JPWO2011083710A1 - 合成非晶質シリカ粉末及びその製造方法 - Google Patents
合成非晶質シリカ粉末及びその製造方法 Download PDFInfo
- Publication number
- JPWO2011083710A1 JPWO2011083710A1 JP2011548963A JP2011548963A JPWO2011083710A1 JP WO2011083710 A1 JPWO2011083710 A1 JP WO2011083710A1 JP 2011548963 A JP2011548963 A JP 2011548963A JP 2011548963 A JP2011548963 A JP 2011548963A JP WO2011083710 A1 JPWO2011083710 A1 JP WO2011083710A1
- Authority
- JP
- Japan
- Prior art keywords
- silica powder
- powder
- synthetic amorphous
- siliceous gel
- amorphous silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 785
- 239000000843 powder Substances 0.000 title claims abstract description 669
- 229910002029 synthetic silica gel Inorganic materials 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 256
- 239000002245 particle Substances 0.000 claims abstract description 220
- 238000001035 drying Methods 0.000 claims abstract description 83
- 238000011282 treatment Methods 0.000 claims abstract description 74
- 238000005406 washing Methods 0.000 claims abstract description 30
- 229910021485 fumed silica Inorganic materials 0.000 claims description 62
- 238000005563 spheronization Methods 0.000 claims description 47
- 235000012239 silicon dioxide Nutrition 0.000 claims description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 229910052799 carbon Inorganic materials 0.000 claims description 34
- 239000000460 chlorine Substances 0.000 claims description 32
- 238000010304 firing Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 30
- 229910052801 chlorine Inorganic materials 0.000 claims description 30
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims description 27
- 239000005049 silicon tetrachloride Substances 0.000 claims description 27
- 238000010298 pulverizing process Methods 0.000 claims description 15
- 150000003377 silicon compounds Chemical class 0.000 claims description 15
- 238000005469 granulation Methods 0.000 claims description 12
- 230000003179 granulation Effects 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 6
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 claims 2
- 239000000499 gel Substances 0.000 description 89
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 82
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 80
- 238000003756 stirring Methods 0.000 description 80
- 229910021642 ultra pure water Inorganic materials 0.000 description 78
- 239000012498 ultrapure water Substances 0.000 description 78
- 239000007789 gas Substances 0.000 description 76
- 239000002994 raw material Substances 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 43
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 41
- 229910052757 nitrogen Inorganic materials 0.000 description 41
- 229910052786 argon Inorganic materials 0.000 description 40
- 238000004506 ultrasonic cleaning Methods 0.000 description 40
- 239000010453 quartz Substances 0.000 description 35
- 238000004140 cleaning Methods 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 23
- 239000012298 atmosphere Substances 0.000 description 22
- 239000012299 nitrogen atmosphere Substances 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 238000011084 recovery Methods 0.000 description 20
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 19
- 239000000203 mixture Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910002026 crystalline silica Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000001454 recorded image Methods 0.000 description 2
- -1 silicate ester Chemical class 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B4/00—Separating solids from solids by subjecting their mixture to gas currents
- B07B4/02—Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
- C01B33/158—Purification; Drying; Dehydrating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
本明細書中、粉末の理論比表面積とは、上記式(1)において、Dを粉末の平均粒径D50、ρを真密度2.20g/cm3と仮定した理論真密度から算出した値である。即ち、粉末の理論比表面積は、次の式(2)から算出される。
BET比表面積を平均粒径D50から算出した理論比表面積で割った値が大きくなると、比表面積が大きくなり、不可避のガス吸着量が大きくなる。この値が1.35以下では、石英ルツボ等の合成シリカガラス製品の成形性が低下する。一方、1.75を超えると、気泡の発生又は膨張の低減効果が小さい。このうち、BET比表面積を平均粒径D50から算出した理論比表面積で割った値は、1.40〜1.60の範囲が好ましい。
式(3)中、Sは撮影した粒子投影図の面積、Lは粒子投影図の周囲長を表す。本明細書中、粉末の円形度とは、上記式(3)から算出された粉末粒子200個の平均値である。粉末の円形度が0.50未満では、気泡の発生又は膨張の低減効果が小さい。また、粉末の円形度が0.75を超えると、石英ルツボ等の合成シリカガラス製品の成形性が低下する。このうち、粉末の円形度は、0.60〜0.70の範囲が好ましい。また、合成非晶質シリカ粉末の球状化率は0.20以上0.55未満である。粉末の球状化率とは、所定量の粉末中に円形度が0.80〜1.00である粒子が含まれる割合を示す。球状化率が0.20未満では、気泡の発生又は膨張の低減効果が小さい。また球状化率が0.55以上では、石英ルツボ等の合成シリカガラス製品の成形性が低下する。このうち、粉末の球状化率は、0.30〜0.50の範囲であることが好ましい。
また、合成非晶質シリカ粉末の平均粒径D50は、10〜2000μmであり、50〜1000μmの範囲内であることが好ましい。下限値未満では、粉末粒子間の空間が小さく、この空間に存在している気体が抜けにくいため、小さな気泡が残りやすく、一方、上限値を越えると、粉末粒子間の空間が大きすぎて、大きな気泡が残りやすいためである。このうち、平均粒径D50は、80〜600μmの範囲内であることが特に好ましい。なお、本明細書中、平均粒径D50とは、レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値をいう。合成非晶質シリカ粉末のかさ密度は、1.00g/cm3以上であることが好ましい。下限値未満では、粉末粒子間の空間が大きすぎて、大きな気泡が残りやすく、一方、上限値を越えると、粉末粒子間の空間が小さいために、この空間に存在している気体が抜けにくく、小さな気泡が残りやすいからである。このうち、かさ密度は、1.20〜1.50g/cm3範囲内であることが特に好ましい。
先ず、四塩化珪素1molに対して、55.6molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから3時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は150rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、250℃の温度で18時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き100μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が121μmのシリカ粉末を得た。
先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を55rpmに調整して行った。粉砕した乾燥粉を目開き100μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が130μmのシリカ粉末を得た。
先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水13molを準備した。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を30rpmに調整して行った。粉砕した乾燥粉を目開き375μm及び目開き450μmの振動フルイを用いて分級し、平均粒径D50が426μmのシリカ粉末を得た。
平均粒径D50が860μmのシリカ粉末を得たこと、及びこのシリカ粉末に、次の表1に示す条件で球状化処理を行ったこと以外は、実施例1と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例1と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例1と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例2と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例3と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例3と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例3と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例4と同様に、合成非晶質シリカ粉末を得た。
次の表1に示す条件で球状化処理を施したこと以外は、実施例4と同様に、合成非晶質シリカ粉末を得た。
先ず、四塩化珪素1molに対して、55.6molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから3時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は150rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、250℃の温度で18時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数50rpmに調整して行った。粉砕した乾燥粉を目開き50μm及び目開き150μmの振動フルイを用いて分級し、平均粒径D50が100μmのシリカ粉末を得た。
先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.6mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き550μm及び目開き650μmの振動フルイを用いて分級し、平均粒径D50が590μmのシリカ粉末を得た。
先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水13molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.9mm、ロール回転数を150rpmに調整して行った。粉砕した乾燥粉を目開き850μm及び目開き950μmの振動フルイを用いて分級し、平均粒径D50が895μmのシリカ粉末を得た。
先ず、平均粒径D50が0.02μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水12molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を30℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから2時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は20rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、250℃の温度で15時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を25rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き200μmの振動フルイを用いて分級し、平均粒径D50が141μmのシリカ粉末を得た。
先ず、平均粒径D50が0.030μm、比表面積が50m2/gのヒュームドシリカ1molに対して、超純水5molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を20℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから0.5時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、200℃の温度で48時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.3mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が156μmのシリカ粉末を得た。
先ず、平均粒径D50が0.007μm、比表面積が300m2/gのヒュームドシリカ1molに対して、超純水30molを準備する。準備した超純水を容器内に入れ、アルゴン雰囲気にて、温度を10℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は50rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き300μm及び目開き700μmの振動フルイを用いて分級し、平均粒径D50が502μmのシリカ粉末を得た。
先ず、平均粒径D50が0.016μm、比表面積が130m2/gのヒュームドシリカ1molに対して、超純水15molを準備する。準備した超純水を容器内に入れ、アルゴン雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから3時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は15rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、200℃の温度で36時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を1.0mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き500μm及び目開き1500μmの振動フルイを用いて分級し、平均粒径D50が987μmのシリカ粉末を得た。
先ず、四塩化珪素1molに対して、60molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を30℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから4時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は250rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、250℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数150rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が148μmのシリカ粉末を得た。
先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を55rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が163μmのシリカ粉末を得た。
先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水12molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を30℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから2時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は20rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、250℃の温度で15時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を25rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が140μmのシリカ粉末を得た。
先ず、平均粒径D50が0.030μm、比表面積が50m2/gのヒュームドシリカ1molに対して、超純水5molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を20℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから0.5時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、200℃の温度で48時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.3mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が162μmのシリカ粉末を得た。
先ず、平均粒径D50が0.020μm、比表面積が90m2/gのヒュームドシリカ1molに対して、超純水12molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を30℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから2時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は20rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、250℃の温度で15時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を25rpmに調整して行った。粉砕した乾燥粉を目開き250μm及び目開き75μmの振動フルイを用いて分級し、平均粒径D50が150μmのシリカ粉末を得た。
先ず、平均粒径D50が0.030μm、比表面積が50m2/gのヒュームドシリカ1molに対して、超純水5molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を20℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから0.5時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は30rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、200℃の温度で48時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.3mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き75μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が154μmのシリカ粉末を得た。
先ず、平均粒径D50が0.007μm、比表面積が300m2/gのヒュームドシリカ1molに対して、超純水30molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を10℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は50rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に15L/minの流量で窒素を流しながら、300℃の温度で12時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を100rpmに調整して行った。粉砕した乾燥粉を目開き300μm及び目開き600μmの振動フルイを用いて分級し、平均粒径D50が499μmのシリカ粉末を得た。
先ず、平均粒径D50が0.007μm、比表面積が300m2/gのヒュームドシリカ1molに対して、超純水20molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を20℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は50rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、400℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.5mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き300μm及び目開き600μmの振動フルイを用いて分級し、平均粒径D50が499μmのシリカ粉末を得た。
先ず、平均粒径D50が0.016μm、比表面積が130m2/gのヒュームドシリカ1molに対して、超純水15molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから4時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は20rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、200℃の温度で36時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を1.0mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き450μm及び目開き1450μmの振動フルイを用いて分級し、平均粒径D50が987μmのシリカ粉末を得た。
先ず、平均粒径D50が0.016μm、比表面積が130m2/gのヒュームドシリカ1molに対して、超純水15molを準備する。準備した超純水を容器内に入れ、窒素雰囲気にて、温度を25℃に保持して攪拌しながら、ヒュームドシリカを添加した。ヒュームドシリカを添加してから4時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は20rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量でアルゴンを流しながら、200℃の温度で36時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を1.0mm、ロール回転数を50rpmに調整して行った。粉砕した乾燥粉を目開き450μm及び目開き1450μmの振動フルイを用いて分級し、平均粒径D50が985μmのシリカ粉末を得た。
先ず、四塩化珪素1molに対して、60molに相当する量の超純水を準備した。この超純水を容器内に入れ、窒素雰囲気にて、温度を30℃に保持して攪拌しながら、四塩化珪素を添加して加水分解させた。四塩化珪素を添加してから4時間攪拌を継続して、シリカ質のゲルを生成させた。このとき、攪拌速度は250rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に10L/minの流量で窒素を流しながら、250℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数150rpmに調整して行った。粉砕した乾燥粉を目開き50μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が161μmのシリカ粉末を得た。
先ず、テトラメトキシシラン1molに対して、超純水1mol、エタノール1molを準備した。準備した超純水、エタノールを容器内に入れ、窒素雰囲気にて、温度を60℃に保持して攪拌しながら、テトラメトキシシランを添加して加水分解させた。テトラメトキシシランを添加してから60分間、撹拌した後、テトラメトキシラン1molに対して25molの超純水を更に添加し、6時間攪拌を継続し、シリカ質のゲルを生成させた。このとき、攪拌速度は100rpmとした。次に、上記シリカ質のゲルを乾燥用容器に移しこれを乾燥機に入れ、乾燥機内に20L/minの流量で窒素を流しながら、200℃の温度で24時間乾燥させて乾燥粉を得た。この乾燥粉を乾燥機から取り出し、ロールクラッシャーを用いて粉砕した。このときロール隙間を0.2mm、ロール回転数を150rpmに調整して行った。粉砕した乾燥粉を目開き50μm及び目開き250μmの振動フルイを用いて分級し、平均粒径D50が164μmのシリカ粉末を得た。
粉末の理論比表面積=2.73/D50 (2)
(3) BET比表面積/理論比表面積:上記測定した比表面積及び理論比表面積から算出した。
(6) 球状化率及び円形度:図6に示す粒度・形状分布測定器(株式会社セイシン企業 PITA−1)にて2回測定し、この平均値を算出した。具体的には、先ず、粉末を液体に分散させて、この液体を平面伸張流動セル51へ流した。平面伸張流動セル51内に移動する粉末粒子52の200個を、対物レンズ53にて画像として記録し、この記録画像及び次の式(3)から円形度を算出した。式(3)中、Sは撮影した記録画像の粒子投影図における面積、Lは粒子投影図の周囲長を表す。このようにして算出された粒子200個の平均値を粉末の円形度とした。
球状化率は、粉末粒子200個中に含まれる、円形度が0.60〜1.00の範囲に分類された粉末粒子の割合である。
実施例1〜10及び比較例1〜21で得られた粉末の不純物濃度を以下の(1)〜(5)の方法により分析又は測定した。その結果を次の表5又は表6に示す。
実施例1〜10及び比較例1〜21で得られた粉末を用いて、縦20mm×横20mm×高さ40mmの直方体のブロック材をそれぞれ製造し、ブロック材に発生した気泡の個数を評価した。この結果を次の表7又は表8に示す。具体的には、カーボンルツボに、粉末を入れ、これを2.0×104Pa真空雰囲気下でカーボンヒータにて2200℃に加熱し、48時間保持することによりブロック材を製造した。このブロック材を、5.0×102Pa真空雰囲気下で1600℃の温度で48時間の熱処理を行った。熱処理後、ブロック材の高さ20mmの位置で20mm×20mm角の断面に切り出し、研磨を行い、ブロック材の表面(断面)から、深さ2mm、幅2mm領域で観察された気泡の個数を評価した。
直径16インチの石英ルツボ製造用モールドに天然石英粉を約8mm、実施例1〜10及び比較例1〜21で得られた粉末をそれぞれ約2.5mm充填した。モールドの中心軸上であって、モールドの底面より400mm上方の位置(モールド上端面と同一レベル)に電極先端部が配置されるようにアーク電極を設置した。モールドを所定の速度で回転させながら、アーク電極に200kwの電力で5分間通電して石英粉を溶融した。次いでアーク電極を200mm降下し、同じ電力で8分間通電してモールド内の底部中央付近の石英を重点的に加熱し、通電中にモールド側より6分間減圧した。
Claims (13)
- 造粒されたシリカ粉末に球状化処理を施した後、洗浄し乾燥して得られた平均粒径D50が10〜2000μmの合成非晶質シリカ粉末であって、
BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.35を超え1.75以下、真密度が2.10〜2.20g/cm3、粒子内空間率が0〜0.05、円形度が0.50以上0.75以下及び球状化率が0.20以上0.55未満である合成非晶質シリカ粉末。 - 前記造粒されたシリカ粉末を焼成した後、前記球状化処理が施された合成非晶質シリカ粉末であって、
炭素濃度が2ppm未満又は塩素濃度が2ppm未満のいずれか一方或いはその双方を満たす請求項1記載の合成非晶質シリカ粉末。 - 前記造粒されたシリカ粉末が、四塩化珪素を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより得られたシリカ粉末であって、
炭素濃度が2ppm未満である請求項2記載の合成非晶質シリカ粉末。 - 前記造粒されたシリカ粉末が、有機系シリコン化合物を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより得られたシリカ粉末であって、
塩素濃度が2ppm未満である請求項2記載の合成非晶質シリカ粉末。 - 前記造粒されたシリカ粉末が、ヒュームドシリカを用いてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより得られたシリカ粉末であって、
炭素濃度が2ppm未満、塩素濃度が2ppm未満である請求項2記載の合成非晶質シリカ粉末。 - シリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することによりシリカ粉末を得る造粒工程と、
所定の高周波出力でプラズマを発生させたプラズマトーチ内に所定の供給速度で前記造粒工程で得られたシリカ粉末を投入し、2000℃から二酸化珪素の沸点までの温度で加熱し、溶融させる熱プラズマによる球状化工程と、
前記球状化工程後の球状化シリカ粉末表面に付着している微粉を取り除く洗浄工程と、
前記洗浄工程後のシリカ粉末を乾燥する乾燥工程と
をこの順に含み、
前記球状化工程における高周波出力(W)をA、シリカ粉末の供給速度(kg/hr)をBとするとき、A/B(W・hr/kg)の値が3.0×103以上1.0×104未満になるように調整して行われ、
平均粒径D50が10〜2000μm、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.35を超え1.75以下、真密度が2.10〜2.20g/cm3、粒子内空間率が0〜0.05、円形度が0.50以上0.75以下及び球状化率が0.20以上0.55未満である合成非晶質シリカ粉末を得る
ことを特徴とする合成非晶質シリカ粉末の製造方法。 - 前記造粒工程が、四塩化珪素を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程である請求項6記載の合成非晶質シリカ粉末の製造方法。
- 前記造粒工程が、有機系シリコン化合物を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程である請求項6記載の合成非晶質シリカ粉末の製造方法。
- 前記造粒工程が、ヒュームドシリカを用いてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程である請求項6記載の合成非晶質シリカ粉末の製造方法。
- シリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することによりシリカ粉末を得る造粒工程と、
前記造粒工程で得られたシリカ粉末を800〜1450℃の温度で焼成する焼成工程と、
所定の高周波出力でプラズマを発生させたプラズマトーチ内に所定の供給速度で前記焼成工程で得られたシリカ粉末を投入し、2000℃から二酸化珪素の沸点までの温度で加熱し、溶融させる熱プラズマによる球状化工程と、
前記球状化工程後の球状化シリカ粉末表面に付着している微粉を取り除く洗浄工程と、
前記洗浄工程後のシリカ粉末を乾燥する乾燥工程と
をこの順に含み、
前記球状化工程における高周波出力(W)をA、シリカ粉末の供給速度(kg/hr)をBとするとき、A/B(W・hr/kg)の値が3.0×103以上1.0×104未満になるように調整して行われ、
平均粒径D50が10〜2000μm、BET比表面積を平均粒径D50から算出した理論比表面積で割った値が1.35を超え1.75以下、真密度が2.10〜2.20g/cm3、粒子内空間率が0〜0.05、円形度が0.50以上0.75以下及び球状化率が0.20以上0.55未満であり、炭素濃度が2ppm未満又は塩素濃度が2ppm未満のいずれか一方或いはその双方を満たす合成非晶質シリカ粉末の製造方法。 - 前記造粒工程が、四塩化珪素を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程であるとき、
得られる合成非晶質シリカ粉末の炭素濃度が2ppm未満である請求項10記載の合成非晶質シリカ粉末の製造方法。 - 前記造粒工程が、有機シリコン系化合物を加水分解させてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程であるとき、
得られる合成非晶質シリカ粉末の塩素濃度が2ppm未満である請求項10記載の合成非晶質シリカ粉末の製造方法。 - 前記造粒工程が、ヒュームドシリカを用いてシリカ質のゲルを生成させ、このシリカ質のゲルを乾燥して乾燥粉とし、この乾燥粉を粉砕した後、分級することにより平均粒径D50が10〜3000μmのシリカ粉末を得る工程であるとき、
得られる合成非晶質シリカ粉末の炭素濃度が2ppm未満、塩素濃度が2ppm未満である請求項10記載の合成非晶質シリカ粉末の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011548963A JP5724881B2 (ja) | 2010-01-07 | 2010-12-27 | 合成非晶質シリカ粉末及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001793 | 2010-01-07 | ||
JP2010001793 | 2010-01-07 | ||
JP2011548963A JP5724881B2 (ja) | 2010-01-07 | 2010-12-27 | 合成非晶質シリカ粉末及びその製造方法 |
PCT/JP2010/073499 WO2011083710A1 (ja) | 2010-01-07 | 2010-12-27 | 合成非晶質シリカ粉末及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011083710A1 true JPWO2011083710A1 (ja) | 2013-05-13 |
JP5724881B2 JP5724881B2 (ja) | 2015-05-27 |
Family
ID=44305446
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010262521A Withdrawn JP2011157261A (ja) | 2010-01-07 | 2010-11-25 | 合成非晶質シリカ粉末及びその製造方法 |
JP2010283060A Withdrawn JP2011157264A (ja) | 2010-01-07 | 2010-12-20 | 合成非晶質シリカ粉末及びその製造方法 |
JP2011548963A Expired - Fee Related JP5724881B2 (ja) | 2010-01-07 | 2010-12-27 | 合成非晶質シリカ粉末及びその製造方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010262521A Withdrawn JP2011157261A (ja) | 2010-01-07 | 2010-11-25 | 合成非晶質シリカ粉末及びその製造方法 |
JP2010283060A Withdrawn JP2011157264A (ja) | 2010-01-07 | 2010-12-20 | 合成非晶質シリカ粉末及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8883110B2 (ja) |
EP (1) | EP2522630B1 (ja) |
JP (3) | JP2011157261A (ja) |
KR (1) | KR101668906B1 (ja) |
CN (1) | CN102656117B (ja) |
TW (1) | TWI488812B (ja) |
WO (1) | WO2011083710A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2690066A4 (en) * | 2011-03-23 | 2014-08-20 | Mitsubishi Materials Corp | SYNTHETIC AMORPHIC SILICONE POWDER AND MANUFACTURING METHOD THEREFOR |
JP5857525B2 (ja) * | 2011-08-18 | 2016-02-10 | 富士ゼロックス株式会社 | シリカ粒子及びその製造方法 |
EP3052449A4 (en) | 2013-10-04 | 2017-06-21 | Corning Incorporated | Melting glass materials using rf plasma |
CN104568535A (zh) * | 2013-10-29 | 2015-04-29 | 中芯国际集成电路制造(上海)有限公司 | Vpd样品收集方法 |
CN103712951B (zh) * | 2013-12-31 | 2016-03-09 | 清华大学深圳研究生院 | 一种基于三维结构纳米阵列生物芯片的制备方法及其应用 |
CN105722788B (zh) * | 2014-01-29 | 2018-04-03 | 三菱综合材料株式会社 | 合成非晶质二氧化硅粉末及其制造方法 |
US9550694B2 (en) | 2014-03-31 | 2017-01-24 | Corning Incorporated | Methods and apparatus for material processing using plasma thermal source |
US9533909B2 (en) | 2014-03-31 | 2017-01-03 | Corning Incorporated | Methods and apparatus for material processing using atmospheric thermal plasma reactor |
CN104451621A (zh) * | 2014-12-04 | 2015-03-25 | 苏州润佳工程塑料股份有限公司 | 二氧化硅镀银复合粉体的制备方法 |
US20160200618A1 (en) | 2015-01-08 | 2016-07-14 | Corning Incorporated | Method and apparatus for adding thermal energy to a glass melt |
EP3807215A1 (de) | 2018-06-15 | 2021-04-21 | Solar Silicon GmbH | Verfahren zur herstellung von elementarem silizium |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1493394A (en) * | 1974-06-07 | 1977-11-30 | Nat Res Dev | Plasma heater assembly |
US4789501A (en) * | 1984-11-19 | 1988-12-06 | The Curators Of The University Of Missouri | Glass microspheres |
JPS62176929A (ja) | 1986-01-30 | 1987-08-03 | Olympus Optical Co Ltd | 成形型の離型リング |
JP2545282B2 (ja) * | 1989-04-17 | 1996-10-16 | 日東化学工業株式会社 | 球状シリカ粒子の製造方法 |
JPH03275527A (ja) | 1990-03-24 | 1991-12-06 | Mitsubishi Kasei Corp | 多孔質シリカガラス粉末 |
JPH0475848A (ja) | 1990-07-17 | 1992-03-10 | Toyoda Mach Works Ltd | 適応制御装置 |
GB9108891D0 (en) | 1991-04-25 | 1991-06-12 | Tetronics Research & Dev Co Li | Silica production |
FR2693451B1 (fr) | 1992-07-07 | 1994-08-19 | Alcatel Nv | Procédé de fabrication d'une poudre de silice et application d'une telle poudre à la réalisation d'une préforme pour fibre optique. |
US5888587A (en) | 1992-07-07 | 1999-03-30 | Alcatel N.V. | Method of manufacturing silica powder and use of such powder in making an optical fiber preform |
JP3350139B2 (ja) | 1993-03-31 | 2002-11-25 | 三菱レイヨン株式会社 | 球状シリカ粒子の製造方法 |
JP3566825B2 (ja) * | 1996-12-27 | 2004-09-15 | 高周波熱錬株式会社 | 熱プラズマによる加熱処理粒体及び加熱処理方法 |
GB0130907D0 (en) * | 2001-12-22 | 2002-02-13 | Ineos Silicas Ltd | Amorphous silica |
DE10211958A1 (de) * | 2002-03-18 | 2003-10-16 | Wacker Chemie Gmbh | Hochreines Silica-Pulver, Verfahren und Vorrichtung zu seiner Herstellung |
JP3639279B2 (ja) * | 2003-01-24 | 2005-04-20 | 高周波熱錬株式会社 | 熱プラズマによる粉末の合成/精製または球状化方法とその装置 |
CN1281488C (zh) | 2004-06-25 | 2006-10-25 | 中国科学院过程工程研究所 | 一种纳米高纯二氧化硅的制备方法 |
EP1777302B1 (en) * | 2005-10-21 | 2009-07-15 | Sulzer Metco (US) Inc. | Plasma remelting method for making high purity and free flowing metal oxides powder |
EP2014622B1 (de) * | 2007-07-06 | 2017-01-18 | Evonik Degussa GmbH | Verfahren zur Herstellung eines Kieselglasgranulats |
JP5115209B2 (ja) * | 2008-01-21 | 2013-01-09 | 東ソー株式会社 | 表面が平滑なセラミックビーズの製造方法 |
-
2010
- 2010-11-25 JP JP2010262521A patent/JP2011157261A/ja not_active Withdrawn
- 2010-12-20 JP JP2010283060A patent/JP2011157264A/ja not_active Withdrawn
- 2010-12-27 EP EP10842221.3A patent/EP2522630B1/en not_active Not-in-force
- 2010-12-27 CN CN201080059159.0A patent/CN102656117B/zh active Active
- 2010-12-27 WO PCT/JP2010/073499 patent/WO2011083710A1/ja active Application Filing
- 2010-12-27 US US13/520,807 patent/US8883110B2/en not_active Expired - Fee Related
- 2010-12-27 KR KR1020127014167A patent/KR101668906B1/ko active IP Right Grant
- 2010-12-27 JP JP2011548963A patent/JP5724881B2/ja not_active Expired - Fee Related
-
2011
- 2011-01-04 TW TW100100200A patent/TWI488812B/zh active
Also Published As
Publication number | Publication date |
---|---|
US20120299207A1 (en) | 2012-11-29 |
JP2011157261A (ja) | 2011-08-18 |
EP2522630A1 (en) | 2012-11-14 |
CN102656117B (zh) | 2016-04-13 |
TWI488812B (zh) | 2015-06-21 |
KR101668906B1 (ko) | 2016-10-24 |
US8883110B2 (en) | 2014-11-11 |
JP2011157264A (ja) | 2011-08-18 |
JP5724881B2 (ja) | 2015-05-27 |
TW201129505A (en) | 2011-09-01 |
EP2522630B1 (en) | 2016-11-16 |
EP2522630A4 (en) | 2014-06-11 |
CN102656117A (zh) | 2012-09-05 |
WO2011083710A1 (ja) | 2011-07-14 |
KR20120120149A (ko) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5825145B2 (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5637149B2 (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5648640B2 (ja) | 合成非晶質シリカ粉末 | |
JP5724881B2 (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5686099B2 (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5962219B2 (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5817620B2 (ja) | 合成非晶質シリカ粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5724881 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |