JP3962353B2 - 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット - Google Patents

蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット Download PDF

Info

Publication number
JP3962353B2
JP3962353B2 JP2003120824A JP2003120824A JP3962353B2 JP 3962353 B2 JP3962353 B2 JP 3962353B2 JP 2003120824 A JP2003120824 A JP 2003120824A JP 2003120824 A JP2003120824 A JP 2003120824A JP 3962353 B2 JP3962353 B2 JP 3962353B2
Authority
JP
Japan
Prior art keywords
displacer
refrigerant gas
stage
regenerator
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003120824A
Other languages
English (en)
Other versions
JP2004144461A (ja
Inventor
隆 稲口
隆博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003120824A priority Critical patent/JP3962353B2/ja
Publication of JP2004144461A publication Critical patent/JP2004144461A/ja
Application granted granted Critical
Publication of JP3962353B2 publication Critical patent/JP3962353B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、冷媒ガスを用い、蓄冷材を収容した蓄冷器を有する蓄冷型冷凍機とこの蓄冷型冷凍機を搭載した超電導マグネットに関するものである。
【0002】
【従来の技術】
ヘリウムなどの冷媒ガスを用い、蓄冷材を収容した蓄冷器を有する蓄冷型冷凍機としては、ギフォード・マクマホン(GM)サイクル冷凍機(以下ではGM冷凍機と略記する。)や、スターリングサイクル冷凍機等が知られている。以下では、GM冷凍機を例に説明するが、もとよりこの発明はGM冷凍機に限定されるものではない。GM冷凍機は、ヘリウムガス圧縮機からのガス流路を、弁を用いて制御し、膨張室でヘリウムガスを膨張させることにより寒冷を発生させる。極低温を得るには、通常、複数段をシリーズに接続して構成した冷凍機が用いられる。
【0003】
冷媒ガスが効率よく冷却されるためには、ディスプレーサの動作時に、蓄冷器に収容されている蓄冷材と冷媒ガスが効率よく熱交換してくれることが必要であり、ディスプレーサとシリンダ間の間隙であるサイドクリアランスからの冷媒ガスの漏洩を抑えることが重要となる。
【0004】
例えば、特公昭46‐30433号公報(特許文献1)には、GM冷凍機を2段接続して構成された2段型の蓄冷型冷凍機において、ディスプレーサとシリンダとの間にシールを設けることにより、漏洩による高温/低温の冷媒ガスの混合がなくなり、シールのない場合に比べて、冷凍機の冷却性能が改善されることが示されている。また、特許第2659684号公報(特許文献2)には、シールによる漏洩低減効果が不安定であることを考慮し、シールによる漏洩防止をやめ、ディスプレーサ外表面と漏洩冷媒ガスとの間での熱交換効率を改善することにより、漏洩してきた冷媒ガスの温度を漏洩先の冷媒ガス温度に近づけるようにして、冷却効率の改善を図った発明が示されている。
【0005】
【特許文献1】
特公昭46‐30433号公報(第2頁、図1)
【特許文献2】
特許第2659684号公報(第5頁、図1)
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に記載された発明では、シールの気密性能が完全であれば良いが、特に極低温領域では上記シールの気密性能を保持することは、容易ではなく、シールを介しての冷媒ガスの漏洩は無視できない。そのために冷凍機の冷却性能が劣化してしまう問題があった。また特許文献2に記載された発明では、シールを併用すると冷却効率は低下するとして、シールを併用しないことを主張しているが、シールがないことにより漏洩流量が増加するため、漏洩冷媒ガスが十分に熱交換されるためには、十分な伝熱面積が必要になる。直径の小さいディスプレーサや長さの短いディスプレーサの場合、十分な伝熱面積を確保することができないので、十分熱交換されず、その分が熱損失となり、冷却性能が必ずしも十分に改善されたとはいえない状況であった。
【0007】
この発明はこのような従来技術の課題を解消するためになされたものであり、各種の規模の蓄冷型冷凍機においても冷却性能を、より一層、良好なものにすることができる蓄冷型冷凍機、及びその蓄冷型冷凍機を搭載した超伝導マグネットを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明に係る蓄冷型冷凍機は、冷媒ガスの圧縮機と、この圧縮機によって圧縮された冷媒ガスを受け入れるシリンダ、ディスプレーサ及び蓄冷材を内蔵する蓄冷器からなる膨張機とを備え、前記シリンダ内の冷媒ガスを膨張させて寒冷を発生させる蓄冷型冷凍機において、前記シリンダとディスプレーサとの間隙を冷媒ガスが通流するのを防ぐシール部を前記ディスプレーサの軸方向の少なくとも一箇所に設け、このディスプレーサの外壁面に、前記冷媒ガスとディスプレーサとの熱交換用溝を、ディスプレーサの冷媒ガス出入口と前記シール部との間に前記ディスプレーサを周回する形設けるようにしたものである。
【0009】
また、本発明に係る超電導マグネットは、上記本発明に係る蓄冷型冷凍機を搭載したものである。
【0010】
【発明の実施の形態】
実施の形態1.
図1及び図2は実施の形態1になる蓄冷型冷凍機を示すもので、図1は全体的な要部構成を模式的に示す断面図、図2(a)は図1に示す第2段ディスプレーサが下死点近傍にあるときの第2段冷凍機を示す構成図、図2(b)は第2段ディスプレーサが上死点近傍にあるときの第2段冷凍機を示す構成図である。なお、以下各図を通じて同一符は同一もしくは相当部分を示すものとする。図に示すように、この実施の形態1の蓄冷型冷凍機は、ヘリウム等の冷媒ガス1を圧縮する圧縮機19と、圧縮された冷媒ガスを受け入れて作動する第1段膨張機(冷凍機)100と、この第1段膨張機100に連結された第2段膨張機(冷凍機)200からなる。
【0011】
上記第1段膨張機100の図の上部は、所定時に圧縮された冷媒ガス1を吸気する吸気バルブ2を介して圧縮機19の圧縮ガス吐出部に連通され、さらに所定時に冷媒ガス1を排気する排気バルブ3を介して圧縮機19の吸気側に連通されている。
【0012】
そして第1段膨張機100は、第1段シリンダ9と、この第1段シリンダ9の中を往復運動して冷媒ガス1を移動させる第1段ディスプレーサ5と、この第1段ディスプレーサ5の内部に形成された冷媒ガスの寒冷を蓄冷する第1段蓄冷器6と、この第1段蓄冷器6の中に収納された第1段蓄冷材、例えば燐青銅の円盤状の金網を積層したものなど(図示省略)と、第1段ディスプレーサ5の図の下部に形成された第1段膨張室4と、第1段膨張室4の寒冷を外部に伝える第1段冷凍ステージ8と、第1段膨張室4の冷媒ガス1が第1段ディスプレーサ5の外周を経由して漏洩するのを防止する第1段シール7などから形成されている。
【0013】
第2段膨張機200は、第1段冷凍ステージ8に固定された第2段シリンダ15と、第1段ディスプレーサ5に図示を省略しているピンによって連結され第2段シリンダ15の内部を往復運動して冷媒ガス1を移動させる第2段ディスプレーサ11と、この第2段ディスプレーサ11の内部に設けられた冷媒ガスで発生した寒冷を蓄冷する第2段蓄冷器12と、この第2段蓄冷器12の内部に収納された例えば鉛の小球などからなる第2段蓄冷材(図示省略)と、第2段ディスプレーサ11の図の下部に形成された第2段膨張室10と、第2段膨張室10の寒冷を外部に伝える第2段冷凍ステージ14などから構成されている。
【0014】
上記第1段膨張機100の外部にはモータ16が固定されており、第1段ディスプレーサ5及び第2段ディスプレーサ11は、モータ16の駆動力を伝える駆動軸17、及びクランク18を介してモータ16の出力軸に連結されている。
【0015】
第1段ディスプレーサ5の高温側には、冷媒ガス1の第1段蓄冷器6への出入口である第1段ディスプレーサ冷媒ガス高温側出入口20が設けられ、また第1段ディスプレーサ5の低温側には、冷媒ガス1の第1段蓄冷器6への出入口である第1段ディスプレーサ冷媒ガス低温側出入口21が設けられている。なお、24は第1段シリンダ9と第1段ディスプレーサ5との間の第1段サイドクリアランスである。
【0016】
また、第2段ディスプレーサ11の高温側には、冷媒ガス1の第2段蓄冷器12への出入口である第2段ディスプレーサ冷媒ガス高温側出入口22が設けられ、第2段ディスプレーサ11の低温側には、冷媒ガス1の第2段蓄冷器12への出入口である第2段ディスプレーサ冷媒ガス低温側出入口23が設けられている。なお、上記第2段ディスプレーサ冷媒ガス高温側出入口22は第2段ディスプレーサ11の頂部に設けられている。また、25は第2段ディスプレーサ11の外表面と第2段シリンダ15の内表面との間に存在するサイドクリアランスである。
【0017】
13は本発明の特徴の1つをなしている第2段シール部であり、第2段膨張室10の冷媒ガス1が、第2段ディスプレーサ11の外周部のサイドクリアランス25を経由して第1段膨張室側に漏洩することを防止するもので、この実施の形態1ではラビリンスシール13Lからなり、第2段ディスプレーサ11の高温側、すなわち第1段膨張室4に近い位置で、第2段蓄冷器12への冷媒ガスの流出入口22よりも低温側に設けられている。
【0018】
26は本発明の第2の特徴をなしている熱交換用溝であり、上記ラビリンスシール13Lと第2段ディスプレーサ11の低温側、すなわち第2段膨張室10の側にある第2段蓄冷器12の流出入口23までの間の第2段ディスプレーサ11を周回する形に設けられ、サイドクリアランス25内で、第2段ディスプレーサ11の外表面に、冷媒ガス1の補助流路となり、この流路を通過中の冷媒ガス1が、第2段ディスプレーサ11の外表面を介して熱交換できる。すなわち、特許文献2に示されている発明では、サイドクリアランス25を補助流路とするのに対し、本発明ではサイドクリアランス25に冷媒ガスが流れないようにラビリンスシール13Lが設けられている。
【0019】
次に動作について説明する。図1に示す第1段ディスプレーサ5と第2段ディスプレーサ11はピン(図示省略)で連結されており、モータ16の動きに応じて、クランク18、駆動軸17を介して、同じ向きの動作をする。また、第1段、第2段ディスプレーサ5、11はともに蓄冷器とその高温側、低温側に冷媒ガスの出入口を設けた構造を持つので、第1段、第2段ディスプレーサ5、11の動作に対応した冷媒ガスの蓄冷器への流出入も共通したものとなる。
【0020】
第1段ディスプレーサ5及び第2段ディスプレーサ11が下死点近傍(図の下方向)にあるとき、排気バルブ3が閉じ、吸気バルブ2が開き、圧縮機19からの高圧の冷媒ガス1が第1段シリンダ9内に流入する。第1段シリンダ9内に流入した冷媒ガス1は、第1段蓄冷器6の流出入口20を経由して第1段蓄冷器6を通過し、通過中に、第1段蓄冷器6に収納されている蓄冷材と熱交換を行いながら、第1段蓄冷器6の流出入口21を経由して第1段膨張室4に達する。
【0021】
冷媒ガス1は、更に、第2段蓄冷器12の図の上端部に設けられた流出入口22を経由して第2段蓄冷器12を通過し、通過中に、第2段蓄冷器12に収納されている蓄冷材と熱交換を行いながら、第2段蓄冷器12の流出入口23を経由して第2段膨張室10に供給される。上記状態のままディスプレーサは上死点方向に移動する。
【0022】
第1段ディスプレーサ5及び第2段ディスプレーサ11が上死点近傍に達すると、吸気バルブ2が閉じ、排気バルブ3が開き、第2段シリンダ15と第1段シリンダ9内の高圧の冷媒ガス1は、吸気の場合とは逆の経路をたどり圧縮機19に回収される。この時、第1段膨張室4と第2段膨張室10は低圧になるため、冷媒ガスの膨張により寒冷が発生する。この様にして冷却された冷媒ガスは、圧縮機19に回収される際に第2段蓄冷器12、及び第1段蓄冷器6に収納された蓄冷材と熱交換することにより蓄冷材を冷却する。上記状態のままディスプレーサは下死点方向に移動する。
【0023】
以上の工程を繰り返すことにより、冷媒ガス1の冷却が進められる。したがって、第1段ディスプレーサ5、第2段ディスプレーサ11とも、それぞれ流出入口20、22の設置されている方が高温側となり、流出入口21、23の設置されている方が低温側となる。
【0024】
なお、この様な構成において、冷媒ガス1が効率よく冷却されるためには、ディスプレーサの動作時に、冷媒ガス1が、効率よく、蓄冷器に収容されている蓄冷材と熱交換してくれることが必要である。すなわち、ディスプレーサとシリンダ間の間隙である第1段サイドクリアランス24、及び第2段サイドクリアランス25からの冷媒ガスの漏洩を抑えることが重要となる。
【0025】
図1に示す第1段シール7は、圧縮機19から供給される高圧の、すなわち高温の冷媒ガス1が、第1段蓄冷器6を通過せずに第1段サイドクリアランス24を介して第1段膨張室4へ漏洩すること、及び、その逆に、第1段膨張室4にある低圧の、すなわち低温の冷媒ガス1が、第1段蓄冷器6を通過せずに第1段サイドクリアランス24を介して圧縮機19側に漏洩することを防止するためのものであり、第2段シール部13は、同様に、第2段蓄冷器12を介さずに、第2段サイドクリアランス25を介しての、第1段膨張室4と第2段膨張室10間での冷媒ガスの漏洩を防止するためのものである。
【0026】
このことを、第2段膨張機(冷凍機)200を例に詳細に説明する。以下、便宜上、特に支障のない限り「第2段」という段数を示す用語は省略することにする。ディスプレーサ11が下死点近傍に位置するとき(図2(a))、第1段膨張室4に達した冷媒ガス1の一部は更に流出入口22から蓄冷器12に入り、収納されている蓄冷材と熱交換しながら流出入口23を通って膨張室10に達する。なお、サイドクリアランス25は、蓄冷器に比べると熱容量、伝熱面積が極めて小さく、ここに冷媒ガスが流れると、熱交換の効率が低下するので、ラビリンスシール13Lが設けられている。
【0027】
上記ラビリンスシール13Lは隙間を十分小さくした部分と隙間を大きくした部分を交互に並べたものであり、ガスの粘性でガスが流れなくなる効果とともに流路面積の拡大縮小にともなう流れ抵抗増加の効果があり、シール性能がすぐれている。なお、このシール部13もシリンダ15とディスプレーサ11を同材料、たとえばステンレスで構成し、ディスプレーサ11壁に耐摩耗性材料をコーティングしておくと、摩擦熱が小さくかつ長期間運転しても性能劣化することがないシールを得ることができる。
【0028】
さて、流出入口23を出た冷媒ガス1は膨張室10に向かうが、一部の冷媒ガス1はサイドクリアランス25を第1段膨張室4の方へ向かって流れようとするが、ラビリンスシール13Lでふさがれているために、冷媒ガス1の流れはラビリンスシール13Lのところで止まる。なお、このサイドクリアランス25を流れる冷媒ガス1は蓄冷器12を通過してきているので温度が低い状態にある。従ってこの低温の冷媒ガスが第1段膨張室4側すなわち高温側にまでそのまま移動した場合には、折角発生させた寒冷を無駄に高温側に捨てていることになる。
【0029】
しかしながら、この発明においては、図に示すようにディスプレーサ11の外周部に螺旋状の熱交換用溝26が設けられていることにより、サイドクリアランス25の伝熱面積が増加し、ディスプレーサ11の外壁を通じて蓄冷器12の蓄冷材あるいは蓄冷器12を流れる冷媒ガスと熱交換しやすくなる。このため、螺旋状の熱交換用溝26を通過してラビリンスシール13Lの近傍まで達した冷媒ガス1は温度が十分に高くなっており、熱損失が低減される。
【0030】
膨張室10の圧力が高圧まで達すると、ディスプレーサ11は図2に示す下死点から図1に示す上死点に向かって移動する。上死点近傍に達したとき(図2(b))、膨張室10の冷媒ガス1は第1段膨張室4の方へ流れようとする。このとき、サイドクリアランス25にはラビリンスシール13Lが設けられているので、膨張室10の大部分の冷媒ガス1は、流出入口23より蓄冷器12内に入り、そこを通過する間に熱交換して、流出入口22から第1段膨張室4に達する。
【0031】
この場合もラビリンスシール13Lがなければ熱交換率の悪いサイドクリアランス25に相当量の冷媒ガスが流入し、熱交換の効率が悪くなる。また、サイドクリアランス25内にもともとあった冷媒ガスは高圧状態であるので、第1段膨張室4の方へ流れようとするが、この場合もラビリンスシール13Lにより、一旦膨張室10の側に移動し、流出入口23を経由して蓄冷器12に入り、熱交換して、流出入口22から第1段膨張室4に達する。この際、サイドクリアランス25の第1段膨張室4側にある冷媒ガス1の温度は高いので、この温度の高い冷媒ガス1が膨張室10にまでそのまま移動した場合には熱損失が生じる。
【0032】
しかしこの場合も、この発明の実施の形態1によればディスプレーサ11の外周に螺旋状の熱交換用溝26が設けられていることにより、伝熱面積が増加し、ディスプレーサ11の外壁を通じて蓄冷器12の蓄冷材あるいは蓄冷器12を流れる冷媒ガスと熱交換しやすくなる。このため、螺旋状の熱交換用溝26を通過して膨張空間10の近傍まで達した冷媒ガス1は温度が十分に低くなっており、熱損失は低減される。
【0033】
次に、シール部13からの漏れがある場合について説明する。
たとえば図2(a)の場合、シール部13の部分に示した破線矢印が、シール部13からの冷媒ガス1の漏れを模式的に示したものである。すなわち、シール部13から漏れた高温の冷媒ガス1はサイドクリアランス25を流れる低温の冷媒ガスと混じりあうことにより熱交換する。漏洩冷媒ガスについてみると、低高温の冷媒ガスが直接混じることにより行う熱交換は、ディスプレーサ11の外壁を介した蓄冷器12との熱交換よりも直接的で効率が良い。
【0034】
更に、熱交換用溝26の設置により膨張室10に至るまでの流路長を長く取ることが出来、確実な熱交換が行われるため、膨張室10での熱損失は低減される。したがって、仮にシール部13からの漏れが多少存在しても冷却性能の劣化を回避できる。図2(b)の場合も同様の効果がある。
【0035】
また、サイドクリアランス25内を流れる冷媒ガスの主要な流れの向きと、
蓄冷器12内を流れる冷媒ガスの流れの向きとがこの発明では異なることになる。これは熱交換用溝26を移動する冷媒ガスの主要な流れの方向と蓄冷器12内を流れる冷媒ガスの流れの向きとが異なること、及び熱交換用溝26を移動する冷媒ガスの流量に比べると、シール部13からの漏洩冷媒ガス量は僅かであるという理由による(詳細は後述する。)。このようにディスプレーサ11の外壁をはさんでその内外での冷媒ガスの流れの方向が逆の場合、冷媒ガス間の熱交換効率は冷媒ガスの流れが同一方向の場合に比べると高くなる。
【0036】
一方、特許文献2(特許第2659684号)では蓄冷器12内を流れる冷媒ガスとサイドクリアランス25内を流れる冷媒ガスの主要な流れの向きは、シール部13がないため、常に同じである。従って、ディスプレーサ11の外壁を介した冷媒ガスの熱交換効率は、本発明の場合に比べ低くなる。
【0037】
更に、シール部13を設けたことにより、第1段膨張室4と第2段膨張室10の間の熱交換用溝26を流れる冷媒ガスの流量が大幅に低減される。従って、熱交換用溝26での必要な熱交換量はシール部13のない場合に比べると大きく低減される(詳細は後述する。)。サイドクリアランス25を利用した熱交換用溝26は熱容量、伝熱面積が限られているので、必要な熱交換量は少ない方が膨張室10への熱損失が低減され、冷凍能力の向上が期待できる。以下、更に具体的に説明する。
【0038】
<シールからの漏れ量とサイドクリアランスの冷媒ガス移動量の比較>
ディスプレーサ11の直径が24mmの場合で、シール部13として例えばラビリンスシール13Lを使用した場合、漏れ量の測定結果は、差圧0.05MPaで0.038L/minであった。これから、実際に冷凍機を動作させた場合、すなわち温度20Kにおける漏れ量mleakは次式で評価できる。
Figure 0003962353
ここでは、冷媒ガスとしてヘリウムを使用し、高圧時(2.2MPa)、20Kでのヘリウム密度は51.39kg/m3を使用した。
【0039】
一方、螺旋状の熱交換用溝26を幅1.7mm×深さ0.6mm、ピッチ4mm、サイドクリアランス25の体積を8.2cm3とする。サイドクリアランス25を移動する冷媒ガスの流量msideは次式で評価できる。
Figure 0003962353
ρh:高圧時のガスの密度=94.7kg/m3(2.2MPa、12K)
ρl:低圧時のガスの密度=35.85kg/m3(0.8MPa、12K)
V:サイドクリアランスの体積=8.2cm3
f:サイクル周波数=1.2Hz
以上より、シール部13からの漏れ量は0.03g/sに対して、サイドクリアランス25の冷媒ガス移動量は0.57g/sとなり、シール部13からの漏れ量はサイドクリアランス25の冷媒ガス移動量の1/10以下であることがわかる。
【0040】
<シールの有無による必要な熱交換量と冷凍能力の比較>
▲1▼シール有りの場合の必要な熱交換量Hseal
(イ)シール部13からの漏れ量に対する必要な熱交換量Hleak
第1段冷凍機での到達温度を20K、第2段冷凍機での到達温度を4.2Kとする。シール部13からの漏れがあった場合、膨張室に達するまでに完全に熱交換された場合の熱交換量Hleakは次のようになる。
Figure 0003962353
leak:冷媒ガス(ヘリウムガス)のシール漏れ量=0.03g/s
p:定圧比熱=6147J/kg・K(ヘリウムガス)
ΔT:温度差=20K−4.2K=15.8K
(ロ)サイドクリアランスの冷媒ガス移動量に対する必要な熱交換量Hside
sideは上記Hleakの算式中、mleakをmsideに置き換えることにより計算でき、Hside=55.4W となる。
以上、(イ)、(ロ)より、
seal=Hleak+Hside=58.3W
【0041】
▲2▼シール無しの場合の必要な熱交換量Hnon-seal
上記「シールからの漏れ量とサイドクリアランスの冷媒ガス移動量の比較」の項で述べたディスプレーサにおいて、シール部分を削除し、補助流路を流れる流量を測定すると、差圧0.05MPaで2.41L/minであった。この値を元に上記(式1)を使って漏れ量を計算すると2.1g/sになる。また、このとき補助流路で完全に熱交換が行われたとすると、熱交換量Hnon-sealは上記(式3)を使って213Wになる。
以上▲1▼▲2▼よりシール部13が有る場合は、シール部13が無い場合に比べて、約1/3の熱交換量で済むことになる。
【0042】
図1、及び従来例である特許文献2の冷凍ステージ14に、それぞれ0.4Wの熱負荷を与えた場合の、冷却温度を評価してみると、シール部13がある場合は4.03K、シール部13がない場合は4.19Kとなり、シール部13を設置したことにより冷凍能力が改善されることがわかる。
【0043】
このように、本発明に係るサイドクリアランスの熱交換用溝の動作は特許文献2(特許第2659684号)で言う補助流路とは全く異なるものであり、本発明により必要熱交換量を低減することができ、冷却性能の良好な冷凍機を提供することができる。また、この実施の形態1ではシール部13をラビリンスシール13Lとしたことにより、摩擦熱を増加させることなく性能の高いシールとすることができる。また、部品点数を増やすことなく冷却性能を高めることができる効果が得られる。
【0044】
実施の形態2.
図3は実施の形態2になる蓄冷型冷凍機の要部を模式的に示す断面図であり、上記図1に示すシール部13をクリアランスシール13Cとした他は、実施の形態1と同様に構成したものである。このクリアランスシール13Cはシリンダ15とディスプレーサ11の隙間を十分小さくたものである。ガスには粘性があるので隙間を十分に小さくすることによりガスはほとんど流れなくなる。したがってクリアランスシールの性能において重要なことは、隙間を十分小さくすること、温度変化があってもその隙間が大きくならないようにすることが重要である。
【0045】
なお、この実施の形態2では、シリンダとディスプレーサは同材料で構成しており、たとえばステンレスを使用している。ステンレス同士であると摺動性が悪いので、ディスプレーサ表面には耐摩耗性に優れた材料、たとえばポリイミド、エチレン/テトラフルオルエチレン共重合体、フッ素樹脂等をコーティングしている。これにより摺動性が改善され摩擦熱を低減できるとともに長期間運転しても性能劣化することがないシールを得ることができる。
【0046】
実施の形態3.
図4は実施の形態3による冷凍機の要部を示す断面図である。この実施の形態3では、シール部13としてピストンリング13Pを使用した他は、実施の形態1と同様に構成したものである。このようにシール部13をピストンリング13Pとした場合には、シール据付部分のシリンダ15とディスプレーサ11の隙間の精度は重要でなくなる。
【0047】
なお、上記実施の形態1〜3では、第2段シール部13として、ラビリンスシール13L、クリアランスシール13C、ピストンリング13Pを用いた場合を例に説明したが、これらのシール手段のみに限定されるものではなく、この他、同様の機能をもつものであれば、他のシール手段に置き換えても同様の効果が得られることはいうまでもない。
【0048】
実施の形態4.
図5は実施の形態4による蓄例型冷凍機の要部を示す断面図であり、図5(a)はディスプレーサ11が下死点にあるとき、図5(b)はディスプレーサ11が上死点にある場合を示す。図に示すようにこの実施の形態ではディスプレーサ11の低温部にラビリンスシール13Lを設けたものである。その他の構成は上記実施の形態1と同様である。ディスプレーサ11が下死点近傍に位置するとき、冷媒ガスは蓄冷器12を熱交換しながら通過し、膨張室10に達する。膨張室10に達した冷媒の一部はサイドクリアランス25を通過しようとするが、低温部にラビリンスシール13Lがあるので、せき止められる。したがって、低温の冷媒が高温部まで移動することがなく、折角発生させた寒冷を無駄にすることがない。
【0049】
また冷媒ガスが蓄冷器12に流入する際、一部のガスはサイドクリアランス25を通過するが、ディスプレーサ11壁に熱交換溝26が設けられているので、熱交換しながら低温まで移動するので、熱損失になりにくい。たとえディスプレーサ11壁で十分熱交換されなくとも低温部にラビリンスシール13Lが設けられているので、十分熱交換されなかったガスが、膨張室10の空間に流入することはなく、熱損失にならない。
【0050】
圧力が高圧まで達すると、ディスプレーサ11は下死点から図5(b)に示す上死点に向かって移動する。ディスプレーサ11が上死点近傍に達したとき、膨張室10の冷媒ガスは蓄冷器12を通過し、第1段膨張室4の方へ流れようとする。このとき一部のガスはサイドクリアランス25に流れようとするが、ラビリンスシール13Lがあるのでせき止められ、低温の冷媒が高温側まで移動することがなく、折角発生させた寒冷を無駄にすることはない。
【0051】
また高温側にシールを設置したときのように、膨張時、サイドクリアランス25を通過して一旦膨張室10を冷媒が通過して、蓄冷器12から第1段膨張室4に流れるということはなく、熱損失になることはない。また熱交換溝26で自然対流が生じても、自然対流による熱損失はラビリンスシール13Lでせき止められる。上記のように実施の形態4によれば、ディスプレーサ11の低温側にシール部13を設けたことにより、圧力変動の影響でサイドクリアランス25を冷媒ガスが往復動し、ポンピング損失が生じるのを防ぐことができる。
【0052】
実施の形態5.
図6は実施の形態5になる冷凍機の要部を示す断面図である。この実施の形態5では図に示すようにディスプレーサ11の低温側にクリアランスシール13Cが設置されている。この実施の形態5の動作は上記実施の形態4と実質的に同様であるので説明を省略する。この実施の形態5によれば、実施の形態4と同様の効果が得られる他、シール部13をクリアランスシール13Cによって構成したことにより、シールのための溝加工が不要となるので、装置をより安価に得ることができるという利点がある。
【0053】
実施の形態6.
図7は実施の形態6による蓄冷型冷凍機の要部を示す断面図である。この実施の形態6では、ディスプレーサ11の高温側と低温側にそれぞれラビリンスシール13Lを設置したものである。このようにディスプレーサ11の高温側と低温側の両側にシール部を設けた場合には、サイドクリアランス25を流れる冷媒ガスを一層抑制できるので、シール13Lからの漏れによる熱損失や、圧縮時、膨張室10から低温の冷媒が高温側に移動することによる損失、あるいは膨張時、高温側から膨張室10に冷媒が移動することによる損失をさらに低減できる。また熱交換用溝26で自然対流が生じても、自然対流による熱損失をさらにせき止め易くなる。
【0054】
実施の形態7.
図8は実施の形態7による蓄冷型冷凍機の要部を示す断面図である。この実施の形態7では、ディスプレーサ11の高温側にラビリンスシール13Lを、低温側にクリアランスシール13Cをそれぞれ設置したものである。ディスプレーサ11の高温側と低温側に互いに異なるシールを配設したものであるが、この場合でも実質的に上記実施の形態6と同様に動作し、ほぼ同様の効果が得られる。
【0055】
実施の形態8.
図9は実施の形態8による蓄冷型冷凍機の要部を示す断面図である。この実施の形態8では、例えばステンレスからなるディスプレーサ11の外周面に、たとえばポリイミド、エチレン/テトラフルオルエチレン共重合体、フッ素樹脂等耐摩耗性樹脂膜などからなるコーティング被覆32を形成した後、該コーティング被覆32の層がなくなり、ディスプレーサ11のステンレス表面が露出するまで螺旋状に切削することにより熱交換用溝26を形成したものである。なお、33は図示を省略している第1段ディスプレーサに対して第2段ディスプレーサ11を連結するピンを挿入するためのピン挿入孔である。
【0056】
上記のように構成された実施の形態8によれば、熱伝導率の悪い樹脂層を螺旋状に取り除き、ディスプレーサ11のステンレス表面を露出させて熱交換用溝26を形成したことにより、溝を流れる冷媒ガスと、ディスプレーサ11壁、さらには蓄冷器12との熱交換を促進することができる。また、ディスプレーサ11の表面には耐摩耗性に優れたコーティング被覆32を設けたことにより、シリンダ15との摺動性が改善され摩擦熱を低減できるとともに長期間運転しても性能劣化することがない。
【0057】
実施の形態9.
図10は実施の形態9に係る蓄冷型冷凍機の要部を示す断面図である。この実施の形態9では、例えばステンレスからなるディスプレーサ11の外周面に耐摩耗性樹脂からなるコーティング被覆32を形成した後、該コーティング被覆32の表面部から、ディスプレーサ11を構成しているステンレス表面部に至り、さらにそのステンレスの表面部分からその内部に至るまで削って螺旋状に切削し熱交換用溝26を形成したものである。
【0058】
上記のように構成された実施の形態9の動作は、上記実施の形態8と同様であるが、ディスプレーサ11の構成素材であるステンレスの内部にまで凹凸を深く形成して熱交換用溝26を形成しているので、熱交換用溝26を流れる冷媒ガスと、ディスプレーサ11の凹凸による壁部、さらには蓄冷器12との熱交換をさらに一層促進させた蓄冷型冷凍機を提供することができる。
【0059】
実施の形態10.
図11は実施の形態10になる蓄冷型冷凍機の要部を示す断面図である。この実施の形態10では、耐摩耗性コーティング34がシリンダ15の内周面に設けられている。耐摩耗性コーティング34は一般的に熱伝導率が悪いが、この実施の形態10ではディスプレーサ11に耐摩耗性コーティングをする必要がなくなったことにより、ディスプレーサ11に設けた熱交換用溝26における冷媒ガスとディスプレーサとの熱交換が促進され、熱損失が低減される。またシリンダ15の厚み方向の熱伝導率が小さくなることにより、シリンダ15内をディスプレーサが往復動することによって生じるシャトル損失が低減される。
【0060】
実施の形態11.
上記実施の形態1〜10においては、2段冷凍機における2段目ディスプレーサ11の高温側及び/または低温側にシール部13を設けると共に、2段目ディスプレーサ11の外周面に沿って螺旋状の熱交換用溝26を形成する場合について主に説明してきたが、それらに限定されるものではない。例えば、シール部13はディスプレーサ11の軸方向における任意の位置に設けてもよいし、また、例えば3段冷凍機における3段目、あるいは2段目、あるいは1段目に適用し、さらにはそれらの複数の段に適用した場合においても同様の作用効果が期待できる。
【0061】
実施の形態12.
図12及び図13は実施の形態12に係る蓄冷型冷凍機の要部を示すもので、図12は第2段ディスプレーサの外周面に設けた熱交換用溝を示す構成図、図13は図12の変形例を示す構成図である。この実施の形態の特徴は、ディスプレーサ11の外周面に円環状の複数の熱交換用溝26を形成し、隣接するこの溝の間に冷媒ガス1の流路となる貫通流路A30(図12)や貫通流路B31(図13)を設けたものである。
【0062】
図12に示す実施例ではこの貫通流路A30は、A−A’断面図、B−B’断面図に示すように円盤を一部切り欠くようにして形成されている。また、図13に示す変形例では、貫通流路B31は円環の一部を矩形に切り欠いた如き形状に形成されている。なお、これら貫通流路を形成するための切り欠きの形状などは両例に限定されるものではなく、要するに隣接する円環状の熱交換用溝26を連通するものであればよく、いずれも同様な効果を奏することができる。
【0063】
また、隣り合う貫通流路は円周上の同じ位置ではなく、異なる位置に配置するのが好ましい。更に図には示していないが、円環状の熱交換用溝26に冷媒ガスが一方向に流れるように仕切り板をいれ、この仕切り板を挟んで隣り合う貫通流路を配置するようにしても良い。前記のようにしてディスプレーサ11の外壁面に形成された多数の円環状の熱交換用溝26はシール部13と併用され、その他の部分は実施の形態1と同様に構成されている。
【0064】
上記のように構成された本発明の実施の形態12によれば、前記熱交換用溝をディスプレーサの外壁面を取り巻く2以上の円環状の溝とし、且つ、この円環状の溝間、ディスプレーサ高温側の端にあるこの円環状の溝とその隣接外部、ディスプレーサ低温側の端にあるこの円環状の溝とその隣接外部をそれぞれ結ぶ貫通流路を設け、隣接する当該貫通流路を、当該円環周上で互いにずらした位置に配置した蓄冷型冷凍機としたので、必要熱交換量を低減することができ、冷却性能の良好な冷凍機を提供することができる。
【0065】
実施の形態13.
図14は実施の形態13に係る蓄冷型冷凍機の要部である第2段ディスプレーサの構成を示す側面図である。この実施の形態13では、ディスプレーサ11の外周面に断面楔状の熱交換用溝26を形成している。その他の構成は実施の形態1と同様である。なお、aは断面楔状の熱交換用溝26の頂部における隙間を示す。この実施の形態13の特徴は、ディスプレーサ11の外周面に設けた螺旋状の熱交換用溝26の断面形状を楔形にしたことにある。溝加工が容易になるという利点があり、このようにして形成された熱交換用溝26とシール部13を併用することにより、実施の形態1で説明した理由により、冷却性能の良好な冷凍機を提供することができる。
【0066】
実施の形態14.
図15及び図16は実施の形態14に係る蓄冷型冷凍機を説明するもので、図15は熱交換用溝内で生じる冷媒ガスの自然対流を示す概念図、図16は冷凍機冷凍能力の熱交換用溝幅依存性について測定された特性図である。なお、図15は図3のディスプレーサ11及びシリンダ15の一部を拡大して、ディスプレーサ11の低温部を上に、高温部を下にして設置した場合を示したものである。この図では熱交換用溝26が水平線との間で成す角度をθ、熱交換用溝26の幅をdとしている。
【0067】
このような場合には、熱交換用溝26部に示す矢印の方向に冷媒ガスが流れる際に、図に示すような自然対流が生じる。この自然対流による伝熱の効果が熱交換用溝26中の冷媒ガスの流れによる熱伝達に比べ無視できなくなると冷凍能力に有意な悪影響を与えることになる。従って、この自然対流による伝熱を低減する方策が重要となる。このためのもっとも簡単な方法は、熱交換用溝26の幅を低減し、d/cosθ=aの値を小さくすることである。
【0068】
このa値と冷凍機到達最低温度との関係は図16に示すように、aの値が1mmまでは、冷凍性能はaの値に依らずほぼ一定で、1mmから1.5mmで徐々に劣化し、1.5mm以上になると急速に劣化することがわかる。従って、自然対流の効果を低減するためには、上記a値を1.5mm以下にすることが効果的である。なお、幅dは、より好ましくは1mmから1.5mmの間の値、たとえば1.2mm以下に、また、更により好ましくは1mm以下の値にするのが良い。なお、通常の設計では、cosθは1に近い数値であるため、上記aの値は熱交換用溝26の幅dとほぼ同じと考えても実用上は差し支えない。
【0069】
このように、前記対流防止機能として、熱交換用溝26の幅を1.5mm以下と小さく抑えることで、自然対流の効果を抑え、自然対流による熱損失を低減することができ、蓄冷型冷凍機の冷却性能を良好で安定したものにすることができる。前記熱交換用溝26が水平に対して角度θ傾いて設けられている場合に、前記対流防止機能として、前記熱交換用溝26の幅を、その幅をcosθで除した値が1.5mm以下であるようにしたので、自然対流による熱損失を低減することができ、蓄冷型冷凍機の冷却性能を良好で安定したものにすることができる。
【0070】
実施の形態15.
図17、図18及び図19は実施の形態15に係る蓄冷型冷凍機の要部構成を説明する概念図である。何れも螺旋状の熱交換用溝26中に対流防止部材を設けたもので、図17は不連続の多数の対流防止板27を設けたもの、図18は熱交換用溝26に沿って連続的な対流防止板28を設けた変形例、図19は高温側/低温側の配置が、水平線上若しくはそれに近い状態で用いられる場合に、熱交換用溝26の方向に交差する方向に多数の対流防止板29を設けた他の変形例である。
【0071】
図17、及び図18のようにディスプレーサの軸線を垂直方向に配設して用いられる場合には、対流防止板27、28により、図15で示したaに対応する幅a、a’を実効的に低減するものである。なお、図示したa、a’の値は実施の形態14で説明したとおりの値でよい。
【0072】
なお、図17、図18とも高温側/低温側の設置方向は上下方向に一致しているが、図19に示すように、高温側/低温側を水平線上若しくはそれに近い状態に設置した場合は、自然対流はほぼ熱交換用溝の走行方向に沿って発生することになる。従って、対流の長さに相当する前記aに対応する値は、実効的に大きなものとなり、図17の27、図18の28に示すような対流防止板では対流を有効に防止することは困難で、冷凍能力は大きく劣化してしまうが、この様な場合、対流防止板は、図19の29に示すような形に設置すればよい。
【0073】
このように冷凍機の設置条件に合わせて、適切な対流防止部材を熱交換用溝26内に設置することにより、自然対流による熱損失を低減することができ、蓄冷型冷凍機の冷却性能を良好で安定したものにすることができる。
【0074】
実施の形態16.
磁性蓄冷材は多段式冷凍機のより低温段の蓄冷材として用いられ、主にヘリウム液化可能な温度レベルで使用される。本発明に係る冷凍機の冷媒ガスとしてはヘリウムが使用されるが、ヘリウムの物性上、液体ヘリウム温度付近では発生冷凍量が極端に少なくなり、従って、熱損失を出来るだけ低減する必要がある。
【0075】
シール部からの漏れによる熱損失も温度が高いレベルでは問題にならない程度のものが磁性蓄冷材が使用される段の温度レベルでは大きな問題となるため、蓄冷器の蓄冷材として磁性蓄冷材を用いた蓄冷型冷凍機に、上記実施の形態1から15に記載の本発明に係る蓄冷型冷凍機を適用すると、熱損失を格段に低減できるので蓄冷型冷凍機の冷却性能をより一層向上させ安定化することができる。
【0076】
実施の形態17.
これまで説明してきた熱交換用溝による熱交換効率を良好なものとするためには、この溝にのみ冷媒ガスが流れ、シリンダ15とディスプレーサ11の隙間(サイドクリアランス25ではない。)を十分小さく、且つ温度変化があってもその隙間の間隔が大きくならないようにして、この隙間には冷媒ガスが流れにくくすることが重要である。そのためには、シリンダとディスプレーサが同材料、若しくは同程度の熱膨張率を有する材料である方が望ましい。
【0077】
なお、冷媒ガスの漏れの観点からは、上記隙間は小さいほうが良いが、あまり小さいと両者の摩擦が大きくなるため、ディスプレーサ外壁面若しくはシリンダ内壁面の少なくとも一方に、耐磨耗性に優れた材料をコーティングすることにより冷凍機の寿命が向上する。
【0078】
従って、この様な表面コーティングを施したディスプレーサ/シリンダと、このディスプレーサと同一材料で作られたシリンダで構成された冷凍機に実施の形態1から16の何れかの発明を適用することにより、蓄冷型冷凍機の冷却性能をより一層向上させ安定化することができるとともに、冷凍機の寿命を改善することができる。
【0079】
実施の形態18.
多段式蓄冷型冷凍機の第1段ディスプレーサに使用する第1段シール7は、室温に設置されているので、Oリング等のゴム材をベースにしたものが使用でき、シール性能も良いことから、本発明を適用する必要性はあまりない。しかし、多段式冷凍機で、より低温の段ではゴム材や油などシール性能の良いシール材を用いることが出来ないため、シールからの漏れが無視できなくなる。従って、多段式蓄冷型冷凍機の、より低温側で本発明を適用すると効果が大きく、シールからの冷媒ガスの漏れが無視できなくなる場合であっても、冷却性能をより一層向上させ安定化することができる。
【0080】
実施の形態19.
超電導マグネットは、液体ヘリウム等の冷媒ガスで冷却されるが、室温からの熱侵入は断熱技術を駆使しても完全に遮断することは出来ないため、液体ヘリウムは蒸発する。このため、蒸発したヘリウムを再凝縮させ、液化したヘリウムの補充間隔を長くするかあるいは補充を不要にすることを目的として冷凍機の搭載という方法が採用されている。また、別の超電導マグネットではヘリウムを使用せず、超電導コイルを直接冷凍機で極低温まで冷却して超電導状態を保つタイプのマグネットもある。
【0081】
いずれも、シールからの漏れによる熱損失の増大で冷凍機の冷凍能力が低下するとヘリウムの再凝縮を十分行なえなかったり、また、超電導状態を安定して保持することが出来なくなる。本発明を適用した冷凍機はシールの漏れによる熱損失を格段に低減できるので、冷凍能力を向上させ、また、冷凍能力を安定化することができる。このため、ヘリウムの補充期間を長く、あるいは補充を不要にすることが可能になり、また、超電導状態を安定に保つことができる。
【0082】
【発明の効果】
以上説明したとおり、本発明によれば、シリンダとディスプレーサとの間隙を冷媒ガスが通流するのを防ぐシール部を前記ディスプレーサの軸方向の少なくとも一箇所に設け、このディスプレーサの外壁面に、前記冷媒ガスとディスプレーサとの熱交換用溝を、ディスプレーサの冷媒ガス出入口と前記シール部との間に前記ディスプレーサを周回する形設けたことにより、必要熱交換量を低減することができ、冷却性能の良好な蓄冷型冷凍機を提供することができる。
【0083】
また、超電導マグネットの冷却系に上記本発明にかかる蓄冷型冷凍機を搭載したので、超電導マグネットを冷却するためのヘリウムの補充期間を長くし、あるいは補充を不要にすることが可能になり、また、超電導状態を安定に保つことができる。
【図面の簡単な説明】
【図1】 実施の形態1による蓄冷型冷凍機の全体的な要部構成を模式的に示す断面図。
【図2】 図1の第2段ディスプレーサの動作を説明する図であり、(a)はディスプレーサが下死点近傍にあるときの第2段冷凍機の構成図、(b)はディスプレーサが上死点近傍にあるときの第2段冷凍機の構成図。
【図3】 実施の形態2による蓄冷型冷凍機の要部を示す図であり、(a)はディスプレーサが下死点近傍にあるときの第2段冷凍機の構成図、(b)はディスプレーサが上死点近傍にあるときの第2段冷凍機の構成図。
【図4】 実施の形態3による蓄冷型冷凍機の要部を示す断面図。
【図5】 実施の形態4による蓄冷型冷凍機の要部を示す断面図。
【図6】 実施の形態5による蓄冷型冷凍機の要部を示す断面図。
【図7】 実施の形態6による蓄冷型冷凍機の要部を示す断面図。
【図8】 実施の形態7による蓄冷型冷凍機の要部を示す断面図。
【図9】 実施の形態8による蓄冷型冷凍機の要部を示す断面図。
【図10】 実施の形態9による蓄冷型冷凍機の要部を示す断面図。
【図11】 実施の形態10による蓄冷型冷凍機の要部を示す断面図。
【図12】 実施の形態12に係る蓄冷型冷凍機に用いるディスプレーサ外周面に設けた熱交換用溝の構造図。
【図13】 図12の変形例になるディスプレーサ外周面に設けた熱交換用溝の構造図。
【図14】 実施の形態13に係る蓄冷型冷凍機に用いるディスプレーサ外周面に設けた熱交換用溝を示す側面図。
【図15】 実施の形態14に係る熱交換用溝内で生じる冷媒ガスの自然対流を示す概念図。
【図16】 実施の形態14に係る蓄冷型冷凍機について測定された冷凍能力の熱交換用溝幅依存性を示す特性図。
【図17】 実施の形態15に係る蓄冷型冷凍機に用いる対流防止板の構造図。
【図18】 図17の変形例になる対流防止板の構造図。
【図19】 図17の他の変形例になる対流防止板の構造図。
【符号の説明】
1 冷媒ガス、 2 吸気バルブ、 3 排気バルブ、 4 第1段膨張室、5 第1段ディスプレーサ、 6 第1段蓄冷器、 7 第1段シール、 8第1段冷凍ステージ、 9 第1段シリンダ、 10 第2段膨張室、 11第2段ディスプレーサ、 12 第2段蓄冷器、 13 (第2段)シール、13C クリアランスシール、 13L ラビリンスシール、 13P ピストンリング、 14 第2段冷凍ステージ、 15 第2段シリンダ、 16 駆動モータ、 17 駆動軸、 18 クランク、 19 圧縮機、 20 第1段ディスプレーサ高温側冷媒ガス流出入口、 21 第1段ディスプレーサ低温側冷媒ガス流出入口、 22 第2段ディスプレーサ高温側冷媒ガス流出入口、 23 第2段ディスプレーサ低温側冷媒ガス流出入口、 24 第1段サイドクリアランス、 25 第2段サイドクリアランス、 26 熱交換用溝、 27 対流防止板A、 28 対流防止板B、 29 対流防止板C、 30 貫通流路A、 31 貫通流路B、 32 コーティング被膜、 33 ピン挿入孔、 34 耐摩耗性コーティング。

Claims (14)

  1. 冷媒ガスの圧縮機と、この圧縮機によって圧縮された冷媒ガスを受け入れるシリンダ、ディスプレーサ及び蓄冷材を内蔵する蓄冷器からなる膨張機とを備え、前記シリンダ内の冷媒ガスを膨張させて寒冷を発生させる蓄冷型冷凍機において、前記シリンダとディスプレーサとの間隙を冷媒ガスが通流するのを防ぐシール部を前記ディスプレーサの軸方向の少なくとも一箇所に設け、このディスプレーサの外壁面に、前記冷媒ガスとディスプレーサとの熱交換用溝を、ディスプレーサの低温側又は高温側の位置に設けられた冷媒ガス出入口と、前記冷媒ガス出入口設置位置とは逆の温度側位置で前記ディスプレーサ外周に設けられた前記シール部との間に前記ディスプレーサを周回する形で設けたことを特徴とする蓄冷型冷凍機。
  2. 冷媒ガスの圧縮機と、この圧縮機によって圧縮された冷媒ガスを受け入れるシリンダ、ディスプレーサ及び蓄冷材を内蔵する蓄冷器からなる膨張機とを備え、前記シリンダ内の冷媒ガスを膨張させて寒冷を発生させる蓄冷型冷凍機において、前記ディスプレーサは、その低温側及び高温側の位置にそれぞれ冷媒ガス出入口を有し、当該両冷媒ガス出入口間で、且つ、その高温側、低温側にそれぞれ前記シリンダと前記ディスプレーサとの間隙を冷媒ガスが通流するのを防ぐシール部を備え、当該両シール部間の前記ディスプレーサ外壁面に前記シール部を漏洩してきた前記冷媒ガスと前記ディスプレーサとの熱交換用溝を、前記ディスプレーサを周回する形で設けたことを特徴とする蓄冷型冷凍機。
  3. 前記シール部は、ラビリンスシールを用いてなることを特徴とする請求項1または請求項2に記載の蓄冷型冷凍機。
  4. 前記シール部は、クリアランスシールを用いてなることを特徴とする請求項1または請求項2に記載の蓄冷型冷凍機。
  5. 前記熱交換用溝に冷媒ガスの対流防止機能を施したことを特徴とする請求項1ないし請求項4の何れかに記載の蓄冷型冷凍機。
  6. 前記対流防止機能として、前記熱交換用溝の幅を1.5mm以下としたことを特徴とする請求項5に記載の蓄冷型冷凍機。
  7. 前記熱交換用溝が水平に対して角度θ傾いて設けられている場合に、前記対流防止機能として、前記熱交換用溝の幅を、その幅をcosθで除した値が1.5mm以下であるようにしたことを特徴とする請求項5に記載の蓄冷型冷凍機。
  8. 前記対流防止機能として、熱交換用溝に対流防止板を設置したことを特徴とする請求項5に記載の蓄冷型冷凍機。
  9. 前記熱交換用溝をディスプレーサの低温側から高温側に到る螺旋形状の溝としたことを特徴とする請求項1ないし請求項8の何れかに記載の蓄冷型冷凍機。
  10. 前記熱交換用溝をディスプレーサの外壁面を取り巻く2以上の円環状の溝とし、且つ、この円環状の溝間、ディスプレーサ高温側の端にあるこの円環状の溝とその隣接外部、ディスプレーサ低温側の端にあるこの円環状の溝とその隣接外部をそれぞれ結ぶ貫通流路を設け、隣接する当該貫通流路を、当該円環周上で互いにずらした位置に配置したことを特徴とする請求項1ないし請求項8の何れかに記載の蓄冷型冷凍機。
  11. 蓄冷器の蓄冷材として磁性蓄冷材を用いたことを特徴とする請求項1ないし請求項10の何れかに記載の蓄冷型冷凍機。
  12. シリンダとディスプレーサを同一材料で構成するとともに、ディスプレーサ外壁面若しくはシリンダ内壁面の少なくとも一方を耐磨耗性材料でコーティングしたことを特徴とする請求項1ないし請求項11の何れかに記載の蓄冷型冷凍機。
  13. 前記ディスプレーサの外壁面に、耐摩耗性材料からなるコーティング層を形成し、前記熱交換用溝は、このコーティング層の表面部から少なくとも前記ディスプレーサの表面部が露出する深さに形成されてなることを特徴とする請求項12に記載の蓄冷型冷凍機。
  14. 請求項1ないし請求項13の何れかに記載の蓄冷型冷凍機を搭載したことを特徴とする超電導マグネット。
JP2003120824A 2002-08-29 2003-04-25 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット Expired - Fee Related JP3962353B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120824A JP3962353B2 (ja) 2002-08-29 2003-04-25 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251273 2002-08-29
JP2003120824A JP3962353B2 (ja) 2002-08-29 2003-04-25 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット

Publications (2)

Publication Number Publication Date
JP2004144461A JP2004144461A (ja) 2004-05-20
JP3962353B2 true JP3962353B2 (ja) 2007-08-22

Family

ID=32472790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120824A Expired - Fee Related JP3962353B2 (ja) 2002-08-29 2003-04-25 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット

Country Status (1)

Country Link
JP (1) JP3962353B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139800A (ko) * 2010-03-17 2012-12-27 스미도모쥬기가이고교 가부시키가이샤 디스플레이서 및 그 제조방법 및 축냉기식 냉동기
CN101900447B (zh) * 2010-08-31 2012-08-15 南京柯德超低温技术有限公司 带调相机构的g-m制冷机
JP5714461B2 (ja) * 2011-09-21 2015-05-07 住友重機械工業株式会社 極低温冷凍機
JP5415502B2 (ja) 2011-09-28 2014-02-12 住友重機械工業株式会社 極低温冷凍機
JP5744692B2 (ja) * 2011-10-05 2015-07-08 住友重機械工業株式会社 極低温冷凍機及びクライオポンプ及びディスプレーサ
JP5415503B2 (ja) 2011-10-05 2014-02-12 住友重機械工業株式会社 極低温冷凍機
JP5955089B2 (ja) * 2012-05-08 2016-07-20 株式会社フィルテック 流体加熱冷却シリンダー装置
JP6202483B2 (ja) * 2012-06-12 2017-09-27 住友重機械工業株式会社 極低温冷凍機
JP6161879B2 (ja) 2012-07-27 2017-07-12 住友重機械工業株式会社 極低温冷凍機
JP2015055374A (ja) 2013-09-10 2015-03-23 住友重機械工業株式会社 極低温冷凍機
JP6115959B2 (ja) * 2013-12-11 2017-04-19 株式会社フィルテック 流体熱交換装置

Also Published As

Publication number Publication date
JP2004144461A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
JP2659684B2 (ja) 蓄冷器式冷凍機
US20100229572A1 (en) Regenerative refrigerator
JP3962353B2 (ja) 蓄冷型冷凍機及び蓄冷型冷凍機を搭載した超電導マグネット
US20120304668A1 (en) Regenerator, gm type refrigerator and pulse tube refrigerator
US9423160B2 (en) Regenerative refrigerator
US6263677B1 (en) Multistage low-temperature refrigeration machine
JP2553203B2 (ja) 極低温冷凍機
JP2013217517A (ja) 蓄冷器式冷凍機、蓄冷器
JP6109057B2 (ja) 蓄冷器式冷凍機
JP2000121186A (ja) 蓄冷型冷凍機
JP2013079792A (ja) 極低温冷凍機
JP6320142B2 (ja) 極低温冷凍機
JP2013217516A (ja) 蓄冷式冷凍機
JPH0452468A (ja) 極低温冷凍装置
JP5415502B2 (ja) 極低温冷凍機
JP2001248929A (ja) 蓄冷器式冷凍機
US7213399B2 (en) Refrigerator comprising a regenerator
US5697219A (en) Cryogenic refrigerator
EP0399813B1 (en) Cryogenic refrigerator
JP2021519407A (ja) 循環冷媒の冷却用ヒートステーション
JP2012077966A (ja) 蓄冷器式冷凍機
JPH094936A (ja) 極低温冷凍装置
JP2012087970A (ja) 蓄冷器式冷凍機
JP2732686B2 (ja) 冷凍機
JP2868923B2 (ja) シ−ル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees