JPWO2011115242A1 - レーザによる二つの物質の重ね合わせ接合方法及び接合装置 - Google Patents

レーザによる二つの物質の重ね合わせ接合方法及び接合装置 Download PDF

Info

Publication number
JPWO2011115242A1
JPWO2011115242A1 JP2012505759A JP2012505759A JPWO2011115242A1 JP WO2011115242 A1 JPWO2011115242 A1 JP WO2011115242A1 JP 2012505759 A JP2012505759 A JP 2012505759A JP 2012505759 A JP2012505759 A JP 2012505759A JP WO2011115242 A1 JPWO2011115242 A1 JP WO2011115242A1
Authority
JP
Japan
Prior art keywords
gap
pulse train
energy short
short pulse
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012505759A
Other languages
English (en)
Other versions
JP5747912B2 (ja
Inventor
道春 太田
道春 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2012505759A priority Critical patent/JP5747912B2/ja
Publication of JPWO2011115242A1 publication Critical patent/JPWO2011115242A1/ja
Application granted granted Critical
Publication of JP5747912B2 publication Critical patent/JP5747912B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】二つの物質を重ね合わせたときにできる対向面間のギャップをなくすことなく接合できるレーザによる二つの物質の重ね合わせ接合方法及び装置を提供すること。【解決手段】二つの物質6、7を重ね合わせた重ね合わせ対向面6a、7a間のギャップG近傍に高エネルギ短パルスレーザを集光レンズ4で集光照射し多光子吸収を起こして接合する接合方法であって、第1高エネルギ短パルスレーザL1をギャップG近傍に集光照射し多光子吸収を起してギャップGを減少させるギャップ減少ステップと、前記ギャップ減少ステップで減少したギャップ部に第2高エネルギ短パルスレーザL2を集光照射して二つの物質6、7を接合する接合ステップと、を有することを特徴とする。

Description

本発明は、二つの物質を重ね合わせた重ね合わせ部に一方の物質を透過させて高エネルギ短パルスレーザを集光照射し多光子吸収を起こして接合する接合方法及び接合装置に関する。
二つの物質を上下に重ね合わせて接合するためには、上の物質で吸収される波長のレーザを上の物質表面付近に集光して重ね合わせ部まで達する深とけ込みを起こさせる必要がある。深とけ込みを起こさせるためには、高パワーのレーザを必要とする。また、高パワーで接合すると熱歪みが大きくなり、高パワーによる接合は精密部品には適していなかった。
最近、上記の問題を解消するために、上の物質で吸収されない波長の高エネルギ短パルスレーザを上の物質表面側から重ね合わせ界面に集光照射し多光子吸収を起こして接合する方法が開示された(例えば、特許文献1参照。)。
特開2005−66629号公報
通常、二つの物質を重ね合わせると重ね合わせ対向面間にギャップ(隙間)ができる。ギャップがあると良好に接合されない。そこで、上記従来の接合方法では、加圧機器の加圧板で重ね合された二つの物質を狭持して加圧することでギャップをなくそうとしている。
しかし、加圧しても必ずギャップがなくなるとは限らず、僅かなギャップが残る恐れがある。また、加圧板で狭持して加圧する方法は、加圧機器を必要とし、接合するのに長時間を要する。さらに、加圧板で狭持して加圧する方法を精密部品や脆性材に適用することは困難である。
そこで、発明者は、図12に示すように2枚のガラス板51、52を重ね合わせた対向面51a、52a間のギャップ(例えば、5μmの隙間)に(例えば、5μmの厚さの)リボンガラス53を介在させ(すなわち、ギャップをなくして)、ガラス板51を透過する波長の高エネルギ短パルスレーザLをレンズ50で集光照射する方法を考案した。レンズ50の焦点がギャップの中間に合わされ、ビームウエストのレーリーレンジZrがリボンガラス53の厚さより大きくなるように設定される。レーリーレンジZrの範囲はエネルギ密度が高いので、その範囲では多光子吸収とその後の蓄熱による溶融が起こり、ガラス板51、52が接合される。
しかし、上記の方法では、リボンガラスのような別の物質がギャップに介在させられなければならない。したがって、この方法は接合に時間が掛かるといった問題を有している。また、ガラス板51、52を重ね合わせたときにできるギャップの大きさは様々であり、重ね合わせたときのギャップの大きさ測定してそのギャップの大きさと同じ厚さのリボンガラスを挿入することは難しい。ギャップの大きさに近い厚さのリボンガラスを挿入することができたとしても、リボンガラス53とガラス板51、52間に新たにギャップができる可能性もある。
そこで、本発明は、二つの物質を重ね合わせたときにできる対向面間のギャップをなくすことなく接合できるレーザによる二つの物質の重ね合わせ接合法方法及び装置を提供することを課題とする。
課題を解決するためになされた本発明に係るレーザによる二つの物質の重ね合わせ接合方法は、二つの物質を重ね合わせた重ね合わせ対向面間のギャップ近傍に高エネルギ短パルスレーザを集光レンズで集光照射し多光子吸収を起こして接合する接合方法であって、 前記二つの物質の一方を透過する波長の第1高エネルギ短パルスレーザを前記対向面間のギャップ近傍に集光照射し前記ギャップを減少させるギャップ減少ステップと、前記ギャップ減少ステップで減少したギャップ近傍に前記一方の物質を透過する波長の第2高エネルギ短パルスレーザを集光照射して前記二つの物質を接合する接合ステップと、を有することを特徴とする。
ギャップ減少ステップで多光子吸収が誘起され、ギャップが減少或いは無しにされる。接合ステップでは、そのギャップが減少或いは無しにされた部分に第2高エネルギ短パルスレーザが集光照射されるので二つの物質を接合することができる。
上記の接合方法において、前記第2高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と溶融を起こすパルス列とからなるとよい。
接合ステップで二つの物質を溶融接合することができる。
また、前記ギャップ減少ステップは、多光子吸収の後にアブレーションを起こしてデブリを発生させ前記デブリで前記ギャップを減少させるとよい。
デブリは集光照射領域の周辺に比較的広く発生するので、ギャップが減少する或いは無くなる領域が広くなる。その結果、接合ステップで第2高エネルギ短パルスレーザを集光照射する際、集光スポットの位置決めが容易になる。
また、前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなるとよい。
二つの物質の対向面における集光照射領域近傍が熱膨張するので、ギャップが確実に減少或いはなくなる。
課題を解決するためになされた本発明に係るレーザによる二つの物質の重ね合わせ接合装置は、二つの物質を重ね合わせた重ね合わせ対向面間のギャップ近傍に高エネルギ短パルスレーザを集光レンズで集光照射し多光子吸収を起こして接合する接合装置であって、 前記物質の一方を透過する波長の第1高エネルギ短パルスレーザを前記対向面間のギャップ近傍に集光して第1集光スポットを形成し、前記第1集光スポットの近傍に前記一方の物質を透過する波長の第2高エネルギ短パルスレーザを集光して第2集光スポットを形成する光学系を備えることを特徴とする。
上記の接合装置において、前記第2高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と溶融を起こすパルス列とからなるとよい。
また、前記光学系は、前記第1集光スポットと前記第2集光スポットとを重ね合わせ方向と交差する方向に沿って形成するとよい。
第1集光スポットによるデブリ領域に第2集光スポットが形成されるので、ギャップ減少ステップと接合ステップとを同時に行うことができる。
また、前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなるとよい。
また、前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなるとよい。
また、前記光学系は、前記第1集光スポットと前記第2集光スポットとを重ね合わせ方向に沿って形成するとよい。
第1集光スポットによる熱膨張領域に第2集光スポットが形成されるので、ギャップ減少ステップと接合ステップとを同時に行うことができる。
ギャップ減少ステップで多光子吸収を起こし、ギャップを減少させる或いはなくすことができる。接合ステップは、そのギャップが減少した或いはなくなった部分に第2高エネルギ短パルスレーザを集光照射するので二つの物質を接合することができる。
実施形態1に係るレーザによる二つの物質の重ね合わせ接合装置の概略構成図である。 実施形態1の第1高エネルギ短パルスレーザL1と第2高エネルギ短パルスレーザL2を模式的に示す図である。 図1のA1−A1線断面図である。 図3のA2−A2線断面図である。 パルス列生成手段のブロック図である。 実施形態2に係るレーザによる二つの物質の重ね合わせ接合装置の概略構成図である。 実施形態2の第1集光スポットP1と第2集光スポットP2を同時に形成する光学系の変形態様を示す図である。 実施形態3に係るレーザによる二つの物質の重ね合わせ接合装置の概略構成図である。 実施形態3の第1高エネルギ短パルスレーザL1Aと第2高エネルギ短パルスレーザL2を模式的に示す図である。 実施形態3の第1集光スポットP1と第2集光スポットP2を同時に形成する光学系の変形態様を示す図である。 ガラス板6、7のギャップGが5μmになるように重ね合わされ、第1集光スポットP1がギャップG付近に形成され、ギャップがデブリで埋められた状況を示す顕微鏡写真である。 本発明者が考案したギャップを有する二つの物質の重ね合わせ接合方法を説明する図である。
本発明の実施形態が図面に基づいて以下に詳しく説明される。
(実施形態1)
本実施形態のレーザによる二つの物質の重ね合わせ接合装置は、図1に示すように、レーザユニット1から出力される第1高エネルギ短パルスレーザL1をレンズ4で例えば2枚のガラス板6、7の重ね合わせ部に集光照射するように構成されている。2枚のガラス板6、7は、重ね合わせたときの対向する面6aと7aとの間にギャップGをもち、XYZ移動ステージ5の上にセットされている。
第1高エネルギ短パルスレーザL1の波長は、例えば1.5μmである。レーザL1は、図2aに示すように、パルス(時間)幅が300fs、繰り返し周波数が1MHz、パルスエネルギが10μJ(ピークパワー3.3MW)のパルス列である。
集光レンズ4として、例えば、倍率50倍の対物レンズを用いると、レーザを回折限界近く(波長オーダ)まで集光することができる。
上記のような高エネルギ短パルスレーザL1を集光レンズ4で集光すると、透明なガラスでも最初のパルスu11で多光子吸収を起こし、屈折率が変化して波長1.5μmのレーザを吸収できるようになる。吸収できるところに次々とパルスu12、u13・・・が照射されると、アブレーションを起こし、デブリを発生する。
<ギャップ減少ステップ>
図3は、第1高エネルギ短パルスレーザL1を集光レンズ4で集光照射しながらXYZ移動ステージ5をY方向に走査した後の図1におけるA1−A1線断面図である。図4は、図3のA2−A2線断面図であるが、第1集光スポットP1が通過した領域7bは凹溝になり、凹溝7bの両側にデブリ7cが堆積する。デブリ7cの厚さhがギャップGに等しくなるように、例えば、Y方向の走査速度を調整すれば、デブリ7cが堆積した部分のギャップはゼロになる。
<接合ステップ>
次に、XYZ移動ステージ5で2枚のガラス板6、7がX方向に所定ピッチ(数μm)移動させられる。次に、跳ね上げられていた可動ミラー2が点線で示す位置に下ろされて第2高エネルギ短パルスレーザL2がレンズ4に入射され、XYZ移動ステージ5でガラス板6、7がY方向に走査される。すると、第2集光スポットP2はデブリ7cが堆積したガラス7の対向面7a上をY方向に移動する。
このとき、第2高エネルギ短パルスレーザL2が、図2aに示すように、多光子吸収を起こす低繰り返し高エネルギ短パルス列L01(u011、u012、u013・・・)と、溶融を起こす高繰り返しパルス列L02(u021、u022、u023・・・)とからなると、ガラス板6、7は次のように接合される。すなわち、u011が照射されるとガラス板6、7のギャップ近傍は多光子吸収を起こし、その屈折率が変化して波長1.5μmのレーザを吸収できるようになる。吸収できるようになったところに次々とパルスu021、u022・・・u028が照射されると、8個のパルスによる熱がギャップ近傍に蓄積されてその部分の温度が上昇しその部分が溶融する。すなわち、ガラス板6とガラス板7とが接合される。
多光子吸収を起こす低繰り返し高エネルギパルス列L01は、例えば、パルス(時間)幅が300fs、繰り返し周波数が100kHz、パルスエネルギが10μJ(ピークパワー3.3MW)のパルス列である。また、多数のパルスによる蓄熱効果でガラスを溶融させる高繰り返し中エネルギパルス列L02は、例えば、パルス幅が50ps、繰り返し周波数が1MHz、パルスエネルギが1μJ(ピークパワー20kW)のパルス列である。
ここで、図2に示すようなパルス列L1からパルス列L2を生成するパルス列生成手段3が説明される。
パルス列生成手段3は、例えば図5に示すように、パルス列L1をパルス列L10、L20に分波する分波器3aと、パルス列L10からパルス列L01を生成する第1パルス列生成手段3bと、パルス列L20からパルス列L02を生成する第2パルス列生成手段3cと、合波器3dとを有している。
第1パルス列生成手段3bは、パルス列L10の繰り返し周波数より小さい周波数に変更する第1光変調器と、パルス列L10のピークパワーより大きいピークパワーに増幅する第1光増幅器を備えている。
第2パルス列生成手段3cは、パルス列L20の繰り返し周波数より小さい周波数に変更する第2光変調器と、パルス列L20のピークパワーより大きいピークパワーに増幅する第2光増幅器を備えている。
次に、パルス列生成手段3の動作が説明される。レーザユニット1から出力されるパルス列L1は、分波器3aでパルス列L10とパルス列L20とに分波される。
パルス列L10は、第1光変調器でパルスが間引かれて低繰り返し周波数のパルス列になる。低繰り返し周波数のパルス列は、第1光増幅器で増幅され、ピークパワーの大きなパルス列L01になる。
パルス列L20は、第2光変調器でパルスが間引かれて中繰り返し周波数のパルス列になる。中繰り返し周波数のパルス列は、第2光増幅手段で増幅され、ピークパワーが所定の大きさのパルス列L02になる。
パルス列L01とパルス列L02とは、合波器3dで合波されてパルス列L01にパルスL02が重畳したパルス列L2になる。
本実施形態では、第2高エネルギ短パルスレーザL2が、図2aに示すように、多光子吸収を起こす低繰り返し高エネルギ短パルス列L01(u011、u012、u013・・・)と、溶融を起こす高繰り返しパルス列L02(u021、u022、u023・・・)とからなる。しかし、第2高エネルギ短パルスレーザL2を図2bに示すように、多光子吸収を起こす低繰り返し高エネルギ短パルス列L01(u011、u012、u013・・・)と、溶融を起こす低繰り返し長パルス列L’02(u’021、u’022、u’023・・・)とからなるようにしても良い。溶融を起こす低繰り返しパルス列L’02は、例えば、パルス幅が50ns、繰り返し周波数が100kHz、パルスエネルギ1μJ(ピークパワー20W)のパルス列である。
第2パルス列生成手段3cがパルス時間幅を広げる伸張手段を備えていると、上記のような低繰り返し長パルス列L’02(u’021、u’022、u’023・・・)が生成される。
(実施形態2)
実施形態1の接合装置では、ガラス板7の対向面7aに形成した第1集光スポットP1がY方向に走査されアブレーションが起こされ、その後跳ね上げミラー2を下ろされ、集光スポットP1の近傍に第2集光スポットP2が形成され、Y方向に走査されてガラス板6とガラス板7とが接合された。
一方、本実施形態の接合装置では、図6に示すように第1集光スポットP1と第2集光スポットP2とが対向面7a上に同時に形成され、ガラス板6とガラス板7とがY方向に走査される。
したがって、第1集光スポットP1と第2集光スポットP2が対向面7a上に同時に形成されるようにするため、本実施形態の接合装置は実施形態1の接合装置と以下の点が相違する。
すなわち、図1中の跳ね上げミラー2が図6に示すようにビームスプリッタ2Aに変更され、第1高エネルギ短パルスレーザL1と第2高エネルギ短パルスレーザL2とが同時に集光レンズ4に入射される。また、第2高エネルギ短パルスレーザL2が光軸0に対して角度θをなす方向から集光レンズ4に入射されるようにするために、図1のビームスプリッタ8が図6に示すようにミラー8Aに変更された。集光レンズ4の焦点距離をf、第1集光スポットP1と第2集光スポットP2との間隔をX1とすると、X1=ftanθの関係があるので、第2集光スポットP2を第1集光スポットP1からマイナスX方向にX1だけ離すことができる。
本実施形態の接合装置は、ギャップ減少ステップと接合ステップを同時に行うことができるので、接合時間が短縮される。
集光スポットP1、P2をX方向に同時に形成する光学系としては、図6の他に、図7に示すような光学系でもよい。例えば、DOE(Diffractive Optical Element)9が集光レンズ4の前に入れられると、第1集光スポットP1の両側に第2集光スポットP2が同時に形成される。
(実施形態3)
図8に示す本実施形態の接合装置は、多光子吸収を起こす低繰り返し高エネルギパルス列と熱膨張を起こす高繰り返し低エネルギパルス列とからなる第1高エネルギ短パルスレーザL1Aを下側のガラス板7の対向面7aから僅かに下がった位置に集光して第1集光スポットP1を形成し、多光子吸収を起こす低繰り返し高エネルギパルス列と溶融を起こす高繰り返し中エネルギパルス列とからなる第2高エネルギ短パルスレーザL2をギャップGの中間付近に集光して第2集光スポットP2を同時に形成するようにしたものである。
レーザユニット1から出力された高繰り返し短パルスレーザL0は、ビームスプリッタ2Aで二つのレーザL31、L32に分割される。レーザL31は、パルス列生成手段3Aに入射されて変調及び増幅され、高繰り返し低エネルギパルス列L03に変換される。レーザL32は、ビームスプリッタ11で二つのレーザL41、L42に分割される。レーザL41は、パルス列生成手段3Bに入射されて変調及び増幅され、低繰り返し高エネルギ短パルスレーザL04に変換される。低繰り返し高エネルギ短パルスレーザL04は、ビームスプリッタ12で二つのレーザL05に分割され、分割された一方のレーザL05は、ビームスプリッタ13で高繰り返し低エネルギパルス列L03と合波され、図9に模式的に示す第1高エネルギ短パルスレーザL1Aとなる。
ビームスプリッタ11で分割されたレーザL42は、パルス列生成手段3Cに入射されて変調及び増幅され高繰り返し中エネルギパルス列L06に変換される。高繰り返し中エネルギパルス列L06はビームスプリッタ14で低繰り返し高エネルギ短パルスレーザL05と合波され、図9に示す第2高エネルギ短パルスレーザL2となる。
多光子吸収を起こす低繰り返し高エネルギパルス列L03(u031、u032、u033、・・・)と熱膨張を起こす高繰り返し低エネルギパルス列L05(u051、u052、u053、・・・)とからなる第1高エネルギ短パルスレーザL1A(=L03+L05)は、リレー光学系8で拡がり角αのレーザ光に変換され、その後ビームスプリッタ15で反射されて集光レンズ4に入射される。
焦点距離fの集光レンズ4の焦点がギャップGの中間に合わせられると、多光子吸収を起こす低繰り返し高エネルギパルス列L06(u061、u062、u063、・・・)と溶融を起こす高繰り返し中エネルギパルス列L05(u051、u052、u053、・・・)とからなる第2高エネルギ短パルスレーザL2(=L06+L05)は、ビームスプリッタ15を透過して集光レンズ4に入射し、第2集光スポットP2を形成する。
レーザL1Aの集光レンズ4でのビーム半径をrとすると、第1集光スポットP1がZ1={rf/(r−ftanα)}だけ第2集光スポットP2より下に形成される。
下側のガラス板7の対向面7aから僅かに下がった位置に第1集光スポットP1が形成されると、u031パルスにより多光子吸収が起こり、u051、u052、・・・パルスの蓄熱で熱膨張が起こり、点線Bで示す膨張ガラスでギャップGが埋められる。
点線Bで示す膨張ガラスに第2集光スポットP2が形成されると、u061パルスにより多光子吸収が起こり、u051、u052、・・・パルスの蓄熱で溶融が起こり、ガラス板6とガラス板7とが接合される。
多光子吸収を起こす低繰り返し高エネルギパルス列L05は、例えば、パルス(時間)幅が300fs、繰り返し周波数が100kHz、パルスエネルギが10μJ(ピークパワー3.3MW)のパルス列である。また、多数のパルスによる蓄熱効果でガラスを熱膨張させる高繰り返し低エネルギパルス列L03は、例えば、パルス幅が50ps、繰り返し周波数が1MHz、パルスエネルギが0.2μJ(ピークパワー4kW)のパルス列である。
また、多数のパルスによる蓄熱効果でガラスを溶融させる高繰り返し低エネルギパルス列L06は、例えば、パルス幅が50ps、繰り返し周波数が1MHz、パルスエネルギ0.2μJ(ピークパワー4kW)のパルス列である。
XYZ移動ステージ5でガラス板6、7をY方向に走査することで、ガラス板6、7をY方向に連続して接合することができる。
集光スポットP1、P2をZ方向に同時に形成する光学系としては、図8の他に例えば、図10に示すようなフレネルレンズ4Aを用いてもよい。上下二つの第1集光スポットP1で上下方向から熱膨張を起こし第2集光スポットP2で溶融させて接合することができる。
本実施形態では、第1高エネルギ短パルスレーザL1Aが、図9aに示すように、多光子吸収を起こす低繰り返し高エネルギ短パルス列L03(u031、u032、u033・・・)と、熱膨張を起こす高繰り返し低エネルギパルス列L05(u051、u052、u053、・・・)とからなる。しかし、第1高エネルギ短パルスレーザL1Aを、図9bに示すように多光子吸収を起こす低繰り返し高エネルギ短パルス列L03(u031、u032、u033・・・)と、熱膨張を起こす低繰り返し長パルス列L07(u071、u072、u073・・・)とからなるようにしても良い。熱膨張を起こす低繰り返しパルス列L07は、例えば、パルス幅が80ns、繰り返し周波数が100kHz、パルスエネルギ0.5μJ(ピークパワー6.3W)のパルス列である。
本実施形態では、第2高エネルギ短パルスレーザL2が、図9aに示すように、多光子吸収を起こす低繰り返し高エネルギ短パルス列L06(u061、u062、u063・・・)と、溶融を起こす高繰り返しパルス列L05(u051、u052、u053・・・)とからなる。しかし、第2高エネルギ短パルスレーザL2を、多光子吸収を起こす低繰り返し高エネルギ短パルス列L06(u061、u062、u063・・・)と、溶融を起こす低繰り返し長パルス列L’05(u’051、u’052、u’053・・・)とからなるようにしても良い。溶融を起こす低繰り返し長パルス列L’05は、例えば、パルス幅が50ns、繰り返し周波数が100kHz、パルスエネルギ1μJ(ピークパワー20W)のパルス列である。
本実施例は、図1に示す実施形態1の接合装置を用いて行われた本接合法の検証実験例である。
実験の都合で、高エネルギ短パルスレーザL1とL2は、同じパルス列からなる。すなわち、パルスエネルギは3μJ、波長は1045nm、繰り返し周波数は100kHzである。厚さ2mmの石英ガラス板6、7がギャップGが5μmになるように重ね合わされた。高エネルギ短パルスレーザL1が倍率50倍の顕微鏡対物レンズ4で集光され、第1集光スポットP1がギャップG付近に形成された。XYZ移動ステージ5のY方向への走査速度は1mm/secである。
図11は、第1集光スポットP1でギャップG付近を走査した後に、上のガラス板6の上方から観察した顕微鏡写真である。真ん中の黒く見える部分がアブレーションにより溝加工された部分である。その両側に薄黒く見える部分がデブリでギャップが埋まった部分である。
次に、デブリでギャップが埋まった薄黒く見える部分に第2集光スポットP2が形成された。第2集光スポットP2をY方向に1mm/secで走査した結果、ガラス板6と7を接合することができた。
本願発明を薄膜太陽電池の封止へ利用することが可能である。薄膜太陽電池の場合、吸収層がおよそ1−5μm程度ある。従来技術では、封止にUV硬化等の接着剤が使用されていたが、これでは10年程度の寿命しかない。吸収層の周囲を囲むようにガラス同士を溶接することにより接着剤を用いない封止が可能になる。又有機物を用いる太陽電池は水に弱い。樹脂による封止では水を透過させてしまうために有機層がダメージを受ける可能性があった。しかし、本願発明を用いることにより非浸水性のシールが可能となる。
本願発明を有機ELの封止へ利用することも可能である。太陽電池と同じように、ガラス同士の溶接を行うことで、非浸水性のシールを行うことができる。一般に有機ELの発光層の厚みは1−2μm程度であり、本願発明の方法を利用することに適している。
このほか、ガラスもしくは透明樹脂等を用いる必要のあるデバイスを安価に封止、もしくは固定するのに本願発明を利用することができる。例えば、顕微鏡やカメラのレンズなどには、曲率の異なる複数のレンズが組み合わされて使用される。この場合、二つのレンズは曲率が異なるために、重ねたときに接触する面積が非常に小さい(他の部分は接触しないで隙間があいている)。したがって、従来方法では溶接される面積が非常に小さく、十分な強度が得られない。本発明の方法を利用することにより隙間(ギャップ)のある部分も溶接できるので溶接強度が高い。
3枚以上の組み合わせレンズでも、レンズは透明であるので一番上のレンズを透過させてレーザを照射することにより、2番目と3番目のレンズの界面を先に溶接し、その後、1番目と2番目のレンズの界面を溶接することも可能である。これは、レンズに限らず、透明材料を重ね合わせたものに対しても適用可能である。
4・・・・・・・・集光レンズ
6、7・・・・・・二つの物質
6a、7a・・・・対向面
G・・・・・・・・ギャップ
P1・・・・・・・第1集光スポット
P2・・・・・・・第2集光スポット
L1、L1A・・・・第1高エネルギ短パルスレーザ
L2・・・・・・・第2高エネルギ短パルスレーザ

Claims (10)

  1. 二つの物質を重ね合わせた重ね合わせ対向面間のギャップ近傍に高エネルギ短パルスレーザを集光レンズで集光照射し多光子吸収を起こして接合する接合方法であって、
    前記二つの物質の一方を透過する波長の第1高エネルギ短パルスレーザを前記対向面間のギャップ近傍に集光照射し前記ギャップを減少させるギャップ減少ステップと、
    前記ギャップ減少ステップで減少したギャップ近傍に前記一方の物質を透過する波長の第2高エネルギ短パルスレーザを集光照射して前記二つの物質を接合する接合ステップと、
    を有することを特徴とするレーザによる二つの物質の重ね合わせ接合方法。
  2. 前記第2高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と溶融を起こすパルス列とからなる、請求項1に記載のレーザによる二つの物質の重ね合わせ接合方法。
  3. 前記ギャップ減少ステップは、多光子吸収の後にアブレーションを起こしてデブリを発生させ前記デブリで前記ギャップを減少させる、請求項2に記載のレーザによる二つの物質の重ね合わせ接合方法。
  4. 前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなる、請求項2に記載のレーザによる二つの物質の重ね合わせ接合方法。
  5. 二つの物質を重ね合わせた重ね合わせ対向面間のギャップ近傍に高エネルギ短パルスレーザを集光レンズで集光照射し多光子吸収を起こして接合する接合装置であって、
    前記物質の一方を透過する波長の第1高エネルギ短パルスレーザを前記対向面間のギャップ近傍に集光して第1集光スポットを形成し、前記第1集光スポットの近傍に前記一方の物質を透過する波長の第2高エネルギ短パルスレーザを集光して第2集光スポットを形成する光学系を備えることを特徴とするレーザによる二つの物質の重ね合わせ接合装置。
  6. 前記第2高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と溶融を起こすパルス列とからなる、請求項5に記載のレーザによる二つの物質の重ね合わせ接合装置。
  7. 前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなる、請求項6に記載の二つの物質の重ね合わせ接合装置。
  8. 前記光学系は、前記第1集光スポットと前記第2集光スポットとを重ね合わせ方向と交差する方向に沿って形成する請求項6に記載のレーザによる二つの物質の重ね合わせ接合装置。
  9. 前記第1高エネルギ短パルスレーザは、多光子吸収を起こす高エネルギ短パルス列と熱膨張を起こすパルス列とからなる、請求項6に記載のレーザによる二つの物質の重ね合わせ接合装置。
  10. 前記光学系は、前記第1集光スポットと前記第2集光スポットとを重ね合わせ方向に沿って形成する請求項9に記載のレーザによる二つの物質の重ね合わせ接合装置。
JP2012505759A 2010-03-16 2011-03-14 レーザによる二つの物質の重ね合わせ接合方法及び接合装置 Expired - Fee Related JP5747912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505759A JP5747912B2 (ja) 2010-03-16 2011-03-14 レーザによる二つの物質の重ね合わせ接合方法及び接合装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010058731 2010-03-16
JP2010058731 2010-03-16
PCT/JP2011/056519 WO2011115242A1 (ja) 2010-03-16 2011-03-14 レーザによる二つの物質の重ね合わせ接合方法及び接合装置
JP2012505759A JP5747912B2 (ja) 2010-03-16 2011-03-14 レーザによる二つの物質の重ね合わせ接合方法及び接合装置

Publications (2)

Publication Number Publication Date
JPWO2011115242A1 true JPWO2011115242A1 (ja) 2013-07-04
JP5747912B2 JP5747912B2 (ja) 2015-07-15

Family

ID=44649321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505759A Expired - Fee Related JP5747912B2 (ja) 2010-03-16 2011-03-14 レーザによる二つの物質の重ね合わせ接合方法及び接合装置

Country Status (2)

Country Link
JP (1) JP5747912B2 (ja)
WO (1) WO2011115242A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038554A1 (de) * 2010-07-28 2012-02-02 Osram Ag Optoelektronisches Halbleiterbauelement und zugehöriges Herstellverfahren
JP5912421B2 (ja) * 2011-11-04 2016-04-27 Towa株式会社 レーザ加工装置及びレーザ加工方法
CN103011571B (zh) * 2012-12-06 2015-02-11 天津大学 一种对显示器面板玻璃进行焊接的方法
JP6075046B2 (ja) * 2012-12-10 2017-02-08 アイシン精機株式会社 レーザ接合装置
US20230010132A1 (en) * 2021-07-02 2023-01-12 Corning Incorporated Glass substrate joining method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232687A (ja) * 2000-02-22 2001-08-28 Japan Science & Technology Corp レーザーによる熱可塑性樹脂部材の2次成形加工方法
JP2001334578A (ja) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd レーザによる樹脂の溶着加工方法
JP2004337902A (ja) * 2003-05-14 2004-12-02 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP4709482B2 (ja) * 2003-08-22 2011-06-22 一良 伊東 超短光パルスによる透明材料の接合方法、物質接合装置、接合物質
JP4496368B2 (ja) * 2005-06-27 2010-07-07 独立行政法人産業技術総合研究所 レーザー光透過性部材及びレーザー光吸収性部材からなる複合体、及びその製造方法
US20070001579A1 (en) * 2005-06-30 2007-01-04 Eun-Suk Jeon Glass-to-glass joining method using laser, vacuum envelope manufactured by the method, electron emission display having the vacuum envelope
JP5522881B2 (ja) * 2006-09-06 2014-06-18 イムラ アメリカ インコーポレイテッド 材料を接合するための方法
JP4894025B2 (ja) * 2006-09-22 2012-03-07 国立大学法人大阪大学 物質の接合方法、物質接合装置、および、接合体とその製造方法

Also Published As

Publication number Publication date
JP5747912B2 (ja) 2015-07-15
WO2011115242A1 (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
CN102834216B (zh) 脉冲激光器装置、透明部件熔接方法以及透明部件熔接装置
CN108581188B (zh) 一种复合激光焊接透明脆性材料的方法及装置
US8739574B2 (en) Method and apparatus for three dimensional large area welding and sealing of optically transparent materials
JP5747912B2 (ja) レーザによる二つの物質の重ね合わせ接合方法及び接合装置
CA2823806C (en) Laser reinforced direct bonding of optical components
CN109641315A (zh) 激光加工方法以及一种利用多区段聚焦透镜切割或裁切晶圆之系统
US20110200802A1 (en) Laser Welding of Polymeric Materials
CN107892469A (zh) 一种多激光束合束焊接玻璃材料的方法及装备
JP2009539610A (ja) レーザ誘起衝撃波を利用した微小流体装置の製造
JP4709482B2 (ja) 超短光パルスによる透明材料の接合方法、物質接合装置、接合物質
CN102699526A (zh) 利用激光切割加工对象物的方法和装置
WO2021132682A1 (ja) 金属箔の溶接方法
JP2008264793A (ja) 重ね合わせワークのレーザ溶接方法
CN113387553A (zh) 飞秒激光双脉冲玻璃焊接强度增强系统装置
CN207811563U (zh) 一种多激光束合束焊接玻璃材料的装置
KR102087664B1 (ko) 레이저 용접 조인트 및 그 제조 방법
CN208391259U (zh) 一种复合激光焊接透明脆性材料的装置
CN111302609A (zh) 一种双激光束复合焊接玻璃的方法及装置
JP6141715B2 (ja) レーザ光によるガラス基板融着方法
JP2015063417A (ja) レーザ光によるガラス基板融着方法及びレーザ加工装置
JP2015063418A (ja) レーザ光によるガラス基板融着方法及びレーザ加工装置
CN107199400B (zh) 一种激光焊接装置
JP5049799B2 (ja) 部材接合方法、および、シート接合体製造方法
JP6207306B2 (ja) レーザ光によるガラス基板融着方法及びレーザ加工装置
JP2015063416A (ja) レーザ光によるガラス基板融着方法及びレーザ加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5747912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees