JPWO2012117518A1 - ハイブリッド車両の駆動制御装置 - Google Patents

ハイブリッド車両の駆動制御装置 Download PDF

Info

Publication number
JPWO2012117518A1
JPWO2012117518A1 JP2013502089A JP2013502089A JPWO2012117518A1 JP WO2012117518 A1 JPWO2012117518 A1 JP WO2012117518A1 JP 2013502089 A JP2013502089 A JP 2013502089A JP 2013502089 A JP2013502089 A JP 2013502089A JP WO2012117518 A1 JPWO2012117518 A1 JP WO2012117518A1
Authority
JP
Japan
Prior art keywords
torque
target
motor
engine
motor generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013502089A
Other languages
English (en)
Other versions
JP5704415B2 (ja
Inventor
雅章 田川
雅章 田川
伊藤 芳輝
芳輝 伊藤
正和 齋藤
正和 齋藤
仁 大熊
仁 大熊
幸弘 細江
幸弘 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Publication of JPWO2012117518A1 publication Critical patent/JPWO2012117518A1/ja
Application granted granted Critical
Publication of JP5704415B2 publication Critical patent/JP5704415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

この発明は、内燃機関と複数のモータジェネレータのイナーシャトルクに配慮し、とくに内燃機関の始動を行う場合に、内燃機関のトルク変動を駆動トルクに影響させないように最適にして、ドラビリや走行フィーリングを向上することを目的とする。そこで、複数のモータジェネレータのそれぞれのトルク指令値を算出し、トルク指令値にそれぞれのフィードバック補正を行うことを可能とするハイブリッド車両の駆動制御装置において、目標エンジン回転速度から求められるイナーシャトルクに基づいて複数のモータジェネレータのトルク指令値に対するイナーシャトルク補正量を算出するイナーシャトルク補正算出手段を設け、モータトルク指令値演算手段は、複数のモータジェネレータのそれぞれのフィードバック補正にイナーシャトルク補正量をそれぞれ加えてモータトルク指令値を出力する。

Description

この発明は、エンジンとモータとを動力源として備えたハイブリッド車両の制御装置に関し、特に目標とする駆動力を出力するために複数の動力源を制御するハイブリッド車両の駆動制御装置に関する。
従来、エンジンの他にモータを備えたハイブリッド自動車が提案されており、例えば後述する特許文献1、特許文献2に記載されているような車両が知られている。
特許文献1に開示されるように、1つのプラネタリギア(3つの回転要素を有する差動歯車機構)と2つの電動機を用いて内燃機関の動力を発電機と駆動軸に分割し発電機で発電した電力を用いて駆動軸に設けた電動機を駆動することにより内燃機関の動力をトルク変換する方式(以下「3軸式」とも呼ぶ。)がある。
上述の特許文献1に記載されている従来技術では、エンジン始動時、エンジン回転速度変化に伴って発電機で発生するイナーシャトルクを発電機の回転速度変化率とイナーシャから算出するとともに、電動機で補正することで、発電機のイナーシャトルクによる駆動軸のトルク変動を抑制している。
また、後述する特許文献2に記載されている従来技術では、電動機の小型化及び電気的損失の低減を目的として、4つの回転要素を有する差動歯車機構の各回転要素に、内燃機関の出力軸、第1のモータジェネレータ(以後「MG1」ともいう。)、第2のモータジェネレータ(以後「MG2」ともいう。)、及び駆動輪に接続される駆動軸を接続し、エンジンの動力とMG1、MG2の動力を合成して駆動軸に出力する方式(以下「4軸式」とも呼ぶ。)が提案されている。
特開平8−232817号公報 特開2002−281607号公報
ところで、従来のハイブリッド車両の駆動制御装置、特に4軸式ハイブリッド車両においては、エンジン始動時などのエンジン回転速度が変化する場合に、エンジン回転速度変化に伴ってMG1の回転速度だけでなく、MG2の回転速度も変化するため、上述の特許文献1に記載されている従来技術ではMG2のイナーシャトルクを補正することができず、駆動軸のトルク変動抑制に関しては不十分であり、改善の余地があった。
この発明は、内燃機関と複数のモータジェネレータを備えたハイブリッドシステムにおけるバッテリヘの充放電がある場合の複数のモータジェネレータの制御として、内燃機関と複数のモータジェネレータのイナーシャトルクに配慮し、とくに内燃機関の始動を行う場合に、内燃機関のトルク変動を駆動トルクに影響させないように最適にして、ドラビリや走行フィーリングを向上することを目的とする。
そこで、この発明は、上述不都合を除去するために、出力軸を有する内燃機関と、駆動輪に接続される駆動軸と、第一と第二のモータジェネレータと、これら複数のモータジェネレータと駆動軸と内燃機関とにそれぞれ連結された4つの回転要素を有する差動歯車機構と、アクセル開度を検出するアクセル開度検出手段と、車両速度を検出する車両速度検出手段と、バッテリの充電状態を検出するバッテリ充電状態検出手段と、前記アクセル開度検出手段により検出されたアクセル開度と前記車両速度検出手段により検出された車両速度とに基づいて目標駆動パワーを設定する目標駆動パワー設定手段と、少なくとも前記バッテリ充電状態検出手段により検出されたバッテリの充電状態に基づいて目標充放電パワーを設定する目標充放電パワー設定手段と、前記目標駆動パワー設定手段と目標充放電パワー設定手段とから目標エンジンパワーを算出する目標エンジンパワー算出手段と、目標エンジンパワーとシステム全体効率とから目標エンジン動作点を設定する目標エンジン動作点設定手段と、前記複数のモータジェネレータのそれぞれのトルク指令値を設定するモータトルク指令値演算手段とを備えるハイブリッド車両の駆動制御装置であって、前記モータトルク指令値演算手段は、前記目標エンジン動作点から求められる目標エンジントルクを含むトルクバランス式と前記目標充放電パワーを含む電力バランス式とを用いて前記複数のモータジェネレータのそれぞれのトルク指令値を算出するとともに、前記目標エンジン動作点から求められる目標エンジン回転速度に実際のエンジン回転速度を収束させるように前記複数のモータジェネレータの前記トルク指令値にそれぞれのフィードバック補正を行うことを可能とするハイブリッド車両の駆動制御装置において、前記目標エンジン回転速度から求められるイナーシャトルクに基づいて前記複数のモータジェネレータの前記トルク指令値に対するイナーシャトルク補正量を算出するイナーシャトルク補正算出手段を設け、前記モータトルク指令値演算手段は、前記複数のモータジェネレータのそれぞれの前記フィードバック補正に前記イナーシャトルク補正量をそれぞれ加えてモータトルク指令値を出力することを特徴とする。
以上詳細に説明した如くこの発明によれば、出力軸を有する内燃機関と、駆動輪に接続される駆動軸と、第一と第二のモータジェネレータと、これら複数のモータジェネレータと駆動軸と内燃機関とにそれぞれ連結された4つの回転要素を有する差動歯車機構と、アクセル開度を検出するアクセル開度検出手段と、車両速度を検出する車両速度検出手段と、バッテリの充電状態を検出するバッテリ充電状態検出手段と、アクセル開度検出手段により検出されたアクセル開度と車両速度検出手段により検出された車両速度とに基づいて目標駆動パワーを設定する目標駆動パワー設定手段と、少なくともバッテリ充電状態検出手段により検出されたバッテリの充電状態に基づいて目標充放電パワーを設定する目標充放電パワー設定手段と、目標駆動パワー設定手段と目標充放電パワー設定手段とから目標エンジンパワーを算出する目標エンジンパワー算出手段と、目標エンジンパワーとシステム全体効率とから目標エンジン動作点を設定する目標エンジン動作点設定手段と、複数のモータジェネレータのそれぞれのトルク指令値を設定するモータトルク指令値演算手段とを備えるハイブリッド車両の駆動制御装置であって、モータトルク指令値演算手段は、目標エンジン動作点から求められる目標エンジントルクを含むトルクバランス式と目標充放電パワーを含む電力バランス式とを用いて複数のモータジェネレータのそれぞれのトルク指令値を算出するとともに、目標エンジン動作点から求められる目標エンジン回転速度に実際のエンジン回転速度を収束させるように複数のモータジェネレータの前記トルク指令値にそれぞれのフィードバック補正を行うことを可能とするハイブリッド車両の駆動制御装置において、目標エンジン回転速度から求められるイナーシャトルクに基づいて複数のモータジェネレータのトルク指令値に対するイナーシャトルク補正量を算出するイナーシャトルク補正算出手段を設け、モータトルク指令値演算手段は、複数のモータジェネレータのそれぞれのフィードバック補正にイナーシャトルク補正量をそれぞれ加えてモータトルク指令値を出力する。
従って、イナーシャに因る駆動トルク変動を抑制できる。
図1はハイブリッド車両の駆動制御装置の制御用のフローチャートである。 図2はハイブリッド車両の駆動制御装置のシステム構成図である。 図3は目標動作点演算のための制御ブロック図である。 図4はモータトルク指令値演算のための制御ブロック図である。 図5はエンジン目標動作点算出制御用のフローチャートである。 図6はトルク指令値算出用のフローチャートである。 図7は目標駆動力と車速とからなる目標駆動力検索マップである。 図8は目標充放電パワーとバッテリ充電状態検出手段とからなる目標充放電パワー検索テーブルである。 図9はエンジントルクとエンジン回転速度とからなる目標エンジン動作点検索マップである。 図10は同一エンジン動作点で車速を変化させた場合の共線図である。 図11はエンジントルクとエンジン回転速度とからなるエンジン効率の最良ラインと全体効率の最良ラインとを示す図である。 図12は効率とエンジン回転速度とからなる等パワーライン上の各効率を示す図である。 図13は等パワー線上の各点(D、E、F)の共線図である。 図14はLOWギア比状態の共線図である。 図15は中間ギア比状態の共線図である。 図16はHIGHギア比状態の共線図である。 図17は動力循環が発生している状態の共線図である。 図18は基本トルクとフィードバックトルクの共線図である。 図19はMG1のみでフィードバックした場合の共線図である。 図20は内燃機関を始動(上昇)させる際のイナーシャトルク及びイナーシャ補正トルクを示す図である。
以下図面に基づいてこの発明の実施例を詳細に説明する。
図1〜図20はこの発明の実施例を示すものである。
図2において、1は図示しないハイブリッド車両の駆動制御装置、つまり、本発明が適用される4軸式の動力入出力装置である。
前記ハイブリッド車両の駆動制御装置1は、図2に示す如く、内燃機関(「E/G」、「ENG」とも記載する。)2と電動機からの出力を用いて車両を駆動制御するために、駆動系として、燃料の燃焼により駆動力を発生させる内燃機関2の出力軸3と、ワンウェイクラッチ4を介して接続され、かつ、電気により駆動力を発生するとともに駆動により電気エネルギを発生する第一のモータジェネレータ(「MG1」、「第1電動機」ともいう。)5及び第二のモータジェネレータ(「MG2」、「第2電動機」ともいう。)6と、ハイブリッド車両の駆動輪7に接続される駆動軸8と、出力軸3と、第一のモータジェネレータ5と、第二のモータジェネレータ6と、駆動軸8にそれぞれ連結された第1プラネタリギア(「PG1」とも記載する。)9及び第2プラネタリギア(「PG2」とも記載する。)10とを備えている。
前記内燃機関2は、アクセル開度(アクセルペダルの踏み込み量)に対応して吸入する空気量を調整するスロットルバルブ等の空気量調整手段11と、吸入する空気量に対応する燃料を供給する燃料噴射弁等の燃料供給手段12と、燃料に着火する点火装置等の着火手段13とを備えている。
前記内燃機関2は、空気量調整手段11と燃料供給手段12と着火手段13とにより燃料の燃焼状態を制御され、燃料の燃焼により駆動力を発生する。
このとき、前記第1プラネタリギア9は、図2に示す如く、第1プラネタリキャリア(「C1」とも記載する。)9−1と、第1リングギア9−2と、第1サンギア9−3と、第1ピニオンギヤ9−4とを有するとともに、前記駆動輪7の駆動軸8に連絡する出力ギア14と、この出力ギヤ14を駆動軸8に接続する歯車やチェーン等からなる出力伝達機構(「歯車機構」または後述する「差動歯車機構」ともいう。)15を有している。
また、前記第2プラネタリギア10は、図2に示す如く、第2プラネタリキャリア(「C2」とも記載する。)10−1と、第2リングギア10−2と、第2サンギア10−3と、第2ピニオンギヤ10−4とを有している。
そして、図2に示す如く、前記第1プラネタリギア9の第1プラネタリキャリア9−1と前記第2プラネタリギア10の第2サンギア10−3とを結合して内燃機関2の出力軸3に接続する。
また、図2に示す如く、前記第1プラネタリギア9の第1リングギア9−2と前記第2プラネタリギア10の第2プラネタリキャリア10−1とを結合して前記駆動軸8に連絡する出力部材である出力ギア14に接続する。
また、前記第一のモータジェネレータ5は、第1モータロータ5−1と第1モータステータ5−2と第1モータロータ軸5−3とからなるとともに、前記第二のモータジェネレータ6は、第2モータロータ6−1と第2モータステータ6−2と第2モータロータ軸6−3とからなる。
そして、図2に示す如く、前記第1プラネタリギア9の第1サンギア9−3に前記第一のモータジェネレータ5の第1モータロータ5−1を接続し、前記第2プラネタリギア10の第2リングギア10−2に前記第二のモータジェネレータ6の第2モータロータ6−1を接続する。
つまり、前記ハイブリッド車両は、前記内燃機関2と前記第一のモータジェネレータ5と前記第二のモータジェネレータ6と前記出力ギア14とから構成される4つの要素を、共線図(図10及び図11参照。)上で、前記第一のモータジェネレータ5、前記出力ギア14、前記第二のモータジェネレータ6の順になるように連結した歯車機構である前記差動歯車機構15を備えている。
従って、前記内燃機関2と前記第一のモータジェネレータ5と前記第二のモータジェネレータ6と前記駆動軸8との間で動力の授受が行われる。
更に、前記第一のモータジェネレータ5の第1モータステータ5−2に第1インバータ16を接続するとともに、前記第二のモータジェネレータ6の第2モータステータ6−2に第2インバータ17を接続する。
そして、これらの第1、第2インバータ16、17により前記第一及び第二のモータジェネレータ5、6を夫々制御する。
また、前記第1、第2インバータ16、17の電源端子は蓄電装置であるバッテリ18に夫々接続する。
前記ハイブリッド車両の駆動制御装置1は、前記内燃機関2と前記第一及び第二のモータジェネレータ5、6とからの出力を用いて車両を駆動制御するものである。
そして、前記ハイブリッド車両の駆動制御装置1は、前記出力軸3を有する前記内燃機関2と、前記駆動輪7に接続される前記駆動軸8と、前記第一及び第2モータジェネレータ5、6と、それら複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6と前記駆動軸8と前記内燃機関2とにそれぞれ連結された4つの回転要素を有する前記差動歯車機構15と、アクセル開度を検出するアクセル開度検出手段19と、車両速度を検出する車両速度検出手段20と、前記バッテリ18の充電状態を検出するバッテリ充電状態検出手段21と、前記アクセル開度検出手段19により検出されたアクセル開度と前記車両速度検出手段20により検出された車両速度とに基づいて目標駆動パワーを設定する目標駆動パワー設定手段22と、少なくとも前記バッテリ充電状態検出手段21により検出されたバッテリ18の充電状態に基づいて目標充放電パワーを設定する目標充放電パワー設定手段23と、前記目標駆動パワー設定手段22と目標充放電パワー設定手段23とから目標エンジンパワーを算出する目標エンジンパワー算出手段24と、目標エンジンパワーとシステム全体効率とから目標エンジン動作点を設定する目標エンジン動作点設定手段25と、前記複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6のそれぞれのトルク指令値Tmg1、Tmg2を設定するモータトルク指令値演算手段26とを備える。
このとき、前記内燃機関2の空気量調整手段11や燃料供給手段12、着火手段13と、前記第一のモータジェネレータ5の第1モータステータ5−2と、前記第二のモータジェネレータ6の第2モータステータ6−2とは、前記ハイブリッド車両の駆動制御装置1の制御系である駆動制御部27に接続されている。
このハイブリッド車両の駆動制御装置1の駆動制御部27は、図2に示す如く、アクセル開度検出手段19と、車両速度検出手段20と、バッテリ充電状態検出手段21と、エンジン回転速度検出手段28とを備えている。
前記アクセル開度検出手段19は、アクセルペダルの踏み込み量であるアクセル開度を検出する。
前記車両速度検出手段20は、ハイブリッド車両の車両速度(車速)を検出する。
前記バッテリ充電状態検出手段21は、前記バッテリ18の充電状態SOCを検出する。
また、目標動作点演算のための前記駆動制御部27は、図2に示す如く、前記目標駆動パワー設定手段22と、前記目標充放電パワー設定手段23と、前記目標エンジンパワー算出手段24と、前記目標エンジン動作点設定手段25と、前記モータトルク指令値演算手段26とを備えている。
前記目標駆動パワー設定手段22は、前記アクセル開度検出手段19により検出されたアクセル開度と、前記車両速度検出手段20により検出された車両速度とに基づいてハイブリッド車両を駆動するための目標駆動パワーを設定する機能を有している。
つまり、前記目標駆動パワー設定手段22は、図3に示す如く、目標駆動力算出部29と目標駆動パワー算出部30とを有し、前記目標駆動力算出部29は、前記アクセル開度検出手段19により検出されたアクセル開度と前記車両速度検出手段20により検出された車両速度とに応じて、図7に示す目標駆動力検索マップにより目標駆動力を設定する。
このとき、「アクセル開度=0」での高車速域は、エンジンブレーキ相当の減速方向の駆動力となるように負の値に設定し、車速が低い領域では、クリープ走行ができるように正の値としている。
また、前記目標駆動パワー算出部30は、前記目標駆動力算出部29にて設定された目標駆動力と前記車両速度検出手段20により検出された車両速度とを乗算して、目標駆動力で車両を駆動するのに必要な目標駆動パワーを算出する。
前記目標充放電パワー設定手段23は、少なくとも前記バッテリ充電状態検出手段21により検出された前記バッテリ18の充電状態SOCに基づいて、目標充放電パワーを設定する。
この実施例においては、バッテリ充電状態SOCに応じて、目標充放電パワーを、図8に示す目標充放電パワー検索マップにより検索して設定する。
前記目標エンジンパワー算出手段24は、前記目標駆動パワー設定手段22により設定された目標駆動パワーと前記目標充放電パワー設定手段23により設定された目標充放電パワーとから、目標エンジンパワーを算出する。
この実施例においては、目標駆動パワーから目標充放電パワーを減算することにより、目標エンジンパワーを得る。
前記目標エンジン動作点設定手段25は、目標エンジンパワーとシステム全体効率とから目標エンジン動作点を設定する。
前記モータトルク指令値演算手段26は、前記複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6のそれぞれのトルク指令値Tmg1、Tmg2を設定する。
トルク指令値演算のための前記駆動制御部27は、図4に示す如く、第1〜第10算出部31〜40を備えている。
前記第1算出部31は、前記目標エンジン動作点設定手段25により演算された目標エンジン回転速度(図3参照。)と前記車両速度検出手段20からの車両速度(車速)とによって、エンジン回転速度が目標エンジン回転速度Netとなった場合の前記第一のモータジェネレータ5のMG1回転速度Nmg1と前記第二のモータジェネレータ6のMG2回転速度Nmg2を算出する。
前記第2算出部32は、前記第1算出部31によって算出されたMG1回転速度Nmg1及びMG2回転速度Nmg2と前記目標エンジン動作点設定手段25により演算された目標エンジントルク(図3参照。)とによって、前記第一のモータジェネレータ5の基本トルクTmg1iを算出する。
前記第3算出部33は、前記エンジン回転速度検出手段28からのエンジン回転速度と前記目標エンジン動作点設定手段25により演算された目標エンジントルク(図3参照。)とによって、前記第一のモータジェネレータ5のフィードバック補正トルクTmg1fbを算出する。
前記第4算出部34は、前記エンジン回転速度検出手段28からのエンジン回転速度と前記目標エンジン動作点設定手段25により演算された目標エンジントルク(図3参照。)とによって、前記第二のモータジェネレータ6のフィードバック補正トルクTmg2fbを算出する。
前記第5算出部35は、前記第2算出部32からの前記第一のモータジェネレータ5の基本トルクTmg1iと前記目標エンジン動作点設定手段25により演算された目標エンジントルク(図3参照。)とによって、前記第二のモータジェネレータ6の基本トルクTmg2iを算出する。
前記第6算出部36は、前記目標エンジン動作点設定手段25により演算された目標エンジン回転速度(図3参照。)から目標エンジン回転加速度Netaを算出する。
前記第7算出部37は、前記第6算出部36にて算出された目標エンジン回転加速度Netaからエンジンイナーシャ補正用MG1トルクTmg1ieを算出する。
前記第8算出部38は、前記第6算出部36にて算出された目標エンジン回転加速度Netaからエンジンイナーシャ補正用MG2トルクTmg2ieを算出する。
前記第9算出部39は、前記第2算出部32からの前記第一のモータジェネレータ5の基本トルクTmg1iと前記第3算出部33からの前記第一のモータジェネレータ5のフィードバック補正トルクTmg1fbと前記第7算出部37からの前記第一のモータジェネレータ5のエンジンイナーシャ補正用MG1トルクTmg1ieとによって、前記第一のモータジェネレータ5のトルク指令値Tmg1を算出する。
前記第10算出部40は、前記第4算出部34からの前記第二のモータジェネレータ6のフィードバック補正トルクTmg2fbと前記第5算出部35からの前記第二のモータジェネレータ6の基本トルクTmg2iと前記第8算出部38からの前記第二のモータジェネレータ6のエンジンイナーシャ補正用MG2トルクTmg2ieとによって、前記第二のモータジェネレータ6のトルク指令値Tmg2を算出する。
また、前記ハイブリッド車両の駆動制御装置1において、前記モータトルク指令値演算手段26は、前記目標エンジン動作点から求められる目標エンジントルクを含むトルクバランス式と前記目標充放電パワーを含む電力バランス式とを用いて前記複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6のそれぞれのトルク指令値Tmg1、Tmg2を算出するとともに、前記目標エンジン動作点から求められる目標エンジン回転速度に実際のエンジン回転速度を収束させるように前記複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6の前記トルク指令値Tmg1、Tmg2にそれぞれのフィードバック補正を行うことを可能とする。
更に、前記モータトルク指令値演算手段26は、前記フィードバック補正を行う際、前記複数のモータジェネレータの前記第一のモータジェネレータ5のトルク補正値(「フィードバック補正トルクTmg1fb」ともいう。)と前記第二のモータジェネレータ6のトルク補正値(「フィードバック補正トルクTmg2fb」ともいう。)とを、実際のエンジン回転速度と前記目標エンジン回転速度との偏差に基づいて算出するとともに、これら前記第一のモータジェネレータ5のトルク補正値であるフィードバック補正トルクTmg1fbと前記第二のモータジェネレータ6のトルク補正値であるフィードバック補正トルクTmg2fbとの比を、前記ハイブリッド車両の駆動制御装置1のレバー比に基づく所定の比となるよう設定する。
さすれば、前記駆動軸8を支点としてトルクの変化に注目したトルクバランス式を用いて、前記内燃機関2のトルク変動を打ち消しているので、前記内燃機関2にトルク変動が生じてもそれを駆動軸トルクに影響を与えないようにできる。
また、前記バッテリ18ヘの充放電がある場合の複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6の制御を行うことができる。
更に、前記内燃機関2の動作点に配慮し、目標とする駆動力確保と目標とする充放電の確保とを両立することができる。
更にまた、複数のモータジェネレータである前記第一及び第二のモータジェネレータ5、6の前記トルク指令値Tmg1、Tmg2をそれぞれ細かく補正することによって、速やかに、エンジン回転速度を目標値に収束させることができる。
従って、エンジン動作点を目標とする動作点に併せることができるので、適切な運転状態とすることができる。
前記差動歯車機構15の前記4つの回転要素を、共線図において順に前記第一のモータジェネレータ5に連結された回転要素、前記内燃機関2に連結された回転要素、前記駆動軸8に連結された回転要素、前記第二のモータジェネレータ6に連結された回転要素の順に並ぶとともに、それらの要素間の相互のレバー比を同順にk1:1:k2として設け、前記第一のモータジェネレータ5のトルク補正値であるフィードバック補正トルクTmg1fbと前記第二のモータジェネレータ6のトルク補正値であるフィードバック補正トルクTmg2fbとを、前記第一のモータジェネレータ5のであるフィードバック補正トルクTmg1fbにk1を乗じた値と前記第二のモータジェネレータ6のトルク補正値であるフィードバック補正トルクTmg2fbに1+k2を乗じた値とが等しくなる関係を維持するように設定する。
従って、同様の4つの回転要素を持つレバー比が異なる前記差動歯車機構15を構成する場合、好適に用いることができる。
前記差動歯車機構15の前記4つの回転要素を、共線図において順に前記第一のモータジェネレータ5に連結された回転要素、前記内燃機関2に連結された回転要素、前記駆動軸8に連結された回転要素、前記第二のモータジェネレータ6に連結された回転要素の順に並ぶとともに、それらの要素問の相互のレバー比を同順にk1:1:k2として設け、前記第一のモータジェネレータ5のトルク補正値であるフィードバック補正トルクTmg1fbと前記第二のモータジェネレータ6のトルク補正値であるフィードバック補正トルクTmg2fbとの関係が前記第一のモータジェネレータ5のトルク補正値であるフィードバック補正トルクTmg1fbにk1を乗じた値と前記第二のモータジェネレータ6のトルク補正値であるフィードバック補正トルクTmg2fbに1+k2を乗じた値とが等しくなるようにフィードバックゲインを設定する。
従って、同様の4つの回転要素を持つレバー比が異なる前記差動歯車機構15を構成する場合、好適に用いることができる。
予めゲインを設定しているので、制御装置のフィードバック制御における演算負荷を極めて小さく抑えることができる。
そして、前記ハイブリッド車両の駆動制御装置1は、前記目標エンジン回転速度から求められるイナーシャトルクに基づいて前記複数のモータジェネレータ5、6の前記トルク指令値に対するイナーシャトルク補正量を算出するイナーシャトルク補正算出手段41を設け、前記モータトルク指令値演算手段26は、前記複数のモータジェネレータ5、6のそれぞれの前記フィードバック補正に前記イナーシャトルク補正量をそれぞれ加えてモータトルク指令値を出力する構成を備えている。
詳述すれば、前記イナーシャトルク補正算出手段41は、図2に示す如く、前記ハイブリッド車両の駆動制御装置1の制御系である前記駆動制御部27に内蔵されている。
従って、イナーシャに因る駆動トルク変動を抑制できる。
また、前記イナーシャトルク補正算出手段41は、前記第一のモータジェネレータ5の前記イナーシャトルク補正量を前記第一のモータジェネレータ5の前記モータトルク指令値に加えて出力し、前記第二のモータジェネレータ6の前記イナーシャトルク補正量を前記第二のモータジェネレータ6の前記モータトルク指令値に加えて出力し、前記内燃機関2の前記イナーシャトルク補正量を前記第一のモータジェネレータ5の前記モータトルク指令値および前記第二のモータジェネレータ6の前記モータトルク指令値に分配して出力する。
従って、前記内燃機関2の始動といった大きなエンジンイナーシャに因るトルク変動を、複数のモータジェネレータ5、6に補正トルクを分配し、また、モータジェネレータのイナーシャは、自己補正することによって、駆動トルクの変動を効率的に抑制できる。
更に、前記イナーシャトルク補正算出手段41は、本制御ルーチンの実行周期の連続する2回の前記目標エンジン回転速度から目標エンジン回転加速度を算出する目標エンジン回転加速度算出手段42を備え、この目標エンジン回転加速度算出手段42とエンジンイナーシャに基づいてエンジンイナーシャトルクを算出するとともに、このエンジンイナーシャトルクを複数のモータジェネレータ5、6と駆動軸8と内燃機関2とにそれぞれ連結された4つの回転要素を有する差動歯車機構15のギヤ比ないしレバー比に基づいて前記第一のモータジェネレータ5の前記モータトルク指令値および前記第二のモータジェネレータ6の前記モータトルク指令値に分配する。
従って、4つの回転要素を有する差動歯車機構15のギヤ比ないしレバー比に基づく適切な配分によって、大きなエンジンイナーシャトルクを第一のモータジェネレータ5のモータトルク指令値および第二のモータジェネレータ6のモータトルク指令値に分配するので、補正の無駄が少なく、効率的にトルク変動の抑制ができる。
追記すれば、前記ハイブリッド車両の駆動制御装置1は、複数のモータジェネレータ5、6のトルク指令値にそれぞれ設定するフィードバック補正量を、複数のモータジェネレータ5、6と駆動軸8と内燃機関2とにそれぞれ連結された4つの回転要素を有する差動歯車機構15のギヤ比ないしレバー比に基づいて関連付けて設定する。
また、前記モータトルク指令値演算手段26は、フィードバック補正を行う際、複数のモータジェネレータ5、6の第一のモータジェネレータ5のトルク補正値と第二のモータジェネレータ6のトルク補正値とを、実際のエンジン回転速度と目標エンジン回転速度との偏差に基づいて算出するとともに、これら第一のモータジェネレータ5のトルク補正値と第二のモータジェネレータ6のトルク補正値との比を、動力入出力装置である前記ハイブリッド車両の駆動制御装置1のレバー比に基づく所定の比となるよう設定する。
これにより、前記駆動軸8を支点としてトルクの変化に注目したトルクバランス式を用いて、内燃機関2のトルク変動を打ち消しているので、内燃機関2にトルク変動が生じてもそれを,駆動軸トルクに影饗を与えないようにできる。
更に、内燃機関2のイナーシャと、第一のモータジェネレータ5のイナーシャと、第二のモータジェネレー夕6のイナーシャは、予め計測により把握し、前記モータトルク指令値演算手段26に内部記憶させておく。
トルクバランス式では、後述する数式(4)に示すように、複数のモータジェネレータ5、6のそれぞれの目標トルクと目標エンジントルクとを、複数のモータジェネレータ5、6と内燃機関2とを機械的に作動連結する動力入出力装置である前記ハイブリッド車両の駆動制御装置1のギヤ比に基づくレバー比に基づいて、バランスしている。
このとき、前記差動歯車機構15の前記4つの回転要素を、共線図において順に第一のモータジェネレータ5に連絡された回転要素、内燃機関2に連結された回転要素、駆動軸8に連結された回転要素、第二のモータジェネレータ6に連結された回転要素の順に並ぶとともに、それらの要素間の相互のレバー比を同順にk1:1:k2として設けている。
そして、第一のモータジェネレータ5のトルク補正値と第二のモータジェネレータ6のトルク補正値とを、第一のモータジェネレータ5のトルク補正値にk1を乗じた値と第二のモータジェネレータ6のトルク補正値に1+k2を乗じた値とが等しくなる関係を維持するように設定する。
同様の4つの回転要素を持つレバー比が異な差動歯車機構15を構成する場合、好適に用いることができる。
さすれば、前記バッテリ18ヘの充放電がある場合の複数のモータジェネレータ5、6の制御を行うことができる。
また、前記内燃機関2の動作点に配慮し、目標とする駆動力確保と目標とする充放電の確保とを両立することができる。
更に、複数のモータジェネレータ5、6の前記トルク指令値をそれぞれ細かく補正することによって、速やかに、エンジン回転速度を目標値に収束させることができる。
更にまた、エンジン動作点を目標とする動作点に併せることができるので、適切な運転状態とすることができる。
次に作用を説明する。
図5のエンジン目標動作点算出制御用のフローチャートでは運転者のアクセル操作量と車速から目標エンジン動作点(目標エンジン回転速度、目標エンジントルク)を演算し、図6のモータトルク指令値算出用のフローチャートでは目標エンジン動作点に基づいて前記第一のモータジェネレータ5と前記第二のモータジェネレータ6との目標トルクを演算する。
先ず、図5のエンジン目標動作点算出制御用のプログラムがスタート(101)すると、アクセル開度センサからなる前記アクセル開度検出手段19からのアクセル開度の検出信号や車速センサからなる前記車両速度検出手段20からの車両速度の検出信号、前記バッテリ充電状態検出手段21からの前記バッテリ18の充電状態SOCの検出信号、つまり制御に用いる各種信号の取り込みを行うステップ(102)に移行する。
そして、図7に示す目標駆動力検出マップから目標駆動力を検出するステップ(103)に移行する。
このステップ(103)は、図7に示す目標駆動力検出マップから車速とアクセル開度に応じた目標駆動力を算出するものである。
このとき、「アクセル開度=0」の場合、高車速域ではエンジンブレーキ相当の減速方向の駆動力となるように負の値に設定し、車速が低い領域では、クリープ走行ができるように正の値とする。
また、図7の目標駆動力検出マップから目標駆動力を検出するステップ(103)にて算出した目標駆動力と車速とを乗算して目標駆動パワーを算出するステップ(104)に移行する。
このステップ(104)は、ステップ(103)にて算出した目標駆動力と車速とを乗算し、目標駆動力で車両を駆動するのに必要なパワーである目標駆動パワーを算出するものである。
更に、図8の目標充放電パワー検索テーブルから目標充放電パワーを算出するステップ(105)に移行する。
このステップ(105)は、前記バッテリ18の充電状態SOCを通常使用範囲内に制御するために、目標とする充放電量を図8に開示する目標充放電パワー検索テーブルから算出するものである。
このとき、ステップ(105)において、前記バッテリ18の充電状態SOCが低い場合には、充電パワーを大きくして前記バッテリ18の過放電を防止し、前記バッテリ18の充電状態SOCが高い場合には、放電パワーを大きくして過充電を防止する。
更にまた、目標エンジンパワーを算出するステップ(106)に移行する。
このステップ(106)は、目標駆動パワーと目標充放電パワーとから前記内燃機関2が出力すべきパワーである目標エンジンパワーを算出するものである。
このとき、前記内燃機関2が出力すべきパワーは、車両の駆動に必要なパワーに前記バッテリ18を充電するパワーを加算(放電の場合は減算)した値となる。
ここでは、充電側の負の値として取り扱っているので、目標駆動パワーから目標充放電パワーを減算して、目標エンジンパワーを算出する。
また、図9の目標エンジン動作点検索マップから目標エンジン動作点を算出するステップ(107)に移行する。
このステップ(107)は、図9に開示する目標エンジン動作点検索マップから、目標エンジンパワーと車速に応じた目標エンジン動作点とを算出するものである。
上述の図9の目標エンジン動作点検索マップから目標エンジン動作点を算出するステップ(107)の後には、リターン(108)に移行する。
なお、図9の目標エンジン動作点検索マップは、等パワーライン上で前記内燃機関2の効率に前記差動歯車機構15と前記第一及び第二のモータジェネレータ5、6とにより構成される動力伝達系の効率を加味した全体の効率が良くなるポイントを各パワー毎に選定して結んだラインを目標動作点ラインとして設定する。
そして目標動作点ラインは各車速毎に設定する。
このとき、設定値は実験的に求めてもよいし、前記内燃機関2、前記第一のモータジェネレータ5、前記第二のモータジェネレータ6の効率から計算して求めてもよい。
なお、目標動作点ラインは車速が高くなるに連れて高回転側に移動する設定としている。
その理由を以下に記載する。
車速によらず同一のエンジン動作点を目標エンジン動作点とした場合、図10に示す如く、車速が低い場合には前記第一のモータジェネレータ5の回転速度は正となり、前記第一のモータジェネレータ5が発電機、前記第二のモータジェネレータ6が電動機となる(点A参照。)。
そして、車速が高くなるに連れて前記第一のモータジェネレータ5の回転速度は0に近づき(点B参照。)、さらに車遠が高くなると前記第一のモータジェネレータ5の回転速度は負となり、この状態になると前記第一のモータジェネレータ5は電動機として作動するとともに、前記第二のモータジェネレータ6は発電機として作動する(点C参照。)。
車速が低い場合(点A、Bの状態)にパワーの循環は起きないので、目標動作点は、図9の車速=40km/hの目標動作点ラインのように、概ねエンジン効率の良いポイントに近いものとなる。
しかし、車速が高い場合(点Cの状態)になると、前記第一のモータジェネレータ5は電動機として作動するとともに、前記第二のモータジェネレータ6は発電機として作動し、パワー循環が発生するため動力伝達系の効率が低下する。
従って、図12の点Cに示すように、前記内燃機関2の効率が良くても動力伝達系の効率が低下するため、全体としての効率が低下してしまう。
そこで、高車速域でパワー循環が発生しないようにするには、図13に示す共線図の点Eのように前記第一のモータジェネレータ5の回転速度を0以上にすればよいが、そうすると前記内燃機関2の回転速度が高くなる方へ動作点が移動するので、図12の点Eに示すように、動力伝達系の効率が良くなっても前記内燃機関2の効率が大きく低下するので全体としての効率は低下してしまう。
従って、図12に示すように全体としての効率が良いポイントは両者の間の点Dとなり、このポイントを目標動作点とすれば最も効率のよい運転が可能となる。
以上、点C、点D、点Eの3つの動作点を目標動作点検索マップ上に表したのが図11であり、車速が高い場合には全体効率が最良となる動作点がエンジン効率が最良となる動作点より高回転側に移動することが判る。
次に、目標とする駆動力を出力しつつ、前記バッテリ18の充放電量を目標値とするための前記第一のモータジェネレータ5と前記第二のモータジェネレータ6の目標トルク演算について、図6のモータトルク指令値算出用のフローチャートに沿って説明する。
先ず、図6のモータトルク指令値算出用のプログラムがスタート(201)すると、前記第一のモータジェネレータ5のMG1回転速度Nmg1tと前記第二のモータジェネレータ6のMG2回転速度Nmg2tと算出するステップ(202)に移行する。
このステップ(202)においては、車速から遊星ギアの駆動軸回転速度Noを算出する。
そして、エンジン回転速度が目標エンジン回転速度Netとなった場合の前記第一のモータジェネレータ5のMG1回転速度Nmg1tと前記第二のモータジェネレータ6のMG2回転速度Nmg2tを以下の式により算出する。
この数式は遊星ギアの回転速度の関係から求められる。
Figure 2012117518
Figure 2012117518
ここで、k1、k2は後述するように遊星ギアのギア比により定まる値である。
次に、ステップ(202)で求めた前記第一のモータジェネレータ5のMG1回転速度Nmg1tと前記第二のモータジェネレータ6のMG2回転速度Nmg2t、及び、目標充放電パワーPbatt、目標エンジントルクTet、から前記第一のモータジェネレータ5の基本トルクTmg1iを算出するステップ(203)に移行する。
このステップ(203)においては、前記第一のモータジェネレータ5の基本トルクTmg1iを以下の数式(3)により算出する。
Figure 2012117518
この数式(3)は以下に示す遊星ギアに入力されるトルクのバランスを表す数式(4)、及び、前記第一のモータジェネレータ5と前記第二のモータジェネレータ6とで発電又は消費される電力とバッテリ18ヘの入出力電力(Pbatt)が等しいことを表す数式(5)から成る連立方程式を解くことにより導き出せる。
Figure 2012117518
Figure 2012117518
そして、前記第一のモータジェネレータ5の基本トルクTmg1iを算出するステップ(203)の後に、前記第一のモータジェネレータ5の基本トルクTmg1i、目標エンジントルクから前記第二のモータジェネレータ6の基本トルクTmg2iを算出するステップ(204)に移行する。
このステップ(204)においては、前記第二のモータジェネレータ6の基本トルクTmg2iを以下の数式(6)により算出する。
Figure 2012117518
この数式(6)は上記の数式(4)から導き出したものである。
また、前記第二のモータジェネレータ6の基本トルクTmg2iを算出するステップ(204)の後に、前記第一及び第二のモータジェネレータ5、6のフィードバック補正トルクTmg1fb、Tmg2fbを算出するステップ(205)に移行する。
このステップ(205)においては、エンジン回転速度を目標に近づけるために、エンジン回転速度の目標値との偏差に予め設定した所定のフィードバックゲインを乗算し、前記第一及び第二のモータジェネレータ5、6のフィードバック補正トルクTmg1fb、Tmg2fbを算出するものである。
ここで用いるフィードバックゲインは、その比が
Figure 2012117518
となるように設定しておく。
こうすることによりフィードバック補正トルクの比が、
Figure 2012117518
となり、エンジントルクが変動しても駆動軸トルクが変動しないようにすることができる。
ここで、駆動軸トルクが変動しない理由について説明する。
比較のため、仮にエンジン回転速度を目標値に近づけるために前記第一のモータジェネレータ5のみフィードバックを行なった場合を想定する。
この場合の共線図を図19に示す。
トルクの変化量に着目してトルクバランス式に基づきエンジントルクが目標トルクに対してΔTeだけ変化した場合のMG1トルクのフィードバック補正トルクTmg1fbを計算すると、
Figure 2012117518
となる。
但し、ΔTeは不明であるため、実際には前述のようにMG1トルクのフィードバック補正トルクTmg1fbは回転速度フィードバックにより算出している。
そして、駆動軸トルクの変化量ΔToは
Figure 2012117518
となり、エンジントルクの変化により駆動軸トルクが変化してしまうことが判る。
これに対し、本発明のように前記第一のモータジェネレータ5のフィードバック補正に加えて前記第二のモータジェネレータ6もフィードバック補正する場合について説明する。
この場合の共線図を図18に示す。
前記駆動軸8を支点としてトルクの変化量に着目したトルクバランス式は、
Figure 2012117518
となり、駆動軸トルクの変化量は各トルクの変化量の和に等しいので、
Figure 2012117518
となり、駆動軸トルクの変化量が無い場合にはΔTo=0となるので、
Figure 2012117518
となり、上記の数式(11)と数式(13)を解くと前述の数式(8)となり、この関係が成立すればエンジントルクが変化しても駆動軸トルクは変化しないことが判る。
上述の前記第一及び第二のモータジェネレータ5、6のフィードバック補正トルクTmg1fb、Tmg2fbを算出するステップ(205)の後には、前記第一及び第二のモータジェネレータ5、6の制御用トルク指令値Tmg1、Tmg2を算出するステップ(206)に移行する。
このステップ(206)においては、各フィードバック補正トルクを各基本トルクに加算して、前記第一及び第二のモータジェネレータ5、6の制御用トルク指令値Tmg1、Tmg2を算出するものである。
そして、この制御用トルク指令値Tmg1、Tmg2に従って前記第一及び第二のモータジェネレータ5、6を制御することにより、エンジントルクが外乱によって変動しても目標とする駆動力を出力しつつ、前記バッテリ18ヘの充放電を目標値に近い値とすることができる。
上述の前記第一及び第二のモータジェネレータ5、6の制御用トルク指令値Tmg1を算出するステップ(206)の後には、リターン(207)に移行する。
図14〜図17には代表的な動作状態での共線図を示す。
ここで、遊星ギアのギア比により定まる値k1、k2は下記のように定義される。
k1=ZR1/ZS1
k2=ZS2/ZR2
ZS1:PG1サンギア歯数
ZR1:PG1リングギア歯数
ZS2:PG2サンギア歯数
ZR2:PG2リングギア歯数
次に各動作状態について共線図を用いて説明する。
なお、回転速度は前記内燃機関2の回転方向を正方向とし、各軸に入出力されるトルクは前記内燃機関2のトルクと同じ向きのトルクが入力される方向を正として定義する。
従って駆動軸トルクが正の場合は車両を後方へ駆動しようとするトルクが出力されている状態(前進時であれば減速、後進時であれば駆動)であり、駆動軸トルクが負の場合は車両を前方へ駆動しようとするトルクが出力されている状態(前進時であれば駆動、後進時であれば減速)である。
モータによる発電や力行(動力を車輪(駆動輪)に伝えて加速、または上り勾配で均衡速度を保つこと)を行う場合、インバータやモータでの発熱による損失が発生するため電気エネルギと機械的エネルギとの間で変換を行う場合の効率は100%ではないが、説明を簡単にするため損失は無いと仮定して説明する。
現実として損失を考慮する場合には、損失により失われるエネルギの分だけ余分に発電するように制御すればよい。
(1)LOWギア比状態
内燃機関により走行し、前記第二のモータジェネレータ6の回転速度が0の状態である。
この時の共線図を図14に示す。
前記第二のモータジェネレータ6の回転速度は0であるため電力は消費しない。
従って、蓄電池への充放電が無い場合には、前記第一のモータジェネレータ5で発電を行う必要はないため、前記第一のモータジェネレータ5のトルク指令値Tmg1は0となる。
また、エンジン回転速度と駆動軸回転速度の比は(1+k2)/k2となる。
(2)中間ギア比状態
前記内燃機関2により走行し、前記第一のモータジェネレータ5及び前記第二のモータジェネレータ6の回転速度が正の状態である。
この時の共線図を図15に示す。
この場合、蓄電池への充放電が無い場合、前記第一のモータジェネレータ5は回生となり、この回生電力を用いて前記第二のモータジェネレータ6を力行させる。
(3)HIGHギア比状態
前記内燃機関2により走行し、前記第一のモータジェネレータ5の回転速度が0の状態である。
この時の共線図を図16に示す。
前記第一のモータジェネレータ5の回転速度は0であるため回生はしない。
従って、蓄電池への充放電が無い場合には、前記第二のモータジェネレータ6での力行や回生は行わず、前記第二のモータジェネレータ6のトルク指令値Tmg2は0となる。
またエンジン回転速度と駆動軸回転速度の比は
k1/(1+k1)
となる。
(4)動力循環が発生している状態
HIGHギア比状態よりさらに車速が高い状態では、前記第一のモータジェネレータ5が逆回転する状態となる。
この状態では前記第一のモータジェネレータ5は力行となり電力を消費する。
従って蓄電池への充放電がない場合には前記第二のモータジェネレータ6(5)が回生となり発電を行う。
つまり、この発明の実施例において前提となる構成を、エンジン回転速度を目標回転に近づけるようにするための前記第一のモータジェネレータ5と前記第二のモータジェネレータ6の回転フィードバックトルクを、エンジン回転速度と目標エンジン回転速度との偏差に基づき算出するとともに、前記第一のモータジェネレータ5と前記第二のモータジェネレータ6のフィードバックトルクの比を駆動軸トルクに影響を与えないようなプラネタリギアのギア比に基づく所定の比となるようにする。
そして、この発明の実施例は、MG2フィードバックトルク=k1/(1+k2)*MG1フィードバックトルク、となるように制御する。
また、MG2フィードバックゲイン=k1/(1+k2)*MG1フィードバックゲイン、となるようにフィードバックゲインを設定する。
これにより、エンジン出力トルクが目標トルクに対して変化しても、駆動力が変動しないようにできるという効果を奏する。
また、図1の前記ハイブリッド車両の駆動制御装置1の制御用のフローチャートに沿って説明する。
なお、図1の前記ハイブリッド車両の駆動制御装置1の制御用のフローチャートのルーチンは周期的に実行される。
図1の前記ハイブリッド車両の駆動制御装置1の制御用のプログラムがスタート(301)すると、アクセル開度センサからなる前記アクセル開度検出手段19からのアクセル開度の検出信号や車速センサからなる前記車両速度検出手段20からの車両速度の検出信号、前記バッテリ充電状態検出手段21からの前記バッテリ18の充電状態SOCの検出信号、そして、制御に用いる本制御に用いる目標エンジン回転速度、目標エンジン回転速度前回値などの各種信号の取り込みを行うステップ(302)に移行する。
なお、目標エンジン回転速度前回値とは、周期的に実行されている本ルーチンの一周期前の目標エンジン回転速度である。
この各種信号の取り込みを行うステップ(302)の後には、このステップ(302)で取り込んだ目標エンジン回転速度、目標エンジン回転速度前回値から数式(14)を用いて目標エンジン回転加速度Netaを算出するステップ(303)に移行する。
Figure 2012117518
そして、上述のステップ(303)で求めた目標エンジン回転加速度Netaと予め設定された内燃機関2のイナーシャから数式(15)を用いてエンジンイナーシャトルクTieを算出するステップ(304)に移行する。
Figure 2012117518
エンジンイナーシャトルクTieを算出するステップ(304)の後には、このステップ(304)で求めたエンジンイナーシャトルクTieから数式(16)、数式(17)を用いてエンジンイナーシャ補正用MG1トルクTmg1ie、エンジンイナーシャ補正用MG2トルクTmg2ieを算出するステップ(305)に移行する。
なお、本実施例は4軸式のため、エンジンイナーシャトルクをMG1とMG2の両方で補正することにより、駆動軸8のトルク変動を抑制することが可能である。
Figure 2012117518
Figure 2012117518
そして、このステップ(305)の後には、上述のステップ(303)で求めた目標エンジン回転加速度Netaから数式(18)、数式(19)を用いて目標MG1回転加速度Nmg1ta、目標MG2回転加速度Nmg2taを算出するステップ(306)に移行する。
このとき、目標MG1回転加速度Nmg1ta、目標MG2回転加速度Nmg2taは、目標エンジン回転加速度Netaからレバー比を用いて求めることができる。
Figure 2012117518
Figure 2012117518
また、目標MG1回転加速度Nmg1ta、目標MG2回転加速度Nmg2taを算出するステップ(306)の後には、このステップ(306)で求めた目標MG1回転加速度Nmg1ta、目標MG2回転加速度Nmg2taから数式(20)、数式(21)を用いてMG1イナーシャ補正用MG1トルクTmg1img1、MG2イナーシャ補正用MG2トルクTmg2img2を算出するステップ(306)に移行する。
Figure 2012117518
Figure 2012117518
そして、このMG1イナーシャ補正用MG1トルクTmg1img1、MG2イナーシャ補正用MG2トルクTmg2img2を算出するステップ(306)の後には、上述のステップ(305)で求めたエンジンイナーシャ補正用MG1トルクTmg1ie、エンジンイナーシャ補正用MG2トルクTmg2ie、及び、ステップ(306)で求めたMG1イナーシャ補正用MG1トルクTmg1img1、MG2イナーシャ補正用MG2トルクTmg2img2から数式(22)、数式(23)を用いてイナーシャ補正用MG1トルクTmg1in、イナーシャ補正用MG2トルクTmg2inを算出するステップ(308)に移行する。
このステップ(308)では、内燃機関2を始動(上昇)させる際のイナーシャトルク、及び、イナーシャ補正トルクは、図20の通りとなる。
この図20に示す通り、動力源のイナーシャトルクを補正することにより、出力軸3へのトルク変動はない。
Figure 2012117518
Figure 2012117518
更に、イナーシャ補正用MG1トルクTmg1in、イナーシャ補正用MG2トルクTmg2inを算出するステップ(308)の後には、一周期後の本ルーチン計算用に、本ルーチンで使用した目標エンジン回転速度を目標エンジン回転速度前回値として保存するステップ(309)に移行する。
そして、ステップ(310)では、図6のフローチャートにより求めた前記第一及び第二のモータジェネレータ5、6の制御用トルク指令値Tmg1、Tmg2に、ステップ(308)で求めたイナーシャ補正用MG1トルクTmg1in、イナーシャ補正用MG2トルクTmg2inをそれぞれ加算し、前記第一のモータジェネレータ5の制御用最終トルク指令値Tmg1_finalと前記第二のモータジェネレータ6の制御用最終トルク指令値Tmg2_finalを算出する。
最後に、これら前記第一及び第二のモータジェネレータ5、6の制御用最終トルク指令値Tmg1_final、Tmg2_finalを算出するステップ(310)の後には、リターン(311)に移行してスタート(301)からの制御フローを繰り返す。
つまり、この発明の実施例は、主要な構成を、動力源として内燃機関と少なくとも2つのモータを有し、動力分割合成機構を介して駆動軸に接続されたハイブリッド車両において、内燃機関及び2つのモータのイナーシャトルクを駆動軸にトルク変動が発生しないように2つのモータで補正する。
また、ハイブリッド車両において、MG1のイナーシャをMG1で補正し、MG2のイナーシャをMG2で補正するとともに、内燃機関のイナーシャを駆動軸にトルク変動が発生しないように2つのモータで補正する。
これにより、動力源のイナーシャトルクによる駆動軸のトルク変動を抑制できるという効果を奏する。
1 ハイブリッド車両の駆動制御装置
2 内燃機関(「E/G」、「ENG」とも記載する。)
3 出力軸
4 ワンウェイクラッチ
5 第一のモータジェネレータ(「MG1」、「第1電動機」ともいう。)
6 第二のモータジェネレータ(「MG2」、「第2電動機」ともいう。)
7 駆動輪
8 駆動軸
9 第1プラネタリギア(「PG1」とも記載する。)
10 第2プラネタリギア(「PG2」とも記載する。)
11 空気量調整手段
12 燃料供給手段
13 着火手段
14 出力ギア
15 差動歯車機構
16 第1インバータ
17 第2インバータ
18 バッテリ
19 アクセル開度検出手段
20 車両速度検出手段
21 バッテリ充電状態検出手段
22 目標駆動パワー設定手段
23 目標充放電パワー設定手段
24 目標エンジンパワー算出手段
25 目標エンジン動作点設定手段
26 モータトルク指令値演算手段
27 駆動制御部
28 エンジン回転速度検出手段
29 目標駆動力算出部
30 目標駆動パワー算出部
31〜40 第1〜第10算出部
41 イナーシャトルク補正算出手段
42 目標エンジン回転加速度算出手段

Claims (3)

  1. 出力軸を有する内燃機関と、駆動輪に接続される駆動軸と、第一と第二のモータジェネレータと、これら複数のモータジェネレータと駆動軸と内燃機関とにそれぞれ連結された4つの回転要素を有する差動歯車機構と、アクセル開度を検出するアクセル開度検出手段と、車両速度を検出する車両速度検出手段と、バッテリの充電状態を検出するバッテリ充電状態検出手段と、前記アクセル開度検出手段により検出されたアクセル開度と前記車両速度検出手段により検出された車両速度とに基づいて目標駆動パワーを設定する目標駆動パワー設定手段と、少なくとも前記バッテリ充電状態検出手段により検出されたバッテリの充電状態に基づいて目標充放電パワーを設定する目標充放電パワー設定手段と、前記目標駆動パワー設定手段と目標充放電パワー設定手段とから目標エンジンパワーを算出する目標エンジンパワー算出手段と、目標エンジンパワーとシステム全体効率とから目標エンジン動作点を設定する目標エンジン動作点設定手段と、前記複数のモータジェネレータのそれぞれのトルク指令値を設定するモータトルク指令値演算手段とを備えるハイブリッド車両の駆動制御装置であって、前記モータトルク指令値演算手段は、前記目標エンジン動作点から求められる目標エンジントルクを含むトルクバランス式と前記目標充放電パワーを含む電力バランス式とを用いて前記複数のモータジェネレータのそれぞれのトルク指令値を算出するとともに、前記目標エンジン動作点から求められる目標エンジン回転速度に実際のエンジン回転速度を収束させるように前記複数のモータジェネレータの前記トルク指令値にそれぞれのフィードバック補正を行うことを可能とするハイブリッド車両の駆動制御装置において、前記目標エンジン回転速度から求められるイナーシャトルクに基づいて前記複数のモータジェネレータの前記トルク指令値に対するイナーシャトルク補正量を算出するイナーシャトルク補正算出手段を設け、前記モータトルク指令値演算手段は、前記複数のモータジェネレータのそれぞれの前記フィードバック補正に前記イナーシャトルク補正量をそれぞれ加えてモータトルク指令値を出力することを特徴とするハイブリッド車両の駆動制御装置。
  2. 前記イナーシャトルク補正算出手段は、前記第一のモータジェネレータの前記イナーシャトルク補正量を前記第一のモータジェネレータの前記モータトルク指令値に加えて出力し、前記第二のモータジェネレータの前記イナーシャトルク補正量を前記第二のモータジェネレータの前記モータトルク指令値に加えて出力し、前記内燃機関の前記イナーシャトルク補正量を前記第一のモータジェネレータの前記モータトルク指令値および前記第二のモータジェネレータの前記モータトルク指令値に分配して出力することを特徴とする請求項1に記載のハイブリッド車両の駆動制御装置。
  3. 前記イナーシャトルク補正算出手段は、本制御ルーチンの実行周期の連続する2回の前記目標エンジン回転速度から目標エンジン回転加速度を算出する目標エンジン回転加速度算出手段を備え、この目標エンジン回転加速度算出手段とエンジンイナーシャに基づいてエンジンイナーシャトルクを算出するとともに、このエンジンイナーシャトルクを複数のモータジェネレータと駆動軸と内燃機関とにそれぞれ連結された4つの回転要素を有する差動歯車機構のギヤ比ないしレバー比に基づいて前記第一のモータジェネレータの前記モータトルク指令値および前記第二のモータジェネレータの前記モータトルク指令値に分配することを特徴とする請求項2に記載のハイブリッド車両の駆動制御装置。
JP2013502089A 2011-03-01 2011-03-01 ハイブリッド車両の駆動制御装置 Active JP5704415B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054609 WO2012117518A1 (ja) 2011-03-01 2011-03-01 ハイブリッド車両の駆動制御装置

Publications (2)

Publication Number Publication Date
JPWO2012117518A1 true JPWO2012117518A1 (ja) 2014-07-07
JP5704415B2 JP5704415B2 (ja) 2015-04-22

Family

ID=46757480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013502089A Active JP5704415B2 (ja) 2011-03-01 2011-03-01 ハイブリッド車両の駆動制御装置

Country Status (3)

Country Link
JP (1) JP5704415B2 (ja)
CN (1) CN103517842B (ja)
WO (1) WO2012117518A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227451B2 (ja) * 2014-03-14 2017-11-08 株式会社豊田中央研究所 回転電機及びその制御装置並びに回転電機制御システム
JP2017100626A (ja) * 2015-12-03 2017-06-08 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法
JP6399039B2 (ja) * 2016-05-18 2018-10-03 トヨタ自動車株式会社 ハイブリッド自動車
JP6421791B2 (ja) * 2016-07-15 2018-11-14 トヨタ自動車株式会社 車両の駆動制御装置
KR102647187B1 (ko) * 2016-12-13 2024-03-12 현대자동차주식회사 하이브리드 차량의 토크 제어 방법 및 시스템
CN114032990A (zh) * 2020-07-29 2022-02-11 四川鼎鸿智电装备科技有限公司 工程机械
CN114248752B (zh) * 2020-09-24 2024-04-12 广州汽车集团股份有限公司 动力分配方法、动力控制方法、车载控制器、汽车及介质
CN114274942A (zh) * 2022-01-14 2022-04-05 中国第一汽车股份有限公司 一种混合动力汽车电池充放电功率控制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127123B2 (ja) * 2003-06-06 2008-07-30 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置及びハイブリッド型車両駆動制御方法
JP2005016570A (ja) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd ハイブリッド車のモード遷移制御装置
JP3858885B2 (ja) * 2003-11-18 2006-12-20 日産自動車株式会社 ハイブリッド変速機の変速比制御装置
KR100954716B1 (ko) * 2004-04-27 2010-04-23 도요타 지도샤(주) 차량용 구동 시스템을 위한 제어 장치
JP4192911B2 (ja) * 2005-03-29 2008-12-10 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4215030B2 (ja) * 2005-05-31 2009-01-28 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2008012992A (ja) * 2006-07-04 2008-01-24 Suzuki Motor Corp ハイブリッド車両の駆動制御装置

Also Published As

Publication number Publication date
WO2012117518A1 (ja) 2012-09-07
CN103517842B (zh) 2016-08-17
JP5704415B2 (ja) 2015-04-22
CN103517842A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5818231B2 (ja) ハイブリッド車両の駆動制御装置
WO2012111124A1 (ja) ハイブリッド車両の駆動制御装置
JP5704415B2 (ja) ハイブリッド車両の駆動制御装置
JP5765596B2 (ja) ハイブリッド車両の駆動制御装置
US9026293B2 (en) Drive control device of hybrid vehicle
JP5818174B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP5765597B2 (ja) ハイブリッド車両の駆動制御装置
US8983700B2 (en) Drive control device of hybrid vehicle
WO2012111123A1 (ja) ハイブリッド車両の制御装置
JP5709093B2 (ja) ハイブリッド車両のエンジン始動制御装置
WO2012111122A1 (ja) ハイブリッド車両の駆動制御装置
JP5709092B2 (ja) ハイブリッド車両のエンジン始動制御装置
WO2012105044A1 (ja) ハイブリッド車両の駆動制御装置
WO2012111084A1 (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150211

R151 Written notification of patent or utility model registration

Ref document number: 5704415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151