度を向上させ、その傾斜磁場パルスを高速駆動させている。これらは、撮像時間の短縮と画質の向上に寄与し、近年盛んに使用されるようになった高速撮像法で用いられている。高速撮像法は、傾斜磁場コイル装置の駆動電源の性能向上による高速なスイッチングと大電流の通電により可能になっている。
傾斜磁場コイル装置には、パルス状の電流が流れ、パルス状の傾斜磁場パルスが発生するため、パルス状の傾斜磁場(漏れ磁場)が磁石装置の金属容器部分に渦電流を生じさせ、渦電流による磁場が断面画像に影響を与える。このため、高速に大電流を通電する傾斜磁場コイル装置には、撮像領域に傾斜磁場を生成するメインコイルと、パルス状の傾斜磁場(漏れ磁場)が撮像領域以外の不要な部分に漏れないようにするシールドコイルとが設けられ、シールドコイルにより、漏れ磁場が低減され、磁石装置の金属容器部分における渦電流の発生を抑えることができる。
ただ、渦電流の発生を抑えるには、設計で意図した通りにメインコイルとシールドコイルを製作する必要がある。実際の製作では、メインコイルとシールドコイルは金属板などの導電性材料を切削して渦巻き形状を形成し、さらに、曲げ加工で鞍形状に成型し、これらメインコイルとシールドコイルを多層に積層したまま絶縁材である樹脂を層間に充填して硬化させ固定している。このような複数の製作工程を経るうちに、設計で意図した構造とわずかに異なり、製作誤差が生じる。この製作誤差が小さい場合は、漏れ磁場は小さく、金属容器部分に生じる渦電流も小さく、この渦電流が撮像領域に作る渦電流磁場も小さく、断面画像に影響しないが、製作誤差が大きくなると渦電流による画像の影響が無視できなくなる。
このため、傾斜磁場コイル装置を精度よく製作するために、曲面加工済みの金属板を同じ曲面形状の台に固定したまま、切削加工により金属板を渦巻き形状に成型する手法が提案されている(例えば、特許文献1等参照)。また、磁石装置の金属容器部分にスリットを設け、渦電流の流路抵抗を増すことで渦電流の発生量を低減する手法が提案されている。
特開2004−130052号公報
MRI装置の市場における要請として、鮮明な画像が高速に得られることが求められている。このため、傾斜磁場コイル装置には、出来るだけ大きな磁束密度の傾斜磁場を高速に発生させることが求められる。この結果、傾斜磁場コイルには大電流が高速に変化するパルス波形で通電されることになる。大電流により大きな傾斜磁場を発生させるため、漏れ磁場も増大する。また、高速なパルス通電により、磁場変化量も増大するため、漏れ磁場の磁場変化量も増大し、磁石装置の金属容器に発生する渦電流も大きくなり、渦電流によって生じる渦電流磁場も大きくなる。そして、渦電流磁場が大きくなると、断面画像を劣化させる場合があった。
また、MRI装置の市場におけるもう1つの要請として、被検体(患者)が閉所感を感じないように、被検体が入る空間はできるだけ広くすることも求められている。また、検査側の要請として、出来るだけ広い範囲を撮像することも求められている。このため、傾斜磁場コイル装置は、被検体の入る空間と磁石装置との間にあって出来るだけ容積の小さな構造が求められている。具体的には、傾斜磁場コイル装置のメインコイルとシールドコイルの間隔は狭くなる傾向にあり、この間隔に要求される製作精度(許容製作誤差)は厳しくなっている。
これらの要請により、製作精度の厳しい中で、渦電流磁場を小さくする必要があるので、傾斜磁場コイル装置の製作工程において、メインコイルとシールドコイルの位置決め工程で磁場を測定し、相対的な位置を微調整し漏れ磁場が最小になるようにした後に樹脂をそれらの間に充填して硬化させ、メインコイルとシールドコイルを固定している。しかしながら、微調整が充分でない場合や、樹脂で硬化する際にメインコイルとシールドコイルの相対的な位置にずれが生じて硬化した場合は、磁石装置の金属容器に発生する渦電流が大きくなり、渦電流によって生じる渦電流磁場も大きくなる。そして、断面画像は劣化し、設計で意図した通りの性能を発揮できない。ただ、その微調整に長時間を費やすのは経済的ではないし、硬化時の位置ずれは不可避的なもとといえる。そこで、多少の位置ずれを許容しても、渦電流磁場の発生を抑制できれば有用である。
そこで、本発明が解決しようとする課題は、メインコイルとシールドコイルに相対的な位置ずれがあっても、渦電流磁場の発生を抑制できる傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置を提供することにある。
前記課題を解決するために、本発明は、複数のシールドコイル(第2コイル)それぞれに、又は、複数のメインコイル(第1コイル)それぞれに、並列に接続され、前記第2コイル、又は、前記第1コイルを流れる電流を個別に調節する複数の電流調節器を有する傾斜磁場コイル装置であることを特徴としている。
また、本発明は、この傾斜磁場コイル装置と、
撮像領域に静磁場を作り、前記第2コイルを挟んで前記撮像領域の反対側に配置される磁石装置とを有する磁気共鳴イメージング装置であることを特徴としている。
また、本発明は、この傾斜磁場コイル装置の調整方法であって、
前記複数の電流調節器によって、複数の前記第2コイルを流れる電流を個別に調節して、前記漏れ磁場の対称性を向上させることを特徴としている。
本発明によれば、メインコイル(第1コイル)とシールドコイル(第2コイル)に相対的な位置ずれがあっても、渦電流磁場の発生を抑制できる傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置を提供できる。
本発明の第1の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)のメインコイルとシールドコイルのz軸の周りの周方向の展開図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置を備えたMRI(磁気共鳴イメージング)装置の斜視図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置を備えたMRI(磁気共鳴イメージング)装置をy軸z軸に平行な平面で切断した断面図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の斜視図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の一部において、シールドコイルを含む層の一部を切断して剥いだ様子を示す部分斜視図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置(z軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の斜視図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の等価回路図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置に用いられる電流調節器の回路図である。 本発明の第2の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の等価回路図である。 本発明の第3の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の等価回路図である。 本発明の第4の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の等価回路図である。 本発明の第5の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)の等価回路図である。 本発明の第6の実施形態に係る傾斜磁場コイル装置を備えたMRI(磁気共鳴イメージング)装置の斜視図である。 本発明の第6の実施形態に係る傾斜磁場コイル装置を備えたMRI(磁気共鳴イメージング)装置をy軸z軸に平行な平面で切断した断面図である。 本発明の第6の実施形態に係る傾斜磁場コイル装置(y軸方向又はx軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置)のメインコイルとシールドコイルの積層構造を広げた展開図である。 本発明の第1の実施形態に係る電流調節器の調整のための傾斜磁場コイル装置の渦電流磁場または漏れ磁場を測定する空間上の磁場測定点を示す斜視図である。 本発明の第1の実施形態に係る傾斜磁場コイル装置の斜視図である。 本発明の第6の実施形態に係る傾斜磁場コイル装置の斜視図である。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
(第1の実施形態)
図2に、本発明の第1の実施形態に係る傾斜磁場コイル装置4を備えたMRI(磁気共鳴イメージング)装置1の斜視図を示す。MRI装置1は、概ね3重の円筒形状をしている。その3重の外側に磁石装置2を構成する円筒形状の真空容器2cが設けられている。真空容器2cの内側には、円筒形状の傾斜磁場コイル装置4が設けられている。傾斜磁場コイル装置4は、樹脂4cで覆われている。傾斜磁場コイル装置4の内側には、円筒形状のRFコイル6が設けられている。被検体(患者)7は、可動式ベッド8にねたままの状態でRFコイル6の内側に挿入され、断面画像が撮像される。真空容器2cと傾斜磁場コイル装置4とRFコイル6の3重の円筒形状の中心軸は概ね一致し、水平方向に設定している。後記の説明を容易にするために、その中心軸に一致するようにz軸を設定している。y軸は垂直方向上向きに設定している。x軸は、水平方向に設定している。座標原点は、真空容器2cと傾斜磁場コイル装置4とRFコイル6の3重の円筒形状の略中心に設定している。
図3に、本発明の第1の実施形態に係る傾斜磁場コイル装置4を備えたMRI(磁気共鳴イメージング)装置1をy軸z軸に平行な平面で切断した断面図を示す。座標原点の周辺領域が撮像領域3となる。MRI装置1は、撮像領域3に形成される静磁場9の向きが水平方向(z軸方向)である水平磁場型MRI装置である。この撮像領域3に、被検体(患者)7を移動し、断面画像が撮像されることになる。磁石装置2は、この撮像領域3に均一な静磁場9を生成する。傾斜磁場コイル装置4は、この撮像領域3に位置情報を付与するために空間的に磁場強度が傾斜勾配した傾斜磁場10(図3の例ではy軸方向に磁場強度が傾斜している)をパルス状に発生させる。RFコイル6は、被検体7に高周波パルスを照射する。図示を省略した受信コイルは、被検体7からの磁気共鳴信号を受信する。図示を省略したコンピュータシステムは、受信した磁気共鳴信号を処理して前記断面画像を表示する。そして、MRI装置1によれば、均一な静磁場9中に置かれた被検体7に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体7の物理的、化学的性質を表す断層画像を得ることができ、その断層画像は、特に、医療用に用いられている。
磁石装置2には、撮像領域3に静磁場9を作るメインコイル(超伝導コイル)2aと、静磁場9の周囲への漏れ(漏れ磁場)を抑制するシールドコイル(超伝導コイル)2bが設けられている。これらのコイル2a、2bはそれぞれ、z軸を共通の中心軸とする円環形状をしている。メインコイル2aの外径より、シールドコイル2bの内径の方が大きくなっている。また、これらのコイル2a、2bには、超伝導コイルを利用することが多く、その場合、コイル2a、2bは、3層構造の容器内に収納される。コイル2a、2bは、冷媒の液体ヘリウム(He)と共に冷媒容器2e内に収容されている。冷媒容器2eは、内部への熱輻射を遮断する輻射シールド2dに内包されている。そして、中空円筒型容器である真空容器2cは、冷媒容器2e及び輻射シールド2dを収容しつつ、内部を真空に保持している。真空容器2cは、普通の室温の室内に配置されても、真空容器2c内が真空になっているので、室内の熱が伝導や対流で、冷媒容器2eに伝わることはない。また、輻射シールド2dは、室内の熱が輻射によって真空容器2cから冷媒容器2eに伝わることを抑制している。このため、コイル2a、2bは、液体ヘリウムの温度である極低温に安定して設定することができ、超伝導電磁石として機能させることができる。冷媒容器2eと、輻射シールド2dと、真空容器2cには、不必要な磁場が発生しないように非磁性の部材が用いられ、さらに、真空を保持しやすいことから非磁性の金属が用いられる。冷媒容器2eと、輻射シールド2dと、真空容器2cは、金属容器になっている。このため、冷媒容器2eと、輻射シールド2dと、特に、最外周に配置される真空容器2cには、前記渦電流が発生し易い状況にある。磁石装置2は、傾斜磁場コイル装置4を挟んで撮像領域3の反対側に配置されている。
傾斜磁場コイル装置4は、撮像領域3に、傾斜磁場を発生させる。傾斜磁場コイル装置4は、撮像領域3に強度が線形に傾斜する磁場分布を作る複数のメインコイル(第1コイル)4aと、メインコイル4aを挟んで撮像領域3の反対側に配置され、メインコイル4aが撮像領域3の反対側に作る漏れ磁場を抑制する複数のシールドコイル(第2コイル)4bとを有している。メインコイル4aとシールドコイル4bの間には樹脂4cが充填されて硬化し、メインコイル4aとシールドコイル4bを互いに接着し固定している。傾斜磁場は、静磁場9と同じ方向の磁場の磁束密度が、x軸、y軸、z軸の3方向に互いに独立に、線形に傾斜した磁場であり、x軸、y軸、z軸の方向毎に発生させる時間を分け合って、x軸、y軸、z軸の3方向の傾斜磁場を順番に繰り返しパルス状に発生させる。具体的に、図3では、y軸方向に強度が線形に傾斜する傾斜磁場10を示している。
磁石装置2と傾斜磁場コイル装置4の間には、図示を省略したシムと呼ばれる磁性体の小片が複数個置かれている。シムによれば、撮像領域3内に生成される静磁場9の磁場強度を部分的に調整することができ、静磁場9の磁場強度が均一になっている撮像領域3を提供することができる。
図4に、本発明の第1の実施形態に係る傾斜磁場コイル装置4の斜視図を示し、図5に、その傾斜磁場コイル装置4の一部において、シールドコイル4bを含む層の一部を切断して剥いだ様子を示す部分斜視図を示す。傾斜磁場コイル装置4は、y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4yと、x軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4xと、z軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4z(図6参照)とを有しているが、図4と図5では、傾斜磁場コイル装置4x、4zを省いて、傾斜磁場コイル装置4yを記載している。なお、傾斜磁場コイル装置4xは、基本的には、この傾斜磁場コイル装置4yを、z軸周りに−90度回転させた構造をしており、その構造を容易に類推できるので、図4では、傾斜磁場コイル装置4yの符号「4y」とともに、傾斜磁場コイル装置4xの符号「4x」も付している。後記する図1、図5、図7、図9、図10、図11、図12、図15でも同様である。そして、その傾斜磁場コイル装置4xにおいても、傾斜磁場コイル装置4yにおいて実施される本発明を実施することができる。このことは、互いに相似の関係にあることから、容易に類推できる。このため、以下では、傾斜磁場コイル装置4yについて記載し、傾斜磁場コイル装置4xについては記載を省略している。
傾斜磁場コイル装置4y(4)は、円筒形状をしており、その外形は樹脂4cで形付けられている。その円筒形状の外壁側には、複数(図4の例では4個)の渦巻き形状のシールドコイル(第2コイル)4b(S、S、S、S)が、樹脂4c内に埋め込まれている。その円筒形状の内壁側には、複数(図4の例では4個)の渦巻き形状のメインコイル(第1コイル)4a(M(図示省略、図1参照)、M、M、M(図示省略、図1参照))が、樹脂4c内に埋め込まれている。シールドコイルS(4b)とメインコイルM(4a、図示省略)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a、図示省略)の外側に重なるようにz軸周りに平行に配置されている。シールドコイルS(4b)とメインコイルM(4a)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるようにz軸周りに平行に配置されている。シールドコイルS(4b)とメインコイルM(4a)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるようにz軸周りに平行に配置されている。シールドコイルS(4b)とメインコイルM(4a、図示省略)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a、図示省略)の外側に重なるようにz軸周りに平行に配置されている。
図4に示すように、渦巻き形状のシールドコイル4b(S、S、S、S)それぞれには、電流調節器5が接続されている。電流調節器5の一端は、渦巻き形状のシールドコイル4b(S、S、S、S)の内側に接続され、他端は、渦巻き形状のシールドコイル4b(S、S、S、S)の外側に接続され、電流調節器5は、渦巻き形状のシールドコイル4b(S、S、S、S)に対して、並列に接続している。
メインコイル4a(M(図示省略、図1参照)、M、M、M(図示省略、図1参照))それぞれには、パルス状の電流IM1(図示省略、図1参照)、IM2、IM3、IM4(図示省略、図1参照)が流れる。シールドコイル4b(S、S、S、S)それぞれには、パルス状の電流IS1、IS2、IS3、IS4が流れる。
シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS1aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS1を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS2aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS2を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS3aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS3を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS4aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS4を調節することができる。
図6に、本発明の第1の実施形態に係る傾斜磁場コイル装置4(z軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4z)の斜視図を示す。傾斜磁場コイル装置4z(4)は、円筒形状をしており、その外形は樹脂4cで形付けられている。その円筒形状の外壁側には、複数(図6の例では2個)のソレノイド形状のシールドコイル(第2コイル)4b(S、S)が、樹脂4c内に埋め込まれている。その円筒形状の内壁側には、複数(図6の例では2個)のソレノイド形状のメインコイル(第1コイル)4a(M(図示省略、図7参照)、M)が、樹脂4c内に埋め込まれている。シールドコイルS(4b)とメインコイルM(4a、図示省略)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a、図示省略)の外側に重なるようにz軸周りに平行に配置されている。シールドコイルS(4b)とメインコイルM(4a)は、間に充填された樹脂4cで接着され、積層構造になっている。シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるようにz軸周りに平行に配置されている。
ソレノイド形状のシールドコイル4b(S、S)それぞれには、電流調節器5が接続されている。電流調節器5の一端は、ソレノイド形状のシールドコイル4b(S、S)のz軸方向正方向端に接続され、他端は、ソレノイド形状のシールドコイル4b(S、S)のz軸方向負方向端に接続され、電流調節器5は、ソレノイド形状のシールドコイル4b(S、S)に対して、並列に接続している。
メインコイル4a(M(図示省略、図7参照)、M)それぞれには、パルス状の電流IM1(図示省略、図7参照)、IM2が流れる。シールドコイル4b(S、S)それぞれには、パルス状の電流IS1、IS2が流れる。
シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS1aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS1を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS2aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS2を調節することができる。
このように、その傾斜磁場コイル装置4zにおいても、メインコイル4aとシールドコイル4bの個数がそれぞれ2個に減っただけで、傾斜磁場コイル装置4yにおいて実施される本発明を実施することができる。このことは、容易に類推できるので、以下では、傾斜磁場コイル装置4yについて記載し、傾斜磁場コイル装置4zについては記載を省略した。
図1に、本発明の第1の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)のメインコイル4aとシールドコイル4bのz軸の周りの周方向の展開図を示す。4個のメインコイルM、M、M、M(4a)が、直列に接続されている。4個のシールドコイルS、S、S、S(4a)が、直列に接続されている。そして、4個のメインコイルM、M、M、M(4a)と、4個のシールドコイルS、S、S、S(4a)とが、直列に接続されている。この直列接続の両端に、パルス状の電流Iを流す駆動電源11が接続されている。
これらにより、4個のメインコイルM、M、M、M(4a)それぞれに流れるパルス状の電流IM1、IM2、IM3、IM4は、駆動電源11が流す電流Iに等しくなる(IM1=IM2=IM3=IM4=I)。
一方、4個のシールドコイルS、S、S、S(4a)にはそれぞれ、電流調節器5が並列に接続されているので、駆動電源11が流す電流Iの一部の電流IS1a、IS2a、IS3a、IS4aを電流調節器5に分流させることができ、シールドコイルS、S、S、S(4a)それぞれに流れるパルス状の電流IS1、IS2、IS3、IS4を、互いに異なるように調節することができる(IS1≠IS2≠IS3≠IS4)。そして、パルス状の電流IS1、IS2、IS3、IS4を、電流Iと異ならせることができる(IS1、IS2、IS3、IS4≠I)。
図7に、本発明の第1の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)の等価回路図を示す。4個のメインコイルM、M、M、M(4a)はそれぞれ、抵抗成分Rcmとインダクタンス成分Lcmの直列接続として記載することができる。4個のシールドコイルS、S、S、S(4a)はそれぞれ、抵抗成分Rcsとインダクタンス成分Lcsの直列接続として記載することができる。4個の電流調節器5はそれぞれ、抵抗成分Riとインダクタンス成分Liの直列接続として記載することができる。抵抗成分Riは、その抵抗値を変えることができる。インダクタンス成分Liは、そのインダクタンス値を変えることができる。抵抗成分Riの抵抗値と、インダクタンス成分Liのインダクタンス値を、4個のシールドコイルS、S、S、S(4a)毎に変えることにより、直接的に電流IS1a、IS2a、IS3a、IS4aを個別に調節して、さらには、間接的に電流IS1、IS2、IS3、IS4を個別に調節して、漏れ磁場の対称性を向上させる。
漏れ磁場に伴う渦電流磁場の断面画像への影響は、渦電流磁場の撮像領域3における対称性がよければ、撮像時に傾斜磁場コイル装置4の駆動電源11の電流Iを制御して弱めることができる。このため、渦電流磁場の原因となる漏れ磁場の対称性を考慮して、4個の電流調節器5の抵抗成分Riの抵抗値と、インダクタンス成分Liのインダクタンス値とが、調整されている。このとき、傾斜磁場コイル装置4(4y、4x)では4対、傾斜磁場コイル装置4(4z)では2対のメインコイル4aとシールドコイル4bの組が作る漏れ磁場(分布)が対称(点対称(原点対称)、線対称(x軸対称、y軸対称、z軸対称)、面対称(x軸y軸平面対称、y軸z軸平面対称、z軸x軸平面対称))となるように調整されることが望ましい。4個の電流調節器5で、個別に制御し、傾斜磁場コイル装置4(4y、4x)では4対、傾斜磁場コイル装置4(4z)では2対の漏れ磁場が、対称になるように、それぞれのメインコイル4aとシールドコイル4bの対が作る漏れ磁場を調節する。
渦電流磁場の原因となる漏れ磁場の対称性を検出するには、撮像領域3(図3参照)の渦電流磁場を測定する方法と、傾斜磁場コイル装置4の外側の漏れ磁場を直接測定する方法の2つが考えられる。前者の方法では、傾斜磁場コイル装置4は渦電流を発生させる磁石装置2、または、真空容器2cないし輻射シールド2dの形状を模擬した導電性の部材中で実施される。一方、後者の方法では傾斜磁場コイル装置4単体で実施される。どちらも、撮像領域3の中心に対して、渦電流磁場または漏れ磁場をサーチコイルまたはホール素子などの磁気センサを用いて測定し、それらの磁場の分布がその中心(原点)を通る平面に対して面対称、または、符号が反転し絶対値が同じでその中心に対して点対称となるように調整される。
例として、撮像領域3の渦電流磁場を測定する場合、xyz軸方向いずれの傾斜磁場コイル装置4に通電した場合でも、傾斜磁場10が0となる位置を原点として、原点を挟んで等距離にある位置の渦電流磁場を測定する。例えば、y軸方向に傾斜した傾斜磁場10による渦電流磁場は、y方向傾斜磁場と同様に、原点を挟んでy軸の正方向と負方向で等距離にある2点の渦電流磁場は絶対値が同じで方向が反転している原点対称になるように調整する。一方、y軸方向の位置が同じで、原点を挟んでx軸またはz軸の正方向と負方向に等距離にある2点の渦電流磁場は向き、方向共に同じであるyz面またはxy面対称になるように調整する。
図16に、電流調節器5による調整のための傾斜磁場コイル装置4の渦電流磁場または漏れ磁場を測定する空間上の磁場測定点P1〜P6、Q1〜Q8を示す。y方向傾斜磁場を発生する傾斜磁場コイル装置4y(4)には、メインコイル4aとシールドコイル4bの組と電流調節器5は4つあるので、図16に示すような、例えば原点Oから等距離の4点の磁場測定点P1、P2、P3、P4における渦電流磁場を測定し、渦電流磁場がその4点全ての点で同じ大きさで、かつ、磁場測定点P1とP2における方向が反対となり、磁場測定点P3とP4における方向が反対となるように、電流調節器5を調節すればよい。x方向の傾斜磁場を発生する傾斜磁場コイル装置4x(4)を調整する場合は、磁場測定点P1、P2、P3、P4の4点をz軸周りに−90°回転させた位置に移動させ、後は傾斜磁場コイル装置4yの場合と同様に渦電流磁場を調整すればよい。z軸方向の傾斜磁場を発生する傾斜磁場コイル装置4z(4)を調整する場合は、メインコイル4aとシールドコイル4bの組と電流調節器5は2つであるので、図16に示すような、例えばz軸上で原点Oを挟んで原点Oから等距離の磁場測定点P5、P6における渦電流磁場を測定し、この渦電流磁場で調整すればよい。なお、対称性を得るためには、前記磁場測定点P1〜P6に限らず、例えば、図16に示す磁場測定点Q1〜Q8の8点を使用することができる。xyz軸方向全ての傾斜磁場の傾斜磁場コイル装置4(4xと4yと4z)を同一(共通)の磁場測定点Q1〜Q8で調整することができる。なお、傾斜磁場コイル装置4の漏れ磁場を直接測定する場合も同様に、漏れ磁場を測定する位置は、原点Oに対して等距離の点を使用できるが、傾斜磁場コイル装置4の外周外側にする必要がある。
図8に、本発明の第1の実施形態に係る傾斜磁場コイル装置4に用いられる電流調節器5の回路図を示す。電流調節器5は、図7において、可変の抵抗成分Riと可変のインダクタンス成分Liの直列接続として記載されるように、可変抵抗5aと可変インダクタ5bの直列接続で構成されている。可変インダクタ5bは、ロゴスキー形状であることが好ましい。これによれば、可変インダクタ5bが不要な磁場が発生して、断面画像に影響を与えるのを抑制することができる。可変インダクタ5bはインダクタンス成分Li、可変抵抗5aは抵抗成分Riをそれぞれ調節するが、可変インダクタ5bは抵抗成分を持っているため、可変インダクタ5bをタップ切り替え端子5cで調整すると、可変インダクタ5bの抵抗成分も変化する。これを利用して、可変インダクタ5bで可変抵抗5aを兼ねてもよい。
電流調節器5を流れる電流IS1a、IS2a、IS3a、IS4aは、シールドコイル4bを流れる電流IS1、IS2、IS3、IS4に対して、通常、±0.1%以下の幅で調節することができ、最大でも±0.5%の幅(幅1.0%)内で調節することができる。また、パルス状の電流IS1a、IS2a、IS3a、IS4a、IS1、IS2、IS3、IS4には、過渡電流(交流電流)が流れる時期と、定常電流(直流電流)が流れる時期とがある。
定常電流(直流電流)が流れる時期においては、抵抗成分RcsとRiの比が、電流IS1a、IS2a、IS3a、IS4aと、電流IS1、IS2、IS3、IS4の比を決定する。電流IS1a、IS2a、IS3a、IS4aと、電流IS1、IS2、IS3、IS4の比を1.0%(幅1.0%)内で調節することになるので、抵抗成分Riは、抵抗成分Rcsの最大でも100倍に設定される。通常、抵抗成分Rcsは、0.1オーム以下であるので、抵抗成分Riは最大でも略10オームの範囲で設定されている。抵抗成分Riによる可変抵抗5aでの発熱量は、シールドコイルS、S、S、S(4a)での発熱量の1%内に抑えられる。
過渡電流(交流電流)が流れる時期においては、インダクタンス成分LcsとLiの比が、電流IS1a、IS2a、IS3a、IS4aと、電流IS1、IS2、IS3、IS4の比を決定する。電流IS1a、IS2a、IS3a、IS4aと、電流IS1、IS2、IS3、IS4の比を1.0%(幅1.0%)内で調節することになるので、インダクタンス成分Liは、インダクタンス成分Lcsの最大でも100倍に設定される。通常、インダクタンス成分Lcsは、略100μHであるので、インダクタンス成分Liは最大でも略10mHの範囲で設定されている。過渡電流が流れる場合のシールドコイルS、S、S、S(4a)の両端の電圧は最大1kVに達する。インダクタンス成分Liを最大でも略10mHの範囲に設定することで、電流調節器5に過大な電流が流れるのを防止することができる。電流調節器5を流れる電流は最大でも数アンペアの程度なので、断面積が数mm2の細線を使用し、単位長さ当たりの巻き数を多くすることで、可変インダクタ5bを実現することができる。
また、通常、過渡電流は、ランプ波であり、電流の時間変化率はその時期において一定なので、抵抗成分Riと抵抗成分Rcsの比率と、インダクタンス成分Liとインダクタンス成分Lcsの比率を、略等しいとすることで、定常電流(直流電流)が流れる時期と、過渡電流(交流電流)が流れる時期とで、電流IS1a、IS2a、IS3a、IS4aと、電流IS1、IS2、IS3、IS4の比率を、略一定にすることができる。
電流調節器5は、傾斜磁場コイル装置4の外側から、抵抗成分Riの抵抗値とインダクタンス成分Liのインダクタンス値が、変更可能になっている。具体的には、可変抵抗5aとタップ切り替え端子5cとが、樹脂4cから露出している。電流調節器5の調整は、傾斜磁場コイル装置4を磁石装置2に挿入した状態で、傾斜磁場コイル装置4の通電時に発生する渦電流による渦電流磁場が、撮像領域3で原点対称になるように実施する。このために、電流調節器5は、樹脂4cに埋め込まれていてもいなくてもよく、埋め込まれていない場合は、それぞれのシールドコイル4bから樹脂4c外へ引き出すための端子を必要とするが、通電に伴って発熱した電流調節器5を冷却する構造を、樹脂4c内部に設置する場合に比べて自由に設計できる。
図17には、電流調節器5を傾斜磁場コイル装置4の外側から調整することが容易な形態の例を示している。傾斜磁場コイル装置4を磁石装置2(図2参照)に装着後においては、電流調節器5の設置位置を概略円筒形状の傾斜磁場コイル装置4の内径側表面または中心軸方向(z軸方向)端部とすれば、磁石装置2と傾斜磁場コイル装置4の間隔の大小によらず、調整が容易である。ただし、傾斜磁場コイル装置の内径側は、メインコイル4aによる傾斜磁場の影響を受けやすいことと、患者7の空間を大きく取るためには最適な位置ではない。そこで、図17に示すように、x軸方向の傾斜磁場コイル装置4x用の電流調整器5xは、y軸方向の端部で、かつz軸方向の端部に設置することが望ましい。また、y軸方向の傾斜磁場コイル装置4y用の電流調整器5yは、x軸方向の端部で、かつz軸方向の端部に設置することが望ましい。また、電流調整器5xと5yの設置場所を互いに入れ替えてもよい。すなわち、電流調節器5xと5yは、傾斜磁場10の磁場強度が線形に傾斜する傾斜方向における傾斜磁場コイル装置5の端部か、又は、その傾斜方向に直交する方向における傾斜磁場コイル装置5の端部に設けられる。これらによれば、電流調整器5x、5y、5zを、xy各軸方向の傾斜磁場コイル装置4x、4yを構成するメインコイル4a同士の間、または、シールドコイル4b同士の間(具体的には、図5のSとSの間)に設置することが可能となる。そして、傾斜磁場10(図3参照)や、患者7の空間を狭めることなく設置でき、オペレータ等は外部から調整用のツマミまたは端子15を介して全ての電流調整装置5を調節できる。なお、図17では、z軸方向の傾斜磁場コイル装置4z用の電流調整器5zは、z軸方向の端部で、かつ、周方向の電流調整器5xと5yの間に設置されている。ただ、これに限らず、電流調整器5zを、電流調整器5xまたは5yに近接して配置し、xy各軸方向の傾斜磁場コイル装置4x、4yを構成するメインコイル4a同士の間、または、シールドコイル4b同士の間に設置してもよい。また、電流調整器5x、5y、5zに設けられている調整用のツマミまたは端子15は、図8に示す電流調節器5の可変インダクタ5bのタップ切り替え端子5cと可変抵抗5aのツマミに対応している。
(第2の実施形態)
図9に、本発明の第2の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)の等価回路図を示す。第2の実施形態が、第1の実施形態と異なっている点は、メインコイルM、M、M、Mと、シールドコイルS、S、S、Sとが、1つずつ交互に接続されている点である。これにより、4個のメインコイルM、M、M、Mと、4個のシールドコイルS、S、S、Sとが、直列に接続されている。そして、傾斜磁場コイル装置4(4y)内での電位差を小さくできるので、絶縁耐圧に対する構造を簡略化できる。
(第3の実施形態)
図10に、本発明の第3の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)の等価回路図を示す。第3の実施形態が、第1の実施形態と異なっている点は、複数(図10の例では2個)の駆動電源11a、11bが用いられている点である。複数の一部(4個の内の2個)のメインコイルM、Mと、複数の一部(4個の内の2個)のシールドコイルS、Sとは、直列に接続され、駆動電源(第1駆動電源)11aに接続されている。複数の残り(4個の内の残り2個)のメインコイルM、Mと、複数の残り(4個の内の残り2個)のシールドコイルS、Sとは、直列に接続され、同期制御部11cによって駆動電源11aに同期する駆動電源(第2駆動電源)11bに接続されている。2つの駆動電源11a、11bで、第1の実施形態と同数のメインコイル4aと同数のシールドコイル4bを駆動するため、より短時間に大電流を通電することができる。なお、第3の実施形態では、2個のメインコイルM、M(M、M)と、2個のシールドコイルS、S(S、S)とで、1つの駆動電源11a(11b)を使用したが、これに限らない。例えば、4個のメインコイルM、M、M、M)で、駆動電源11aを使用し、4個のシールドコイルS、S、S、Sで、駆動電源11bを使用することもできる。
(第4の実施形態)
図11に、本発明の第4の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)の等価回路図を示す。第4の実施形態が、第1の実施形態と異なっている点は、電流調節器5が、メインコイルM、M、M、Mのそれぞれに並列に接続している点である。メインコイルM、M、M、Mの抵抗成分Rcmとインダクタンス成分Lcmに対して、第1の実施形態と同様に、抵抗成分Riとインダクタンス成分Liの最大値を設計する。4個の電流調節器5のそれぞれの抵抗成分Riとインダクタンス成分Liを変化させて(調節して)、メインコイルM、M、M、Mを流れる電流を個別に調節して、漏れ磁場の対称性を向上させることができる。
4個のシールドコイルS、S、S、S(4b)それぞれに流れるパルス状の電流IS1、IS2、IS3、IS4は、駆動電源11が流す電流Iに等しくなる(IS1=IS2=IS3=IS4=I)。一方、4個のメインコイルM、M、M、M(4a)にはそれぞれ、電流調節器5が並列に接続されているので、駆動電源11が流す電流Iの一部の電流IM1a、IM2a、IM3a、IM4aを電流調節器5に分流させることができ、メインコイルM、M、M、M(4a)それぞれに流れるパルス状の電流IM1、IM2、IM3、IM4を、互いに異なるように調節することができる(IM1≠IM2≠IM3≠IM4)。そして、パルス状の電流IM1、IM2、IM3、IM4を、電流Iと異ならせることができる(IM1、IM2、IM3、IM4≠I)。
なお、第4の実施形態に第1の実施形態を組み合わせて、メインコイル4aとシールドコイル4bの全てに、電流調節器5を並列に接続してもよい。また、樹脂4cによって互いに重なるように接着されている対となるメインコイル4a(M、M、M、M)とシールドコイル4b(S、S、S、S)のどちらか一方に、電流調節器5が並列接続されているだけでもよい。そして、この特殊な例が、第4の実施形態と、第1の実施形態であると考えることができる。そして、これらの変形の考え方は、第2と第3の実施形態にも適用できる。
(第5の実施形態)
図12に、本発明の第5の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)の等価回路図を示す。第5の実施形態が、第1の実施形態と異なっている点は、複数(図12の例では4個)のメインコイルM、M、M、M(4a)が並列に接続された第1並列回路12と、複数(図12の例では4個)のシールドコイルS、S、S、S(4b)が並列に接続された第2並列回路13とを有している点である。そして、第1並列回路12と、第2並列回路13とは、直列に接続されている。シールドコイルS、S、S、S(4b)のそれぞれには、電流調節器5が直列に接続されている。電流調節器5は、直列に接続されているシールドコイルS、S、S、S(4b)のそれぞれに流れる電流IS1、IS2、IS3、IS4を個別に調節して、漏れ磁場の対称性を向上させることができる。
4個のメインコイルM、M、M、M(4a)それぞれに流れるパルス状の電流IM1、IM2、IM3、IM4は、互いに等しく、駆動電源11が流す電流Iの4分の1に等しくなる(IM1=IM2=IM3=IM4=I/4)。
一方、4個のシールドコイルS、S、S、S(4a)にはそれぞれ、電流調節器5が直列に接続されているので、シールドコイルS、S、S、S(4a)それぞれに流れるパルス状の電流IS1、IS2、IS3、IS4を、互いに異なるように調節することができる(IS1≠IS2≠IS3≠IS4)。ただし、パルス状の電流IS1、IS2、IS3、IS4の和は、パルス状の電流IM1、IM2、IM3、IM4と同様に、電流Iとなる。(IS1+IS2+IS3+IS4=IM1+IM2+IM3+IM4=I)。
電流調節器5とシールドコイルS、S、S、S(4a)は直列に接続されているため、電流調節器5の抵抗成分Riの抵抗値は、シールドコイルS、S、S、S(4a)の抵抗成分Rcsに対して1%程度の値すなわち1mオーム以下であり、電流調節器5のインダクタンス成分LiもシールドコイルS、S、S、S(4a)のインダクタンス成分Lcsに対して1%程度の数μHの程度である。第2並列回路13の場合、シールドコイルS、S、S、S(4a)の電流IS1、IS2、IS3、IS4以上は流れないので、可変インダクタ5b(図8参照)は必ずしも必要ではない。第2並列回路13の場合も可変抵抗5a(図8参照)での発熱量は、シールドコイルS、S、S、S(4a)の総発熱量の1%以下である。
なお、第5の実施形態では、シールドコイルS、S、S、S(4a)に電流調節器5を直列に接続した例を示したが、これに限られず、電流調節器5は、メインコイルM、M、M、M(4a)に直列に接続してもよく、また、メインコイルM、M、M、M(4a)とシールドコイルS、S、S、S(4a)の両方に、接続してもよい。また、樹脂4cによって互いに重なるように接着されている対となるメインコイル4a(M、M、M、M)とシールドコイル4b(S、S、S、S)のどちらか一方に、電流調節器5が直列接続されているだけでもよい。
また、4個の内の2個、例えば、メインコイルM、Mが直列に接続され、4個の内の残りの2個のメインコイルM、Mが直列に接続され、これらの2つの直列接続が並列に接続された第1並列回路12と、4個の内の2個、例えば、シールドコイルS、S、が直列に接続され、4個の内の残りの2個のシールドコイルS、Sが直列に接続され、これらの2つの直列接続が並列に接続された第2並列回路13とを有していてもよい。そして、第1並列回路12と、第2並列回路13とは、直列に接続されている。ただ、この場合、メインコイルMとMの直列接続に1個の電流調節器5を直列に接続し、メインコイルMとMの直列接続に1個の電流調節器5を直列に接続し、シールドコイルSとSの直列接続に1個の電流調節器5を直列に接続し、シールドコイルSとSの直列接続に1個の電流調節器5を直列に接続すればよい。
(第6の実施形態)
図13に、本発明の第6の実施形態に係る傾斜磁場コイル装置4を備えたMRI(磁気共鳴イメージング)装置1の斜視図を示す。第6の実施形態が、第1の実施形態と異なる点は、MRI装置1が、水平磁場型から垂直磁場型になった点である。第6の実施形態では、上下の円盤状の真空容器2c(磁石装置2)間が支持脚14によって連結され、真空容器2c(磁石装置2)間にある撮像領域3に鉛直方向の静磁場9が発生する。また、第6の実施形態では、傾斜磁場コイル装置4と、RFコイル6は、円板形状に形成される。傾斜磁場コイル装置4内に形成されるメインコイル(第1コイル)4aも、円板形状に形成される。傾斜磁場コイル装置4内に形成されるシールドコイル(第2コイル)4bも、円板形状に形成されるが、円錐または円錐台形状に形成してもよい。被検体(患者)7は、可動式ベッド8にねたままの状態で、上下の真空容器2c(磁石装置2)間にある撮像領域3に導入され、断面画像が撮像される。真空容器2cと傾斜磁場コイル装置4とRFコイル6の3重の円板形状の中心軸は概ね一致し、垂直方向に設定している。後記の説明を容易にするために、その中心軸に一致するようにz軸を設定している。y軸は水平方向に設定している。x軸も、水平方向に設定している。座標原点は、一対の真空容器2cの点対称の対称点に設定している。
図14で、本発明の第6の実施形態に係る傾斜磁場コイル装置4を備えたMRI(磁気共鳴イメージング)装置1をy軸z軸に平行な平面で切断した断面図を示す。磁石装置2には、撮像領域3に静磁場9を作るメインコイル(超伝導コイル)2aと、静磁場9の周囲への漏れ(漏れ磁場)を抑制するシールドコイル(超伝導コイル)2bが設けられている。これらのコイル2a、2bはそれぞれ、z軸を共通の中心軸とする円環形状をしている。
傾斜磁場コイル装置4は、撮像領域3に、傾斜磁場を発生させる。傾斜磁場コイル装置4は、撮像領域3に強度が線形に傾斜する磁場分布を作る複数のメインコイル(第1コイル)4aと、メインコイル4aを挟んで撮像領域3の反対側に配置され、メインコイル4aが撮像領域3の反対側に作る漏れ磁場を抑制する複数のシールドコイル(第2コイル)4bとを有している。メインコイル4aとシールドコイル4bの間には樹脂4cが充填されて硬化し、メインコイル4aとシールドコイル4bを互いに接着し固定している。傾斜磁場は、静磁場9と同じ方向の磁場の磁束密度が、x軸、y軸、z軸の3方向に互いに独立に、線形に傾斜した磁場であり、x軸、y軸、z軸の方向毎に発生させる時間を分け合って、x軸、y軸、z軸の3方向の傾斜磁場を順番に繰り返しパルス状に発生させる。具体的に、図14では、y軸方向に強度が線形に傾斜する傾斜磁場10を示している。
図15に、本発明の第6の実施形態に係る傾斜磁場コイル装置4(y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置4y)のメインコイル4aとシールドコイル4bの積層構造を広げた展開図を示す。展開前、シールドコイルS(4b)とメインコイルM(4a)は、積層され、シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるように平行に配置されていた。シールドコイルS(4b)とメインコイルM(4a)は、積層され、シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるように平行に配置されていた。シールドコイルS(4b)とメインコイルM(4a)は、積層され、シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるように平行に配置されていた。シールドコイルS(4b)とメインコイルM(4a)は、積層され、シールドコイルS(4b)は、メインコイルM(4a)の外側に重なるように平行に配置されていた。
図15に示すように、渦巻き形状のシールドコイル4b(S、S、S、S)それぞれには、電流調節器5が接続されている。電流調節器5の一端は、渦巻き形状のシールドコイル4b(S、S、S、S)の内側に接続され、他端は、渦巻き形状のシールドコイル4b(S、S、S、S)の外側に接続され、電流調節器5は、渦巻き形状のシールドコイル4b(S、S、S、S)に対して、並列に接続している。
シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS1aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS1を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS2aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS2を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS3aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS3を調節することができる。シールドコイル4b(S)に並列接続する電流調節器5に、パルス状の電流IS4aを流すことで、シールドコイル4b(S)に流れるパルス状の電流IS4を調節することができる。
図18には、垂直磁場型のMRI装置1(図13参照)において、電流調節器5を傾斜磁場コイル装置4の外側から調整することが容易な形態の例を示している。第1の実施形態の水平磁場型のMRI装置1の場合と同様に、傾斜磁場コイル装置4を磁石装置2に組み合わせた後に、電流調節器5を調整する場合は、傾斜磁場コイル装置4の径方向端部、または、撮像領域3側の表面に電流調節器5があると、調整作業が容易になる。なお、図18は上下対の傾斜磁場コイル装置4の内、下側の傾斜磁場コイル装置4へ対する、電流調節器5の設置状態を示しており、上側の傾斜磁場コイル装置4は、図18の下側の傾斜磁場コイル装置4と同一で、天地を逆にした形状である。本第2の実施形態においても、図17の第1の実施形態と同様に、x軸方向の傾斜磁場コイル装置4x用の電流調整器5xは、y軸方向の端部で、かつz軸方向の端部(撮像領域3側の表面)に設置することが望ましい。また、y軸方向の傾斜磁場コイル装置4y用の電流調整器5yは、x軸方向の端部で、かつz軸方向の端部(撮像領域3側の表面)に設置することが望ましい。これらによれば、電流調整器5x、5y、5zを、xy各軸方向の傾斜磁場コイル装置4x、4yを構成するメインコイル4a同士の間、または、シールドコイル4b同士の間に設置することが可能となる。そして、傾斜磁場10(図14参照)や、患者7の空間を狭めることなく設置でき、オペレータ等は外部から調整用のツマミまたは端子15を介して全ての電流調整装置5を調節できる。なお、図18では、z軸方向の傾斜磁場コイル装置4z用の電流調整器5zは、z軸方向の端部(撮像領域3側の表面)で、かつ、周方向の電流調整器5xと5yの間に設置されている。ただ、これに限らず、電流調整器5zを、電流調整器5xまたは5yに近接して配置し、xy各軸方向の傾斜磁場コイル装置4x、4yを構成するメインコイル4a同士の間、または、シールドコイル4b同士の間に設置してもよい。
1 MRI(磁気共鳴イメージング)装置
2 磁石装置
2a 超電導コイル(メインコイル)
2b 超電導コイル(シールドコイル)
2c 真空容器
2d 輻射シールド
2e 冷媒容器
3 撮像領域
4 傾斜磁場コイル装置
4a、M、M、M、M メインコイル(第1コイル)
4b、S、S、S、S シールドコイル(第2コイル)
4c 樹脂
4y y軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置
4x x軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置
4z z軸方向に傾斜した傾斜磁場を作る傾斜磁場コイル装置
5 電流調節器
5a 可変抵抗
5b 可変インダクタ
5c タップ切り替え端子
5x x軸傾斜磁場コイル装置用の電流調節器
5y y軸傾斜磁場コイル装置用の電流調節器
5z z軸傾斜磁場コイル装置用の電流調節器
6 RFコイル
7 被検体(患者)
8 可動式ベッド
9 静磁場(の向き)
10 y軸方向に傾斜した傾斜磁場
11 駆動電源
11a 駆動電源(第1駆動電源)
11b 駆動電源(第2駆動電源)
11c 同期制御部
12 第1並列回路
13 第2並列回路
14 支持脚
15 ツマミまたは端子
P1〜P6、Q1〜Q8 磁場測定点
Rcm メインコイル(第1コイル)の抵抗成分
Rcs シールドコイル(第2コイル)の抵抗成分
Ri 電流調節器の抵抗成分
Lcm メインコイル(第1コイル)のインダクタンス成分
Lcs シールドコイル(第2コイル)のインダクタンス成分
Li 電流調節器のインダクタンス成分

Claims (18)

  1. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の前記第1コイルと複数の前記第2コイルとは、直列に接続され、
    複数の前記第2コイルそれぞれに並列に接続され、前記第2コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  2. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の前記第1コイルと複数の前記第2コイルとは、直列に接続され、
    複数の前記第1コイルそれぞれに並列に接続され、並列に接続されている前記第1コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  3. 複数の前記第2コイルそれぞれに並列に接続され、並列に接続されている前記第2コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする請求の範囲第2項に記載の傾斜磁場コイル装置。
  4. 前記第1コイルと前記第2コイルとは、交互に接続されることで、複数の前記第1コイルと複数の前記第2コイルとが、直列に接続されていることを特徴とする請求の範囲第1項又は第2項に記載の傾斜磁場コイル装置。
  5. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の一部の前記第1コイルと複数の一部の前記第2コイルとは、直列に接続され、第1駆動電源に接続され、
    複数の残りの前記第1コイルと複数の残りの前記第2コイルとは、直列に接続され、前記第1駆動電源に同期する第2駆動電源に接続され、
    複数の前記第2コイルそれぞれに並列に接続され、並列に接続されている前記第2コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  6. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の一部の前記第1コイルと複数の一部の前記第2コイルとは、直列に接続され、第1駆動電源に接続され、
    複数の残りの前記第1コイルと複数の残りの前記第2コイルとは、直列に接続され、前記第1駆動電源に同期する第2駆動電源に接続され、
    複数の前記第1コイルそれぞれに並列に接続され、並列に接続されている前記第1コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  7. 複数の前記第2コイルそれぞれに並列に接続され、並列に接続されている前記第2コイルを流れる電流を個別に調節して前記漏れ磁場の対称性を向上させる複数の電流調節器を有することを特徴とする請求の範囲第6項に記載の傾斜磁場コイル装置。
  8. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の前記第1コイルが並列に接続された第1並列回路と、
    複数の前記第2コイルが並列に接続された第2並列回路とを有し、
    前記第1並列回路と、前記第2並列回路とは、直列に接続され、
    複数の前記第2コイルそれぞれに直列に接続され、直列に接続されている前記第2コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  9. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置において、
    複数の前記第1コイルが並列に接続された第1並列回路と、
    複数の前記第2コイルが並列に接続された第2並列回路とを有し、
    前記第1並列回路と、前記第2並列回路とは、直列に接続され、
    複数の前記第1コイルそれぞれに直列に接続され、直列に接続されている前記第1コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする傾斜磁場コイル装置。
  10. 複数の前記第2コイルそれぞれに直列に接続され、直列に接続されている前記第2コイルを流れる電流を個別に調節する複数の電流調節器を有することを特徴とする請求の範囲第9項に記載の傾斜磁場コイル装置。
  11. 前記電流調節器は、可変抵抗と可変インダクタを有し、
    前記第1コイル又は前記第2コイルの抵抗成分と前記電流調節器の抵抗成分の比率は、
    前記第1コイル又は前記第2コイルのインダクタンス成分と前記電流調節器のインダクタンス成分の比率に略等しいことを特徴とする請求の範囲第1項、第2項、第5項、第6項、第8項、及び第9項のいずれか1項に記載の傾斜磁場コイル装置。
  12. 前記電流調節器は、可変抵抗と可変インダクタを有し、
    前記可変抵抗の抵抗値と前記可変インダクタのインダクタンス値とは、外部から変更可能であることを特徴とする請求の範囲第1項、第2項、第5項、第6項、第8項、及び第9項のいずれか1項に記載の傾斜磁場コイル装置。
  13. 前記電流調節器は、前記磁場分布の強度が線形に傾斜する傾斜方向における傾斜磁場コイル装置の端部か、又は、前記傾斜方向に直交する方向における傾斜磁場コイル装置の端部に設けられることを特徴とする請求の範囲第1項、第2項、第5項、第6項、第8項、及び第9項のいずれか1項に記載の傾斜磁場コイル装置。
  14. 前記電流調節器は、前記漏れ磁場の対称性を向上させるように前記第2コイルに流れる電流値を調整することを特徴とする請求の範囲第1項、第5項、第8項のいずれか1項に記載の傾斜磁場コイル装置。
  15. 前記電流調節器は、前記漏れ磁場の対称性を向上させるように前記第1コイルに流れる電流値を調整することを特徴とする請求の範囲第2項、第6項、第9項のいずれか1項に記載の傾斜磁場コイル装置。
  16. 前記電流調節器は、前記漏れ磁場の分布において、その方向と強度が、前記撮像領域の中心を通る平面に対して面対称となるか、又は、前記撮像領域の中心に対して点対称となるように、前記電流を調整することを特徴とする請求の範囲第1項、第2項、第5項、第6項、第8項、及び第9項のいずれか1項に記載の傾斜磁場コイル装置。
  17. 請求の範囲第1項乃至第16項のいずれか1項に記載の傾斜磁場コイル装置と、
    前記撮像領域に静磁場を作り、前記第2コイルを挟んで前記撮像領域の反対側に配置される磁石装置とを有することを特徴とする磁気共鳴イメージング装置。
  18. 磁気共鳴イメージング装置の撮像領域に強度が線形に傾斜する磁場分布を作る複数の第1コイルと、
    前記第1コイルを挟んで前記撮像領域の反対側に配置され、前記第1コイルが前記反対側に作る漏れ磁場を抑制する複数の第2コイルとを備える傾斜磁場コイル装置の調整方法であって、
    複数の前記第1コイルと複数の前記第2コイルとは、直列に接続され、
    複数の電流調節器が複数の前記第2コイルそれぞれに並列に接続され、
    前記複数の電流調節器によって、複数の前記第2コイルを流れる電流を個別に調節することを特徴とする傾斜磁場コイル装置の調整方法。
JP2013532512A 2011-09-05 2012-08-10 傾斜磁場コイル装置及び磁気共鳴イメージング装置 Active JP5894601B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532512A JP5894601B2 (ja) 2011-09-05 2012-08-10 傾斜磁場コイル装置及び磁気共鳴イメージング装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011192780 2011-09-05
JP2011192780 2011-09-05
PCT/JP2012/070558 WO2013035494A1 (ja) 2011-09-05 2012-08-10 傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置
JP2013532512A JP5894601B2 (ja) 2011-09-05 2012-08-10 傾斜磁場コイル装置及び磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JPWO2013035494A1 true JPWO2013035494A1 (ja) 2015-03-23
JP5894601B2 JP5894601B2 (ja) 2016-03-30

Family

ID=47831945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532512A Active JP5894601B2 (ja) 2011-09-05 2012-08-10 傾斜磁場コイル装置及び磁気共鳴イメージング装置

Country Status (4)

Country Link
US (1) US9689938B2 (ja)
JP (1) JP5894601B2 (ja)
CN (1) CN103747727B (ja)
WO (1) WO2013035494A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145853A (ja) * 2014-02-04 2015-08-13 株式会社エム・アール・テクノロジー 画像撮像ユニット及び画像撮像ユニットの駆動方法
CN104020429A (zh) * 2014-06-06 2014-09-03 南京工程学院 一种梯度线圈并联分层的布线结构和布线方法
DE102015201462B3 (de) * 2015-01-28 2016-05-12 Siemens Aktiengesellschaft Hochfrequenz-Spuleneinheit für eine Magnetresonanz-Bildgebung
KR101901697B1 (ko) * 2016-03-21 2018-11-07 삼성전기 주식회사 코일 장치의 제작 방법 및 코일 장치
CN110824397B (zh) * 2016-12-26 2020-09-08 中国科学院长春光学精密机械与物理研究所 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法
US11269032B2 (en) 2018-05-18 2022-03-08 Synaptive Medical Inc. Method of reducing spatial extent of gradient coil current feeding connectors
CN110007257B (zh) * 2019-05-07 2021-10-12 上海东软医疗科技有限公司 磁共振发射线圈及磁共振设备
US20200355768A1 (en) * 2019-05-10 2020-11-12 Geron BINDSEIL Coil system with different currents driven through the shield and primary coils
KR102302402B1 (ko) * 2019-11-14 2021-09-16 가천대학교 산학협력단 자기공명 영상용 스파이럴 배열 rf 코일
US11199373B1 (en) 2020-03-30 2021-12-14 Next Level Designs, Llc Fire control / trigger mechanism
JP7387533B2 (ja) 2020-06-16 2023-11-28 キヤノンメディカルシステムズ株式会社 傾斜磁場コイル製造方法および傾斜磁場コイル用含浸型
CN115047388B (zh) * 2021-03-09 2023-10-17 宁波健信超导科技股份有限公司 一种磁共振成像梯度线圈的制造组装方法
CN113009395B (zh) * 2021-05-24 2021-09-03 宁波健信核磁技术有限公司 一种并联结构的梯度线圈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289938A (ja) * 1990-04-04 1991-12-19 Yokogawa Medical Syst Ltd 核磁気共鳴イメージング装置
JPH06189931A (ja) * 1992-12-28 1994-07-12 Toshiba Corp Mri用自己シールド型傾斜磁場コイル装置
JPH07163540A (ja) * 1993-12-14 1995-06-27 Toshiba Corp Mriシステムの傾斜磁場装置
JPH07178069A (ja) * 1993-12-21 1995-07-18 Toshiba Corp 磁気共鳴イメージング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL89743A0 (en) * 1989-03-26 1989-09-28 Elscint Ltd Compact shielded gradient coil system
US5406205A (en) * 1989-11-08 1995-04-11 Bruker Analytische Messtechnik Gmbh Gradient-generation system, nuclear spin tomograph, and process for the generation of images with a nuclear-spin tomograph
JP4266110B2 (ja) 2002-08-13 2009-05-20 株式会社東芝 磁気共鳴映像装置
US7230426B2 (en) * 2003-06-20 2007-06-12 General Electric Company Split-shield gradient coil with improved fringe-field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289938A (ja) * 1990-04-04 1991-12-19 Yokogawa Medical Syst Ltd 核磁気共鳴イメージング装置
JPH06189931A (ja) * 1992-12-28 1994-07-12 Toshiba Corp Mri用自己シールド型傾斜磁場コイル装置
JPH07163540A (ja) * 1993-12-14 1995-06-27 Toshiba Corp Mriシステムの傾斜磁場装置
JPH07178069A (ja) * 1993-12-21 1995-07-18 Toshiba Corp 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
US9689938B2 (en) 2017-06-27
CN103747727A (zh) 2014-04-23
CN103747727B (zh) 2016-03-09
US20140176138A1 (en) 2014-06-26
WO2013035494A1 (ja) 2013-03-14
JP5894601B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5894601B2 (ja) 傾斜磁場コイル装置及び磁気共鳴イメージング装置
JP6832852B2 (ja) 磁気共鳴映像法のための強磁性増強
EP1978373A1 (en) Gradient shield coil for a magnetic resonance imaging apparatus
EP1657561A1 (en) Gradient coil apparatus and method of assembly thereof
WO2011040157A1 (ja) 傾斜磁場コイル、及び磁気共鳴イメージング装置
JP5352092B2 (ja) 傾斜磁場コイル装置および磁気共鳴イメージング装置
US7928730B2 (en) Electromagnet apparatus generating a homogeneous magnetic field with ferromagnetic members arranged inside cryogenic vessels
JP5512003B2 (ja) 補正巻線を有する傾斜磁場コイルシステム及びその製造方法
WO2012014914A1 (ja) 傾斜磁場コイル装置、及び、磁気共鳴イメージング装置
JP2002311119A (ja) 超伝導磁石コイル系と磁場成形デバイスを備える高分解能磁気共鳴分光用磁石装置、及び該磁気成形デバイスに関する製造許容公差決定方法
JP5199014B2 (ja) 磁気共鳴イメージング装置
EP3775955B1 (en) Shim irons for a magnetic resonance apparatus
JP2002253530A (ja) 磁極及びそれを用いた磁石装置
JP2007301348A (ja) 磁気共鳴画像診断装置および静磁場補正方法
WO2013122202A1 (ja) 傾斜磁場コイル、及び、磁気共鳴イメージング装置
JP2005192825A (ja) 磁気共鳴イメージング装置
JP2011062360A (ja) 開放型電磁石装置及び磁気共鳴イメージング装置
JP4607297B2 (ja) 磁気共鳴イメージング装置および変動磁場の補正方法
JP5891063B2 (ja) 磁気共鳴イメージング装置
JP4551946B2 (ja) Mri傾斜磁場発生用コイル
KR20160102451A (ko) Mri 시스템을 위한 전자파 간섭 차폐 코일
JPH10155760A (ja) 磁場発生用コイルユニット
WO2019187465A1 (ja) 傾斜磁場コイル装置および磁気共鳴撮像装置
US20180335493A1 (en) Gradient coil assembly for a magnetic resonance apparatus
JP2023154967A (ja) アレイコイル及び製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5894601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250