JPWO2011115201A1 - ディスプレーサ及びその製造方法及び蓄冷器式冷凍機 - Google Patents

ディスプレーサ及びその製造方法及び蓄冷器式冷凍機 Download PDF

Info

Publication number
JPWO2011115201A1
JPWO2011115201A1 JP2012505742A JP2012505742A JPWO2011115201A1 JP WO2011115201 A1 JPWO2011115201 A1 JP WO2011115201A1 JP 2012505742 A JP2012505742 A JP 2012505742A JP 2012505742 A JP2012505742 A JP 2012505742A JP WO2011115201 A1 JPWO2011115201 A1 JP WO2011115201A1
Authority
JP
Japan
Prior art keywords
displacer
groove
sealing material
cylindrical member
material film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012505742A
Other languages
English (en)
Other versions
JP5877543B2 (ja
Inventor
貴裕 松原
貴裕 松原
純也 濱▲崎▼
純也 濱▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012505742A priority Critical patent/JP5877543B2/ja
Publication of JPWO2011115201A1 publication Critical patent/JPWO2011115201A1/ja
Application granted granted Critical
Publication of JP5877543B2 publication Critical patent/JP5877543B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

本発明は筒状部材の内部に蓄冷材が配設されると共に、シリンダ内で往復動することにより前記シリンダ内で圧縮された作動流体を膨張させ寒冷を発生させるディスプレーサであって、前記シリンダと対向する前記筒状部材の外周面に溝が形成され、かつ、前記筒状部材の外周面の少なくとも前記溝の形成領域に、前記外周面及び前記溝を被覆するシール材膜が形成されてなることを特徴とする。

