JPWO2010150507A1 - ナノファイバ製造装置およびナノファイバ製造方法 - Google Patents

ナノファイバ製造装置およびナノファイバ製造方法 Download PDF

Info

Publication number
JPWO2010150507A1
JPWO2010150507A1 JP2011519584A JP2011519584A JPWO2010150507A1 JP WO2010150507 A1 JPWO2010150507 A1 JP WO2010150507A1 JP 2011519584 A JP2011519584 A JP 2011519584A JP 2011519584 A JP2011519584 A JP 2011519584A JP WO2010150507 A1 JPWO2010150507 A1 JP WO2010150507A1
Authority
JP
Japan
Prior art keywords
raw material
material liquid
outflow
liquid supply
supply body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011519584A
Other languages
English (en)
Other versions
JP5385981B2 (ja
Inventor
黒川 崇裕
崇裕 黒川
住田 寛人
寛人 住田
政秀 横山
政秀 横山
和宜 石川
和宜 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011519584A priority Critical patent/JP5385981B2/ja
Publication of JPWO2010150507A1 publication Critical patent/JPWO2010150507A1/ja
Application granted granted Critical
Publication of JP5385981B2 publication Critical patent/JP5385981B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

均一な繊維径のナノファイバを安定して効率よく製造することができるナノファイバ製造装置(1)およびナノファイバ製造方法を提供する。原料液を空間中で電気的に延伸させてナノファイバを製造するナノファイバ製造装置(1)において、モータ(41)によって軸線AL廻りに回転する中空の支持部(32)に、原料液(20)を内部に蓄積した状態で供給するカートリッジ(33)を支持させ、ロータリジョイント(43)を介して導入されたエアによって加圧部材(38)を加圧することにより、支持体(32)とともに回転する流出体(34)の内部空間(34a)に原料液(20)を流入させ、エアによる加圧力と流出体(34)の回転による遠心力の作用によって、流出孔(34c)から放射状に流出させる。これにより、流出する原料液(20)の液量を安定して制御することが可能となり、均一な繊維径のナノファイバを安定して効率よく製造することができる。

Description

本願発明は、サブミクロンスケールやナノスケールの直径を有する繊維状物質(ナノファイバ)を製造するナノファイバの製造装置およびナノファイバ製造方法に関するものである。
ナノファイバを製造する方法として、エレクトロスピニング(電荷誘導紡糸)法が知られている。このエレクトロスピニング法とは、溶媒中に樹脂などの溶質を分散または溶解させた原料液を空間中にノズルなどにより流出(吐出)させるとともに、原料液に電荷を付与して帯電させ、空間を飛行中の原料液を電気的に延伸させることにより、ナノファイバを得る方法である。すなわち、帯電され空間中を飛行中の原料液では徐々に溶媒が蒸発し、これにより飛行中の原料液の体積は徐々に減少していくが、原料液に付与された電荷は原料液に貯まる。
この結果、飛行中の原料液においては電荷密度が徐々に上昇する。そして溶媒は継続して蒸発し続けるため、原料液の電荷密度がさらに高まり、原料液の中に発生する反発方向のクーロン力が原料液の表面張力より勝った時点で原料液が爆発的に線状に延伸される現象(以下、静電延伸現象と述べる)が生じる。この静電延伸現象が空間において次々と幾何級数的に発生することにより、直径がサブミクロンオーダーの樹脂から成るナノファイバが製造される。
このような静電延伸現象を応用したナノファイバ製造装置として、遠心力を用いて原料液を流出孔から放射状に流出させる方式のものが知られている(例えば特許文献1,2参照)。これらの先行技術例においては、外周面に液吐出用の微小径の流出孔が設けられた円筒状容器の内部に原料液を供給し、この円筒状容器を回転させることによって生じる遠心力により、原料液を流出孔から流出させるようにしている。特許文献2に示す先行技術例においては、円筒状容器の内側に堰を設けることにより、内部に貯溜される原料液の液量を安定させる構成を採用している。
特開2008−150769号公報 特開2008−285792号公報
繊維径が均一で良質なナノファイバを効率よく製造するためには、糸状の原料液を安定した吐出径で均一に空間中に流出させる必要がある。しかしながら、上述の特許文献に示す先行技術例においては、原料液を流出させる作用を遠心力のみに依存していることから、円筒容器内における原料液の液量が変動すると、流出孔から流出する原料液の液量や状態が変動することが避けがたい。このため流出した原料液が連続した糸状とならずに液滴となって飛散し静電延伸現象が発生しない不具合や、静電延伸現象が発生した場合においても生成されるナノファイバの繊維径が不均一となる品質不良を招き、生産効率の向上が阻害されるという課題があった。
そこで本願発明は、均一な繊維径のナノファイバを安定して効率よく製造することができるナノファイバ製造装置およびナノファイバ製造方法を提供することを目的とする。
上記目的を達成するために、本願発明にかかるナノファイバ製造装置は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、前記原料液が供給される内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられる流出体と、前記流出体と着脱可能に接続され、内方に蓄積する前記原料液を前記流出体に供給する原料液供給体と、前記原料液供給体と前記流出体との接続状態を維持して前記原料液供給体と前記流出体とを支持する支持体と、前記原料液供給体と前記流出体と接続させた状態において、前記原料液供給体の内方を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給させる加圧手段と、前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段とを備えることを特徴としている。
これによれば、流出孔から流出する原料液の流出状態を各流出孔の間で均一化することができ、また、流出状態を安定化することが可能となる。従って、製造されるナノファイバの品質が均一とすることができるようになる。
前記支持体はさらに、前記原料液供給体と前記流出体との接続状態を維持し、かつ、前記原料液供給体と前記流出体とを回転可能に支持し、当該ナノファイバ製造装置はさらに、前記流出体を前記原料液供給体とともに回転させる回転手段を備えるものでもよい。
これによれば、各流出孔の間で均一化することができるばかりでなく、堆積したナノファイバの状態も均一化することが可能となる。従って、特にナノファイバを堆積させて不織布を製造する場合、不織布の状態を均一にすることが可能となる。
また、前記加圧手段は、前記原料供給手段の内方に流体を導入することで前記原料液供給体の内方を加圧するものでもよい。
これによれば、流体である原料液に対し流体で圧力を加えることで、機構を用いて機械的に圧力を加えるよりも均等に原料液を加圧することが可能となる。特に前記原料供給手段が回転する場合は容易に加圧と回転とを両立させることができる。
また、前記流体は、気体であり、前記原料液供給体は、原料液と、導入した前記気体とを隔絶する隔壁を備えるものでもよい。
これによれば、簡単な構成で原料液を流出させることができ、特に原料液供給体と流出体とを一体に回転させる場合には、全体的に簡単な構成を採用できる。
また、前記流体は、原料液であってもよい。
つまり、原料液を外部のポンプなどを用いて原料供給手段の内方に原料液を圧送する状態となる。この場合、継続的に原料液を流出体に供給し続けることが可能となる。
また、上記目的を達成するために、本願発明にかかるナノファイバ製造方法は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置に適用されるナノファイバ製造方法であって、前記製造装置は、前記原料液が供給される内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられる流出体と、前記流出体と着脱可能に接続され、内方に蓄積する前記原料液を前記流出体に供給する原料液供給体と、前記原料液供給体と前記流出体との接続状態を維持して前記原料液供給体と前記流出体とを支持する支持体と、前記原料液供給体と前記流出体と接続させた状態において、前記原料液供給体の内方を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給させる加圧手段と、前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段とを備え、前記原料液供給体と前記流出体とを結合させる結合体形成ステップと、結合された前記原料液供給体と前記流出体とを嵌脱自在に保持する支持体保持ステップと、前記原料液供給体の内法を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給する加圧供給ステップと、前記加圧供給ステップにより供給された原料液を帯電手段によって帯電させながら前記流出孔から流出させる流出ステップとを含むことを特徴としている。
これによれば、流出孔から流出する原料液の流出状態を各流出孔の間で均一化することができ、また、流出状態を安定化することが可能となる。従って、製造されるナノファイバの品質が均一とすることができるようになる。
また、ナノファイバ製造装置は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、前記原料液を筒状容器の内部に蓄積した状態で供給する原料液供給体と、前記筒状容器と連通する内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられた流出体と、前記原料液供給体と前記流出体とを結合させた第1の結合体を前記筒状容器の軸線方向に嵌脱自在に保持し前記軸線廻りに回転自在な支持体と、前記第1の結合体を前記支持体に保持させて前記原料液供給体を前記流出体と連通させた状態において、前記筒状容器の内部を加圧することにより前記原料液供給体から前記内部空間へ原料液を圧送して前記流出孔から流出させる加圧手段と、前記支持体を介して前記流出体を前記筒状容器とともに軸廻りに回転させる回転手段と、前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段とを備えてもよい。
また、ナノファイバ製造装置は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、前記原料液を筒状容器の内部に蓄積した状態で供給する原料液供給体と、前記原料液供給体を着脱自在に保持し且つ前記筒状容器の内部を加圧する加圧手段が接続された保持体と、前記筒状容器と連通する内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられた流出体と、一方側の端部に前記流出体が装着され他方側に前記原料液供給体と前記保持体とを結合させた第2の結合体を前記筒状容器の軸線方向に嵌脱自在に保持することにより、前記原料液供給体と前記流出体とを連通させるように構成された支持体と、前記支持体を介して前記流出体を前記筒状容器とともに軸廻りに回転させる回転手段と、前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段とを備え、前記原料液供給体を前記流出体と連通させた状態において前記加圧手段を作動させることにより、前記内部空間へ原料液を圧送して前記流出孔から流出させるものでもよい。
また、ナノファイバ製造方法は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、前記原料液を筒状容器の内部に蓄積した状態で供給する原料液供給体と、前記筒状容器と連通する内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられた流出体とを結合させた第1の結合体を形成する結合体形成ステップと、前記第1の結合体を、前記筒状容器の軸線方向に嵌脱自在に保持し前記軸線廻りに回転自在な支持体に保持させる支持体保持ステップと、前記筒状容器の内部を加圧することにより前記原料液供給体から前記内部空間へ原料液を圧送する原料液圧送ステップと、圧送された前記原料液を帯電手段によって帯電させながら前記流出孔から流出させ、さらに前記支持体を介して前記流出体を前記筒状容器とともに軸廻りに回転手段によって回転させることにより、遠心力によって前記原料液の流出を促進する原料液流出ステップとを含むものでもよい。
また、ナノファイバ製造方法は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、前記原料液を筒状容器の内部に蓄積した状態で供給する原料液供給体と前記原料液供給体を着脱自在に保持し且つ前記筒状容器の内部を加圧する加圧手段が接続された保持体とを結合させた第2の結合体を形成する結合体形成ステップと、前記筒状容器と連通する内部空間を有し、この内部空間から前記原料液を放射状に流出させる流出孔が複数設けられた流出体が一方側の端部に装着された支持体の他方側に、前記第2の結合体を保持させる支持体保持ステップと、前記筒状容器の内部を加圧することにより前記原料液供給体から前記内部空間へ原料液を圧送する原料液圧送ステップと、圧送された前記原料液を帯電手段によって帯電させながら前記流出孔から流出させ、さらに前記支持体を介して前記流出体を前記筒状容器とともに軸廻りに回転手段によって回転させることにより、遠心力によって前記原料液の流出を促進する原料液流出ステップとを含むものでもよい。
本願発明によれば、原料液を筒状容器の内部に蓄積した状態で供給する原料液供給体と、内部空間から原料液を放射状に流出させる流出孔が複数設けられた流出体とを結合した状態で、筒状容器の内部を加圧して原料液供給体から原料液を圧送して流出孔から流出させる構成を採用することにより、流出孔から流出する原料液の液量を安定して制御することが可能となり、均一な繊維径のナノファイバを安定して効率よく製造することができる。
図1は、本願発明の一実施の形態のナノファイバ製造装置の斜視図である。 図2は、本願発明の一実施の形態のナノファイバ製造装置の断面図である。 図3は、本願発明の一実施の形態のナノファイバ製造装置に装着される原料液流出ユニットの断面図である。 図4は、本願発明の一実施の形態のナノファイバ製造装置における原料液供給体の装着方法の説明図である。 図5は、本願発明の一実施の形態のナノファイバ製造装置における原料液流出ユニットの機能説明図である。 図6は、本願発明の一実施の形態のナノファイバ製造装置における原料液供給体の装着方法の説明図である。 図7は、本願発明の一実施の形態のナノファイバ製造装置における原料液供給体の装着方法の説明図である。 図8は、本願発明の一実施の形態のナノファイバ製造装置に装着される原料液流出ユニットの断面図である。 図9は、本願発明の一実施の形態のナノファイバ製造装置における原料液供給体の装着方法の説明図である。 図10は、本願発明の一実施の形態のナノファイバ製造装置における原料液供給体の装着方法の説明図である。 図11は、本願発明の一実施の形態のナノファイバ製造装置における原料液流出ユニットのユニット交換方法の説明図である。 図12は、本願発明の一実施の形態のナノファイバ製造装置における原料液流出ユニットのユニット交換方法の説明図である。
次に本願発明の実施の形態を図面を参照して説明する。図1,図2において、ナノファイバ製造装置1は、原料液を空間中で電気的に延伸させてナノファイバを製造する機能を有するものであり、原料液を流出させる流出装置2の一方側に偏向流動手段としての送風装置3を配設し、他端側にも偏向流動手段としての案内体4および収集装置5を直列に配設した構成となっている。本実施の形態の場合、流出装置2は、供給された原料液を空気に接触させることなく遠心力により空間中に流出させ、また原料液に電荷を付与し帯電させるための装置である。
図2の断面に示すように、流出装置2は、原料液を放射状に流出させる機能を有する液流出機構11を円筒形状の風洞体2aの内部に配設した構成となっている。液流出機構11は、原料液を貯留した筒状の原料液供給体としてのカートリッジ(図4に示すカートリッジ33参照)を内蔵しており、機外のエア供給源13から供給されるエアの圧力による吐出力とともに、回転による遠心力によって糸状の原料液20を放射状に流出させる。
液流出機構11において原料液20が流出する流出体(図3に示す流出体34参照)の外周には円環形状の円環電極16が配置されており、帯電電源17によって円環電極16に電圧を印加することにより、流出した原料液20を帯電させる。このとき、送風装置3を作動させて風洞体2a内の空気を下流方向(矢印a方向)へ流動させることにより、液流出機構11から流出した原料液20は流出装置2から案内体4へ流動する。
本実施の形態においては、風洞体2a内の液流出機構11、円環電極16、帯電電源17に、エア供給源13からのエアを供給するためのエア供給継手14やエア配管15を含めて1つのユニットとした原料液流出ユニット10としている。そしてこのような構成の原料液流出ユニット10を複数備えておき、液流出機構11に内蔵されたカートリッジ内の原料液が消耗したならば、他の原料液流出ユニット10と交換してナノファイバの生産を継続するようにしている。
なお、原料液流出ユニット10は、液流出機構11を備えるものであればよい。帯電電源17やエア供給源13は、複数の原料液流出ユニット10に対し共通に使用するものでもかまわない。
液流出機構11から流出した原料液20は、案内体4の直管部4a内を下流側へ(矢印b)流動する過程で静電延伸現象によって徐々にナノファイバ20aとなる。ナノファイバ20aの流れはフード形状の拡散部4bによって連続的に拡大されながら徐々に減速する。これにより、高密度状態で搬送されるナノファイバ20aを広く均等に拡散させ低密度状態とすることができる。そしてこのように拡散したナノファイバ20aは収集装置5に到達し(矢印c)、被堆積部材6の表面によって捕捉される。なおナノファイバ20aの製造に際しては原料液20が電気的に延伸しながらナノファイバ20aに変化していくため、原料液20とナノファイバ20aとの境界は曖昧であり、明確に区別できるものではない。
ここで、ナノファイバ20aを構成する樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等およびこれらの共重合体等の高分子物質を例示できる。また、上記より選ばれる一種でもよく、また、複数種類が混在しても差し支えない。なお、上記は例示であり、本願発明は上記樹脂に限定されるものではない
原料液20に使用される溶媒としては、揮発性のある有機溶剤などを例示することができる。具体的に例示すると、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホオキシド、ピリジン、水等を挙示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在しても差し支えない。なお、上記は例示であり、本願発明に用いられる原料液20は上記溶媒を採用することに限定されるものではない。
さらに、原料液20に骨材や可塑剤などの添加剤を添加してもよい。当該添加剤としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、耐熱性、加工性などの観点から酸化物を用いることが好ましい。当該酸化物としては、Al、SiO、TiO、LiO、NaO、MgO、CaO、SrO、BaO、B、P、SnO、ZrO、KO、CsO、ZnO、Sb、As、CeO、V、Cr、MnO、Fe、CoO、NiO、Y、Lu、Yb、HfO、Nb等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在しても差し支えない。なお、上記は例示であり、本願発明の原料液20に添加される物質は、上記添加剤に限定されるものではない。原料液20における溶媒と樹脂との混合比率は、溶媒の種類と樹脂の種類とにより異なるが、溶媒量は、約60重量%から98重量%の間が望ましい。
本実施の形態のように、原料液20や製造されるナノファイバ20aを気体流により搬送し、また、当該気体流を吸引装置26で吸引する場合、溶媒蒸気が滞留することなく流れるため、溶媒を50重量%以上含んだ原料液20であっても十分に蒸発し、静電延伸現象を発生させることが可能となる。従って、溶質である樹脂の濃度が薄い状態からナノファイバ20aを製造することができるため、より細いナノファイバ20aをも製造することも可能となる。また、原料液20の調整可能範囲が広がるため、製造されるナノファイバ20aの性能の範囲も広くすることが可能となる。
収集装置5は、流出装置2から放出されるナノファイバ20aを収集するための装置である。図1に示すように、収集装置5は、部材供給部5aによりロール状に卷回されて供給されるシート状の被堆積部材6を部材回収部5bによって巻き取ることにより、被堆積部材6を拡散部4bに対して一定速度で移動させながらナノファイバ20aを被堆積部材6に付着堆積させる構成となっている。
被堆積部材6は、アラミド繊維からなる長尺の布など、気体流を容易に透過でき、ナノファイバ20aを捕集しうる網状の部材である。ナノファイバ20aが被堆積部材6に到達することにより、ナノファイバ20aと気体流とが分離され、ナノファイバ20aのみが被堆積部材6の表面に不織布状に堆積する。堆積したナノファイバ20aは被堆積部材6とともに部材回収部5bによって巻き取られる。なお被堆積部材6の表面にテフロン(登録商標)コートを行うと、堆積したナノファイバ20aを被堆積部材6から剥ぎ取る際の剥離性が向上するため好ましい。
収集装置5の背面側には、誘引部7が配設されている。なお図1においては、誘引部7の図示を省略している。誘引部7は、ナノファイバ20aを被堆積部材6に誘引するための装置である。本実施の形態の場合、誘引部7は、異なる誘引方式を同時、または、選択的に実施できるように、電界誘引装置21、気体誘引装置25とを備えている。気体誘引装置25は、気体流を吸引することによりナノファイバ20aを被堆積部材6に誘引する装置であり、被堆積部材6の後方に配置されている。本実施の形態の場合、気体誘引装置25は吸引装置26と集中部24とを備えている。
集中部24は、拡散部4bで広がった気体流を受け取り、吸引装置26に至るまでの間に気体流を集中させる部材であり、拡散部4bとは逆向きの漏斗形状となっている。吸引装置26は、シロッコファンや軸流ファンなどの送風機であって、被堆積部材6を通過する気体流を強制的に吸引して速度が落ちた気体流を高い速度に加速する機能を有している。吸引装置26により気体流を吸引することで、ナノファイバ20aを製造する際に蒸発する溶媒も同時に吸引され、これにより引火性の高い溶媒を使用する場合においても、流出装置2の内部が爆発濃度まで達することはなく、安心して装置の使用ができるようになる。
電界誘引装置21は、帯電しているナノファイバ20aを電界により被堆積部材6に誘引する装置であり、誘引電極22と、誘引電源23とを備えている。誘引電極22は、帯電したナノファイバ20aを誘引するための電界を発生させるための電極である。本実施の形態の場合、誘引電極22には気体流を通過させることのできる金属製の網が採用され、拡散体4bの開口部全体に広がって設けられている。誘引電源23は、誘引電極22を所定の電圧及び極性に維持することができる直流電源である。本実施の形態の場合、0V(接地状態)から200KV以下の範囲で自由に電圧と極性を変更することができる。なお、誘引電極22として本実施の形態において示す例以外に、被堆積部材6の幅程度の長さを備え所定の幅を有する棒状体や、棒状の誘引電極22を複数本並べたものであってもよい。
回収装置8は、原料液20から蒸発した溶剤を気体流から分離して回収する機能を有している。回収装置8の構成としては、原料液20に用いられる溶剤の種類によって異なるが、例えば、気体を低温にして溶剤を結露させて回収する装置や、活性炭やゼオライトを用いて溶剤のみを吸着させる装置、液体などに溶剤を溶け込ませる装置やこれらを組み合わせた装置を例示できる。
次に図3、図4を参照して、流出装置2の詳細構造を説明する。図3に示すように、中空の円筒部材である風洞体2aの内部には、保持ブラケット(図示省略)によって機構部材35が保持されている。機構部材35はそれぞれベアリング36が装着された2つのブラケット35bを、水平姿勢のベース部35aから垂直上方に延出させた構成となっており、ベアリング36は支持体32を風洞体2aの中心線に一致した軸線AL廻りに回転自在に保持している。
支持体として機能する支持体32は、一方側(図3において右側)が開放されて空洞部32bが設けられた中空円筒形状の部材であり(図4(c)参照)、支持体32の内部には流出体34と結合された状態のカートリッジ33が装着されている。カートリッジ33は原料液供給体であり、本実施の形態の場合、ナノファイバの原料液20をカートリッジ33の一部である筒状容器33aの内部に蓄積した状態で流出体34に原料液20を供給する機能を有している。支持体32の外周面には従動プーリ39が結合されており、ベース部35aの下面側に水平方向に配置されたモータ41の回転軸に結合された駆動プーリ42と従動プーリ39には、伝導ベルト40が調帯されている。モータ41を駆動することにより、支持体32が軸線AL廻りに回転し、これとともにカートリッジ33および流出体34も一体的に回転する。また、支持体32は、流出体34とカートリッジと33とが接続された状態を維持して支持するものとなっている。
支持体32の閉止側の側端部にはエア導入孔32aが設けられており、エア導入孔32aはロータリジョイント43を介してエア配管15と連通している。エア配管15には、嵌脱自在のエア供給継手14を介してエア供給源13からエアを供給するエア配管44がつなぎ込まれている。これにより、回転状態の支持体32の空洞部32b内部へ、固定側のエア配管15から加圧用のエアを供給することが可能となっている。なお後述する原料液流出ユニット10の交換に際しては、エア配管44をエア供給継手14に嵌脱する。
また、ロータリジョイント43は、支持体32の回転を許容しつつ内方を通過するエアの圧力が損失しないものとなっている。なお、カートリッジ33の内方に圧力を加える流体としてエアを選出した場合、ロータリジョイント43がエア圧力を所定の範囲で維持できれば多少のエア漏れなどがあっても周囲の環境に影響が出ないため好ましい態様となる。
なお、カートリッジ33によって例示される原料液供給体の内方を加圧する加圧手段として、原料液を原料液供給体の内方に圧送する装置を用い、原料液供給体の内方に加圧された原料液を供給することで、先に原料液供給体の内方に供給された原料液の圧力を維持して、流出体34に原料液を供給するものでもかまわない。この場合、本実施の形態の場合のように、原料液とエアとを隔絶する移動可能な隔壁としての加圧部材38を備える必要はない。また、原料液供給体と支持体とが一体であってもかまわない。
流出装置2に隣接して配置された送風装置3は、軸流ファンなどの送風機構30および送風機構30の下流側に配置された加熱手段31を備えた構成となっている。流出装置2の風洞体2a内部には、送風機構30によって発生し加熱手段31によって加熱された空気が送り込まれ、風洞体2a内を下流側に流動する。
図4(a)に示すように、原料液供給体の一部である筒状容器33aの先端部の外面には液吐出用の吐出孔33cが開口する凸部33bが設けられており、凸部33bの外側面にはカートリッジ33と流出体34と接続するための雄ねじ部33dが加工されている。また筒状容器33aの内部には蓄積された原料液20と外部(例えば空気(エア))とを隔絶する形態で加圧部材38が摺動可能に嵌着されており、加圧部材38を外側から加圧することにより、吐出孔33cから原料液20を吐出することができるようになっている。
なお、本実施の形態では、加圧部材38に対しエアにより加圧しているが、エア以外の流体で加圧してもよく、また、バネなどを用いた機構などにより加圧してもよい。
流出体34は、円筒状部材の外周を部分的に切削除去した外形形状を有する部材であり、原料液20を流出させるとともに原料液20に電荷を付与する機能を有するため、導電体で形成されている。流出体34の一方側の先端部に設けられた略円板形状の流出板34bの外周面には、原料液20を放射状に流出させる流出孔34cが複数設けられている。流出孔34cは、導出部34dを介して内部に設けられた内部空間34aに連通しており、さらに内部空間34aと連通して設けられた流入孔34fは、カートリッジ33と接続するための凹部34eに開口している。
凹部34eの内側面には、カートリッジ33の雄ねじ部33dと螺合する雌ねじ部34gが加工されている。流出体34の他端部の外周面からは、支持体32との締結用の延出部34hが設けられており、延出部34hの内周面34iは支持体32の開口端部32cの外周面32dとの嵌合締結面となっている。
カートリッジ33を支持32に装着するに際しては、まず図4(a)に示すカートリッジ33と流出体34とを一体に結合させて。図4(b)に示すように第1の結合体50を形成する。すなわち雄ねじ部33dを雌ねじ部34gに螺合させることにより雄ねじ部33dを凹部34eに嵌合させる。これにより、筒状容器33aの内部と流出体34の内部空間34aとが吐出孔33c、流入孔34fを介して連通する。そしてこのようにしてカートリッジ33と流出体34とが一体となった第1の結合体50は、図4(c)に示すように、空洞部32bに装着される。このとき、延出部34hの内面に設けられた内周面34iを開口端部32cの外面の外周面32dに嵌合させる。
なお、本実施の形態では、カートリッジ33で例示される原料液供給体と流出体34とは螺着により着脱自在としているが。本願発明はこれに限定されるものでは無い。
図6は、開口端部32cを内周面34iに嵌合させる嵌合部の構成を示している。図6(a)に示すように、開口端部32cの外周面には係合凸部32eが設けられており、内周面34iにおいて係合凸部32eに対応した位置には、係合凸部32eを係止するための屈曲形状の係止溝34jが形成されている。支持体32と流出体34とを結合する際には、係合凸部32eを係止溝34jに嵌入させ、係止溝34jの屈曲形状に倣って支持体32を周方向に回転させる。これにより、図6(b)に示すように、係合凸部32eが係止溝34jによって係止され、支持体32と流出体34とが結合される。
以上の様に、原料液供給体と流出体34とを着脱可能としたことにより、流出体34の内部を容易に清掃することができ、流出体34の流出孔に液詰まりが生じることを容易なメンテナンス作業により回避することができる。また、流出体34を複数準備しておけば、不測の事態が発生しても流出体を交換することで迅速に対応することができる。
図5は、このようにして第1の結合体50が液流出機構11の支持体32に装着された稼働状態を示している。この状態においてモータ41を駆動することにより、支持体32と流出体34とカートリッジ33とは、図3に示す軸線AL廻りに一体に回転する。そしてエア配管15を介して加圧用のエアが送給され(矢印f)、さらにこの加圧用のエアが回転状態の支持体32に対してロータリジョイント43を介して供給されることにより、空洞部32b内において加圧部材38に対してエアの圧力Pが作用する。これによりカートリッジ33内の原料液20は加圧されて流出体34の内部空間34aに流入し、次いで流出孔34cから糸状となって流出する。
上記構成において、支持体32は、カートリッジ33と流出体34とを結合させた状態(第1の結合体50)で筒状容器33aの軸線AL方向に嵌脱自在に保持し、軸線AL廻りに回転自在に構成されている。そして従動プーリ39、伝導ベルト40、モータ41、駆動プーリ42は、支持体32を介して流出体34を筒状容器33aとともに軸廻りに回転させる回転手段となっている。またエア供給継手14、エア配管15およびロータリジョイント43は、第1の結合体50を支持体32に保持させてカートリッジ33を流出体34と連通させた状態において、筒状容器33aの内部を加圧することによりカートリッジ33から内部空間34aへ原料液20を圧送して流出孔34cから流出させる加圧手段を構成する。
またナノファイバ製造装置1は、流出体34を介して原料液20に電荷を付与して帯電させる帯電手段を備えており、この帯電手段は、流出体34を外周方向から環状に覆う円環電極16と、円環電極16と流出体34との間に所定の電界を印加する電圧発生手段としての帯電電源17とで構成される。円環電極16は流出体34の流出板34bに電荷を誘導するための部材であり、流出体34の周囲を取り囲むように配置される円環形状に形成されている。円環電極16に正の電圧が印加されると流出体34には負の電荷が誘導され、円環電極16に負の電圧が印加されると流出体34には、正の電荷が誘導される。
接地装置18は、流出体34と電気的に接続され、流出体34を接地電位に維持することができる部材である。接地装置18の一端は、流出体34と接続されて導通する支持体32が回転状態であっても電気的な導通状態を維持することができるようにブラシとして機能するものであり、他端は接地されている。なお、接地装置18は、流出体34と電気的に接続されれば良く、支持体32と接地装置18とが僅かに離れていても良い。特に、支持体32若しくは接地装置18の少なくとも一方側が、複数の尖端部を有する場合には前記尖端部よりイオン風が発生し、前記支持体32と接地装置18間に僅かな隙間があっても、電気的に接続された状況になっている。
円環電極16に高電圧を印加する帯電電源17は、一般には直流電源が好ましい。特に、発生させるナノファイバ20aの帯電極性に影響を受けないような場合、生成したナノファイバ20aの帯電を利用して、逆極性の電位を印加した電極でナノファイバ20aを誘引するような場合には、直流電源を採用する。また帯電電源17が直流電源である場合、帯電電源17が円環電極16に印加する電圧は、10KV以上、200KV以下の範囲の値から設定されるのが好適である。帯電電源17に負の電圧が印加される場合には、前記の印加する電圧の極性は負になる。特に流出体34と円環電極16との間の電界強度が重要であり、円環電極16と流出体34との距離が最も近い空間において10KV/cm以上の電界強度になるように印加電圧を調整するのが好ましい。
本実施の形態のように帯電手段として一方の電極を接地電位とする誘導方式を採用すれば、流出体34を接地電位に維持したまま原料液20に電荷を付与することができる。流出体34が接地電位の状態であれば流出体34に接続される部材を流出体34から電気的に絶縁する必要が無くなり、流出装置2として簡単な構造を採用しうることになり好ましい。なお、帯電手段として、流出体34に電源を接続して流出体34を高電圧に維持し、円環電極16を接地することで原料液20に電荷を付与してもよい。
帯電電源17を作動させることにより流出体34の外周方向に設けられた円環電極16と導電体である流出体34との間には所定の電圧が印加され、これにより流出孔34cから流出した原料液20は帯電する。流出孔34c開口端部32cから流出する原料液20には流出体34の回転による遠心力が作用し、さらに円環電極16との間の電位によって流出体34から円環電極16へ向かう方向に流動するが、このとき送風装置3を作動させることによって原料液流出ユニット10内には送風装置3から下流側(矢印g)へ向かう気流が生じていることから、流出孔34cから流出した原料液20は、飛行方向が変更されて下流側(矢印h)に偏って流動する。すなわち送風装置3は、流出体34から流出した原料液20を軸線AL方向の一方側から他方側へ偏向して流動させる偏向流動手段として機能している。
加熱手段31は、送風装置3が発生させる気体流を構成する気体を加熱する加熱源である。本実施の形態の場合、加熱手段31は、案内体4の内方に配置される円環状のヒータであり、加熱手段31を通過する気体を加熱することができるものとなっている。加熱手段31により気体流を加熱することにより、空間中に流出される原料液20は、蒸発が促進され効率よくナノファイバ20aを製造することが可能となる。
なお支持体32と流出体34とが結合された状態において、流出板34b内部を外部雰囲気に対して密封する必要があり、上記例においてはOリング37を開口端部32cと流出体34との間に介在させるようにしているが、流出板34b内の密封方法はこれに限定されるものではない。例えば図7(a)に示すように、支持体32の内部において筒状容器33aの開口端部33eが当接する位置にエラストマーなどの材質のシール部材45を装着しておき、図7(b)に示すように、カートリッジ33を支持体32に挿入した状態において、開口端部33eをシール部材45に押しつけることによって空洞部32bの内部を密封するようにしてもよい。
また図3〜図5に示す実施例においては、カートリッジ33の先端側を予め流出体34と一体に結合した状態で液流出機構11に装着する構成例を示したが、以下に説明するように、カートリッジ33の基部側を予め保持部47と結合した状態で取り扱うようにしてもよい。この場合には、図8に示すように、図3に示す形状の支持体32に代えて、基部に拡径形状の開口端部132aが設けられた支持体132を用いる。
そしてロータリジョイント43と連通して加圧用のエアを導入するためのエア導入孔47a、開口端部132aと結合される支持部締結端部47bおよびカートリッジ33を着脱自在に保持するための容器締結端部47cが一体に設けられた保持部47を用いる。すなわち、保持部47は、カートリッジ33を着脱自在に保持し且つ筒状容器33aの内部を加圧する加圧手段が接続された構成となっている。この構成例においてもモータ41によって伝導ベルト40を介して支持体132を回転駆動することにより、流出体34を軸線AL廻りに回転させるようになっている。
原料液20が蓄積されたカートリッジ33を装着するには、まず図9(a)に示すように、容器締結端部47cの内周面47dに、カートリッジ33の端部33eの外周面33fを嵌合させる。これにより、図9(b)に示すように、カートリッジ33が保持部47と一体的に結合された第2の結合体51が形成される。そして第2の結合体51は、予め支持体132と流出体34とを一体に結合した状態の液流出機構11に装着される。
すなわち、カートリッジ33を先端側から空洞部132b内に挿入し、凸部33bを凹部34eに密封状態で嵌合させるとともに、支持部締結端部47bの内周面47eに、開口端部132aの外周面132cを嵌合させて結合する。これにより、カートリッジ33と流出体34とが連通する。このとき、図10に示すように、凹部34e内にはOリング52が装着され、凸部33bが凹部34e内に嵌合した状態で吐出孔33cと流入孔34fとは密封状態で連通する。
上記構成において支持体132は、一方側の端部に流出体34が装着され他方側にカートリッジ33と保持部47とを結合させた第2の結合体51を、筒状容器33aの軸線方向に嵌脱自在に保持することにより、カートリッジ33と流出体34とを連通させるようになっている。そしてカートリッジ33と流出体34とを連通させた状態において、加圧手段であるエア配管15、ロータリジョイント43を作動させることにより、カートリッジ33の内部を加圧し内部空間34aへ原料液20を圧送して、流出孔34cから流出させるようになっている。
次に図11,図12を参照して、ナノファイバ製造装置1における原料液20の供給に際して必要とされるユニット交換処理について説明する。前述のようにナノファイバ製造装置1においては、原料液20の供給形態として筒状容器33aに所定量の原料液20を貯留したカートリッジ33を用いるようにしていることから、カートリッジ33において原料液20が消耗した場合には、新たなカートリッジ33と交換する必要がある。このとき、1つのカートリッジ33に貯留された原料液20が消耗した都度カートリッジ33の交換作業を行うと、ナノファイバ製造装置1の稼働を中断しなければならず、装置稼働率の観点からは好ましくない。
このため、本実施の形態に示すナノファイバ製造装置1においては、図2において示す原料液流出ユニット10を複数セット準備しておき、1つの原料液流出ユニット10においてカートリッジ33が消耗したならば、原料液流出ユニット10ごと交換してカートリッジ33の切り替えを短時間で行えるようにしている。これらの原料液流出ユニット10は、図3に示す例においては、カートリッジ33、流出体34、支持体32および前述構成の加圧手段、回転手段、帯電手段を一体にして構成され、図8に示す例においては、カートリッジ33、保持部47、流出体34、支持体32および前述構成の加圧手段、回転手段、帯電手段を一体にして構成される。
図11(a)、(b)に示すように、ナノファイバ製造装置1においては、図2に示す原料液流出ユニット10と同一の構成を有する原料液流出ユニット10A、10Bを水平なガイドレール56に沿って水平移動(矢印i)させるユニット交換機構55を備えている。ユニット交換機構55を駆動することにより、原料液流出ユニット10A、10Bの一方が作業位置P1、すなわち流出装置2が案内体4と送風装置3との間に配置される位置に位置決めされ、他方が作業位置P1の両側の交換位置P2、P3のいずれかに位置決めされるように移動させことができる。
例えば、図11(b)に示すように、原料液流出ユニット10Aが作業位置P1にあって作業が実行されているときには、原料液流出ユニット10Bは交換位置P2にあってカートリッジ33の交換作業が可能な状態にある。そしてこの後、原料液流出ユニット10Aにおいてカートリッジ33が消耗したならば、ユニット交換機構55を駆動して原料液流出ユニット10Bを作業位置P1に移動させる(矢印j)とともに、原料液流出ユニット10Aを交換位置P3に移動させ(矢印k)、ここで原料液流出ユニット10Aを対象としたカートリッジ33の交換作業を実行する。すなわちここに示す例においては、ナノファイバ製造装置1はこれらの複数の原料液流出ユニット10A,10Bのいずれか一つを、ナノファイバを製造するための作業位置P1に位置させるユニット交換機構を備えた構成となっている。
なお図11(c)に示す例は、2つの原料液流出ユニット10A、10Bを並例に配置して水平移動する代わりに、2つの原料液流出ユニット10A、10Bを保持したユニットホルダ57をユニット交換機構58によって回転軸57a廻りに回転させるようにした構成を示している。これにより、原料液流出ユニット10A、10Bを作業位置P1、交換位置P2に交互に位置させることができる。すなわち作業位置P1に位置する原料液流出ユニット10Aにおいてカートリッジ33が消耗したならば、ユニット交換機構58を駆動して原料液流出ユニット10Bを作業位置P1に移動させる(矢印m)とともに、原料液流出ユニット10Aを交換位置P2に移動させ(矢印l)、ここで原料液流出ユニット10Aを対象としたカートリッジ33の交換作業を実行する。
また図12(a)は、原料液流出ユニット10A、原料液流出ユニット10Bを対象とするカートリッジ33の交換作業の実行態様を示している。すなわち、図3に示す構成例においては、カートリッジ33は下流側(図3において右側)から取り出されることから、作業者は前面FS側に位置して必要な作業を行う。これに対し図8に示す構成例においては、カートリッジ33は上流側(図8において左側)から取り出されることから、作業者は後面RS側に位置して必要な作業を行う。
さらに図12(b)は、カートリッジ33の交換作業を自動で行う方式例を示している。ここではカートリッジ収納部59に複数のカートリッジ33を収納保持させておき、ロボット機構60にカートリッジ交換動作を行わせる。すなわちロボットハンド60aを移動させてチャック機構60bによってカートリッジ33を把持し、液流出機構11からの使用済みのカートリッジ33の取り外しおよび新たなカートリッジ33の液流出機構11への装着を、ロボット機構60によって自動的に実行させる。
次に、上記構成のナノファイバ製造装置1を用い、原料液20を空間中で電気的に延伸させてナノファイバ20aを製造するナノファイバ製造方法について説明する。このナノファイバ製造に際しては、流出装置2に原料液20が蓄積されたカートリッジ33を予めセットする作業が実行される。
すなわち、図3に示す構成例においては、原料液供給体であるカートリッジ33と流出体34とを結合させた第1の結合体50を形成する結合体形成ステップが実行される(図4(b)参照)。次いで、第1の結合体50を支持体32に保持させる支持体保持ステップが実行される(図4(c)参照)。また図8に示す構成例においては、原料液供給体であるカートリッジ33と、このカートリッジ33を着脱自在に保持し且つ筒状容器33aの内部を加圧する加圧手段が接続された保持体47とを結合させた第2の結合体51を形成する結合体形成ステップが実行される(図9(b)参照)次いで、流出体34が一方側の端部に装着された支持体32の他方側に、第2の結合体51を保持させる支持体保持ステップが実行される(図9(c)参照)。
この後、筒状容器33aの内部を加圧することによりカートリッジ33から流出体34の内部空間34aへ原料液20を圧送する原料液圧送ステップと、圧送された原料液20を帯電手段によって帯電させながら流出孔34cから流出させ、さらに支持体32を介して流出体34を筒状容器33aとともに軸廻りに回転手段によって回転させることにより、遠心力によって原料液20の流出を促進する原料液流出ステップが実行される。これにより、原料液20は静電延伸現象を応用したエレクトロスピニングによってナノファイバ20aとなり、収集装置5によって捕捉回収される。
そしてナノファイバ20aを製造するための作業位置P1に位置した一の原料液流出ユニット10においてカートリッジ33の原料液20が消耗したならば、他の原料液流出ユニット10のいずれかを一の原料液流出ユニット10と交換して作業位置P1に位置させ、ナノファイバ20aの製造を継続して実行する。これにより、原料液20の品切れに起因する製造作業の中断時間の発生を最小限に抑制して、装置稼働率を向上させることができる。
以下、本実施の形態におけるナノファイバ20aの製造プロセス例について詳述する。まず、送風装置3、吸引装置26を稼働させ、流出装置2、案内体4、集中部24の内部において流出装置2から回収装置8に向かう気体流を発生させる(気体流発生工程)。ここでは、案内体4内の風量が毎分30立米となるよう風量を調整している。本実施の形態に採用される溶質としての樹脂は、PVA(ポリビニルアルコール)を選定した。また、原料液20を構成する溶媒としては水を選定し、原料液20における溶質と溶媒との混合比率は、水90%、ポリビニルアルコール10%とした。環境温度は20℃、湿度は35%に設定した。
次に、帯電電源17により円環電極16を正または負の高電圧とする。円環電極16の近傍に配置される流出体34の流出孔34cに電荷が集中し、当該電荷が流出体34の流出孔34cを通過して空間中に流出する原料液20に転移し、原料液20が帯電する(帯電工程)。この帯電工程と同時期にモータ41を駆動して流出体34を1500rpm程度の回転数で回転させ、流出体34の周壁に設けられる流出孔34cから原料液20を所定の圧力と遠心力とで空間中に流出させる(回転工程、流出工程)。
具体的には、外径がΦ60mmの流出体34を用いた。流出体34は、周方向等間隔に18個の流出孔34cが設けられている。流出孔34cの直径は、0.3mmであり、形状は円形であった。一方、円環電極16は内径Φ600mmのものを用い、帯電電源17により円環電極16を接地電位に対して負の60KVとした。これにより、流出体34には正の電荷が誘導され、正に帯電した原料液20が流出することとなる。
流出孔34cから流出された原料液20は、初めて気体流(空気)と接触し、気体流により搬送され(搬送工程)、気体流に乗り案内体4に案内される。ここで、原料液20の帯電状態と円環電極16とは逆極性であるため、クーロン力により引きつけられて円環電極16の方向に向いて飛行しようとするが、円環電極16に向かうほとんどの原料液20が気体流により方向が変えられ、案内体4に向かって飛行することとなる。
原料液20は、静電延伸現象によりナノファイバ20aを製造しつつ(ナノファイバ製造工程)流出装置2から放出される。ここで、原料液20は、強い帯電状態で流出しているため、静電延伸が容易に発生し、流出した原料液20のほとんどがナノファイバ20aに変化していく。また、原料液20は、強い帯電状態で流出しているため、静電延伸が何次にもわたって発生し、線径の細いナノファイバ20aが大量に製造される。また前記気体流は、加熱手段31により加熱されており、原料液20の飛行を案内しつつ、原料液20に熱を与えて溶剤の蒸発を促進し静電延伸を促進している。
以上のようにして放出装置2から放出されるナノファイバ20aは、案内体4に導入される。そして、ナノファイバ20aは、案内体4の内方を気体流に搬送されながら収集装置5に向かって案内される(案内工程)。拡散部4bにまで搬送されたナノファイバ20aは、ここで急速に速度が低下すると共に、均一な分散状態となる(拡散工程)。この状態において、被堆積部材6の背方に配置される吸引装置26は、蒸発した溶媒と共に気体流を吸引し、ナノファイバ20aを被堆積部材6上に誘引する(誘引工程)。また、電圧が印加された誘引電極22により電界が発生し、当該電界によってもナノファイバ20aが誘引される(誘引工程)。
以上により、被堆積部材6により気体流から分けられてナノファイバ20aが収集される(収集工程)。被堆積部材6は、部材回収部5bによりゆっくり移送されているため、ナノファイバ20aも移送方向に延びた長尺の帯状部材として回収される。被堆積部材6を通過した気体流は、吸引装置26により加速され、回収装置8に到達する。回収装置8では、気体流から溶媒を分離回収する(回収工程)。
上述構成のナノファイバ製造装置1を用いるナノファイバ製造方法においては、カートリッジ33内に蓄積された原料液20を流体圧によって加圧して流出孔34cから流出させることから、カートリッジ33における原料液20の残留量に関係なく常に流出孔34cから原料液20を加圧によって安定して押し出すことができ、流出体34が回転することによる遠心力の作用と相まって、原料液20を常に均一に放射状に流出させることができるようになっている。
したがって流出した原料液20が連続した糸状とならずに液滴となって飛散し静電延伸現象が発生しない不具合や、生成されるナノファイバの繊維径が不均一となる品質不良を防止して、生産効率の向上を図ることが可能となっている。上述条件による試行例では、生成されたナノファイバ20aの繊維径のばらつき範囲は500〜700nm程度となっており、本願発明の効果が確認されている。
さらに、原料液20は常にカートリッジ33内にあって加圧用のエアのみがロータリジョイントを介して供給される構成となっていることから、加圧された原料液20を回転状態の流出体34にロータリジョイントを介して供給する方式において発生する不具合、すなわちロータリジョイントの発熱に起因する原料液20の熱変性による品質劣化が生じない。
また本実施の形態においては、原料液20はカートリッジ33内に密封状態のまま供給され、流出孔34cから流出するまで大気に暴露されることがないため、安定した品質の原料液20を空間中に流出し続けることができ、品質の高いナノファイバ20aを安定した状態で長期間製造し続けることができる。また、流出孔34cにおいて原料液20中の樹脂が固化するのを防止することができ、流出孔34cの目詰まりを除去するメンテナンス作業の回数を減少させることが可能となる。
なお、本願発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて実現される別の実施の形態を本願発明の実施の形態としてもよい。また、上記実施の形態に対して本願発明の主旨、すなわち、特許請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本願発明に含まれる。
例えば、上記実施の形態では、回転手段により流出体を回転させ遠心力により原料液の流出を促進していたが、回転手段を備えず、加圧手段のみの圧力で原料液を流出させるものでもよい。
本明のナノファイバ製造装置およびナノファイバ製造方法は、均一な繊維径のナノファイバを安定して効率よく製造することができるという特徴を有し、サブミクロンスケールの直径を有するナノファイバの製造やナノファイバを用いた紡糸、不織布の製造に利用可能である。
1 ナノファイバ製造装置
2 流出装置
3 送風装置
4 案内体
5 収集装置
6 被堆積部材
7 誘引部
8 回収装置
10,10A,10B 原料液流出ユニット
11 液流出機構
13 エア供給源
14 エア供給継手
15 エア配管
16 円環電極
17 帯電電源
20 原料液
20a ナノファイバ
21 電界誘引装置
22 誘引電極
23 誘引電源
24 集中部
25 気体誘引装置
30 送風機構
31 加熱手段
32 支持体
33 カートリッジ
33a 筒状容器
34 流出体
34a 内部空間
34c 流出孔
37 Oリング
38 加圧部材
39 従動プーリ
40 伝導ベルト
41 モータ
43 ロータリジョイント
50 第1の結合体
51 第2の結合体

Claims (9)

  1. 原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、
    前記原料液が供給される内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられる流出体と、
    前記流出体と着脱可能に接続され、内方に蓄積する前記原料液を前記流出体に供給する原料液供給体と、
    前記原料液供給体と前記流出体との接続状態を維持して前記原料液供給体と前記流出体とを支持する支持体と、
    前記原料液供給体と前記流出体と接続させた状態において、前記原料液供給体の内方を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給させる加圧手段と、
    前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段と
    を備えるナノファイバ製造装置。
  2. 前記支持体はさらに、前記原料液供給体と前記流出体との接続状態を維持し、かつ、前記原料液供給体と前記流出体とを回転可能に支持し、
    当該ナノファイバ製造装置はさらに、
    前記流出体を前記原料液供給体とともに回転させる回転手段
    を備える請求項1に記載のナノファイバ製造装置。
  3. 前記加圧手段は、前記原料液供給体の内方に流体を導入することで前記原料液供給体の内方を加圧する
    請求項1または請求項2に記載のナノファイバ製造装置。
  4. 前記流体は、気体であり、
    前記原料液供給体は、原料液と、導入した前記気体とを隔絶する隔壁を備える
    請求項3に記載のナノファイバ製造装置。
  5. 前記流体は、原料液である
    請求項3に記載のナノファイバ製造装置。
  6. 前記帯電手段は、
    前記流出体を外周方向から環状に覆う環状電極と、
    前記環状電極と前記流出体との間に所定の電界を印加する電圧発生手段と
    を備え、
    さらに、
    前記流出体から流出した原料液の方向を偏向し、原料液を流動させる偏向流動手段
    を備える請求項1に記載のナノファイバ製造装置。
  7. 前記原料液供給体、前記流出体、および前記支持体を一体に構成する原料液流出ユニットを複数台と、
    ナノファイバを製造するための作業位置に位置する一の原料液流出ユニットを他の原料液流出ユニットに交換するユニット交換手段と
    を備える請求項1に記載のナノファイバ製造装置。
  8. 原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置に適用されるナノファイバ製造方法であって、
    前記製造装置は、
    前記原料液が供給される内部空間を有しこの内部空間から前記原料液を放射状に流出させる流出孔が複数設けられる流出体と、
    前記流出体と着脱可能に接続され、内方に蓄積する前記原料液を前記流出体に供給する原料液供給体と、
    前記原料液供給体と前記流出体との接続状態を維持して前記原料液供給体と前記流出体とを支持する支持体と、
    前記原料液供給体と前記流出体と接続させた状態において、前記原料液供給体の内方を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給させる加圧手段と、
    前記流出体を介して前記原料液に電荷を付与して帯電させる帯電手段と
    を備え、
    前記原料液供給体と前記流出体とを結合させる結合体形成ステップと、
    結合された前記原料液供給体と前記流出体とを嵌脱自在に保持する支持体保持ステップと、
    前記原料液供給体の内方を加圧することにより前記原料液供給体から前記流出体の内部空間へ原料液を供給する加圧供給ステップと、
    前記加圧供給ステップにより供給された原料液を帯電手段によって帯電させながら前記流出孔から流出させる流出ステップと
    を含むナノファイバ製造方法。
  9. 前記流出ステップではさらに、前記流出体を前記原料液供給体とともに回転手段によって回転させることにより、遠心力によって原料液の流出を促進する
    請求項8に記載のナノファイバ製造方法。
JP2011519584A 2009-06-25 2010-06-21 ナノファイバ製造装置およびナノファイバ製造方法 Expired - Fee Related JP5385981B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519584A JP5385981B2 (ja) 2009-06-25 2010-06-21 ナノファイバ製造装置およびナノファイバ製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009150618 2009-06-25
JP2009150618 2009-06-25
PCT/JP2010/004116 WO2010150507A1 (ja) 2009-06-25 2010-06-21 ナノファイバ製造装置およびナノファイバ製造方法
JP2011519584A JP5385981B2 (ja) 2009-06-25 2010-06-21 ナノファイバ製造装置およびナノファイバ製造方法

Publications (2)

Publication Number Publication Date
JPWO2010150507A1 true JPWO2010150507A1 (ja) 2012-12-06
JP5385981B2 JP5385981B2 (ja) 2014-01-08

Family

ID=43386293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519584A Expired - Fee Related JP5385981B2 (ja) 2009-06-25 2010-06-21 ナノファイバ製造装置およびナノファイバ製造方法

Country Status (4)

Country Link
US (1) US20120098150A1 (ja)
JP (1) JP5385981B2 (ja)
CN (1) CN102459720A (ja)
WO (1) WO2010150507A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201305463D0 (en) * 2013-03-25 2013-05-08 Edirisinghe Mohan J Combining pressure, rotation and an electric field to produce polymetric matter
CN103757722B (zh) * 2014-01-16 2017-01-04 华南理工大学 超离心-旋流高粘度纺丝制备纳米纤维的装置及方法
JP7349319B2 (ja) 2019-10-21 2023-09-22 花王株式会社 ナノファイバシートの製造装置
CN114242339B (zh) * 2021-12-24 2023-09-22 西南科技大学 一种太阳能电池用正面银浆的纳米银线制备装置及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695992B2 (en) * 2002-01-22 2004-02-24 The University Of Akron Process and apparatus for the production of nanofibers
US7390452B2 (en) * 2002-03-08 2008-06-24 Board Of Regents, The University Of Texas System Electrospinning of polymer and mesoporous composite fibers
US20030195611A1 (en) * 2002-04-11 2003-10-16 Greenhalgh Skott E. Covering and method using electrospinning of very small fibers
US7134857B2 (en) * 2004-04-08 2006-11-14 Research Triangle Institute Electrospinning of fibers using a rotatable spray head
TWI245085B (en) * 2004-07-29 2005-12-11 Taiwan Textile Res Inst Apparatus and method for manufacturing polymeric fibrils
JP4877140B2 (ja) * 2007-08-08 2012-02-15 パナソニック株式会社 ナノファイバーの製造方法及び装置
JP4862666B2 (ja) * 2007-01-24 2012-01-25 パナソニック株式会社 ナノファイバーの製造方法及び装置
JP4866828B2 (ja) * 2007-11-06 2012-02-01 パナソニック株式会社 ナノファイバ製造装置
US20100018641A1 (en) * 2007-06-08 2010-01-28 Kimberly-Clark Worldwide, Inc. Methods of Applying Skin Wellness Agents to a Nonwoven Web Through Electrospinning Nanofibers
JP2009013532A (ja) * 2007-07-05 2009-01-22 Japan Vilene Co Ltd 液体供給装置

Also Published As

Publication number Publication date
US20120098150A1 (en) 2012-04-26
CN102459720A (zh) 2012-05-16
WO2010150507A1 (ja) 2010-12-29
JP5385981B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2010038362A1 (ja) ナノファイバ製造方法、及び製造装置
WO2009122669A1 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5323101B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP2009270221A (ja) ナノファイバ製造装置
JP5385981B2 (ja) ナノファイバ製造装置およびナノファイバ製造方法
JP5226558B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5215136B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5216551B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5339362B2 (ja) ナノファイバ製造装置および製造方法
JP5216516B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5225885B2 (ja) ナノファイバ製造装置、および製造方法
JP5322112B2 (ja) ナノファイバ製造装置および製造方法
JP5215207B2 (ja) ナノファイバ製造装置
JP5215106B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4965525B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4965533B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4939467B2 (ja) ナノファイバ製造方法、ナノファイバ製造装置
JP5215213B2 (ja) ナノファイバ製造装置
JP4954946B2 (ja) ナノファイバ製造装置
JP5235733B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4965521B2 (ja) ナノファイバ製造装置
JP4880638B2 (ja) ナノファイバ製造装置
JP5227198B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP2014148763A (ja) ナノファイバ製造装置、および、ナノファイバ製造方法
JP2010203014A (ja) ナノファイバ製造装置、ナノファイバ製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees