JP2004337902A - レーザ加工装置及びレーザ加工方法 - Google Patents

レーザ加工装置及びレーザ加工方法 Download PDF

Info

Publication number
JP2004337902A
JP2004337902A JP2003136256A JP2003136256A JP2004337902A JP 2004337902 A JP2004337902 A JP 2004337902A JP 2003136256 A JP2003136256 A JP 2003136256A JP 2003136256 A JP2003136256 A JP 2003136256A JP 2004337902 A JP2004337902 A JP 2004337902A
Authority
JP
Japan
Prior art keywords
laser
laser beam
workpiece
laser light
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003136256A
Other languages
English (en)
Other versions
JP2004337902A5 (ja
Inventor
Kenji Fukumitsu
憲志 福満
Fumitsugu Fukuyo
文嗣 福世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003136256A priority Critical patent/JP2004337902A/ja
Publication of JP2004337902A publication Critical patent/JP2004337902A/ja
Publication of JP2004337902A5 publication Critical patent/JP2004337902A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】1本の切断予定ラインに対して加工対象物の内部に複数本の改質領域を効率良く形成することのできるレーザ加工装置を提供する。
【解決手段】このレーザ加工装置おいては、互いに広がり角の異なるレーザ光L1とレーザ光L2とが集光レンズ31により加工対象物1の内部に集光される。このとき、レーザ光L2はレーザ光L1に比べ広がり角が大きいため、レーザ光L1の集光点P1は加工対象物1の表面3から浅い位置に、レーザ光L2の集光点P2は表面3から深い位置に合わせられる。そして、集光点P1及び集光点P2は、加工対象物1を載置するステージの駆動により加工対象物1の切断予定ライン5に沿って移動させられる。よって、切断予定ライン5に沿った一回のスキャンで2本の改質領域7a,7bを形成することができる。
【選択図】 図16

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を照射することでウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するためのレーザ加工装置及びレーザ加工方法に関する。
【0002】
【従来の技術】
従来におけるこの種の技術を開示する文献として、下記の特許文献1を例示することができる。この特許文献1の明細書には、第9例として次のような技術が記載されている。すなわち、加工対象物の内部の裏面付近に集光点を合わせてレーザ光を照射し、切断予定ラインに沿って多光子吸収による改質領域を形成した後、加工対象物の内部の表面付近に集光点を合わせてレーザ光を照射し、前述の切断予定ラインに沿って多光子吸収による改質領域をさらに形成する。
【0003】
このように、1本の切断予定ラインに対して加工対象物の内部に改質領域を複数本形成することで、加工対象物の厚さが改質領域に対して大きいような場合にも、改質領域を1本だけ形成したものに比べ、切断予定ラインに沿って小さな力で高精度に加工対象物を切断することが可能になる。
【0004】
なお、下記の特許文献2には、加工対象物の表面付近と裏面付近とに集光点を位置させてレーザ光を照射し、加工対象物を溶断する技術が記載されている。この特許文献2記載の技術は、加工対象物の厚さ方向におけるエネルギ密度のばらつきを小さくし、加工対象物を確実に加熱溶融させるためのものである。
【0005】
【特許文献1】
国際公開第02/22301号パンフレット
【特許文献2】
特許第2664625号公報
【0006】
【発明が解決しようとする課題】
上述のように、特許文献1記載の技術は、加工対象物の厚さが改質領域に対して大きい場合などに極めて有効な技術であるため、1本の切断予定ラインに対して複数本の改質領域をさらに効率良く形成する技術が望まれていた。
【0007】
そこで、本発明は、このような事情に鑑みてなされたものであり、1本の切断予定ラインに対して加工対象物の内部に複数本の改質領域を効率良く形成することのできるレーザ加工装置及びレーザ加工方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るレーザ加工装置は、ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工装置であって、互いに広がり角の異なる第1のレーザ光と第2のレーザ光とを加工対象物の内部に集光し、第1のレーザ光の集光点の位置と第2のレーザ光の集光点の位置とで多光子吸収を生じさせる集光レンズと、加工対象物の切断予定ラインに沿って第1のレーザ光の集光点及び第2のレーザ光の集光点を相対的に移動させる移動手段とを備えたことを特徴とする。
【0009】
このレーザ加工装置においては、第1のレーザ光と第2のレーザ光とが集光レンズにより加工対象物の内部に集光される。このとき、第1のレーザ光と第2のレーザ光とは互いに広がり角が異なるため、第1のレーザ光と第2のレーザ光とは、加工対象物の集光レンズ側の表面からの深さが互いに異なる位置に集光することになる。そして、第1のレーザ光の集光点及び第2のレーザ光の集光点は、移動手段により切断予定ラインに沿って相対的に移動させられることから、このレーザ加工装置によれば、切断予定ラインに沿った1回のスキャンで複数本の改質領域を形成することができ、よって、1本の切断予定ラインに対して複数本の改質領域を効率良く形成することが可能になる。なお、「1本の切断予定ラインに対して」とは、切断予定ラインが加工対象物に1本しか設定されていない場合に限る意味ではなく、切断予定ラインが加工対象物に複数本設定されている場合を勿論含む。
【0010】
また、集光レンズは、加工対象物のレーザ光照射面の変位を測定するための測定用レーザ光を、第1及び第2のレーザ光と同一の軸線上で加工対象物に向けて集光し、レーザ光照射面で反射された測定用レーザ光の反射光を検出することにより、レーザ光照射面からの第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御する深さ制御手段を備えることが好ましい。
【0011】
この構成によれば、加工対象物のレーザ光照射面の変位を測定するための測定用レーザ光が第1及び第2のレーザ光と同一の軸線上において集光レンズにより加工対象物に向けて集光される。このとき、深さ制御手段によって、レーザ光照射面で反射された測定用レーザ光の反射光が検出され、レーザ光照射面からの第1のレーザ光の集光点及び第2のレーザ光の集光点の深さが制御される。このように、第1及び第2のレーザ光による改質領域の形成と、測定用レーザ光によるレーザ光照射面の変位の測定とが同一の軸線上において行われるため、例えば、加工対象物を載置したステージが振動してしまうような場合にも、各集光点の深さが所定の深さからずれてしまうのを防止することができる。したがって、1本の切断予定ラインに対して複数本の改質領域をそれぞれ所定の深さに精度良く形成することが可能になる。
【0012】
また、レーザ光照射面は、加工対象物の集光レンズ側の表面であり、深さ制御手段は、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さが表面から一定となるように、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御することが好ましい。これにより、切断予定ラインに沿って加工対象物を切断する場合に、加工対象物の表面側での切断精度を安定化させることができる。このような表面側での切断精度の安定化は、加工対象物の表面に複数の機能素子が形成され、機能素子毎に加工対象物を切断する場合には、機能素子の損傷を防止可能であるため特に有効である。なお、機能素子とは、フォトダイオード等の受光素子やレーザダイオード等の発光素子、或いは回路として形成された回路素子等を意味する。
【0013】
また、深さ制御手段は、集光レンズと加工対象物との距離を変化させることで、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御することが好ましい。すなわち、集光レンズ及び加工対象物の少なくとも一方を移動させることで、レーザ光照射面からの各集光点の深さを所定の深さに合わせることが可能になる。
【0014】
さらに、上記目的を達成するために、本発明はレーザ加工方法にも係り、ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工方法であって、互いに広がり角の異なる第1のレーザ光と第2のレーザ光とを加工対象物の内部に集光して、第1のレーザ光の集光点の位置と第2のレーザ光の集光点の位置とで多光子吸収を生じさせ、加工対象物の切断予定ラインに沿って第1のレーザ光の集光点及び第2のレーザ光の集光点を相対的に移動させることを特徴とする。
【0015】
また、加工対象物のレーザ光照射面の変位を測定するための測定用レーザ光を、第1及び第2のレーザ光と同一の軸線上で加工対象物に向けて集光し、レーザ光照射面で反射された測定用レーザ光の反射光を検出することにより、レーザ光照射面からの第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御することが好ましい。
【0016】
また、レーザ光照射面は、加工対象物に対して第1及び第2のレーザ光が入射する表面であり、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さが表面から一定となるように、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御することが好ましい。
【0017】
また、第1及び第2のレーザ光を集光する集光レンズと加工対象物との距離を変化させることで、第1のレーザ光の集光点及び第2のレーザ光の集光点の深さを制御することが好ましい。
【0018】
【発明の実施の形態】
以下、本発明に係るレーザ加工装置及びレーザ加工方法の好適な実施形態について、図面を参照して詳細に説明する。
【0019】
本実施形態のレーザ加工装置は、ウェハ状の加工対象物の内部に1本の切断予定ラインに対して複数本の改質領域を多光子吸収により形成するものである。そこで、本実施形態のレーザ加工装置の説明に先立って、多光子吸収による改質領域の形成について説明する。
【0020】
材料の吸収のバンドギャップEよりも光子のエネルギーhνが小さいと光学的に透明となる。よって、材料に吸収が生じる条件はhν>Eである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくするとnhν>Eの条件(n=2,3,4,・・・)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm)で決まり、例えばピークパワー密度が1×10(W/cm)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm)で決まる。
【0021】
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1〜図6を参照して説明する。図1はレーザ加工中の加工対象物1の平面図であり、図2は図1に示す加工対象物1のII−II線に沿った断面図であり、図3はレーザ加工後の加工対象物1の平面図であり、図4は図3に示す加工対象物1のIV−IV線に沿った断面図であり、図5は図3に示す加工対象物1のV−V線に沿った断面図であり、図6は切断された加工対象物1の平面図である。
【0022】
図1及び図2に示すように、加工対象物1の表面3には、加工対象物1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(加工対象物1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。
【0023】
レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように改質領域7が切断予定ライン5に沿って加工対象物1の内部にのみ形成され、この改質領域7でもって切断予定部8が形成される。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するのではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。
【0024】
加工対象物1の切断において、切断する箇所に起点があると加工対象物1はその起点から割れるので、図6に示すように比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく加工対象物1の切断が可能となる。
【0025】
なお、切断予定部を起点とした加工対象物の切断には、次の2通りが考えられる。1つは、切断予定部形成後、加工対象物に人為的な力が印加されることにより、切断予定部を起点として加工対象物が割れ、加工対象物が切断される場合である。これは、例えば加工対象物の厚さが大きい場合の切断である。人為的な力が印加されるとは、例えば、加工対象物の切断予定部に沿って加工対象物に曲げ応力やせん断応力を加えたり、加工対象物に温度差を与えることにより熱応力を発生させたりすることである。他の1つは、切断予定部を形成することにより、切断予定部を起点として加工対象物の断面方向(厚さ方向)に向かって自然に割れ、結果的に加工対象物が切断される場合である。これは、例えば加工対象物の厚さが小さい場合には、1列の改質領域により切断予定部が形成されることで可能となり、加工対象物の厚さが大きい場合には、厚さ方向に複数列形成された改質領域により切断予定部が形成されることで可能となる。なお、この自然に割れる場合も、切断する箇所において、切断予定部が形成されていない部位に対応する部分の表面上にまで割れが先走ることがなく、切断予定部を形成した部位に対応する部分のみを割断することができるので、割断を制御よくすることができる。近年、シリコンウェハ等の加工対象物の厚さは薄くなる傾向にあるので、このような制御性のよい割断方法は大変有効である。
【0026】
さて、本実施形態において多光子吸収により形成される改質領域としては、次の(1)〜(3)がある。
【0027】
(1)改質領域が1つ又は複数のクラックを含むクラック領域の場合
加工対象物(例えばガラスやLiTaOからなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第45回レーザ熱加工研究会論文集(1998年.12月)の第23頁〜第28頁の「固体レーザー高調波によるガラス基板の内部マーキング」に記載されている。
【0028】
本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は次ぎの通りである。
【0029】
(A)加工対象物:パイレックス(登録商標)ガラス(厚さ700μm)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:出力<1mJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
【0030】
なお、レーザ光品質がTEM00とは、集光性が高くレーザ光の波長程度まで集光可能を意味する。
【0031】
図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm)程度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。
【0032】
次に、本実施形態に係るレーザ加工において、クラック領域形成による加工対象物の切断のメカニズムについて図8〜図11を用いて説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は1つ又は複数のクラックを含む領域である。このクラック領域9でもって切断予定部が形成される。図9に示すようにクラック領域9を起点として(すなわち、切断予定部を起点として)クラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面17に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。加工対象物の表面と裏面に到達するクラックは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。
【0033】
(2)改質領域が溶融処理領域の場合
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。
【0034】
本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。
【0035】
(A)加工対象物:シリコンウェハ(厚さ350μm、外径4インチ)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:20μJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
倍率:50倍
N.A.:0.55
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
【0036】
図12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100μm程度である。
【0037】
溶融処理領域13が多光子吸収により形成されたことを説明する。図13は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
【0038】
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは350μmであるので、多光子吸収による溶融処理領域13はシリコンウェハの中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁〜第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。
【0039】
なお、シリコンウェハは、溶融処理領域でもって形成される切断予定部を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。なお、切断予定部からシリコンウェハの表面と裏面とに割れが自然に成長する場合には、切断予定部を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断予定部を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図12のように内部にのみ溶融処理領域が形成されている。加工対象物の内部に溶融処理領域でもって切断予定部を形成すると、割断時、切断予定部ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。
【0040】
(3)改質領域が屈折率変化領域の場合
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1ns以下の条件でレーザ光を照射する。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。多光子吸収による屈折率変化領域の形成は、例えば、第42回レーザ熱加工研究会論文集(1997年.11月)の第105頁〜第111頁の「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」に記載されている。
【0041】
次に、本実施形態のレーザ加工装置について、図14〜図16を参照して説明する。
【0042】
図14に示すように、レーザ加工装置20は、ウェハ状の加工対象物1の内部に1本の切断予定ライン5に対して2本の改質領域7a,7bを多光子吸収により形成する装置である。ここで、加工対象物1はシリコンウェハ等の半導体ウェハであり、改質領域7a,7bは溶融処理領域である。また、切断予定ライン5は、加工対象物1の表面3に例えば格子状に複数本設定される。
【0043】
このレーザ加工装置20は、加工対象物1が載置されるステージ(移動手段)21を有しており、このステージ21は、上下方向をZ軸方向としてX軸方向、Y軸方向、Z軸方向の各方向に移動可能となっている。ステージ21の上方には、加工用レーザ光を発生するレーザ光源22等を収容した筐体23が配置されている。このレーザ光源22は、例えばNd:YAGレーザであり、下方に向けてパルス幅1μs以下のパルスレーザ光である加工用レーザ光を出射する。
【0044】
筐体23の下端面には電動レボルバ24が取り付けられており、この電動レボルバ24には、加工対象物1を観察するための観察用対物レンズ26と、加工用レーザ光を集光するための加工用対物レンズ27とが装着されている。各対物レンズ26,27の光軸は、電動レボルバ24の回転によってZ軸(軸線)に一致させられる。なお、加工用対物レンズ27と電動レボルバ24との間には、ピエゾ素子を用いたアクチュエータ28が介在されており、このアクチュエータ28によって加工用対物レンズ27の位置がZ軸方向(上下方向)に微調整される。
【0045】
図15に示すように、加工用対物レンズ27は円筒形状のレンズホルダ29を有し、このレンズホルダ29は、その内部において複数のレンズを組み合わせてなる開口数「0.80」の集光レンズ31を保持している。そして、レンズホルダ29の上端部には、集光レンズ31に対する加工用レーザ光の入射瞳として入射開口32が形成され、レンズホルダ29の下端部には加工用レーザ光の出射開口33が形成されている。
【0046】
また、図14に示すように、筐体23内においてレーザ光源22の下方には、レーザ光源22から出射された加工用レーザ光のビームサイズを拡大するビームエキスパンダ34と、加工用レーザ光の出力を調整する出力調整光学系35と、出力調整光学系35により調整された加工用レーザ光の出力を観察する出力観察光学系36と、加工用レーザ光の偏光を調整する偏光調整光学系37と、加工用レーザ光の通過又は遮断を行う電磁シャッタ38とが上から下にこの順序で配置されている。
【0047】
さらに、電磁シャッタ38の下方には、電磁シャッタ38を通過した加工用レーザ光のうち約半分を横方向に反射させ、残りを透過直進させるハーフミラー39が配置されている。図16に示すように、ハーフミラー39を透過した加工用レーザ光は、ミラー41により横方向に反射された後、Z軸上に位置する偏光ビームスプリッタ42により下方に反射され、第1のレーザ光L1としてZ軸上を下方に向かって進行する。
【0048】
一方、ハーフミラー39により横方向に反射された加工用レーザ光は、1/2波長板43を通過した後、Z軸上に位置するミラー44により下方に反射される。このミラー44により反射された加工用レーザ光は、Z軸上に配置された凹レンズ45を通過することで第1のレーザ光L1に比べ広がり角が広げられ、第2のレーザ光L2としてZ軸上を下方に向かって進行する。この第2のレーザ光L2は、凹レンズ45の下方に位置する偏光ビームスプリッタ42を透過直進し、第1のレーザ光L1と合成されて、Z軸上を下方に向かって進行する。なお、第1のレーザ光L1と第2のレーザ光L2とは直線偏光であるが、第2のレーザ光となる加工用レーザ光の光路上に1/2波長板43を配置することで、第1のレーザ光L1と第2のレーザ光L2とが合成される際には、互いの直線偏光の方向がほぼ一致させられている。
【0049】
したがって、このレーザ加工装置20においては、第1のレーザ光L1と、この第1のレーザ光L1より広がり角の大きい第2のレーザ光L2とが加工用レーザ光としてZ軸上を下方に向かって進行し、加工用対物レンズ27の集光レンズ31に入射する。これにより、集光レンズ31によって集光された第1のレーザ光L1の集光点P1と第2のレーザ光L2の集光点P2とは、加工対象物1の表面3から互いに異なる深さで位置することになる。具体的には、第2のレーザ光L2は第1のレーザ光L1に比べて広がり角が大きいため、第2のレーザ光L2の集光点P2は、第1のレーザ光L1の集光点P1に比べ表面3から深いところに位置することになる。なお、集光レンズ31による各集光点P1,P2での加工用レーザ光L1,L2のピークパワー密度は1×10(W/cm)以上となる。
【0050】
また、偏光ビームスプリッタ42と加工用対物レンズ27との間には、加工用レーザ光L1,L2のビームサイズを絞る絞り部材46が配置されている。この絞り部材46は、図15に示すように、加工用対物レンズ27の入射開口32の上方に位置して筐体23に取り付けられており、加工用レーザ光L1,L2を絞って通過させるアパーチャ47を有している。このアパーチャ47の開口径は、加工用対物レンズ27の入射開口32の径以下に形成されており、アパーチャ47の中心軸は、絞り部材46に設けられた調節ネジ48によって入射開口32の中心軸(すなわちZ軸)に正確に一致させることができる。
【0051】
このように構成された絞り部材46を加工用対物レンズ27に対して加工用レーザ光L1,L2が入射する側に配置することで、次のような作用・効果が奏される。すなわち、加工用レーザ光L1,L2は、アパーチャ47より大きいレーザ光の外周部分が絞り部材46によってカットされ、これにより、アパーチャ47を通過した加工用レーザ光L1,L2の径は、加工用対物レンズ27の入射開口32の径以下になる。そのため、入射開口32の周囲部分による加工用レーザ光L1,L2のカット量をほとんどなくして、加工用レーザ光L1,L2の照射によるレンズホルダ29の加熱を防止することができる。したがって、レーザ加工中におけるレンズホルダ29の加熱を主原因とした加工用レーザ光L1,L2の集光点P1,P2の位置変動を小さく抑えることが可能になる。
【0052】
さらに、レーザ加工装置20は、第1のレーザ光L1の集光点P1及び第2のレーザ光L2の集光点P2の深さが加工対象物1の表面3から一定となるように集光点P1及び集光点P2の深さを制御する深さ制御手段50を有している。この深さ制御手段50について、図15及び図17〜図19を参照して説明する。
【0053】
図15に示すように、レーザダイオード等の測定用レーザ光源51から出射された測定用レーザ光L3は、ピンホール52、ビームエキスパンダ53を順次通過した後、ミラー54、ハーフミラー56により順次反射されて、偏光ビームスプリッタ42と絞り部材46との間に配置されたダイクロイックミラー57に導かれる。このダイクロイックミラー57により反射された測定用レーザ光L3は、加工用レーザ光L1,L2と合成されてZ軸上を下方に向かって進行し、絞り部材46のアパーチャ47を通過した後、加工用対物レンズ27の集光レンズ31により集光されて加工対象物1に照射される。なお、加工用レーザ光L1,L2はダイクロイックミラー57を透過する。
【0054】
そして、加工対象物1の表面(レーザ光照射面)3で反射された測定用レーザ光の反射光L4は、加工用対物レンズ27の集光レンズ31に再入射してZ軸上を上方に向かって進行し、絞り部材46のアパーチャ47を通過した後、ダイクロイックミラー57により反射される。このダイクロイックミラー57により反射された測定用レーザ光の反射光L4は、ハーフミラー56、フィルタ58を順次通過する。このフィルタ58は、波長に応じて光を通過させ或いは遮断するものであり、測定用レーザ光の反射光L4を通過させる一方、加工対象物1の表面3や裏面17で反射した加工用レーザ光L1,L2の反射光を遮断する。フィルタ58を通過した測定用レーザ光の反射光L4は、シリンドリカルレンズと平凸レンズとからなる整形光学系59により集光されて、フォトダイオードを4等分してなる4分割位置検出素子61上に照射される。
【0055】
この受光素子である4分割位置検出素子61上に集光された測定用レーザ光の反射光L4の集光像パターンは、加工用対物レンズ27の集光レンズ31による測定用レーザ光L3の集光点(すなわち、焦点)が加工対象物1の表面3に対してどの位置にあるかによって変化する。ここで、測定用レーザ光L3の集光点の位置と測定用レーザ光の反射光L4の集光像パターンとの関係について説明する。
【0056】
図17に示すように、測定用レーザ光L3の集光点P3が加工対象物1の表面3上に位置する場合には、測定用レーザ光の反射光L4は、測定用レーザ光L3と同様の軌跡を辿って加工用対物レンズ27の集光レンズ31を逆行し、整形光学系59を通過して4分割位置検出素子61上に真円の集光像パターンFを形成する。
【0057】
また、図18に示すように、測定用レーザ光L3の集光点P3が加工対象物1の表面3の先(すなわち、加工対象物1の内部)に位置する場合には、測定用レーザ光の反射光L4は、測定用レーザ光L3とは異なり拡散しながら加工用対物レンズ27の集光レンズ31を逆行し、整形光学系59を通過して4分割位置検出素子61上に縦長の楕円の集光像パターンFを形成する。
【0058】
また、図19に示すように、測定用レーザ光L3の集光点P3が加工対象物1の表面3の手前に位置する場合には、測定用レーザ光の反射光L4は、測定用レーザ光L3とは異なり集光されながら加工用対物レンズ27の集光レンズ31を逆行し、整形光学系59を通過して4分割位置検出素子61上に横長の楕円の集光像パターンFを形成する。
【0059】
以上のように、4分割位置検出素子61上における測定用レーザ光の反射光L4の集光像パターンFは、測定用レーザ光L3の集光点P3の位置に応じて変化する。そのため、4分割位置検出素子61からの出力信号(縦方向で対向する受光面からの出力と横方向で対向する受光面からの出力との差)に基づいて、加工対象物1の表面3に対する測定用レーザ光L3の集光点P3の位置を求めることができる。
【0060】
そこで、深さ制御手段50は、図15に示すように、位置検出演算回路62及びアクチュエータ制御部63を有している。位置検出演算回路62は、4分割位置検出素子61からの出力信号に基づいて、加工対象物1の表面3に対する測定用レーザ光L3の集光点P3の位置を演算する。そして、アクチュエータ制御部63は、位置検出演算回路62により求められた集光点P3の位置に基づいて、第1のレーザ光L1の集光点P1及び第2のレーザ光L2の集光点P2の深さが加工対象物1の表面3から一定となるようにレーザ加工中常にアクチュエータ28をフィードバック制御し、加工用対物レンズ27の位置をZ軸方向に微調整する。
【0061】
また、図14に示すように、レーザ加工装置20は、ステージ21上に載置された加工対象物1を観察すべく、観察用可視光を発生する観察用光源71を筐体23外に有し、CCDカメラ72を筐体23内に有している。
【0062】
すなわち、観察用光源71で発せられた観察用可視光は、光ファイバからなるライトガイド73により筐体23内に導かれ、視野絞り74、開口絞り76、ダイクロイックミラー77等を順次通過した後、絞り部材46と加工用対物レンズ27の入射開口32と間に配置されたダイクロイックミラー78により反射される。反射された観察用可視光は、Z軸上を下方に向かって進行し、電動レボルバ24の回転によってZ軸上に配置された観察用対物レンズ26を通過して加工対象物1に照射される。なお、加工用レーザ光L1,L2、測定用レーザ光L3及びその反射光L4はダイクロイックミラー78を透過する。
【0063】
そして、加工対象物1の表面3で反射された観察用可視光の反射光は、観察用対物レンズ26内に再入射してZ軸上を上方に向かって進行し、ダイクロイックミラー78により反射される。このダイクロイックミラー78により反射された反射光は、ダイクロイックミラー77によりさらに反射されて、フィルタ79、結像レンズ81、リレーレンズ82を順次通過し、CCDカメラ72に入射することになる。
【0064】
このCCDカメラ72により撮像された撮像データは全体制御部83に取り込まれ、この全体制御部83によってTVモニタ84に加工対象物1の表面3等の画像が映し出される。なお、全体制御部83は、各種処理を実行すると共に、ステージ21の移動、電動レボルバ24の回転、電磁シャッタ38の開閉、CCDカメラ72による撮像等の他、レーザ加工装置20の全体の動作を制御するものである。
【0065】
次に、上述したレーザ加工装置20によるレーザ加工方法について、図20を参照して説明する。ここでは、加工対象物1の表面3から深さD1の位置に第1のレーザ光L1の集光点P1を合わせた際、第2のレーザ光L2の集光点P2は表面3から深さD2(>D1)の位置に合うものとし、切断予定ライン5に沿って表面3から深さD1の位置と深さD2の位置とにそれぞれ改質領域7a,7bを形成するものとする。
【0066】
まず、ステージ21上に加工対象物1を載置し、加工対象物1における改質領域7a,7bの形成開始位置に各集光点P1,P2が一致するようにステージ21を移動させる。このステージ21の初期位置は、加工対処物1の厚さや屈折率、集光レンズ31の開口数等に基づいて決定される。
【0067】
続いて、レーザ光源22から加工用レーザ光を出射すると共に、測定用レーザ光源51から測定用レーザ光L3を出射し、集光レンズ31により集光された第1のレーザ光L1、第2のレーザ光L2及び測定用レーザ光L3が切断予定ライン5上をスキャンするようにステージ21をX軸方向やY軸方向に駆動する。このとき、深さ制御手段50によって、測定用レーザ光の反射光L4が検出され、第1のレーザ光L1の集光点P1の深さD1が加工対象物1の表面3から常に一定となるようにアクチュエータ28がフィードバック制御されて、加工用対物レンズ27の位置が上下方向に微調整される。これにより、第2のレーザ光L2の集光点P2の深さD2も加工対象物1の表面3から常に一定とされる。
【0068】
したがって、図20に示すように、加工対象物1の表面3に面振れがあっても、表面3から深さD1の位置と深さD2の位置とに改質領域7a,7bを一回のスキャンで形成することができる。このように切断予定ライン5に沿って表面3の面振れに追従した改質領域7a,7bを有する加工対象物1をその切断予定ライン5に沿って切断すると、加工対象物1の表面3側での切断精度が安定化する。そのため、半導体ウェハである加工対象物1の表面3に受光素子や或いは発光素子等の機能素子が複数形成され、この機能素子毎に加工対象物1を切断する場合には、切断による機能素子の損傷を防止することが可能になる。
【0069】
以上説明したように、レーザ加工装置20おいては、互いに広がり角の異なる第1のレーザ光L1と第2のレーザ光L2とが集光レンズ31により加工対象物1の内部に集光される。このとき、第2のレーザ光L2は第1のレーザ光L1に比べ広がり角が大きいため、第1のレーザ光L1の集光点P1は加工対象物1の表面3から深さD1の位置に、第2のレーザ光L2の集光点P2は表面3から深さD2(>D1)の位置に合わせられる。そして、集光点P1及び集光点P2は、ステージ21が集光レンズ31に対してX線軸方向やY軸方向に駆動されることで加工対象物1の切断予定ライン5に沿って移動させられる。したがって、レーザ加工装置20によれば、切断予定ライン5に沿った一回のスキャンで2本の改質領域7a,7bを形成することができ、1本の切断予定ライン5に対して2本の改質領域を効率良く形成することが可能になる。このように、1本の切断予定ライン5に対して加工対象物1の内部に2本の改質領域7a,7bを形成することで、加工対象物1の厚さが各改質領域7a,7bの高さに対して大きいような場合にも、改質領域を1本だけ形成したものに比べ、切断予定ライン5に沿って小さな力で高精度に加工対象物1を切断することが可能になる。
【0070】
また、レーザ加工装置20においては、加工対象物1の表面3の変位を測定するための測定用レーザ光L3が加工用レーザ光L1,L2と同一の軸線(すなわちZ軸)上において集光レンズ31により加工対象物1に向けて集光される。このとき、深さ制御手段30によって、表面3で反射された測定用レーザ光の反射光L4が検出され、表面3からの集光点P1及び集光点P2の深さが制御される。このように、加工用レーザ光L1,L2による改質領域7a,7bの形成と、測定用レーザ光L3による表面3の変位の測定とが同一の軸線上において行われるため、例えば、加工対象物1を載置したステージ21が振動しても、各集光点P1,P2の深さが所定の深さD1,D2からずれてしまうのを防止することができる。したがって、1本の切断予定ライン5に対して2本の改質領域7a,7bをそれぞれ所定の深さD1,D2に精度良く形成することが可能になる。
【0071】
また、薄い板状の加工対象物1の内部に多光子吸収による改質領域7a,7bを形成する場合には加工用対物レンズ27の集光レンズ31の開口数を「0.80」というように大きくする必要があり、そのため、集光レンズ31と加工対象物1とが10mm程度まで近接することになる。このような状態で、表面3の変位を測定するためのセンサ等を集光レンズ31の側方に並設させることは装置構成上極めて困難であるが、レーザ加工装置20によれば、そのような困難な構成を採用する必要もない。
【0072】
本発明は上記実施形態に限定されない。例えば、上記実施形態は、加工用レーザ光として第1のレーザ光L1と第2のレーザ光L2とを加工対象物1に照射する場合であったが、互いに広がり角が異なっていれば、加工用レーザ光として3つ以上のレーザ光を集光レンズ31により加工対象物1の内部に集光させてもよい。これによれば、切断予定ライン5に沿った1回のスキャンで加工対象物1の内部に3本以上の改質領域を形成することができる。
【0073】
また、上記実施形態では、加工対象物1の切断予定ライン5に沿って加工用レーザ光L1,L2の集光点P1及び集光点P2を相対的に移動させるために、加工対象物1を載置したステージ21をX軸方向やY軸方向に駆動させたが、例えば、ステージ21に対して集光レンズ31側をX軸方向やY軸方向に駆動させてもよい。
【0074】
また、上記実施形態は、深さ制御手段50が加工対象物1の表面3での測定用レーザ光の反射光L4を検出する場合であったが、本発明はこれに限らない。例えば、加工対象物1の表面3での測定用レーザ光の反射光L4と共に、加工対象物1の裏面(レーザ光照射面)17での測定用レーザ光L3の反射光を検出してもよい。これにより、加工対象物1の表面3の変位と裏面17の変位とを測定することができ、よって、加工用対物レンズ27の集光レンズ31直下における加工対象物1の厚さを正確に求めることができる。したがって、例えば、第1のレーザ光L1の集光点P1を加工対象物1の厚さの半分の位置に合わせたり、加工対象物1の厚さの表面3側から1/3の位置に合わせたりというように、集光点P1及び集光点P2の深さ制御を種々の態様で行うことが可能になる。
【0075】
さらに、上記実施形態は、加工対象物1の表面3から深さD1,D2の位置に加工用レーザ光L1,L2の各集光点P1,P2を合わせる場合であったが、各集光点P1,P2を合わせる位置を切断予定ライン5に沿って変化させるような集光点P1及び集光点P2の深さ制御を行ってもよい。例えば、各集光点P1,P2を合わせる位置を波線状に変化させたり、各集光点P1,P2を合わせる位置の深さを途中で変えたりしてもよい。
【0076】
【発明の効果】
以上説明したように本発明に係るレーザ加工装置及びレーザ加工方法によれば、1本の切断予定ラインに対して加工対象物の内部に複数本の改質領域を効率良く形成することが可能になる。
【図面の簡単な説明】
【図1】本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の平面図である。
【図2】図1に示す加工対象物のII−II線に沿った断面図である。
【図3】本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の平面図である。
【図4】図3に示す加工対象物のIV−IV線に沿った断面図である。
【図5】図3に示す加工対象物のV−V線に沿った断面図である。
【図6】本実施形態に係るレーザ加工方法により切断された加工対象物の平面図である。
【図7】本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさとの関係を示すグラフである。
【図8】本実施形態に係るレーザ加工方法の第1工程における加工対象物の断面図である。
【図9】本実施形態に係るレーザ加工方法の第2工程における加工対象物の断面図である。
【図10】本実施形態に係るレーザ加工方法の第3工程における加工対象物の断面図である。
【図11】本実施形態に係るレーザ加工方法の第4工程における加工対象物の断面図である。
【図12】本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。
【図13】本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。
【図14】本実施形態に係るレーザ加工装置の概略構成図である。
【図15】図14に示すレーザ加工装置の深さ制御手段を示す概略構成図である。
【図16】図14に示すレーザ加工装置の加工用レーザ光の光学系を示す概略構成図である。
【図17】測定用レーザ光の集光点が加工対象物の表面上に位置する場合の測定用レーザ光の反射光の集光像パターンを説明するための図である。
【図18】測定用レーザ光の集光点が加工対象物の表面の先に位置する場合の測定用レーザ光の反射光の集光像パターンを説明するための図である。
【図19】測定用レーザ光の集光点が加工対象物の表面の手前に位置する場合の測定用レーザ光の反射光の集光像パターンを説明するための図である。
【図20】図14に示すレーザ加工装置によるレーザ加工の様子を示す図である。
【符号の説明】
1…加工対象物、3…表面(レーザ光照射面)、5…切断予定ライン、7a,7b…改質領域、17…裏面(レーザ光照射面)、20…レーザ加工装置、21…ステージ(移動手段)、31…集光レンズ、50…深さ制御手段、L1…第1のレーザ光、L2…第2のレーザ光、L3…測定用レーザ光、L4…測定用レーザ光の反射光、P1,P2…集光点、Z…Z軸(軸線)。

Claims (8)

  1. ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工装置であって、
    互いに広がり角の異なる第1のレーザ光と第2のレーザ光とを前記加工対象物の内部に集光し、前記第1のレーザ光の集光点の位置と前記第2のレーザ光の集光点の位置とで多光子吸収を生じさせる集光レンズと、
    前記加工対象物の切断予定ラインに沿って前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点を相対的に移動させる移動手段とを備えたことを特徴とするレーザ加工装置。
  2. 前記集光レンズは、前記加工対象物のレーザ光照射面の変位を測定するための測定用レーザ光を、前記第1及び前記第2のレーザ光と同一の軸線上で前記加工対象物に向けて集光し、
    前記レーザ光照射面で反射された前記測定用レーザ光の反射光を検出することにより、前記レーザ光照射面からの前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御する深さ制御手段を備えたことを特徴とする請求項1記載のレーザ加工装置。
  3. 前記レーザ光照射面は、前記加工対象物の前記集光レンズ側の表面であり、
    前記深さ制御手段は、前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さが前記表面から一定となるように、前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御することを特徴とする請求項2記載のレーザ加工装置。
  4. 前記深さ制御手段は、前記集光レンズと前記加工対象物との距離を変化させることで、前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御することを特徴とする請求項2又は3記載のレーザ加工装置。
  5. ウェハ状の加工対象物の内部に多光子吸収による改質領域を形成するレーザ加工方法であって、
    互いに広がり角の異なる第1のレーザ光と第2のレーザ光とを前記加工対象物の内部に集光して、前記第1のレーザ光の集光点の位置と前記第2のレーザ光の集光点の位置とで多光子吸収を生じさせ、
    前記加工対象物の切断予定ラインに沿って前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点を相対的に移動させることを特徴とするレーザ加工方法。
  6. 前記加工対象物のレーザ光照射面の変位を測定するための測定用レーザ光を、前記第1及び前記第2のレーザ光と同一の軸線上で前記加工対象物に向けて集光し、
    前記レーザ光照射面で反射された前記測定用レーザ光の反射光を検出することにより、前記レーザ光照射面からの前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御することを特徴とする請求項5記載のレーザ加工方法。
  7. 前記レーザ光照射面は、前記加工対象物に対して前記第1及び前記第2のレーザ光が入射する表面であり、
    前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さが前記表面から一定となるように、前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御することを特徴とする請求項6記載のレーザ加工方法。
  8. 前記第1及び前記第2のレーザ光を集光する集光レンズと前記加工対象物との距離を変化させることで、前記第1のレーザ光の集光点及び前記第2のレーザ光の集光点の深さを制御することを特徴とする請求項6又は7記載のレーザ加工方法。
JP2003136256A 2003-05-14 2003-05-14 レーザ加工装置及びレーザ加工方法 Pending JP2004337902A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136256A JP2004337902A (ja) 2003-05-14 2003-05-14 レーザ加工装置及びレーザ加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136256A JP2004337902A (ja) 2003-05-14 2003-05-14 レーザ加工装置及びレーザ加工方法

Publications (2)

Publication Number Publication Date
JP2004337902A true JP2004337902A (ja) 2004-12-02
JP2004337902A5 JP2004337902A5 (ja) 2006-06-29

Family

ID=33526280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136256A Pending JP2004337902A (ja) 2003-05-14 2003-05-14 レーザ加工装置及びレーザ加工方法

Country Status (1)

Country Link
JP (1) JP2004337902A (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065880A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
WO2005065881A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
WO2005065882A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
WO2005068126A1 (ja) * 2004-01-13 2005-07-28 Hamamatsu Photonics K.K. レーザ加工装置
JP2006198634A (ja) * 2005-01-18 2006-08-03 National Institute Of Information & Communication Technology レーザー加工装置、この装置を用いて製造した光デバイス
JP2007061855A (ja) * 2005-08-31 2007-03-15 Seiko Epson Corp レーザ照射装置
JP2008062263A (ja) * 2006-09-06 2008-03-21 Imra America Inc 超短パルスレーザでの透明材料処理
CN102825382A (zh) * 2011-06-13 2012-12-19 株式会社迪思科 激光加工装置
JP2013031879A (ja) * 2012-09-04 2013-02-14 Imra America Inc 超短パルスレーザでの透明材料処理
US8530786B2 (en) 2005-09-08 2013-09-10 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2013193081A (ja) * 2012-03-15 2013-09-30 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置
KR20140017421A (ko) * 2012-07-31 2014-02-11 미쓰보시 다이야몬도 고교 가부시키가이샤 접합 기판의 가공 방법 그리고 가공 장치
JP2014037006A (ja) * 2008-03-07 2014-02-27 Imra America Inc 超短パルスレーザによる透明材料処理
JP2015057296A (ja) * 2014-11-19 2015-03-26 三星ダイヤモンド工業株式会社 レーザー加工装置
JP5747912B2 (ja) * 2010-03-16 2015-07-15 アイシン精機株式会社 レーザによる二つの物質の重ね合わせ接合方法及び接合装置
JP2015223620A (ja) * 2014-05-29 2015-12-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP2016002569A (ja) * 2014-06-18 2016-01-12 株式会社ディスコ レーザー加工装置
JP2016201575A (ja) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 単結晶基板製造方法
JP2016213502A (ja) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 単結晶基板製造方法
JP2017076666A (ja) * 2015-10-13 2017-04-20 株式会社ディスコ 光デバイスウエーハの加工方法
WO2020252729A1 (en) * 2019-06-20 2020-12-24 Yangtze Memory Technologies Co., Ltd. Systems and methods for laser dicing of bonded structures

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241757B2 (en) 2004-01-09 2022-02-08 Hamamatsu Photonics K.K. Laser processing method and device
WO2005065881A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
WO2005065882A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
US8993922B2 (en) 2004-01-09 2015-03-31 Hamamatsu Photonics K.K. Laser processing method and device
US9511449B2 (en) 2004-01-09 2016-12-06 Hamamatsu Photonics K.K. Laser processing method and device
US10293433B2 (en) 2004-01-09 2019-05-21 Hamamatsu Photonics K.K. Laser processing method and device
WO2005065880A1 (ja) * 2004-01-09 2005-07-21 Hamamatsu Photonics K.K. レーザ加工方法及びレーザ加工装置
WO2005068126A1 (ja) * 2004-01-13 2005-07-28 Hamamatsu Photonics K.K. レーザ加工装置
US7595895B2 (en) 2004-01-13 2009-09-29 Hamamatsu Photonics K.K. Laser beam machining system
JP2006198634A (ja) * 2005-01-18 2006-08-03 National Institute Of Information & Communication Technology レーザー加工装置、この装置を用いて製造した光デバイス
JP4674333B2 (ja) * 2005-01-18 2011-04-20 独立行政法人情報通信研究機構 レーザー加工装置、この装置を用いて製造した光デバイス
JP2007061855A (ja) * 2005-08-31 2007-03-15 Seiko Epson Corp レーザ照射装置
JP4736633B2 (ja) * 2005-08-31 2011-07-27 セイコーエプソン株式会社 レーザ照射装置
US8530786B2 (en) 2005-09-08 2013-09-10 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US9751154B2 (en) 2005-09-08 2017-09-05 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US9636773B2 (en) 2005-09-08 2017-05-02 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2008062263A (ja) * 2006-09-06 2008-03-21 Imra America Inc 超短パルスレーザでの透明材料処理
JP2017024083A (ja) * 2008-03-07 2017-02-02 イムラ アメリカ インコーポレイテッド 超短パルスレーザによる透明材料処理
JP2014037006A (ja) * 2008-03-07 2014-02-27 Imra America Inc 超短パルスレーザによる透明材料処理
JP5747912B2 (ja) * 2010-03-16 2015-07-15 アイシン精機株式会社 レーザによる二つの物質の重ね合わせ接合方法及び接合装置
CN102825382A (zh) * 2011-06-13 2012-12-19 株式会社迪思科 激光加工装置
CN102825382B (zh) * 2011-06-13 2016-01-27 株式会社迪思科 激光加工装置
US9108268B2 (en) 2011-06-13 2015-08-18 Disco Corporation Laser processing apparatus
JP2013193081A (ja) * 2012-03-15 2013-09-30 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置
JP2014028388A (ja) * 2012-07-31 2014-02-13 Mitsuboshi Diamond Industrial Co Ltd 貼り合わせ基板の加工方法並びに加工装置
CN103567630A (zh) * 2012-07-31 2014-02-12 三星钻石工业股份有限公司 贴合基板的加工方法及加工装置
KR20140017421A (ko) * 2012-07-31 2014-02-11 미쓰보시 다이야몬도 고교 가부시키가이샤 접합 기판의 가공 방법 그리고 가공 장치
KR101891341B1 (ko) * 2012-07-31 2018-08-23 미쓰보시 다이야몬도 고교 가부시키가이샤 접합 기판의 가공 방법 그리고 가공 장치
JP2013031879A (ja) * 2012-09-04 2013-02-14 Imra America Inc 超短パルスレーザでの透明材料処理
JP2015223620A (ja) * 2014-05-29 2015-12-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US10525553B2 (en) 2014-05-29 2020-01-07 Hamamatsu Photonics K.K. Laser machining device and laser machining method
JP2016002569A (ja) * 2014-06-18 2016-01-12 株式会社ディスコ レーザー加工装置
JP2015057296A (ja) * 2014-11-19 2015-03-26 三星ダイヤモンド工業株式会社 レーザー加工装置
JP2017076666A (ja) * 2015-10-13 2017-04-20 株式会社ディスコ 光デバイスウエーハの加工方法
JP2016213502A (ja) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 単結晶基板製造方法
JP2016201575A (ja) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 単結晶基板製造方法
WO2020252729A1 (en) * 2019-06-20 2020-12-24 Yangtze Memory Technologies Co., Ltd. Systems and methods for laser dicing of bonded structures
US11529700B2 (en) 2019-06-20 2022-12-20 Yangtze Memory Technologies Co., Ltd. Systems and methods for laser dicing of bonded structures
US11938562B2 (en) 2019-06-20 2024-03-26 Yangtze Memory Technologies Co., Ltd. Systems and methods for laser dicing of bonded structures

Similar Documents

Publication Publication Date Title
JP3683580B2 (ja) レーザ加工装置
JP4804911B2 (ja) レーザ加工装置
JP2004188422A (ja) レーザ加工装置及びレーザ加工方法
JP5138800B2 (ja) レーザ加工方法
JP3626442B2 (ja) レーザ加工方法
JP3722731B2 (ja) レーザ加工方法
JP4964376B2 (ja) レーザ加工装置及びレーザ加工方法
JP2004337902A (ja) レーザ加工装置及びレーザ加工方法
JP4837320B2 (ja) 加工対象物切断方法
JP2004337903A (ja) レーザ加工装置及びレーザ加工方法
JP4664140B2 (ja) レーザ加工方法
JP2002192371A (ja) レーザ加工方法及びレーザ加工装置
JP4659301B2 (ja) レーザ加工方法
JP3867107B2 (ja) レーザ加工方法
JP3751970B2 (ja) レーザ加工装置
JP3867109B2 (ja) レーザ加工方法
JP4128204B2 (ja) レーザ加工方法
JP2006140356A (ja) レーザ加工方法及びレーザ加工装置
JP3867108B2 (ja) レーザ加工装置
JP3867103B2 (ja) 半導体材料基板の切断方法
JP3867101B2 (ja) 半導体材料基板の切断方法
JP3867102B2 (ja) 半導体材料基板の切断方法
JP3867110B2 (ja) レーザ加工方法
JP4095092B2 (ja) 半導体チップ
JP3867003B2 (ja) レーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215