Description

本発明はディスプレーサ及びその製造方法及び蓄冷器式冷凍機に係り、特に表面に溝形成がされたディスプレーサ及びその製造方法及びこのディスプレーサを用いた蓄冷器式冷凍機に関する。
一般に、ヘリウム等の冷媒ガスを用い、蓄冷材を収容した蓄冷器を有する蓄冷器式冷凍機として、ギフォード・マクマホン(GM)サイクル冷凍機が知られている。GM冷凍機は、シリンダ内にディスプレーサが挿入された構造を有している。
シリンダ内の低温端には膨張室が設けられ、高温端には空洞が設けられている。また、ディスプレーサ内にはガス流路が設けられており、このガス流路内に蓄冷材が充填されている。ディスプレーサ内のガス流路は、膨張室及び高温端側の空洞に連通している。このディスプレーサは、例えばモータ及びスコッチヨーク機構等から構成される駆動機構によりシリンダの軸方向に往復駆動する構成とされている。
また、GM冷凍機には冷媒ガス供給系が接続されている。この冷媒ガス供給系は、高温端側の空洞に冷媒ガスを供給し、また空洞から冷媒ガスを回収する。冷媒ガスの供給と回収は、ディスプレーサの往復駆動に同期して行われる。高温端側の空洞に冷媒ガスが供給されると、ディスプレーサ内のガス流路を通って、膨張室まで冷媒ガスが導入される。膨張室内の冷媒ガスは、同一経路を通って冷媒ガス供給系に回収される。
ディスプレーサが往復動に伴い、膨張室内において冷媒ガスが膨張すると、冷媒ガスは寒冷を発生する。膨張して極低温となった冷媒ガスは、周囲から熱を吸収すると共に、膨張室から回収される時にディスプレーサ内の蓄冷材を冷却する。そして、蓄冷材と熱交換して昇温された後、冷媒ガスはシリンダから排気される。また、次サイクルにおいて冷媒ガスが膨張室に導入される時、蓄冷された蓄冷材により冷媒ガスは冷却される。上記処理を繰り返すことにより、シリンダの低温側は極低温に維持される。
また、シリンダとディスプレーサとの間のシールが十分でないと、冷媒ガスが所望の冷凍能力を発揮できなくなる場合がある。これを防止するため、特許文献1に開示された発明では、ディスプレーサの外周面上に螺旋溝を設けた構成としている。この構成とすることにより、冷媒ガスはディスプレーサ内を流れる正規のガス流路と、シリンダとディスプレーサとの間の隙間に流入し螺旋溝に沿って流れる冷媒ガスに分岐される。
螺旋溝に沿って流れる冷媒ガスは、シリンダ軸に平行に流れる場合に比べてより長い経路を通るため、ディスプレーサと十分な熱交換を行うことができる。このため、シリンダとディスプレーサとの間の隙間を流れる冷媒ガスによる熱損失を少なくすることができ、冷凍能力の低下を抑制することができる。
更に、冷媒ガスが螺旋溝内に確実に流入されるためには、ディスプレーサ(溝の山部分)とシリンダ内壁とのシール性を高める必要がある。このため、特許文献2に開示されているように、ディスプレーサの外周面に樹脂製のシール材膜を被膜することが提案されている。
図1A〜図1Cは、従来においてディスプレーサ103に螺旋溝138及びシール材膜139を形成する方法を示している。従来においてディスプレーサ103に螺旋溝138及びシール材膜139を形成するには、先ず図1Aに示すようにディスプレーサ103の基材となる筒状部材130を用意し、続いて図1Bに示すようにその外周の所定範囲にシール材膜139をコーティング等により被膜する。
続いて、図1Cに示すようにシール材膜139が形成された筒状部材130を旋盤等の螺旋溝を加工する機械加工処理装置に装着し、螺旋溝138を切削加工を行うことにより形成することが行われていた。
特許第2659684号公報 特開2001−248929号公報
上記のようにGM冷凍機において熱損失を少なくし冷凍能力を向上させるためには、ディスプレーサに設けられる螺旋溝及びシール材膜が重要な要素となる。
特に、シール材膜においてはシール性を高めるためにはその厚みが重要となり、シール材膜をディスプレーサの表面に厚く形成すると、シール材膜の材質とシリンダの材質との熱膨張係数の違いにより、シール材膜とシリンダの内壁との間のクリアランスにばらつきが発生してしまう。このばらつきが発生すると、ディスプレーサとシリンダとの間に冷媒ガスが漏れる箇所が発生し、冷凍能力が低下してしまう。よって、シール材膜とシリンダの内壁との間におけるクリアランスのばらつきを低減するためには、シール材膜の膜厚を薄くすることが有効である。
しかしながら、従来構成のGM冷凍機において単にシール材膜の膜厚を薄くすると、シール材膜自体の強度が低下するため、螺旋溝138の機械加工時に筒状部材上に被膜したシール材膜が筒状部材130から剥がれてしまう。このように、シール材膜139に剥離が発生すると、この剥離部分から冷媒ガスが漏れ、やはり冷凍能力が低下してしまうという問題点が発生する。
本発明は、上述した従来技術の問題を解決する、改良された有用なディスプレーサ及びその製造方法及び蓄冷器式冷凍機を提供することを総括的な目的とする。
本発明のより詳細な目的は、シール材膜の剥離を防止することによりディスプレーサとシリンダ間のシール性を向上させ、これにより安定した冷却処理を可能とするディスプレーサ及びその製造方法及び蓄冷器式冷凍機を提供することにある。
この目的を達成するために、本発明は、筒状部材の内部に蓄冷材が配設されると共に、シリンダ内で往復動することにより前記シリンダ内で圧縮された作動流体を膨張させ寒冷を発生させるディスプレーサであって、前記シリンダと対向する前記筒状部材の外周面に溝が形成され、かつ、前記筒状部材の外周面の少なくとも前記溝の形成領域に、前記外周面及び前記溝を被覆するシール材膜が形成されてなることを特徴とするものである。
また、上記発明において、前記溝を前記筒状部材の外周面に螺旋状に形成された螺旋溝としてもよい。
また、上記発明において、前記シール材膜の膜厚を5μm以上50μm以下としてもよい。
また、上記発明において、前記シール材膜をフッ素樹脂としてもよい。
また、上記の目的を達成するために、本発明は、筒状部材からディスプレーサを製造するディスプレーサの製造方法であって、前記筒状部材の外周面に溝を加工する溝加工工程と、該溝加工工程を実施した後に、前記筒状部材の前記溝が加工された領域を含む外周面をシール材膜で被覆するシール材膜形成工程とを有することを特徴とするものである。
また、上記発明において、前記溝を前記筒状部材の外周面に螺旋状に形成することとしてもよい。
また、上記発明において、前記溝を機械加工により形成してもよい。
また、上記発明において、前記シール材膜を前記筒状部材の外周面にコーティング法又はメッキ法により形成してもよい。
また、上記発明において、前記シール材膜をフッ素樹脂としてもよい。
また、上記の目的を達成するために、本発明は、圧縮された作動流体が供給されるシリンダと、内部に蓄冷材が配設されると共に、シリンダ内で往復動することにより前記シリンダ内で圧縮された作動流体を膨張させ寒冷を発生させる請求項1記載のディスプレーサと、モータの回転運動を前記ディスプレーサの往復運動に変換する回転・往復運動変換機構とを有することを特徴とするものである。
本発明によれば、ディスプレーサとシリンダとの間における冷媒ガスの漏れを防止でき、冷凍能力の低下を防止することが可能となる。
従来の一例であるディスプレーサの製造方法を説明するための図であり、加工前の筒状部材を示す正面図である。 従来の一例であるディスプレーサの製造方法を説明するための図であり、筒状部材にシール材膜を配設した状態を示す正面図である。 従来の一例であるディスプレーサの製造方法を説明するための図であり、溝加工を行った後の状態を示す正面図である。 本発明の一実施形態であるによるギフォード・マクマホン型冷凍機の断面図である。 図2に示すロータリバルブの分解斜視図である。 図2に示す第2段目ディスプレーサの断面図である。 図4Aに一点鎖線で示す円内を拡大して示す図である。 本発明の一実施形態である冷凍機に用いる第2段目ディスプレーサの製造方法を説明するための図であり、加工前の筒状部材を示す正面図である。 本発明の一実施形態である冷凍機に用いる第2段目ディスプレーサの製造方法を説明するための図であり、溝加工を行った後の状態を示す正面図である。 本発明の一実施形態である冷凍機に用いる第2段目ディスプレーサの製造方法を説明するための図であり、溝加工を行った筒状部材にシール材膜を配設した状態を示す正面図である。 変形例である第2段目ディスプレーサの断面図である。 図6Aに一点鎖線で示す円内を拡大して示す図である。
1 ガス圧縮機
2 コールドヘッド
3A 第1段目ディスプレーサ
3B,3C 第2段目ディスプレーサ
4A,4B 蓄冷材
6,7 冷却ステージ
8 バルブ本体
9 バルブプレート
10 シリンダ部
10A 第1段目シリンダ
10B 第2段目シリンダ
11 第1段目膨張室
12 第2段目膨張室
13 上部室
14 クランク
15 モータ
16 回転軸受
22 スコッチヨーク
23 ハウジング
30 筒状部材
36 連結機構
37 開口
38A 螺旋溝
38B 環状溝
39 シール材膜
以下、本発明の実施形態について図面を参照しつつ説明する。
図2は本発明の一実施形態であるギフォード・マクマホン(GM)型冷凍機を模式的に示す断面図である。本実施形態によるGM型冷凍機は、ガス圧縮機1とコールドヘッド2とを有する。コールドヘッド2は、ハウジング23とシリンダ部10とを有する。ガス圧縮機1は、吸気口1aから冷媒ガスを吸い込み、圧縮して、吐出口1bから高圧の冷媒ガスとして吐出する。作動流体である冷媒ガスとして、通常はヘリウムガスが使用される。
シリンダ部10は、第1段目シリンダ10Aと第2段目シリンダ10Bとの2段構成であり、第2段目シリンダ10Bは、第1段目シリンダ10Aよりも細く設定されている。また、第1段目シリンダ10Aの内部には第1段目ディスプレーサ3Aが、第2段目シリンダ10Bの内部には第2段目ディスプレーサ3Bが、各シリンダ10A,10Bの軸方向に往復運動可能に挿入されている。
第1段目ディスプレーサ3Aと第2段目ディスプレーサ3Bは、図示を省略したジョイント機構により相互に連結されている。また、第1段目ディスプレーサ3Aの内部には蓄冷材4Aが設けられ、第2段目ディスプレーサ3Bには蓄冷材4Bが充填されている。更に、各ディスプレーサ3A,3Bには、冷媒ガスが通過するガス流路L1〜L4が形成されている。
第1段目シリンダ10A内の、第2段目シリンダ10B側の端部には第1段目膨張室11が形成され、他方の端部に上は上部室13が形成されている。また、第2段目シリンダ10Bの第1段目シリンダ10A側とは反対側の端部には、第2段目膨張室12が形成されている。
上部室13と第1段目膨張室11とは、ガス流路L1、蓄冷材4が充填された第1段蓄冷材充填室、及びガス流路L2を介して接続されている。また、第1段目膨張室11と第2段目膨張室12とは、ガス流路L3、蓄冷材4Bが充填された第2段蓄冷材充填室、及びガス流路L4を介して接続されている。
第1段目シリンダ10Aの外周面の内、第1段目膨張室11にほぼ対応する位置には冷却ステージ6が配設されている。また、第2段目シリンダ10Bの外周面の内、第2段目膨張室12にほぼ対応する位置には冷却ステージ7が配設されている。
第1段目ディスプレーサ3Aの外周面のうち、上部室13側の端部近傍にシール機構50が配置されている。このシール機構50は、第1段目ディスプレーサ3Aの外周面とシリンダ10Aの内周面との間をシールする。
第1段目ディスプレーサ3Aは、回転・往復運動変換機構を構成するスコッチヨーク22の出力軸22aに接続されている。スコッチヨーク22は、ハウジング23に固定された一対の摺動軸受17a,17bにより、ディスプレーサ3A,3Bの軸方向に移動可能に支持されている。摺動軸受17bにおいては、摺動部の気密性が保たれており、ハウジング23内の空間と上部室13とが気密に画成されている。
また、スコッチヨーク22にはモータ15が接続されている。モータ15の回転運動は、クランク14及びスコッチヨーク22により往復運動に変換される。この往復運動は出力軸22aを介してディスプレーサ3Aに伝達され、これにより第1段目ディスプレーサ3Aは第1段目シリンダ10A内で、また第2段目ディスプレーサ3Bは第2段目シリンダ10B内で往復移動を行う。
各ディスプレーサ3A,3Bが図中上方に移動する時、上部室13の容積は減少し、逆に第1段目及び第2段目の膨張室11及び12の容積は増加する。また反対に、各ディスプレーサ3A,3Bが図中下方に移動する時、上部室13の容積は増大し、第1段目及び第2段目の膨張室11及び12の容積は減少する。この上部室13、膨張室11及び12の容積の変動に伴い、冷媒ガスがガス流路L1〜L4を通って移動する。
また、冷媒ガスが各ディスプレーサ3A,3Bに充填された蓄冷材4A,4B内を通過する際、冷媒ガスと蓄冷材4A,4Bとの間で熱交換が行われる。これにより、蓄冷材4A,4Bは冷媒ガスにより冷却される。
冷媒ガスの流路において、圧縮機1の吸気口1a及び吐出口1bと上部室13との間には、ロータリバルブRVが配置されている。ロータリバルブRVは、冷媒ガスの流路を切り換える機能を奏する。具体的には、ロータリバルブRVは、ガス圧縮機1の吐出口1bから吐出された冷媒ガスを上部室13内に導く第1の態様と、上部室13内の冷媒ガスをガス圧縮機1の吸気口1aに導く第2の態様との切り換え処理を行う。
ロータリバルブRVは、バルブ本体8及びバルブプレート9を有する。バルブプレート9は、例えばアルミニウム合金で形成され、バルブ本体8は、例えば四フッ化エチレン(例えば、NTN社製のベアリーFL3000)で形成されている。バルブ本体8及びバルブプレート9は平坦な摺動面を有し、この平坦な摺動面同士が面接触している。両者の摺動面の少なくとも一方に、摩擦を低減して耐磨耗性を向上させるために、ダイヤモンドライクカーボン(DLC)等の硬質材からなる薄膜が形成されることが好ましい。
バルブプレート9は、回転軸受16により、ハウジング23内に回転可能に支持されている。スコッチヨーク22を駆動するクランク14の偏心ピン14aが回転軸を中心として公転することにより、バルブプレート9が回転する。バルブ本体8は、コイルバネ20によりバルブプレート9に押し付けられ、ピン19により回転しないように固定されている。
コイルバネ20は、排気側の圧力が給気側の圧力より大きくなってしまった場合に、バルブ本体8がバルブプレート9から離れてしまわないようにバルブ本体8を押圧するために設けられた押圧手段である。作動時にバルブ本体8をバルブプレート9に押圧する力は、冷媒ガスの給気側の圧力と排気側の圧力の差圧がバルブ本体8に作用することにより生じるようになっている。
図3は、ロータリバルブRVの分解斜視図である。円柱状のバルブ本体8の平坦な摺動面8aとバルブプレート9の平坦な摺動面9aとが面接触する。ガス供給路となるガス流路8bが、バルブ本体8の中心軸に沿ってバルブ本体8を貫通している。すなわち、ガス流路8bの一端が、摺動面8aに開口している。ガス流路8bの他端は、図2に示したガス圧縮機1の吐出口1bに接続されている。圧縮機1の吐出口1bからバルブ本体8のガス流路8bまでがガス供給路に相当する。
バルブ本体8の摺動面8aに、バルブ本体8の中心軸を中心とした円弧に沿った溝8cが形成されている。バルブ本体8の内部に形成されたガス流路8dの一端が、溝8cの底面に開口している。ガス流路8dの他端は、バルブ本体8の外周面に開口し、更に図2に示すハウジング23に形成されたガス流路21を経由して上部室13に連通している。
バルブプレート9の摺動面9aに、その中心から半径方向に伸びる溝9dが形成されている。バルブプレート9が回転し、溝9dの外周側の端部が溝8cに部分的に重なった時、ガス流路8bとガス流路8dとが溝9dを介して連通する。
回転軸に平行なガス流路9bが、バルブプレート9を貫通して延在している。ガス流路9bは、摺動面9a内の半径方向に関して、バルブ本体8の摺動面8aに形成された溝8cとほぼ同じ位置に開口している。バルブプレート9が回転し、ガス流路9bの開口部が溝8cに部分的に重なった時、ガス流路8dとガス流路9bとが連通する。ガス流路9bの他端は、図2に示したハウジング23内の空洞を介してガス圧縮機1の吸気口1aに連通している。バルブプレート9のガス流路から圧縮機1の吸気口1aまでがガス排出路に相当する。
ガス流路8bとガス流路8dとが溝8cを介して連通している時、圧縮機1から送られる冷媒ガスはロータリバルブRVを介して上部室13内に送り込まれる。ガス流路8dとガス流路9bとが連通している時、上部室13内の冷媒ガスがガス圧縮機1に回収される。従って、バルブプレート9を回転させると、上部室13への冷媒ガスの導入(給気)と、上部室13からの冷媒ガスの回収(排気)が繰り返される。
図4Aは第2段目ディスプレーサ3Bの部分断面図であり、図4Bは図4Aに一点鎖線で示す円内を拡大して示す図である。第2段目ディスプレーサ3Bは、円筒筒状の筒状部材30を基材とする。この上下端が開放された筒状部材30の下端には蓋部材31が挿入され上で接着されている。筒状部材30はステンレスにより形成されており、また蓋部材31は布入りフェノールで形成されている。また筒状部材30内で、蓋部材31の上には金網32が配設され、その上にはフェルト栓33が配設されている。
蓄冷材4Bは、このフェルト栓33の上に充填されている。蓄冷材4Bは、例えば小さな鉛球で形成してもよく、また磁性蓄冷材を用いてもよい。磁性蓄冷材を用いると冷凍能力を高めることができる。また、蓄冷材4Bの上にはフェルト栓34が配置され、フェルト栓34の上にはパンチングメタル35が配置される。
筒状部材30の側壁の金網32の高さの位置には、開口37が設けられている。
また、筒状部材30の開口37よりも上の外周面には溝が形成されている。本実施形態では、この溝を開口37の位置と上端位置とを結ぶ1本の螺旋状の溝38A(以下、螺旋溝38Aという)として形成されている。この螺旋溝38Aは、シリンダ10Bの内面と協働して螺旋状のガス流路を形成する。
また、開口37よりも下の筒状部材30の外径は、それよりも上の部分の外径よりも僅かに小さくされている。従って、開口37よりも下の部分では、筒状部材30と第2段目シリンダとの間に間隙が形成される。この間隙及び上記した開口37は、筒状部材30の内部と図2に示す膨張空間12とを結ぶガス流路L4を形成する(図示の便宜上、図2ではガス流路L1を蓋部材を上下に貫通するよう図示している)。
上記構成とされた第2段目ディスプレーサ3Bにおいて、シリンダ10Bの内周面とディスプレーサ3Bの外周面との間に形成された間隙に冷媒ガスが流入すると、冷媒ガスは螺旋溝38Aに沿って流れ、冷媒ガスと蓄冷材4Bとの間には筒状部材30を介して熱交換が行われる。この際、筒状部材30の表面に螺旋溝38Aを形成することにより、冷媒ガスは螺旋溝38Aが形成する螺旋状の長い流露を通り流れるため、十分な熱交換を行うことが可能となる。これにより確実に熱交換が行われ、よって冷凍能力の低下を抑制できるため、GM冷凍機の冷却効率の向上を図ることができる。
ここで、本実施形態に係るGM冷凍機に組み込まれた第2段目ディスプレーサ3Bの外周面に注目し説明を続ける。
前記のように、第2段目ディスプレーサ3Bの外周位置には螺旋溝38Aが形成されている。本実施形態では、筒状部材30の外周面の少なくとも螺旋溝38Aが形成された領域にシール材膜39を形成している。このシール材膜39は、筒状部材30の外周面を被覆するばかりでなく、螺旋溝38Aをも被覆した構成とされている。
このシール材膜39は、第2段目ディスプレーサ3Bと第2段目シリンダ10Bの内壁との間におけるシール性を高めるために配設される。本実施形態では、シール材膜39として熱的及び機械的に特性が高くかつ滑性を有したフッ素樹脂を用いている。具体的には、シール材膜39としてテフロン(登録商標)を用いている。
このシール材膜39は、第2段目ディスプレーサ3Bの表面に厚く形成すると、シール材膜39と第2段目シリンダ10Bの熱膨張係数の違いにより両者の間のクリアランスにばらつきが発生し、冷凍能力が低下してしまうことは前述した通りである。そこで本実施形態では、シール材膜39の膜厚を5μm以上50μm以下に設定した。このようにシール材膜39の膜厚を薄く設定することにより、シール材膜39と第2段目シリンダ10Bの熱膨張係数の違いに起因したクリアランスのばらいつき発生を抑制でき、冷却効率の低下を抑制することができる。
しかしながら、単にシール材膜の膜厚を薄くすると、シール材膜自体の強度が低下するため、螺旋溝38Aの機械加工時に筒状部材上に被膜したシール材膜が筒状部材30から剥がれてしまうおそれがある。そこで本実施形態では、螺旋溝38Aを形成した後にシール材膜39を形成することにより、この問題点を解決している。
ここで、図5A〜図5Cを用いて筒状部材30の螺旋溝38Aが形成された領域の全体にシール材膜39を形成する方法について説明する。
本実施形態に係る筒状部材30を形成するには、先ず図5Aに示すようにディスプレーサ3Bの基材となる筒状部材30を用意する。この筒状部材30はステンレス製であり、内部には蓄冷材4B等を装着するための空間が形成された円筒形状とされている。
本実施形態では、先ずこの筒状部材30の外周面に対して螺旋溝38Aを加工する螺旋溝加工工程を実施する。螺旋溝38Aの加工方法は、従来と変わることはなく、旋盤等の機械加工処理装置に筒状部材30装着して螺旋溝38Aの機械加工を行う。このように、本実施形態においても従来の同じ溝加工方法により螺旋溝38Aを形成するため、加工コストが上昇するようなことはない。図5Bは、螺旋溝38Aが形成された筒状部材30を示している。
螺旋溝加工工程が終了すると、螺旋溝38Aが形成された筒状部材30に対してシール材膜39を被膜するシール材膜形成工程を実施する。このシール材膜形成工程では、次に図5Cに示すように、筒状部材30の外周面で螺旋溝38Aが形成された領域を含む領域にシール材膜39となるフッ素樹脂を被膜する。
この筒状部材30にシール材膜39を被膜する方法としては、コーティング法又はメッキ法を用いることができる。またシール材膜39の膜厚は上記のように5μm以上50μm以下に設定されるが、この膜厚はコーティング時間或いはメッキ時間を管理することにより容易に制御することができる。本実施形態では、シール材膜39の膜厚を上記のように薄く形成するため、シール材膜39の形成方法としてコーティング法又はメッキ法を用いることが好適である。
また本実施形態では、螺旋溝加工工程を実施した後にシール材膜39を被膜するため、筒状部材30の外周面と共に螺旋溝38Aの内部にもシール材膜39の被覆が行われる。このため、従来のシール材膜139を被膜した後に螺旋溝138を形成する方法と異なり、本実施形態に係るディスプレーサ3Bの製造方法によればシール材膜39が筒状部材30から剥離するようなことはない。
また従来では、シール材膜139が螺旋溝138の山の部分にのみ形成され、谷の部分においては螺旋溝138の加工時に除去されていた。これに対して本実施形態では、シール材膜39は螺旋溝38Aの形成位置も含み被膜形成される。即ち、シール材膜39は螺旋溝38Aにより分断されることなく、筒状部材30の螺旋溝38Aの形成領域全体を被覆する構成となる。よって、シール材膜39は筒状部材30に強固に固着された状態となり、これによってもシール材膜39が筒状部材30から剥離することを防止することができる。
上述のように本実施形態に係るディスプレーサ3Bは、シール材膜39の膜厚を5μm以上50μm以下と薄く設定しても、シール材膜39が筒状部材30から剥離することを防止できる。
よって、シール材膜39の膜厚が薄くなることによりシール材膜39と第2段目シリンダ10Bの内壁との間のクリアランスにばらつきが発生することを防止でき、第2段目ディスプレーサ3Bと第2段目シリンダ10Bとの間における冷媒ガスの漏れを防止できる。また、シール材膜39が筒状部材30から剥離すること確実に防止できることにより、従来発生していた剥離箇所からの冷媒ガスの漏れを防止できる。これにより、第2段目ディスプレーサ3Bと第2段目シリンダ10Bとの間における冷媒ガスの漏れが防止されるため、GM冷凍機の冷凍能力の低下を確実に防止することができる。
尚、本実施形態においてシール材膜39の膜厚を5μm以上50μm以下に設定したのは、膜厚を5μm未満の薄膜とするとシール材膜39自体の強度が低下して、第2段目シリンダ10B内における第2段目ディスプレーサ3Bの往復移動によりシール材膜39が剥離するおそれがあるからである。また、シール材膜39の膜厚を50μmを越える厚さとすると、上記したようにシール材膜39と第2段目シリンダ10Bの内壁との間のクリアランスにばらつきが発生するからである。
次に、上記した実施形態の変形例について説明する。
図6及び図6Bは、図4A及び図4Bを用いて説明した第2段目ディスプレーサ3Bの変形例を示している。図6Aは本変形例に係る第2段目ディスプレーサ3Cの部分断面図であり、図6Bは図6Aに一点鎖線で示す円内を拡大して示す図である。尚、図6A及び図6Bにおいて、図2乃至図6A,6Bに示した構成と対応する構成については、同一符号を付してその説明は省略するものとする。
先に図4A及び図4Bを用いて説明した第2段目ディスプレーサ3Bでは、筒状部材30外周面に1本の螺旋溝38を形成した構成を示した。これに対して本変形例では、図6及び図6Bに示すように環状の溝38B(以下、環状溝38Bという)を複数形成したことを特徴とするものである。
この各環状溝38Bは、螺旋状の螺旋溝38Aと異なり一本の構成とはなっておらず、各々が独立した構成となっている。また各環状溝38Bは、各々が平行に配置された構成となっている。
本変形例のように筒状部材30に複数の螺旋溝38を形成する構成としても、溝を形成しないディスプレーサに比べて冷媒ガスとの間で効率の高い熱交換を行うことができ、よって冷凍機の冷凍能力の低下を抑制することができる。
この際、隣接する環状溝38Bの間に、隣接する環状溝38B間で冷媒ガスを流す連結溝を形成してもよい。この構成とすることにより、冷媒ガスと第2段目ディスプレーサ3Cとの間における熱交換の効率をより高めることができる。
また、本変形例においても、シール材膜39は筒状部材30の外周面の少なくとも環状溝38Bが形成された領域に形成されている。そして、このシール材膜39は筒状部材30の外周面を被覆するばかりでなく、環状溝38B内をも被覆した構成とされている。この環状溝38Bは、溝の形成方法の違い(螺旋溝を形成するか、環状の溝を形成するかの相違)を除き、図5A〜図5Cを用いて説明した製造方法と同様の方法で形成することができる。また、シール材膜39の厚さも第2段目ディスプレーサ3Bと同様に5μm以上50μm以下に設定している。
よって、本変形例に係る第2段目ディスプレーサ3Cを用いることによっても、図2乃至図6A,6Bに示した実施形態と同様に、GM冷凍機の冷凍能力の低下を確実に防止することができる。
以上、本発明の好ましい実施形態及びその変形例について詳述したが、本発明は上記した特定の構成に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変更が可能なものである。
具体的には、上述の実施形態は、2段式のギフォード・マクマホン(GM)型冷凍機に本発明を適用した例を示したが、本発明は2段式に限らず、1段式或いは多段式のGM冷凍機にも適用することができる。
また、上記した実施形態においては、第2段目ディスプレーサ3Bに螺旋溝38A及びシール材膜39を設けた構成例に付いて説明したが、第1段目ディスプレーサ3Aに対しても第2段目ディスプレーサ3Bと同様の構成で螺旋溝及びシール材膜を設けた構成としてもよいことは勿論である。
本国際出願は2010年3月17日に出願された日本国特許出願2010−060998号に基づく優先権を主張するものであり、2010−060998号の全内容をここに本国際出願に援用する。

Claims (10)

  1. 筒状部材の内部に蓄冷材が配設されると共に、シリンダ内で往復動することにより前記シリンダ内で圧縮された作動流体を膨張させ寒冷を発生させるディスプレーサであって、
    前記シリンダと対向する前記筒状部材の外周面に溝が形成され、
    かつ、前記筒状部材の外周面の少なくとも前記溝の形成領域に、前記外周面及び前記溝を被覆するシール材膜が形成されてなることを特徴とするディスプレーサ。
  2. 前記溝は前記筒状部材の外周面に螺旋状に形成された螺旋溝である請求項1記載のディスプレーサ。
  3. 前記シール材膜の膜厚は、5μm以上50μm以下であることを特徴とする請求項1記載のディスプレーサ。
  4. 前記シール材膜は、フッ素樹脂であることを特徴とする請求項1に記載のディスプレーサ。
  5. 筒状部材からディスプレーサを製造するディスプレーサの製造方法であって、
    前記筒状部材の外周面に溝を加工する溝加工工程と、
    該溝加工工程を実施した後に、前記筒状部材の前記溝が加工された領域を含む外周面をシール材膜で被覆するシール材膜形成工程と
    を有することを特徴とするディスプレーサの製造方法。
  6. 前記溝を前記筒状部材の外周面に螺旋状に形成することを特徴とする請求項5に記載のディスプレーサの製造方法。
  7. 前記溝を機械加工により形成することを特徴とする請求項5に記載のディスプレーサの製造方法。
  8. 前記シール材膜を前記筒状部材の外周面にコーティング法又はメッキ法により形成したことを特徴とする請求項5に記載のディスプレーサの製造方法。
  9. 前記シール材膜は、フッ素樹脂であることを特徴とする請求項5に記載のディスプレーサの製造方法。
  10. 圧縮された作動流体が供給されるシリンダと、
    内部に蓄冷材が配設されると共に、シリンダ内で往復動することにより前記シリンダ内で圧縮された作動流体を膨張させ寒冷を発生させる請求項1記載のディスプレーサと、
    モータの回転運動を前記ディスプレーサの往復運動に変換する回転・往復運動変換機構とを有することを特徴とする蓄冷器式冷凍機。
JP2012505742A 2010-03-17 2011-03-17 ディスプレーサ及びその製造方法及び蓄冷器式冷凍機 Active JP5877543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505742A JP5877543B2 (ja) 2010-03-17 2011-03-17 ディスプレーサ及びその製造方法及び蓄冷器式冷凍機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010060998 2010-03-17
JP2010060998 2010-03-17
JP2012505742A JP5877543B2 (ja) 2010-03-17 2011-03-17 ディスプレーサ及びその製造方法及び蓄冷器式冷凍機
PCT/JP2011/056362 WO2011115201A1 (ja) 2010-03-17 2011-03-17 ディスプレーサ及びその製造方法及び蓄冷器式冷凍機

Publications (2)

Publication Number Publication Date
JPWO2011115201A1 true JPWO2011115201A1 (ja) 2013-07-04
JP5877543B2 JP5877543B2 (ja) 2016-03-08

Family

ID=44649284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505742A Active JP5877543B2 (ja) 2010-03-17 2011-03-17 ディスプレーサ及びその製造方法及び蓄冷器式冷凍機

Country Status (5)

Country Link
US (1) US20130008184A1 (ja)
JP (1) JP5877543B2 (ja)
KR (1) KR20120139800A (ja)
CN (1) CN102792105B (ja)
WO (1) WO2011115201A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714461B2 (ja) * 2011-09-21 2015-05-07 住友重機械工業株式会社 極低温冷凍機
JP5415503B2 (ja) 2011-10-05 2014-02-12 住友重機械工業株式会社 極低温冷凍機
CN102679642A (zh) * 2012-04-24 2012-09-19 上海交通大学 一种制冷机用低温气体节流阀板
JP6147208B2 (ja) * 2014-03-05 2017-06-14 住友重機械工業株式会社 蓄冷式冷凍機
US10654188B2 (en) * 2014-12-31 2020-05-19 Robert Bosch Tool Corporation Guide foot for an oscillating cutting tool
CN108507214B (zh) * 2018-04-19 2023-08-29 中船重工鹏力(南京)超低温技术有限公司 一种推移活塞及采用该推移活塞的低温制冷机
CN110440474A (zh) * 2019-07-23 2019-11-12 中船重工鹏力(南京)超低温技术有限公司 高比热推移活塞及其制备方法及蓄冷式制冷机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840718A (en) * 1973-08-06 1974-10-08 Harnischfeger Corp Drum grooving apparatus and method
JP2659684B2 (ja) * 1994-05-31 1997-09-30 住友重機械工業株式会社 蓄冷器式冷凍機
JP2780928B2 (ja) * 1994-06-16 1998-07-30 住友重機械工業株式会社 蓄冷器式冷凍機を使用した低温装置及び冷却方法
JP3588644B2 (ja) * 2000-03-07 2004-11-17 住友重機械工業株式会社 蓄冷器式冷凍機
CN1225625C (zh) * 2001-11-05 2005-11-02 富士电机株式会社 脉冲管低温冷却器
DE10212940A1 (de) * 2002-03-22 2003-10-02 Leybold Vakuum Gmbh Exzenterpumpe und Verfahren zum Betrieb dieser Pumpe
JP3851929B2 (ja) * 2002-04-17 2006-11-29 岩谷瓦斯株式会社 極低温冷凍機
JP3962353B2 (ja) * 2002-08-29 2007-08-22 三菱電機株式会社 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット
JP2004239564A (ja) * 2003-02-07 2004-08-26 Sumitomo Heavy Ind Ltd ディスプレーサ
CN100366991C (zh) * 2003-03-26 2008-02-06 学校法人同志社 冷却装置
CN2660236Y (zh) * 2003-12-01 2004-12-01 北京交通大学 提高往复轴磁性液体密封耐压能力的装置
JP4599874B2 (ja) * 2004-04-06 2010-12-15 住友金属工業株式会社 油井管用ねじ継手、及びその製造方法
JP2006245098A (ja) * 2005-03-01 2006-09-14 Seiko Epson Corp 電子部品及びその製造方法、並びに電子機器
WO2009017039A1 (ja) * 2007-07-27 2009-02-05 Mitsubishi Electric Corporation 熱交換器およびその製造方法

Also Published As

Publication number Publication date
CN102792105B (zh) 2014-11-12
CN102792105A (zh) 2012-11-21
KR20120139800A (ko) 2012-12-27
US20130008184A1 (en) 2013-01-10
JP5877543B2 (ja) 2016-03-08
WO2011115201A1 (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5877543B2 (ja) ディスプレーサ及びその製造方法及び蓄冷器式冷凍機
JP4197341B2 (ja) 蓄冷器式冷凍機
TWI473956B (zh) Cooler type freezer
JP5575880B2 (ja) 極低温冷凍機
JP2010271029A (ja) 蓄冷式冷凍機、蓄冷式冷凍機用ロータリバルブの製造方法、および蓄冷式冷凍機の製造方法
US20100229572A1 (en) Regenerative refrigerator
US9657970B2 (en) Cryogenic refrigerator
JPH07324831A (ja) 蓄冷器式冷凍機
US9759455B2 (en) Cryogenic refrigerator
JP2005155438A (ja) 密閉型圧縮機
JP2008190727A (ja) リニアモータ圧縮機及びスターリング冷凍機
JP2001349630A (ja) ロータリバルブ及びそれを用いた冷凍機
JP5541795B2 (ja) 蓄冷器式冷凍機
JP5507481B2 (ja) 蓄冷器式冷凍機
JP2001248929A (ja) 蓄冷器式冷凍機
US11725854B2 (en) Cryocooler
TWI804802B (zh) 極低溫冷凍機及密封構件
JP2007205582A (ja) 蓄冷器式冷凍機
US20120011858A1 (en) Displacer valve for cryogenic refrigerator
WO2023149130A1 (ja) ギフォード・マクマホン(gm)冷凍機の第1段ディスプレーサ、第1段ディスプレーサ組立体、およびギフォード・マクマホン冷凍機
JP2012087970A (ja) 蓄冷器式冷凍機
JP2006308213A (ja) スターリング機関
JPH06221703A (ja) 蓄冷器式冷凍機
JPH11257771A (ja) 蓄冷式冷凍機
JPH0544645A (ja) シール装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141016

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5877543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150