JPWO2010150313A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
JPWO2010150313A1
JPWO2010150313A1 JP2011519313A JP2011519313A JPWO2010150313A1 JP WO2010150313 A1 JPWO2010150313 A1 JP WO2010150313A1 JP 2011519313 A JP2011519313 A JP 2011519313A JP 2011519313 A JP2011519313 A JP 2011519313A JP WO2010150313 A1 JPWO2010150313 A1 JP WO2010150313A1
Authority
JP
Japan
Prior art keywords
signal
perturbation
unit
information
user terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011519313A
Other languages
English (en)
Inventor
浩樹 森
浩樹 森
亜秀 青木
亜秀 青木
悠司 東坂
悠司 東坂
田邉 康彦
康彦 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2010150313A1 publication Critical patent/JPWO2010150313A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Abstract

通信装置は、宛先端末へ送信する情報を有する情報信号に、基本信号の整数倍の摂動信号を付加し、空間多重方式によって複数の宛先端末へ無線信号を送信する通信装置であって、第1基本信号の大きさを、第1情報信号の変調方式に応じて定まる基本格子の一辺のN倍(1以上の実数)と決定する決定部と、第1情報信号に、第1基本信号の整数倍の第1摂動信号を付加する付加部と、第1摂動信号が付加された第1情報信号に対して、ウェイトを乗算する乗算部とを備える。

Description

本発明は、無線通信に関する。
基地局が同一時刻及び同一周波数帯で複数の端末(以下、ユーザ端末:無線信号を受信可能な通信装置)に対して通信を行う(空間的に多重する)空間分割多元アクセス(Spatial Division Multiple Access:SDMA)方式が知られている。SDMA方式では、宛先のユーザ端末(受信側)が、基地局(送信側)から、宛先のユーザ端末(自身)へ送信された信号と、他のユーザ端末へ送信された信号とを同時に受信すること(以下、ユーザ端末間の干渉の発生)を防止することができる。
ZF(Zero−Forcing)方式では、基地局は、チャネル行列の擬似逆行列をウェイトとして送信信号に乗算することにより、ユーザ端末間の干渉を防止する。チャネル行列とは、基地局が有する複数の送信アンテナの各々と複数のユーザ端末の受信アンテナの各々との間の伝搬路状態を示すチャネル係数を要素とする行列である。チャネル行列の空間相関が高い場合に、基地局がチャネル行列の擬似逆行列を用いてウェイトの乗算を行うと、送信信号の信号レベル(送信電力)が増大してしまう。そのため、基地局は、送信電力が定格送信電力内に収まるように送信信号に対して正規化係数を更に乗算する。ZF方式では、正規化係数の乗算によって送信信号の電力ロスが生じるため、正規化係数(1/√γ)の逆数が大きいほど、ユーザ端末で雑音が強調され受信性能(例えば、ビット誤り率や、フレーム誤り率、スループットなど)が劣化する。
VP(Vector Perturbation)方式(例えば、非特許文献1〜4)では、基地局は、正規化係数の逆数が最小となるように、送信信号に摂動ベクトル(Perturbation Vector)を付加する。そして、基地局は、摂動ベクトルを付加した送信信号に対して、ZF方式と同様に、ウェイト及び正規化係数を乗算する。ユーザ端末は、基地局で付加された摂動ベクトルと同一の摂動ベクトルを受信信号から除去して、受信信号を復調する。このようにすることで、VP方式では、周波数帯域の通信容量(チャネル容量)を向上することができる。
なお、VP方式であっても、ZF方式と同様の理由で受信性能が劣化するが、ZF方式に比べて正規化係数の逆数を小さくできるため、受信性能の劣化を抑えることができる。
B. Hochwald、 C. Peel、 A. Swindlehurst、 「A Vector−Perturbation Technique for Near−Capacity Multiantenna Multiuser Communication − PartII: Perturbation」 IEEE Trans. on Communications、 Vol. 53、 no. 3、 pp. 537−544、 Mar. 2005. C. Windpassinger、 R. Fischer、 and J. Huber、「Lattiece−Reduction Aided Broadcast Precoding」 IEEE Trans. on Communications、 Vol. 52、 no. 12、 pp. 2057−2060、 Dec. 2004. Saif K. Mohammed、 A. Chockalingam、 and B. Sunder Rajan、 「A Low−Complexity Precoder for Large Multiuser MISO Systems」 Proc. IEEE VTC2008−Spring、 pp. 797−801、 May 2008. Wee Seng Chua、 Chau Yuen and Francois Chin、 「A Continuous Vector−Perturbation for Multi−Antenna Multi−User Communication」 Proc. IEEE VTC2007−Spring、 pp. 1806−1810、 April 2007.
VP方式では、ユーザ端末が、基地局で付加された摂動ベクトルとは異なる摂動ベクトルを、受信信号から除去することで、伝送特性が劣化する問題(モジュロロス問題)がある。この発明の課題の1つは、モジュロロス問題による伝送特性の劣化を防止するとともに、チャネル容量を向上できる通信装置を提供することである。
上記鑑みて、本発明の一実施の形態に係る通信装置は、宛先端末へ送信する情報を有する情報信号に、基本信号の整数倍の摂動信号を付加し、空間多重方式によって複数の宛先端末へ無線信号を送信する通信装置であって、第1基本信号の大きさを、第1情報信号の変調方式に応じて定まる基本格子の一辺のN倍(1以上の実数)と決定する決定部と、前記第1情報信号に、前記第1基本信号の整数倍の第1摂動信号を付加する付加部と、前記第1摂動信号が付加された前記第1情報信号に対して、ウェイトを乗算する乗算部とを備えることを特徴とする。
本発明によれば、モジュロロス問題による伝送特性の劣化を防止するとともに、チャネル容量を向上できる。
通信装置を示す図。 通信装置を示す図。 モジュロ演算を示す図。 モジュロ演算を示す図。 Look−Upテーブルを示す図。 Look−Upテーブルを示す図。 パケット誤り率特性を示す図。 パケット誤り率特性を示す図。
以下、本発明の実施形態について説明する。
(第1の実施形態)
<送信側の通信装置>
図1は、第1の実施形態に係る通信装置(送信側)APを示す図である。通信装置APは、変調部101と、摂動ベクトル付加部102と、ウェイト乗算部103と、正規化係数乗算部104と、Nt(Ntは1以上の整数:Ntは通信装置が備えるアンテナの数を示す)個の逆高速フーリエ変換部(inverse fast Fourier transform;IFFT)部105−1、・・・、105−Ntと、GI(guard interval)付加部106−1、・・・、106−Ntと、Nt個の無線部107−1、・・・、107−Ntと、Nt個のアンテナ108−1、・・・、108−Ntとを有する。通信装置APは、例えば、基地局である。通信装置APは、アンテナ108−1、・・・、108−Ntを用いて同一時間帯及び同一周波数帯に空間多重方式(SDMA方式)で複数の通信装置STA(受信側:例えばユーザ端末等)へ無線信号を送信する。
変調部101は、図示しない符号化部によって符号化されたデータ系列11に対して変調処理を行う。変調部は、データ系列11から、変調シンボルであるデータ信号12を生成する。変調部101は、データ信号12を摂動ベクトル付加部103へ出力する。変調部101の変調方式は、通信相手であるユーザ端末が復調可能な変調方式であればよい。例えば、変調方式は、BPSK(binary phase shift keying)やQPSK(quadrature phase shift keying)等のPSK(phase shift keying)方式であっても良く、16QAM(quadrature amplitude modulation)や64QAM、256QAM等のQAM方式であっても良い。
摂動ベクトル付加部102は、変調部101からのデータ信号12と、ウェイト計算部109からのウェイト行列15とに、摂動間隔決定部110からの摂動間隔情報17とに基づいて、データ信号12に付加する摂動ベクトルを決定する。摂動ベクトルは、摂動間隔によって定められる基本信号の整数倍である。摂動ベクトル付加部102は、データ信号12に付加する摂動ベクトルを基本信号のN倍とするかを決定する方法はどのようなものであっても良く、正規化係数の逆数が最小となるように決定しても良く、探索範囲に制約をかけた上で正規化係数の逆数を最小となるように決定しても良い。摂動ベクトル付加部102は、摂動ベクトルをデータ信号12に付加する。摂動ベクトル付加部102は、摂動ベクトル付加済みのデータ信号13をウェイト乗算部103へ出力する。
ウェイト乗算部103は、ウェイト計算部109からのウェイト行列15を、摂動ベクトル付加部103からのデータ信号15に乗算する。ウェイト乗算部103は、ウェイト乗算済みのデータ信号14を正規化係数乗算部104へ出力する。
正規化係数乗算部104は、ウェイト乗算部103からのデータ信号14に対して、総送信電力が規定値内となるような正規化係数を乗算する。正規化係数乗算部104は、正規化係数乗算済みのデータ信号をIFFT部105−1、・・・、105−Ntへ夫々出力する。
IFFT部105−1、・・・、105−Ntは、正規化係数乗算部104からのデータ信号に対してIFFT処理を行い、周波数領域の信号から時間領域の信号へと変換する。IFFT部105−1、・・・、105−Ntは、それぞれ、変換後の信号をGI付加部106−1、・・・、106−Ntへ出力する。
GI付加部106−1、・・・、106−Ntは、IFFT部105−1、・・・、105−Ntの各々からの信号にGIを付加する。GI付加部106−1、・・・、106−Ntは、それぞれ、GI付加後の信号を無線部107−1、・・・、107−Ntへ出力する。GI付加部106−1、・・・、106−NtによるGIの付加手法は、どのようなものであっても良く、直交周波数分割多重(OFDM;Orthogonal Frequency Division Multiplexing)方式や直交周波数分割多元接続(OFDMA;Orthogonal Frequency Division Multiple Access)方式で利用可能なものであればよい。
ここで、IFFT部105−1、・・・、105−Nt及びGI付加部106−1、・・・、106−Ntは必須の構成要素ではない。通信装置APがOFDMやOFDMA等のマルチキャリア伝送を行う場合に、IFFT部105−1、・・・、105−Nt及びGI付加部106−1、・・・、106−Ntは必要である。通信装置APがシングルキャリア伝送を行う場合にはこれらは不要である。通信装置APがシングルキャリア伝送を行う場合には、正規化係数乗算部104からのデータ信号を無線部107−1、・・・、107−Ntに直接入力すればよい。通信装置APがマルチキャリア伝送及びシングルキャリア伝送のいずれを行うにせよ、無線部107−1、・・・、107−Ntの前段に帯域制限のためのデジタルフィルタを設けてよい。
無線部107−1、・・・、107−Ntは、GI付加後の信号に対して送信処理を行う。無線部107−1、・・・、107−Ntは、GI付加後の信号に対して、デジタル−アナログ変換器(digital−to−analog converter;DAC)によるデジタル−アナログ変換(DA変換)や、周波数変換器によるアップコンバージョン、電力増幅器による電力増幅等を行う。無線部107−1、・・・、107−Ntは、それぞれ、送信処理後の無線信号をアンテナ108−1、・・・、108−Ntのへ出力する。
アンテナ108−1、・・・、108−Ntは、それぞれ、無線部107−1、・・・、107−Ntからの無線信号を空間に放出する。アンテナ108−1、・・・、108−Ntは、特定のアンテナに限定されるものではなく、所望の周波数帯で無線信号を送信できるものであればよい。
ウェイト計算部109は、受信側の通信装置STAからのフィードバック情報を用いてウェイト行列15を計算する。ウェイト計算部109は、ウェイト行列15を摂動ベクトル付加部102とウェイト乗算部103とへ出力する。ウェイト計算部109によるウェイト行列15の計算手法は、上記フィードバック情報に応じて適宜選択される。例えば、フィードバック情報が通信装置APと通信装置STAとの間のチャネル応答である場合、ウェイト計算部109は、ZF規範やMMSE(Minimum Mean Square Error)規範を用いてウェイト行列15を計算する。フィードバック情報が通信装置APとユーザ端末との間で予め共有されているcodebookの中から選択されたインデックスである場合、ウェイト計算部110は、インデックスからcodebookを参照して、ウェイト行列15を計算できる。codebookは、直交関係にあるベクトル(例えば、ウェイトベクトル、伝搬路応答ベクトルなど)によって構成されていてもよいし、非直交関係にあるベクトルによって構成されていてもよい。
摂動間隔決定部110は、摂動間隔決定用信号16に基づいて摂動間隔情報17を決定する。摂動間隔決定用信号16、及び摂動間隔決定部110が摂動間隔情報17を決定する方法の詳細は後述する。摂動間隔決定部109は、摂動間隔情報17を摂動ベクトル付加部102に入力する。
<受信側の通信装置>
図2は、第1の実施形態に係る通信装置(受信側)STAを示す図である。通信装置STAは、アンテナ201と、無線部202と、GI除去部203と、高速フーリエ変換(FFT;fast Fourier transform)部204と、チャネル等化部205と、モジュロ演算部206と、復調部207と、摂動間隔決定部208とを備える。通信装置STAは、例えば基地局と通信するユーザ端末である。
アンテナ201は、通信装置APから送信された無線信号を受信する。受信した無線信号(受信信号)は、アンテナ201を介して無線部202に入力される。アンテナ201は、特定のアンテナに限定されるものでなく、所望の周波数帯で無線信号を受信できるものであればよい。
無線部202は、アンテナ201からの受信信号に対して受信処理を行う。無線部202は、受信信号に対して、低雑音増幅器(LNA:low noise amplifier)による信号レベルの増幅や、周波数変換器によるダウンコンバージョン、アナログ−デジタル変換器(analog−to−digital converter:ADC)によるアナログ−デジタル変換(AD変換)、フィルタによる帯域制限等を行う。無線部202は、これらの信号処理を行った後のベースバンド信号をGI除去部203へ出力する。
GI除去部203は、無線部202からのベースバンド信号からGIを除去する。GI除去部203は、GI除去後の信号をフーリエ変換部204へ出力する。ここで、GI除去部203によるGIの除去手法は、どのようなものであっても良く、OFDM方式またはOFDMA方式において利用可能なものであっても良い。
フーリエ変換部204は、GI除去後のベースバンド信号に対してFFTを行い、時間領域の信号から周波数領域の信号へと変換する。フーリエ変換部204は、GI除去後のベースバンド信号をサブキャリア毎に分離する。フーリエ変換部204は、FFT後の信号のうち、データ信号21をチャネル等化部205へ出力し、パイロット信号22を図示しないチャネル推定部へ出力する。
ここで、GI除去部203及びフーリエ変換部204は必須の構成要素ではない。通信装置APがOFDMやOFDMA等のマルチキャリア伝送を行う場合には、GI除去部203及びフーリエ変換部204は必要である。通信装置APがシングルキャリア伝送を行う場合には、これらは不要である。通信装置APがシングルキャリア伝送を行う場合には、無線部202からのベースバンド信号をチャネル等化部205に直接入力すればよい。通信装置APがマルチキャリア伝送及びシングルキャリア伝送のいずれであっても、無線部202の後段に帯域制限のためのデジタルフィルタを設けてもよい。
チャネル等化部205は、入力されたデータ信号に対して、パイロット信号により推定される実効チャネル、もしくは通信装置APからヘッダ信号などのデータ信号以外の信号を用いて通知される実効チャネルを用いて、チャネル等化を行う。チャネル等化部205は、チャネル等化済みのデータ信号をモジュロ演算部206へ出力する。
モジュロ演算部206は、チャネル等化部205から出力されたデータ信号に対して、摂動間隔決定部208からの摂動間隔情報22を用いて、モジュロ演算を行い、データ信号に付加されている摂動ベクトル(基本信号の整数倍)を除去する。モジュロ演算部206は、摂動間隔情報22から摂動ベクトルの基本信号を取得する。モジュロ演算部206は、摂動ベクトル付加部102によって摂動ベクトルが付加される前のデータ信号12を復元する。モジュロ演算部206は、モジュロ演算済みのデータ信号を復調部207へ出力する。
復調部207は、モジュロ演算部206からのデータ信号に対して、復調処理を行い、データ系列を生成する。復調処理は、通信装置APが用いる変調処理に対応する。復調部207によって出力されるデータ系列は、図示しない復号化部によって通信装置APの符号化処理に対応する復号化処理がなされる。
摂動間隔決定部208は、摂動間隔決定用信号21に基づいて摂動間隔情報22を決定する。摂動間隔決定用信号21、及び摂動間隔決定部208が摂動間隔情報22を決定する方法の詳細は後述する。摂動間隔決定部208は、摂動間隔情報22をモジュロ演算部206に入力する。
<ZF方式>
以下では、通信装置AP、STAがその一部の技術を使用するZF方式について説明する。なお、以降の説明では、基地局とユーザ端末1、2との間でのSDMA方式による無線通信が行われることを仮定する。
基地局は2つの送信アンテナTx1及びTx2を有する。ユーザ端末1は1つの受信アンテナRx1を有する。ユーザ端末2は1つの受信アンテナRx2を有する。基地局は、ユーザ端末1及びユーザ端末2に対して、次の数式(1)に示すデータ信号sを送信する。
Figure 2010150313
数1において、sはユーザ端末1宛てのデータ信号、sはユーザ端末2宛てのデータ信号を示す。受信アンテナRx1及び受信アンテナRx2がデータ信号sを受信する際には、数2に示す雑音信号nがデータ信号sに重畳(加算)される。
Figure 2010150313
数式2において、nは受信アンテナRx1によって受信される雑音信号、nは受信アンテナRx2によって受信される雑音信号を示す。ユーザ端末1の受信アンテナRx1及びユーザ端末2の受信アンテナRx2の受信信号yは、数3の通りである。
Figure 2010150313
数3において、Hは基地局とユーザ端末1及びユーザ端末2との間のチャネル行列である。h11は送信アンテナTx1と受信アンテナRx1との間のチャネル応答、h12は送信アンテナTx2と受信アンテナRx1との間のチャネル応答、h21は送信アンテナTx1と受信アンテナRx2との間のチャネル応答、h22は送信アンテナTx2と受信アンテナRx2との間のチャネル応答を示す。数3に示すとおり、ユーザ端末1の受信アンテナRx1の受信信号にはユーザ端末2宛てのデータ信号sによる干渉が生じる。ユーザ端末2の受信アンテナRx2の受信信号にはユーザ端末1宛てのデータ信号sによる干渉が生じる。基地局は、干渉の発生を防止するために、数4に示すウェイト行列Wを信号sに予め乗算する。
Figure 2010150313
数4において、Hはチャネル行列Hの一般化逆行列、Hはチャネル行列Hの複素共役転置行列を示す。チャネル行列Hの空間相関が大きいと、ウェイト行列を乗じることによって、基地局からの送信信号の送信電力が増大することが問題となる。ZF方式では、送信電力が定格の送信電力に収まるように、基地局が、ウェイト行列Wを乗算した後のデータ信号sに対して数5に示す正規化係数を更に乗算して送信信号xを生成する。
Figure 2010150313
数5におけるγは、例えば、数6によって計算される。
Figure 2010150313
数6に示すγによる正規化(数5)を行うことにより、送信信号xの総送信電力を“1”とする正規化が実現される。ユーザ端末1の受信アンテナRx1及びユーザ端末2の受信アンテナRx2は、基地局から送信された送信信号x(数6)を受信した場合、数7に示す受信信号yを得る。
Figure 2010150313
数7では、データ信号s(s1、s2)には実効チャネル(1/√γ)が乗算されているので、ユーザ端末1及びユーザ端末2は、パイロット信号を利用して推定した実効チャネル、あるいは、基地局からデータ信号以外の信号(例えばヘッダ信号)により通知された推定実効チャネルHeffを用いて、受信信号yのチャネル等化を行って、数8に示すチャネル等化後の受信信号y■を得る。
Figure 2010150313
数8に示すとおり、ユーザ端末1及びユーザ端末2は、互いに干渉することなくユーザ端末1宛てのユーザ信号s1及びユーザ端末2宛てのユーザ信号s2をそれぞれ受信することができる。しかし、ユーザ端末1及びユーザ端末2は、√γ倍(即ち、正規化係数の逆数倍)に強調された雑音成分n1及び√γ倍に強調された雑音成分n2をそれぞれ受信する。従って、ZF方式は、正規化係数(1/√γ)が小さいほど、雑音成分n1及び雑音成分n2が強調され、ユーザ端末1及びユーザ端末2の受信性能が劣化するという問題を有する。
<VP方式>
以下では、通信装置AP、STAがその一部の技術を使用するVP方式(例えば、非特許文献1)について説明する。VP方式では、数9に示すとおり、基地局が、ユーザ信号sに摂動ベクトルτlを付加して送信信号xを生成する点がZF方式と異なる。
Figure 2010150313
数9において、送信信号xの総送信電力を“1”とするため、γは数10を用いて算出される。
Figure 2010150313
VP方式では、基地局は、数11に示す規範に従って、数10に示すγが最小となるような摂動ベクトルτlを決定する。
Figure 2010150313
数11において、KはSDMAを用いて空間多重するユーザ数、CZKは実部及び虚部の成分が共に整数値となるK次元のベクトルを示す。摂動ベクトルlの決定には、非特許文献1記載のSphere Encoding方式、非特許文献2記載のLLLアルゴリズム等の多様な探索手法のいずれを利用してもよい。
数11において、τは摂動間隔(基本信号)を表す。τは、ユーザ信号sに施される変調方式から設定される。例えば、非特許文献1〜4には、数18によりτを設定する例が記載されている。
Figure 2010150313
|c|maxは変調方式毎に与えられるコンスタレーションの実軸または虚軸上の最大値、Δはコンスタレーションにおける信号点間距離を示す。QPSK(実軸と虚軸上の値(1,1)、(1,−1)、(−1,1)、(−1,−1))の信号点によるコンスタレーションを持つ)の場合は、|c|maxは“1”であり、Δは“2”であるので、τは“4”と定まる。16QAM(実軸上の値{−3、−1、1、3}と虚軸上の値{−3、−1、1、3}との交点で信号点を取るコンスタレーションを持つ)の場合は、|c|maxは“3”であり、Δは“2”であるので、τは“8”となる。
ユーザ端末1の受信アンテナRx1及びユーザ端末2の受信アンテナRx2は、基地局からの送信信号x(数9)を受信した場合、数12に示す受信信号yを得る。摂動ベクトルτlの成分をτl及びτlと分解する。
Figure 2010150313
ユーザ端末1及びユーザ端末2が、数12の受信信号yに対して理想的なチャネル等化を実行すると仮定すれば、チャネル等化によって、数13に示す受信信号y’を得る。
Figure 2010150313
数13において、雑音信号を無視すれば、ユーザ端末1はユーザ端末1宛てのデータ信号s1と、ユーザ信号s1に対して付加された摂動信号τlとの合成信号を受信する。同様に、ユーザ端末2は、ユーザ端末2宛てのデータ信号s2と、ユーザ信号s2に対して付加された摂動信号τlとの合成信号を受信する。
ユーザ端末1の受信信号はユーザ端末1宛てのデータ信号s1の信号点が摂動信号τlだけシフトされたものである。ユーザ端末2の受信信号はユーザ端末2宛てのデータ信号s2の信号点が摂動信号τlだけシフトされたものである。ユーザ端末1及びユーザ端末2は、受信信号y’から摂動信号τl及びτlを除去するために、数14に示すモジュロ演算を行う。
Figure 2010150313
数14に示すモジュロ演算を、数13に示す受信信号y’に適用すると数15に示す受信信号y”が得られる。
Figure 2010150313
数15に示すとおり、ユーザ端末1及びユーザ端末2は、数14に示すモジュロ演算によって受信信号y’から摂動信号τl及びτlが除去し、数8に示す受信信号y’と同様の受信信号y”を生成できる。数8に示す受信信号y’と、数15に示す受信信号y”との差異は、γの値の大きさである。前述したように、VP方式はγを最小化するように摂動ベクトルτlを探索しているので、数15におけるγは、数8におけるγよりも小さく、VP方式ではZF方式に比べて雑音強調を抑制できる。
以下、上述のVP方式の問題点を説明する。VP方式では、k番目のユーザ端末においてチャネル等化後の受信信号y’は、数13より、
Figure 2010150313
と求まる。数14に示すモジュロ演算とは、数16の第二項の成分lを推定し、数16に示す受信信号y’から推定結果l’とτの乗算値τl’を引き算することと等価である。数16に示す受信信号y’にモジュロ演算を施した後の受信信号y”は数17となる。
Figure 2010150313
数17よりl’=lの場合、即ち、基地局においてk番目のユーザ端末向けのデータ信号sに付加された摂動信号τlをk番目のユーザ端末が正確に推定できた場合、数17の第2項{τ(l’−l)}が“0”となり、摂動信号τlはy’から除去される。
しかし、雑音などによって、摂動信号τlをk番目のユーザ端末が正確に推定できない場合、l’≠lとなって、k番目のユーザ端末は、受信信号y’から摂動信号τlを除去できない。その結果、摂動信号が誤って除去された受信信号y”に対して復調処理を行うこととなり、送信シンボルの判定が正確に行えず、伝送特性の劣化が引き起こってしまう。このように、基地局で付加された摂動信号を適切に除去できず伝送特性が劣化する問題をモジュロロス問題と呼ぶ。
図3、図4は、QPSK信号のコンスタレーションとモジュロロス問題を示す図である。図中の丸、三角形、四角形、五角形は基地局からk番目のユーザ端末向けに送信する信号の候補を示す。実線で囲まれた領域(従来のQPSKコンスタレーションを囲んだ領域)を基底格子と呼ぶ。破線で囲まれた格子を拡張格子と呼ぶ。基底格子と拡張格子のサイズは同一である。摂動間隔τは、基本信号の大きさに等しく、基底格子または拡張格子のサイズ(基底格子または拡張格子の一辺の大きさ)あるいは、互いに隣接する格子中心の距離である。図3、4では、基地局においてk番目のユーザ端末向けデータ信号s(基底格子内の三角形)に対して摂動信号τl=τ(1−j)が付加されることを仮定する。
図3の例では、基地局からk番目のユーザ端末向けに送信した信号s+τ(1−j)が、k番目のユーザ端末においてチャネル等化後に黒塗り三角形で受信される。モジュロ演算とは、摂動間隔τを基本単位として基底格子内に信号点を戻すことである。従って、図3の例の場合、k番目のユーザ端末は、モジュロ演算(黒塗り三角形で示す受信信号y’を実軸においてマイナス方向に“1τ”、虚軸においてプラス方向に“1τ”移動させること)で、基底格子内の白抜き三角形で示す受信信号y”を得る。k番目のユーザ端末の復調処理では、受信信号y”と基底格子内の信号点候補との比較から最も距離の小さい三角形を送信信号と判定するため、基地局がk番目のユーザ端末向けに送信したデータ信号sを正確に推定することができる。
図4の例では、基地局からk番目のユーザ端末向けに送信した信号s+τ(1−j)が、k番目のユーザ端末においてチャネル等化後に黒塗り三角形で受信される。k番目のユーザ端末の受信信号y’は、s+τ(1−j)が含まれる格子とは別の格子に含まれる。図4の例の場合、k番目のユーザ端末は、モジュロ演算(黒塗り三角形で示す受信信号y’を虚軸においてプラス方向に“1τ”移動させること)で、基底格子内の白抜き三角形で示す受信信号y”を得る。k番目のユーザ端末の復調処理では、受信信号y”と基底格子内の信号候補との比較から最も距離の小さい四角形を送信信号と判定するため、基地局がk番目のユーザ端末向けに送信したデータ信号sを正確に推定することができない。
以上のように、k番目のユーザ端末が、雑音などの影響によって、基地局からの送信する信号s+τlを、その信号が含まれる格子とは異なる格子に含まれる信号として受信した場合、摂動信号τlの適切な除去が行えず、伝送特性が劣化する。
このようなモジュロロス問題への対策として、数18に示した方法で摂動間隔τを設定するのではなく、さらに大きな値の摂動間隔τを設定する方法がある。基底格子、拡張格子のサイズを大きくすることで、基地局からの送信する信号s+τlを、その信号が含まれる格子とは異なる格子に含まれる信号として受信する確率を低減することができる。
一方で、摂動間隔τを数18より大きくする程、適切な摂動信号の付加がされにくくなり、正規化係数の逆数(γの値)を小さくしにくくなる。例えば、VP方式において、摂動間隔τが極端に大きい場合は、数11のlはl=0となり、ZF方式と同等の特性しか得られない。このように、摂動間隔τの大きさに応じてVP方式の性能は左右される。
<摂動間隔の決定方法>
摂動ベクトル付加部102は、変調部101からのデータ信号12(s)と、摂動間隔決定部110からの摂動間隔情報17(τ)と、ウェイト計算部109からのウェイト行列15(W)とを用いて、数11に従い、摂動ベクトルτlを決定する。摂動ベクトル付加部102は、変調部101からのデータ信号12(s)に摂動ベクトルτlを付加し、信号s+τlをウェイト乗算部103へ出力する。
なお、ウェイト行列15(W)は、式(4)で示したZF規範で求めてもよいし、式(19)に示すMMSE規範で求めてもよい。
Figure 2010150313
Iは単位行列を示す。aはオペレータにより任意に設定可能なパラメータを示す。
摂動間隔決定部110は、摂動間隔決定用信号16からLook−Upテーブルを参照して摂動間隔情報17(τ=β×τ:βは1以上の実数)を決定する。
摂動間隔決定用信号16は、Look−Upテーブルから摂動間隔を決定するための情報であれば良く、データ信号12(s)が送信されるときのMCS(Modulation and Coding Scheme)や、データ信号12(s)を送信する際に使用するアンテナの数、データ信号12(s)を通信装置STAが受信する際に使用するアンテナの数等の情報のうち、少なくとも1つ以上を含む。
図5、図6は、Look−Upテーブルの一例を示す図である。図5は、データ信号12(s)が送信されるときのMCSに応じた摂動間隔τを示す。図6は、データ信号12(s)が送信されるときのMCSと、データ信号12(s)を送信する際に使用するアンテナの数とに応じた摂動間隔τを示す。Look−Upテーブルは、摂動間隔決定部110に内蔵される図示しない記憶部に記憶される。Look−Upテーブルは、事前評価により得られる結果を用いて作成される。Look−Upテーブルを作成する際の事前評価では、式(18)で定義した摂動間隔を基本摂動間隔τ(=2(|C|max+Δ/2))と置き、摂動間隔τを次式(20)のように定義する。
Figure 2010150313
ここでβは1以上の正の実数であり、τがτから何倍されているのかを示す倍率値となる。
摂動間隔情報17は、基本信号を決定するための情報であれば良く、τそのものを示す情報であってもよく、βを示す情報であっても良い。
図7、図8は、パケット誤り率特性を示す図である。図7、図8は、倍率値βが1.0、1.1、1.2、1.4、2.0、8.0の場合の特性と、基地局で付加する摂動信号をユーザ端末が完全に既知でモジュロロス問題が発生しない場合(以後、理想特性と呼ぶ)の特性(実線、丸プロット)と、ZF方式を用いた場合の特性(実線、三角プロット)を示す。ここで、VP方式において、受信側の通信端末STA:4台、送信側の通信装置APが使用するアンテナ数:4つ、受信側の通信装置STAが使用するアンテナ数:1つを仮定した。
図7の変調方式QPSK、符号化率3/4を用いた場合は、β=1.0の特性は、ZF方式の特性よりPER=10−2レベルで約5dB程度優れているものの、理想特性と比べると約5dB程度劣っている。β=2.0の場合は、理想特性との性能差が約2dB程度となっており、理想特性に最も近い。よって、図7の状況では、摂動間隔決定部110は、Look−Upテーブルを参照し、摂動間隔を、τ=β(=2.0)×τと決定する。
図8の変調方式64QAM、符号化率3/4を用いた場合は、β=1.0の特性は、ZF方式の特性とほとんど差がないほど劣化している。しかし、β=1.4の場合は、理想特性との性能差が約1dB程度となっており、最も理想特性に近い。よって、図8の状況では、摂動間隔決定部110は、Look−Upテーブルを参照し、摂動間隔を、τ=β(=1.4)×τと決定する。
摂動間隔τの値を大きくすれば、基本格子、各拡張格子間の距離が広がり、雑音などの影響によって摂動ベクトルが正確に除去できなくなる問題(モジュロロス問題)の発生を防止できる。しかし、VP方式における摂動ベクトルの付加が適切に行われなくなり、その結果、正規化係数の値を十分に小さくできなくなってしまう。
前述の事実、及び図7、図8に示される特性等を鑑み、摂動間隔決定部110が摂動間隔(基本信号の大きさ)を適切に設定することで、VP方式におけるモジュロロス問題による伝送特性の劣化を防止するとともに、理想特定に近い性能を実現できる。VP方式によるチャネル容量の向上というメリットを損なうことなく、受信側の通信装置STAが、送信側の通信装置APによって付加された摂動信号を正確に除去する可能性を向上できる。
Look−Upテーブルは、通信装置及び使用される環境ごとに、事前調査(シミュレーション)を行って決定されることとした。しかし、例えば、MCSの番号付けにおいて、番号を大きくするほど多値数の大きい変調方式や高い符号化率となるように設定しておくことで、MCSの番号を大きくするほど、倍率値βを小さく設定することができる。伝搬路特性が良好な環境(SNRが良好な環境)でMCSの番号が大きく設定されることを踏まえ、倍率値βの値を大きくせずとも、モジュロロス問題が発生しにくいと想定されるからである。
受信側の通信装置STAは、送信側の通信装置APの摂動ベクトル付加部102で用いられた摂動間隔τを知らなければ、モジュロ演算部206での摂動ベクトルの除去が行えない。そこで、通信装置STAの摂動間隔決定部208は、通信装置APの摂動間隔決定部110と同様の方法で、摂動間隔を決定する。例えば、通信装置STAの摂動間隔決定部208は、通信装置AP側と同一のLook−Upテーブル、摂動間隔決定用信号21、を用いて、摂動間隔情報22を生成しても良い。
通信装置APと通信装置STAとで送受信されるフレームが、データ信号と、そのデータ信号を復調及び復号するための制御信号とを有する場合、受信側の通信装置STAは、制御信号から、通信装置APでデータ信号に適用したMCS(変調方式および符号化率)や通信装置APが送信に使用したアンテナ数などの情報を取得しても良い。
制御信号が、送信側の通信装置APがデータ信号に摂動信号を付加する場合に用いた摂動間隔(基本信号の大きさ)(例えば、摂動間隔情報22)を含むこととしても良い。この場合、通信装置STAは摂動間隔決定部208を備えなくてもよく、モジュロ演算部206は、制御信号に記載された摂動間隔を用いて、摂動信号を除去しても良い。
通信装置STAから通信装置APへフレームを送信する上り回線において、通信装置STAが決定した摂動間隔(例えば、摂動間隔情報22)を、通信装置APへ通知しても良い。このようにすることで、通信装置STAが通信装置APのアンテナ数を把握しているが、通信装置APが通信装置STAのアンテナ数を把握していない場合に、通信装置STAのアンテナ数を考慮したうえで、適切な摂動間隔を決定することができる。なお、通信装置APが通信装置STAのアンテナ数を把握していない場合、通信装置APは、通信装置STAのアンテナ数が“1”(最も基本な構成)であると仮定して、摂動間隔を決定しても良い。
上述の説明では、通信装置APが2本の送信アンテナを用いて2台のユーザ端末(通信装置STA)にそれぞれ1つの送信ストリームに割り当てることとした。しかし、通信装置APの送信アンテナをさらに増やして、各ユーザ端末(通信装置STA)に複数の送信ストリームに割り当ててもよく、ユーザ端末(通信装置STA)の数を増やしてもよい。ユーザ端末(通信装置STA)の受信アンテナ数を増やした場合は、ユーザ端末(通信装置STA)は、複数受信アンテナで用いられる受信フィルタ行列を考慮した上で、通信装置APへチャネル情報をフィードバックすればよい。
なお、通信装置APは、例えば、半導体集積回路(チップ)として実現することができる。即ち、無線部107−1、・・・、107−Ntと、変調部101と、摂動ベクトル付加部102と、ウェイト乗算部103と、正規化係数乗算部104と、Nt個の逆高速フーリエ変換部105−1、・・・、105−Ntと、GI付加部106−1、・・・、106−Ntとを、1つまたは複数の半導体集積回路で実現できる。この1つまたは複数の半導体集積回路は、コネクタピンを介して、外部(アンテナや、他の半導体集積回路、無線部、ファームウェアなど)と信号の入出力を行う。
また、通信装置STAは、例えば、半導体集積回路(チップ)として実現することができる。即ち、アンテナ201と、無線部202と、GI除去部203と、高速フーリエ変換部204と、チャネル等化部205と、モジュロ演算部206と、復調部207と、摂動間隔決定部208とを、1つまたは複数の半導体集積回路で実現できる。この1つまたは複数の半導体集積回路は、コネクタピンを介して、外部(アンテナや、他の半導体集積回路、無線部、ファームウェアなど)と信号の入出力を行う。
なお、通信装置AP、STAは、図1に示す送信処理用の処理部と、図2に示す受信処理用の処理部とを双方備えていてもよく、アンテナ、無線部、フーリエ変換部(逆フーリエ変換部)などは、送信処理用と受信処理用の一方のみを有することとして、双方の用途に使用しても良い。
(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
STA、AP:通信部、101:変調部、102:摂動ベクトル付加部、103:ウェイト乗算部、104:正規化係数乗算部、105−1〜Nt:逆フーリエ変換部、106−1〜Nt:GI付加部、無線部:107−1〜Nt、アンテナ:108―1〜Nt、109:ウェイト計算部、摂動間隔決定部:110、201:アンテナ、202:無線部、203:GI除去部、204:フーリエ変換部、205:チャネル等化部、206:モジュロ演算部、207:復調部、208:摂動間隔決定部

Claims (6)

  1. 宛先端末へ送信する情報を有する情報信号に、基本信号の整数倍の摂動信号を付加し、空間多重方式によって複数の宛先端末へ無線信号を送信する通信装置であって、
    第1基本信号の大きさを、第1情報信号の変調方式に応じて定まる基本格子の一辺のN倍(1以上の実数)と決定する決定部と、
    前記第1情報信号に、前記第1基本信号の整数倍の第1摂動信号を付加する付加部と、
    前記第1摂動信号が付加された前記第1情報信号に対して、ウェイトを乗算する乗算部とを備えることを特徴とする通信装置。
  2. 前記決定部は、前記第1情報信号の変調方式及び符号化率の情報を用いて、前記第1基本信号の大きさを決定することを特徴とする請求項1記載の通信装置。
  3. 前記決定部は、前記第1情報信号の変調方式及び符号化率の情報と、前記第1情報信号の送信に用いる送信アンテナの数とを用いて、前記第1基本信号の大きさを決定することを特徴とする請求項2記載の通信装置。
  4. 前記第1宛先端末から、前記第1基本信号の大きさについての情報を受信する受信部とを備え、
    前記決定部は、前記受信部で受信した前記第1基本信号の大きさについての情報に従い、前記第1基本信号の大きさを決定することを特徴とする請求項1に記載の通信装置。
  5. 前記第1情報信号と、前記第1基本信号の大きさについての情報とを含む無線信号を送信する送信手段とをさらに備えることを特徴とする請求項1に記載の通信装置。
  6. 複数のアンテナと、
    前記複数のアンテナを介して、前記第1情報信号を前記第1宛先端末へ送信する送信手段とをさらに備える請求項1に記載の通信装置。
JP2011519313A 2009-06-25 2009-06-25 通信装置 Pending JPWO2010150313A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002911 WO2010150313A1 (ja) 2009-06-25 2009-06-25 通信装置

Publications (1)

Publication Number Publication Date
JPWO2010150313A1 true JPWO2010150313A1 (ja) 2012-12-06

Family

ID=43386112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519313A Pending JPWO2010150313A1 (ja) 2009-06-25 2009-06-25 通信装置

Country Status (3)

Country Link
US (1) US20120155345A1 (ja)
JP (1) JPWO2010150313A1 (ja)
WO (1) WO2010150313A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687524B2 (ja) 2011-03-01 2015-03-18 シャープ株式会社 送信装置、受信装置、通信システム、通信方法、および集積回路
JP2013126144A (ja) * 2011-12-15 2013-06-24 Sharp Corp 送信装置、受信装置および通信システム
JP5845549B2 (ja) * 2012-03-26 2016-01-20 株式会社国際電気通信基礎技術研究所 摂動ベクトル選択装置、通信装置、摂動ベクトル選択方法、及びプログラム
JP2014064170A (ja) * 2012-09-21 2014-04-10 Advanced Telecommunication Research Institute International 無線通信システム、無線送信装置および無線通信方法
JP6083598B2 (ja) * 2012-12-05 2017-02-22 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法
JP6047743B2 (ja) * 2013-01-15 2016-12-21 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法
JP6047744B2 (ja) * 2013-01-23 2016-12-21 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法
DE102013104207A1 (de) * 2013-04-25 2014-11-13 Epcos Ag Vorrichtung und Verfahren zur Herstellung einer elektrisch leitfähigen und mechanischen Verbindung
JP6595151B2 (ja) 2017-06-29 2019-10-23 株式会社Preferred Networks 訓練方法、訓練装置、プログラム及び非一時的コンピュータ可読媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0519749D0 (en) * 2005-07-08 2005-11-09 Koninkl Philips Electronics Nv Transmission over a multiple input multiple output broadcast channel (MIMO-BC)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012008330; Bertrand M. Hochwald et al.: 'A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication - Part II: Pe' IEEE Transactions on Communications Vol.53, No.3, 200503, pp.537-544 *
JPN6012008331; Intae HWANG et al.: 'Improvement of AMC-MIMO Multiplexing Systems with Selection Transmit Diversity Techniques' IEICE Transactions of Communications Vol.E87-B, No.6, 200406, pp.1684-1687 *
JPN6012008332; Daniel J. Ryan et al.: 'A Lattice-Theoretic Analysis of Vector Perturbation for Multi-User MIMO Systems' Communications, 2008. ICC '08. , 20080523, pp.3340-3344, IEEE *
JPN6012008333; 森 浩樹 外3名: 'Vector Perturbationを用いたMIMO Broadcast ChannelにおけるModulo演算誤り軽減方法の提案' 2009年電子情報通信学会通信ソサイエティ大会講演論文集1 , 20090901, p.389 *

Also Published As

Publication number Publication date
US20120155345A1 (en) 2012-06-21
WO2010150313A1 (ja) 2010-12-29

Similar Documents

Publication Publication Date Title
WO2010150313A1 (ja) 通信装置
JP5248130B2 (ja) 無線送信方法及び装置
JP5804594B2 (ja) プリコーディング装置、プリコーディング用プログラムおよび集積回路
US9008166B2 (en) Filter calculating device, transmitting device, receiving device, processor, and filter calculating method
JP5221285B2 (ja) 無線通信装置及び方法
JP5859913B2 (ja) 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
WO2013018555A1 (ja) 無線受信装置およびプログラム
JP5641787B2 (ja) 端末装置及びそれを用いた無線通信システム
WO2012157393A1 (ja) 基地局装置、移動局装置、制御プログラムおよび集積回路
JP5288622B2 (ja) 無線通信装置、無線通信システムおよび通信方法
WO2011152186A1 (ja) 送信装置、受信装置、無線通信システム、制御プログラムおよび集積回路
JP5770558B2 (ja) 受信装置、プログラムおよび集積回路
JP6047744B2 (ja) 無線通信システム、無線通信装置および無線通信方法
JP5789607B2 (ja) 通信装置および通信システム
JP5909104B2 (ja) 無線送信装置、無線受信装置、無線通信システムおよびプリコーディング方法
CN101317340B (zh) 用于接收mimo传输的方法和装置
JP6083598B2 (ja) 無線通信システム、無線通信装置および無線通信方法
JP2015056690A (ja) 端末装置および受信装置
JP5802942B2 (ja) 無線通信システム、無線送信装置および無線通信方法
JP2012015963A (ja) 端末装置、基地局装置及びそれらを用いた無線通信システム
JP5753041B2 (ja) 無線送信装置、無線受信装置、および無線通信システム
JP6047743B2 (ja) 無線通信システム、無線通信装置および無線通信方法
JP2013126144A (ja) 送信装置、受信装置および通信システム

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120613