JPWO2010116527A1 - タンクおよびその製造方法 - Google Patents

タンクおよびその製造方法 Download PDF

Info

Publication number
JPWO2010116527A1
JPWO2010116527A1 JP2011508169A JP2011508169A JPWO2010116527A1 JP WO2010116527 A1 JPWO2010116527 A1 JP WO2010116527A1 JP 2011508169 A JP2011508169 A JP 2011508169A JP 2011508169 A JP2011508169 A JP 2011508169A JP WO2010116527 A1 JPWO2010116527 A1 JP WO2010116527A1
Authority
JP
Japan
Prior art keywords
layer
helical
tank
fibers
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011508169A
Other languages
English (en)
Other versions
JP5182596B2 (ja
Inventor
力 大塚
力 大塚
弘和 大坪
弘和 大坪
基弘 水野
基弘 水野
武範 相山
武範 相山
智志 大沼
智志 大沼
敦幸 大神
敦幸 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2010116527A1 publication Critical patent/JPWO2010116527A1/ja
Application granted granted Critical
Publication of JP5182596B2 publication Critical patent/JP5182596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/06Closures, e.g. cap, breakable member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/24Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/66Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis with axially movable winding feed member, e.g. lathe type winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • F17C2209/2163Winding with a mandrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0763Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

バースト強度と疲労強度の両立を図った構造のタンクおよびその製造方法を提供する。これを実現するため、ライナ(20)と、該ライナ(20)の外周に繊維(70)が巻回されて形成されるフープ層(70P)およびヘリカル層(70H)からなるFRP層(21)と、を有するタンク(1)において、少なくとも最も内側のヘリカル層(70H)を平滑ヘリカル層とする。平滑ヘリカル層、つまり凹凸が皆無あるいは少ないヘリカル層を形成することにより、当該ヘリカル層(70H)に隣接するフープ層(70P)に凹凸が転写されるのを抑制することができる。フープ層(70P)の繊維(70)の構造的な曲げ(起伏)を抑えることにより当該繊維(70)自体の疲労強度を向上させることができる。

Description

本発明は、タンクおよびその製造方法に関する。さらに詳述すると、本発明は、水素ガス等が高圧で充填されるタンクにおける構造の改良に関する。
水素等の貯蔵に利用されるタンクとして、ライナの外周にフープ層とヘリカル層とが交互に積層されたFRP層を備えるものが利用されている(例えば特許文献1参照)。フープ層は、繊維(例えば炭素繊維)がフープ巻(タンク胴体部においてタンク軸にほぼ垂直に巻く巻き方)されて形成された層であり、ヘリカル層は、CF(炭素繊維)等の繊維がヘリカル巻(タンク軸にほぼ平行であり、タンクドーム部まで巻く巻き方)されて形成された層である(本願の図2参照)。また、マンドレルの外周をヘリカル巻されてなるFRP筐体であって、各ヘリカル層の強化繊維束の筒体周方向における位相がずらされているタンクも開示されている。
特開2008−032088号公報
しかしながら、上述のごとき従来技術においては、バースト強度と疲労強度との両立が図られていない場合がある。
そこで、本発明は、バースト強度と疲労強度の両立を図った構造のタンクおよびその製造方法を提供することを目的とする。
かかる課題を解決するべく本発明者は種々の検討を行った。まず、タンクのVf(繊維体積含有率)に関し、内層を低Vf化すれば疲労強度を向上させることが可能であるものの、そうするとバースト強度が低下してしまう場合がある。すなわち、耐破裂強度はVf(繊維体積含有率)が高いほど高強度となるが、従来のタンクには、疲労強度向上のため内層のVfを低くしているため高いバースト強度が得られていないものもある。
また、疲労強度に関していえば、上述したフープ層の繊維の構造的曲げが大きいと疲労強度が低下することを知見した。すなわち、フープ層およびヘリカル層が積層されてFRP層が形成されている場合、フープ層に隣接するヘリカル層自体に凹凸が生じていると、隣接するフープ層に当該凹凸が転写され、これによってフープ層の繊維自体が小さく蛇行して起伏を生み、構造に起因した曲げ(起伏)が当該フープ層に生じてしまう。
このような状況下、フープ層の繊維に生じうる構造的な曲げ(起伏)をいかに低減させるかについて検討を重ねた本発明者は、かかる課題の解決に結び付く新たな知見を得るに至った。本発明はかかる知見に基づくもので、ライナと、該ライナの外周に繊維が巻回されて形成されるフープ層およびヘリカル層からなるFRP層と、を有するタンクにおいて、少なくとも最も内側のヘリカル層が平滑ヘリカル層である、というものである。
構造に起因するフープ層の繊維の曲げ(起伏)を低減させるための手段としては、隣接するヘリカル層の凹凸を低減させて当該凹凸が転写しないようにすることが考えられる。ところが、上述したようにヘリカル層はタンク軸に対してほぼ平行となるように、尚かつタンクドーム部で折り返すように巻かれており(図2参照)、隣接する繊維間の隙間をなくすような巻きは特に考慮されていないため根本的に難しい。一般的には、ヘリカル層は繊維どうしの重なりや並びなどは考慮されずにいわば無秩序に巻回されており、従来、例えば各ヘリカル層の強化繊維束の筒体周方向における位相をずらすといったことが提案されているものの、ドーム部を有するタンクにおいて凹凸が皆無あるいは少ないヘリカル層を形成するという提案や着眼はなかった。
この点、本発明では、少なくとも最も内側のヘリカル層を平滑ヘリカル層、つまり凹凸が皆無あるいは少ないヘリカル層としているので、当該ヘリカル層に隣接するフープ層に凹凸が転写されるのを抑制することができる。この場合、従来のように、凹凸ヘリカル層(平滑にするための処理がなされておらず表面に凹凸が生じているヘリカル層のことをいい、図11、図12において符号70Bで示す)の表面に起因する構造的な繊維の曲げを低減できる。凹凸ヘリカル層に隣接するフープ層の繊維の構造的な曲げ(起伏)を抑えることにより当該繊維自体の疲労強度を向上させることができる。
加えて、繊維の層(ヘリカル層、フープ層)は、内側に位置する層(ライナ寄りの層)ほどタンク強度への寄与度が大きい。上述のごとく少なくとも最も内側のヘリカル層を平滑ヘリカル層とする本発明によれば、当該平滑ヘリカル層に隣接するフープ層(例えば、当該平滑ヘリカル層の外側に巻回されるフープ層)を平滑に巻回することができ、タンク強度の向上に大きく寄与させることができる。
また、本発明にかかるタンクにおいて、フープ層に隣接する層は、フープ層または平滑ヘリカル層であることが好ましい。この場合、当該フープ層に隣接する層の表面を平滑面とすることができるから、構造に起因した繊維の曲げを生じさせないかあるいは低減させることができる。
さらに、本発明にかかるタンクにおいて、凹凸ヘリカル層に隣接する層は平滑ヘリカル層であることも好ましい。このように凹凸ヘリカル層に隣接する層を平滑ヘリカル層とした場合、当該凹凸ヘリカル層の表面の凹凸を平滑ヘリカル層で吸収し、該凹凸の影響がフープ層に及ばないようにすることができる。
また、本発明にかかるタンクにおいて、平滑ヘリカル層は、周方向に配置されたN個の点を基準位置とし、当該基準位置を順次通過するように繊維をライナの外周に巻回し、その後、既に巻回されている繊維に隣接するように周方向にずらした位置に当該繊維を順次巻回することによって形成されていることが好ましい。この場合、巻回された樹脂により、略三角形状の単位模様が規則的に組み合わされた模様が平滑ヘリカル層の表面に形成され、隣り合う単位模様の境目となる部分が、当該タンクの周方向に2N箇所表れていることが好ましい。さらに、巻回された繊維によって当該タンクのドーム部に形成される模様がN角形であることも好ましい。Nは1から5までの整数のいずれかであることがさらに好ましい。
また、本発明にかかる製造方法は、ライナと、該ライナの外周に繊維が巻回されて形成されるフープ層およびヘリカル層からなるFRP層と、を有するタンクの製造方法において、ライナの周方向に配置されたN個の点を基準位置とし、当該基準位置を順次通過するように繊維をライナの外周に巻回し、その後、既に巻回されている繊維に隣接するように周方向にずらした位置に当該繊維を順次巻回し、少なくとも最も内側のヘリカル層を平滑ヘリカル層とする、というものである。
さらに、本発明にかかる筒体は、繊維が巻回されて形成されるフープ層およびヘリカル層からなるFPR層を有する筒体であって、少なくとも最も内側のヘリカル層が平滑ヘリカル層である、というものである。
本発明によれば、バースト強度と疲労強度の両立を図った構造のタンクを実現することができる。また、疲労強度を向上させた筒体を実現することができる。
本発明の一実施形態におけるタンク(高圧タンク)の構造を示す断面図および部分拡大図である。 本発明の一実施形態におけるタンク(高圧タンク)の構造を示す断面図である。 タンクの口金付近の構造例を示す断面図である。 タンクのストレート部(あるいは筒体)のFRP層の構造例を示す概略断面図である。 タンクのストレート部(あるいは筒体)のFRP層の他の構造例を示す概略断面図である。 平滑ヘリカル層を形成するためのヘリカル巻の一例および「パターンナンバー」について説明する、タンク軸方向に沿ったタンクの投影図である。 FW(フィラメントワインディング)装置の一例を示す図である。 FW装置の繊維ガイド装置を使ってライナの外周に繊維を巻き付ける様子を示す図である。 平滑ヘリカル層におけるヘリカル巻の一例を示す斜視図である。 平滑ヘリカル層におけるヘリカル巻の一例を示す、タンク軸方向に沿った投影図である。 従来のヘリカル巻の一例を参考として示す斜視図である。 従来のヘリカル巻の一例を参考として示す、タンク軸方向に沿った投影図である。
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
図1〜図10に本発明にかかるタンクおよびその製造方法の実施形態を示す。以下では、本発明にかかるタンク(以下、高圧タンクともいう)1を水素燃料供給源としての高圧水素タンクに適用した場合を例示しつつ説明する。水素タンクは、燃料電池システム等において利用可能なものである。
高圧タンク1は、例えば両端が略半球状である円筒形状のタンク本体10と、当該タンク本体10の長手方向の一端部に取り付けられた口金11を有する。なお、本明細書では略半球状部分をドーム部、筒状胴体部分をストレート部といい、それぞれ符号1d,1sで表す(図1、図2等参照)。また、本実施形態で示す高圧タンク1は両端に口金11を有するものであるが、説明の便宜上、当該高圧タンク1の要部を示す図3中のX軸の正方向(矢示する方向)を先端側、負方向を基端側として説明を行う。このX軸に垂直なY軸の正方向(矢示する方向)がタンク外周側を指している。
タンク本体10は、例えば二層構造の壁層を有し、内壁層であるライナ20とその外側の外壁層である樹脂繊維層(補強層)としての例えばFRP層21を有している。FRP層21は、例えばCFRP層21cのみ、あるいは該CFRP層21cおよびGFRP層21gによって形成されている(図1参照)。
ライナ20は、タンク本体10とほぼ同じ形状に形成される。ライナ20は、例えばポリエチレン樹脂、ポリプロピレン樹脂、またはその他の硬質樹脂などにより形成されている。あるいは、ライナ20はアルミニウムなどで形成された金属ライナであってもよい。
ライナ20の口金11のある先端側には、内側に屈曲した折返し部30が形成されている。折返し部30は、外側のFRP層21から離間するようにタンク本体10の内側に向けて折り返されている。折返し部30は、例えば折り返しの先端に近づくにつれて次第に径が小さくなる縮径部30aと、当該縮径部30aの先端に接続され径が一定の円筒部30bとを有している。この円筒部30bによりライナ20の開口部が形成されている。
口金11は、略円筒形状を有し、ライナ20の開口部に嵌入されている。口金11は、例えばアルミニウム又はアルミニウム合金からなり、例えばダイキャスト法等により所定の形状に製造されている。口金11は射出成形された分割ライナに嵌め込まれている。また、口金11は例えばインサート成形によりライナ20に取り付けられてもよい。
また、口金11は、例えば先端側(高圧タンク1の軸方向の外側)にバルブ締結座面11aが形成され、そのバルブ締結座面11aの後方側(高圧タンク1の軸方向の内側)に、高圧タンク1の軸に対して環状の凹み部11bが形成されている。凹み部11bは、軸側に凸に湾曲しR形状になっている。この凹み部11bには、同じくR形状のFRP層21の先端部付近が気密に接触している。
例えばFRP層21と接触する凹み部11bの表面には、例えばフッ素系の樹脂などの固体潤滑コーティングCが施されている。これにより、FRP層21と凹み部11bとの間の摩擦係数が低減されている。
口金11の凹み部11bのさらに後方側は、例えばライナ20の折返し部30の形状に適合するように形成され、例えば凹み部11bに連続して径の大きい鍔部(ツバ部)11cが形成され、その鍔部11cから後方に一定径の口金円筒部11dが形成されている。上記ライナ20の折返し部30の縮径部30aは、鍔部11cの表面に密着し、円筒部30bは、口金円筒部11dの表面に密着している。円筒部30bと口金円筒部11dとの間には、シール部材40、41が介在している。
バルブアッセンブリ50は、外部のガス供給ライン(供給路22)と高圧タンク1の内部との間で燃料ガスの給排を制御するものである。バブルアッセンブリ50の外周面と口金11の内周面との間には、シール部材60、61が介在されている。
FRP層21は、例えばFW成形(フィラメントワインディング成形)により、ライナ20の外周面と口金11の凹み部11bに、樹脂を含浸した繊維(補強繊維)70を巻き付け、当該樹脂を硬化させることにより形成されている。FRP層21の樹脂には、例えばエポキシ樹脂、変性エポキシ樹脂、不飽和ポリエステル樹脂等が用いられる。また、繊維70としては、炭素繊維(CF)、金属繊維などが用いられる。FW成形の際には、タンク軸を中心としてライナ20を回転させながら繊維70のガイドをタンク軸方向に沿って動かすことにより当該ライナ20の外周面に繊維70を巻き付けることができる。なお、実際には複数本の繊維70が束ねられた繊維束がライナ20に巻き付けられることが一般的であるが、本明細書では繊維束である場合を含めて単に繊維と呼ぶ。
次に、タンク1における繊維(例えば炭素繊維CF)70の構造的曲げを低減するための繊維巻きパターンについて説明する(図2等参照)。
上述したように、タンク1は、ライナ20の外周に繊維(例えば炭素繊維)70を巻き付け、樹脂を硬化させることにより形成されている。ここで、繊維70の巻き付けにはフープ巻とヘリカル巻があり、樹脂がフープ巻された層によってフープ層(図4において符号70Pで示す)が、ヘリカル巻された層によってヘリカル層(図9、図10において符号70Hで示す)がそれぞれ形成される。前者のフープ巻は、タンク1のストレート部(タンク胴体部分)に繊維70をコイルスプリングのように巻くことによって当該部分を巻き締め、気体圧によりY軸正方向へ向かう力(径方向外側へ拡がろうとする力)に対抗するための力をライナ20に作用させるものである。一方、後者のヘリカル巻はドーム部を巻き締め方向(タンク軸方向の内側向き)に巻き締めることを主目的とした巻き方であり、当該ドーム部に引っ掛かるようにして繊維70をタンク1に対し全体的に巻き付けることにより、主として当該ドーム部の強度向上に寄与する。なお、コイルスプリングのように巻かれた繊維70の弦巻(つるまき)線(ネジにおけるネジ山の線)と、当該タンク1の中心線(タンク軸12)とのなす角度(のうちの鋭角のほう)が、図2において符号αで示す、本明細書でいう繊維70の「タンク軸(12)に対する巻角度」である(図2参照)。
これら種々の巻き付け方のうち、フープ巻は、ストレート部において繊維70をタンク軸にほぼ垂直に巻くものであり、その際の具体的な巻角度は例えば80〜90°である(図2参照)。ヘリカル巻(または、インプレ巻)は、ドーム部にも繊維70を巻き付ける巻き方であり、タンク軸に対する巻角度がフープ巻の場合よりも小さい(図2参照)。ヘリカル巻を大きく2つに分ければ高角度ヘリカル巻と低角度ヘリカル巻の2種類があり、そのうち高角度ヘリカル巻はタンク軸に対する巻角度が比較的大きいもので、その巻角度の具体例は70〜80°である。一方、低角度ヘリカル巻は、タンク軸に対する巻角度が比較的小さいもので、その巻角度の具体例は5〜30°である。なお、本明細書においては、これらの間となる30〜70°の巻角度でのヘリカル巻を中角度ヘリカル巻と呼ぶ場合がある。さらに、高角度ヘリカル巻、中角度ヘリカル巻、低角度ヘリカル巻により形成されるヘリカル層をそれぞれ高ヘリカル層、中ヘリカル層(符号70MHで示す)、低ヘリカル層(符号70LHで示す)と呼ぶ。また、高角度ヘリカル巻のドーム部1dにおけるタンク軸方向の折り返し部分を折返し部と呼ぶ(図2参照)。
一般的に、フープ巻は、それ自体、繊維70どうしを隣接させながら螺旋状に巻き、繊維70の積み重ねをなくして凹凸を生じさせないようにすることが可能な巻き方である。一方、ヘリカル巻は、一般的にはドーム部を巻き締めることを主目的としており、繊維70の積み重なりや凹凸を減らすことは困難であるか、あるいはこれらを低減させることについて十分には考慮されていない巻き方である。これらフープ巻とヘリカル巻は、当該タンク1の軸長、直径などの仕様に応じて適宜組み合わされ、ライナ20の周囲にフープ層70Pおよびヘリカル層70Hが積層される(図1等参照)。このとき、フープ層70Pにヘリカル層70Hが隣接していると、当該ヘリカル層70Hの凹凸がフープ層70Pに転写し、当該フープ層70Pの繊維70に曲げ(起伏)が生じることがある。
この点、本実施形態では、少なくとも最も内側のヘリカル層70Hを平滑ヘリカル層とし、これに隣接するフープ層70Pに生じうる凹凸を低減させるようにしている。後述するように、平滑ヘリカル層70Hは繊維70どうしの重なりを低減させるようにしたヘリカル巻によって形成される層である。この平滑ヘリカル層70Hでは原則、隣接する繊維70の真横に並ぶように次の繊維70が巻かれており、繊維70の重なり方が従来のヘリカル層(凹凸ヘリカル層)とは異なる。このように、最も内側のヘリカル層(いわゆる面内応力が高い内側の層)70Hを優先的に平滑ヘリカル層(最内平滑ヘリカル層)としたうえで、当該最内平滑ヘリカル層70Hの外側に繊維70をフープ巻してフープ層70Pを形成した場合、当該フープ層70Pにおける繊維70の構造的な曲げ(起伏)ないしは波打ち、うねりを低減することができる。すなわち、平滑ヘリカル層70Hの表面(表層)は平滑面となるため(図4参照)、当該平滑面の上に形成されるフープ層70Pにおいては、凹凸に起因する構造的な繊維70の曲げ(起伏)が低減する。このようにフープ層70Pの繊維70の構造的な曲げ(起伏)を抑えることにより当該繊維70の疲労強度を向上させることができ、尚かつ、当該フープ層70Pが薄肉化、高Vf化してバースト強度が向上するという利点が得られる。また、最内ヘリカル層70H自体が平滑であることも、当該層の薄肉化、高Vf化を通じてバースト強度を向上させうる。Vfは繊維体積含有率を表し、その値(Vf値)が大きくなると繊維の含有率が高くなり、樹脂の含有率が小さくなる。このVfの値が高すぎると疲労耐久性が悪化し、値を下げすぎるとタンク外形が大きくなる。
しかも、本実施形態によればタンク強度を大きく向上させうるという利点もある。すなわち、ヘリカル層70H、フープ層70Pとも、内側に位置する層(ライナ20寄りの層)ほどタンク強度への寄与度が大きく、特に、ストレート部を巻き締めて耐圧力を十分に作用させるという点において最内層のフープ層70Pの役割が大きい。この点、本実施形態では、少なくとも最も内側のヘリカル層70Hを平滑ヘリカル層とすることにより、該平滑ヘリカル層70Hの外側に隣接するフープ層70Pをも平滑に形成することを可能とし、当該フープ層70Pをタンク強度の向上に大きく寄与させることができる(図4等参照)。
また、フープ層70Pに隣接する層は、他のフープ層70Pまたは平滑ヘリカル層70Hであることが好ましい。他のフープ層70Pや平滑ヘリカル層70Hの表面はこれら以外の層の表面よりも平滑であるから、あるフープ層70Pを形成する際、これら他のフープ層70Pや平滑ヘリカル層70Hの外側に繊維70をフープ巻することとすれば、当該フープ層70Pにおける繊維70の構造的な曲げ(起伏)を低減することができる。したがって、繊維70の疲労強度を向上させ、尚かつ当該フープ層70Pを薄肉化、高Vf(繊維体積含有率)化してバースト強度を向上させることが可能となる。一例として、図4では、第1の低ヘリカル層(平滑)70LH、第1のフープ層70P、第2のフープ層70P、第2の低ヘリカル層(平滑)70LHを内層側から順に形成した場合の断面を図示している。この場合、4つの層の表面をいずれも平滑面とすることができる(図4参照)。
さらには、凹凸ヘリカル層(平滑にするための処理がなされておらず表面に凹凸が生じているヘリカル層)に隣接する層を平滑ヘリカル層とすることも好ましい。こうした場合、凹凸ヘリカル層の表面の凹凸を平滑ヘリカル層で吸収することができるから、他のフープ層(例えば平滑ヘリカル層のさらに外側に形成されるフープ層)70Pに凹凸による影響を与えないようにすることができる。一例として、図5では、第1の低ヘリカル層(平滑)70LH、中ヘリカル層(凹凸)70MH、第2の低ヘリカル層(平滑)70LHを内層側から順に形成した場合の断面を図示している。図示するように第1の低ヘリカル層(平滑)70LHの外側に中ヘリカル層(凹凸)70MHを形成した場合、さらにその外側に低ヘリカル層(平滑)70LHを形成すれば、中ヘリカル層70MHの表面の凹凸を平滑ヘリカル層(この場合、第2の低ヘリカル層70LH、さらには第1の低ヘリカル層70LH)によって吸収することができる(図5参照)。
続いて、繊維70どうしの重なりを極力低減させた平滑ヘリカル層70Hを形成するためのヘリカル巻について説明する(図6等参照)。
ここで、まず繊維70を巻くためのFW(フィラメントワインディング)装置の一例を簡単に説明しておく。図7、図8に示すFW装置80は、タンク軸を中心としてライナ20を回転させながら、繊維70のガイド装置(「アイ口」などと呼ばれる)81をタンク軸方向に沿って往復動させることにより当該ライナ20の外周に繊維70を巻き付けるものである。ライナ20の回転数に対するガイド装置81の動きの相対速度を変化させることによって繊維70の巻角度を変えることができる。ガイド装置81は、例えば治具によって動作可能に支持されている。
次に、ヘリカル巻の巻パターンのパラメータとなる「パターンナンバー」について簡単に説明しておく。パターンナンバーは、ヘリカル巻の「分割数N」と「ずらし数s」とを例えば「N/s」という形で表したものである。パターンナンバーが例えば「5/2」(分割数5、ずらし数2)であれば、タンク1のドーム部1d付近の外周を基準位置A〜Eのように周方向に5等分し(図6参照)、ヘリカル巻で繊維70を周回させる度に2つずれた基準位置を通るようにしてずらしながら巻回させていくというものである。バターンナンバー「5/2」の場合、一方のドーム1dの基準位置Aを通過した繊維70を他方のドーム部1dまで巻き、再び一方のドーム部1dまで戻したとき、今度は2つずれた基準位置(例えば基準位置C)を通過させるようにして巻く(図2、図6参照)。これを繰り返すと、繊維70は、周回して一方のドーム部1dに戻る毎に基準位置A→C→E→B→D→Aを順次通過し、5周したところ元の基準位置に戻ることになる。一般的に、通常行われているヘリカル巻(例えばパターンナンバー「5/2」のヘリカル巻)の場合、繊維70どうしの重なりが多く、凹凸の大きいヘリカル層が形成されやすい(図11、図12参照)。
ここで、本実施形態では、ヘリカル巻のパターンナンバーとして「N/1」を採用し、周方向に配置されたN個の等分割点を基準位置とし、当該基準位置を順次通過するように樹脂をライナ20の外周に巻回し、その後、既に巻回されている樹脂に隣接するように周方向にずらした位置に当該樹脂を順次巻回して平滑ヘリカル層70Hを形成することとする。この場合、Nは1から5までの整数のいずれかとすることが好ましい。以下では、N=5(パターンナンバー「5/1」)の場合を例示しながらこのヘリカル巻について説明する(図6参照)。
パターンナンバー「5/1」のヘリカル巻は、タンク1のドーム部1d付近の外周を仮想した基準位置A〜Eのように5等分し、ヘリカル巻で繊維70を周回させる度に隣の基準位置を通るようにしてずらしながら巻回させていく。はじめに、一方のドーム1dの例えば基準位置Aを通過した繊維70を他方のドーム部1dまで巻き、再び一方のドーム部1dまで戻したとき、隣の基準位置(例えば基準位置B)を通過させる。これを繰り返すと、周回して一方のドーム部1dに戻る毎に繊維70が基準位置A→B→C→D→Eを順次通過し、5周したところで元の基準位置Aに戻ることになる。この5周を1セットとし、1セットを終えたら次のセットに移行する。
ここで、次のセットの際には、既に巻き付けられている繊維70に隣接するように引き続き繊維70を巻き付けていく。すなわち、図6において、1セット目の繊維を符号71、2セット目の繊維を符号72で示せば、1セット目の繊維71に隣接させるようにして2セット目の繊維72を巻き付ける(図6参照)。同様にして、3セット目の繊維73は2セット目の繊維72に隣接させるように巻き付ける。これを繰り返し、複数の繊維を並列させ、基準位置Aの繊維が隣の基準位置Bに達したら(基準位置Aの繊維が、基準位置Bの1セット目の繊維71に接するまで並列したら)、当該層のヘリカル巻を終了する。なお、図6では、最後のセットの繊維を符号7Zで示している。
以上のごときヘリカル巻によれば、ライナ20の周囲に繊維70を規則的に巻き付けることができ、繊維70どうしの重なりによる凹凸を低減させることができる(図9、図10参照)。これにより、表面が平滑であり凹凸が少ない平滑ヘリカル層70Hを形成することができる。したがって、当該平滑ヘリカル層70Hの外側に隣接するフープ層70Pに凹凸が転写されるのを抑制し、これによって当該フープ層70Pに生じうる構造的な繊維70の曲げ(起伏)を低減することができる。このようにフープ層70Pの繊維70の構造的な曲げ(起伏)を抑えることにより当該繊維70自体の疲労強度を向上させることができる。また、当該フープ層70Pが薄肉化、高Vf(繊維体積含有率)化する結果、当該タンク1のバースト強度が向上する。もちろん、本実施形態のヘリカル巻によれば、当該平滑ヘリカル層70H自体における繊維70どうしの隙間が少なく、尚かつ一層あたりの厚みが薄くなることにもなる。さらには、ヘリカル層70Hがこのような平滑ヘリカル層となることによって薄層化するため、フープ層70Pがより強度を発揮しやすいタンク1の内側に位置する。その結果、フープ層70Pをも薄肉化することができる。なお、ここまで、基準位置A〜Eを反時計回りに配置した場合について説明したが(図6参照)、これとは逆に時計回りに配置したとしても同様の作用効果を実現することができる。
以上はパターンナンバー「5/1」(分割数N=5、ずらし数s=1)の場合のヘリカル巻であるが、Nが1〜4のいずれかであっても同様に平滑ヘリカル層70Hを形成することができる。また、Nを6以上としても表面の凹凸を低減したヘリカル層70Hを形成することが可能である。ただし、分割数Nが大きくなると、これにつれて平滑ヘリカル層70Hを成立させるための巻角度が小さくなり(低角度になり)、繊維70どうしの重なりの態様も変わってくるため、表面を平滑にし難くなる傾向にある。この点からすれば、パターンナンバーの分割数は上述したように1から5までの整数のいずれかであることが好ましい。
なお、図9、図10においては、パターンナンバー「3/1」(分割数N=3、ずらし数s=1)の場合のヘリカル巻を例示している。上述したように繊維70は規則的に巻き付けられているため、従来のヘリカル巻き(図11、図12参照)とは異なり、当該巻き方に応じたある一定の規則的な模様を認識できることは図からも明らかである。すなわち、並列する繊維70によって略三角形状の単位模様(綾模様)が形成されるとともに、この単位模様が複数規則的に組み合わされた態様の平滑な表面が形成されている(図9参照)。また、隣り合う単位模様どうしでは繊維70の巻き方向が異なるため、これら単位模様どうしの境目となる部分は視認しやすい(図9中において破線で囲んだ部分参照)。図9に示されているように、これら境目となる部分はX字形状に表れる。また、これら境目となる部分は、タンク1の周方向に1周する間に6箇所、分割数Nのタンク1においては2N箇所表れる(ただし、タンク軸方向中央部分を除く)。
加えて、本実施形態のヘリカル巻によればタンク1のドーム部1dにも特徴的な模様が形成される。すなわち、例えばパターンナンバー「3/1」のヘリカル巻であれば、ヘリカル巻の後、ドーム1dにおいて、口金円筒部11dの周囲に略正三角状の視認可能な模様が形成される(図10参照)。この模様は分割数Nに応じて変化するもので、N=4ならば略正四角形、N=5ならば略正五角形の模様が形成される。
以上説明したように、少なくとも最も内側のヘリカル層70Hを平滑ヘリカル層とした本実施形態のタンク1においては以下に述べるような作用効果が得られる。
すなわち、ヘリカル層70Hの巻きパターンを繊維70の積み重ねが少なく、凹凸が小さくなるようなものとしているので、当該ヘリカル層70H内における構造的な繊維70の曲げを低減できる。また、当該ヘリカル層70H内の繊維70どうしの隙間を小さくできるため、ヘリカル層1層あたりの厚みを薄くできる。さらに、ヘリカル層表面が平滑となって段差が小さくなり、その上下の層(外側の層、内側の層)に転写されうる段差も小さくなるから、上下の層(例えばフープ層70P)において生じうる構造的な繊維70の曲げを低減できる。フープ層70Pの繊維70の構造的な曲げを低減することは、特にストレート部の疲労強度を向上させることに寄与する。ヘリカル層70Hの繊維70の構造的な曲げを低減することは、特にドーム部の疲労強度を向上させることに寄与する。さらに、FRP層を全体として薄肉化・高Vf化することは、特にタンク1のバースト強度を向上させることに寄与する。
また、一般に、タンク(圧力容器)1のドーム部にはその形状に起因した曲げ応力が作用し、例えばCFRP層21cの曲げ破壊ではいわゆる層間剥離の決定的な要因となる。この点、本実施形態のヘリカル巻によれば、ストレート部ばかりでなくドーム部においても繊維70間の隙間を低減して空隙(ボイド)を減らすことができる。したがって、このように空隙(ボイド)を減らすことによる層間剥離の抑制効果が期待できる。また、ドーム部のバースト/サイクル強度(バースト耐圧、複数回使用に対する耐久性)が向上することも期待できる。
また、上述のように空隙(ボイド)が減れば、発泡の原因となる空気量が減ることになる。FRP層21の熱硬化時、空気が泡状になって表層に表れる発泡現象が起こりうるが、空隙(ボイド)を減らすことができれば発泡を抑えることが可能になるという利点もある。
また、平滑なヘリカル層70Hを形成すれば、タンク1の最表面の凹凸が減ることにもつながる。これによれば、タンク1の外径をより安定化させ、タンク1毎のばらつきを低減させるという利点が得られる。特に、最外層のヘリカル層70Hを平滑ヘリカル層とすれば、外径のばらつきをより効果的に小さくすることが期待できる。
また、平滑なヘリカル層70H自体はもちろん、これに隣接するフープ層70Pが高Vf化することは、これに伴って樹脂溜まりが少なくなることから、FRP層21において使用する樹脂量が少なくなることにつながる。このように樹脂量が少なくなれば、その分タンク1の軽量化を図ることも可能になる。
さらに、上述のようにFRP層21が高Vf化して樹脂量が少なくなれば、硬化発熱量(樹脂の熱硬化中の反応熱による発熱)が下がる。一般に、熱硬化時におけるピーク温度が高いと、ボンディング(FW成形および樹脂硬化の後、ライナ20とFRP層21とが一部分または全部において接着した状態)やライナ材劣化といった問題が生じるおそれがあるが、このように硬化発熱量を低下させうる本実施形態のタンク1においては、これらの問題を抑えることも可能である。
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述した各実施形態では、最も内側のヘリカル層70Hを平滑ヘリカル層(最内平滑ヘリカル層)とする場合について説明したが、平滑ヘリカル層70Hを形成した場合の種々の作用効果を鑑みれば、すべてのヘリカル層70H(低ヘリカル層70LH)を平滑ヘリカル層とすることが好ましい。また、中ヘリカル層70MHを平滑ヘリカル層とすることで、当該中ヘリカル層70MHにおいても上述した作用効果を実現させることが可能である。
また、ここまでの実施形態では、燃料電池システム等において利用可能な水素タンクに本発明を適用した場合を例示して説明したが、水素ガス以外の流体を充填するためのタンクに本発明を適用することももちろん可能である。
さらに、本発明を、タンク(圧力容器)以外の物、例えば、FRP層を有する長尺物や構造物などの筒体(筒状の部分を含む)に適用することも可能である。一例を挙げれば、心棒(例えばマンドレルのようなもの)や型の外側にヘリカル巻やフープ巻によって繊維70を巻き付け、ヘリカル層70Hやフープ層70Pを有するFRP層21を形成する場合に、平滑ヘリカル層70Hを形成することとすれば、繊維70の構造的曲げを低減させる、疲労強度を向上させる、1層あたりの厚みを薄くする、といった、上述した実施形態におけるのと同様の作用効果を実現することが可能となる。
また、このように本発明を筒体1’に適用する場合においては、上述した実施形態と同様、フープ層に隣接する層を他のフープ層70Pまたは平滑ヘリカル層70Hとすることは好ましい態様の一つである(図4参照)。あるいは、凹凸ヘリカル層70Hに隣接する層を平滑ヘリカル層とすることも好ましい態様の一つである(図5参照)。なお、筒体1’の具体例としては、ゴルフクラブのシャフトやカーボンバットといった運動用具、釣竿等のレジャー用具、さらにはプラント設備等のエンジニアリング製品、建築資材などの構造物といったものを挙げることができる。
本発明は、FRP層を有するタンク、さらには長尺物や構造物などの筒体に適用して好適なものである。
1…タンク、1’…筒体、20…ライナ、21…FRP層、70…繊維、70H…ヘリカル層、70P…フープ層、A,B,C,D,E…基準位置

Claims (9)

  1. ライナと、該ライナの外周に繊維が巻回されて形成されるフープ層およびヘリカル層からなるFRP層と、を有するタンクにおいて、
    少なくとも最も内側のヘリカル層が平滑ヘリカル層である、タンク。
  2. 前記フープ層に隣接する層は、他のフープ層または平滑ヘリカル層である、請求項1に記載のタンク。
  3. 前記凹凸ヘリカル層に隣接する層は平滑ヘリカル層である、請求項1または2に記載のタンク。
  4. 前記平滑ヘリカル層は、周方向に配置されたN個の点を基準位置とし、当該基準位置を順次通過するように前記繊維を前記ライナの外周に巻回し、その後、既に巻回されている繊維に隣接するように周方向にずらした位置に当該繊維を順次巻回することによって形成されている、請求項1から3のいずれか一項に記載のタンク。
  5. 巻回された前記樹脂により、略三角形状の単位模様が規則的に組み合わされた模様が前記平滑ヘリカル層の表面に形成され、隣り合う前記単位模様の境目となる部分が、当該タンクの周方向に2N箇所表れている、請求項4に記載のタンク。
  6. 巻回された前記繊維によって当該タンクのドーム部に形成される模様がN角形である、請求項3または4に記載のタンク。
  7. 前記Nは1から5までの整数のいずれかである、請求項4から6のいずれか一項に記載のタンク。
  8. ライナと、該ライナの外周に繊維が巻回されて形成されるフープ層およびヘリカル層からなるFRP層と、を有するタンクの製造方法において、
    前記ライナの周方向に配置されたN個の点を基準位置とし、当該基準位置を順次通過するように前記繊維を前記ライナの外周に巻回し、その後、既に巻回されている繊維に隣接するように周方向にずらした位置に当該繊維を順次巻回し、少なくとも最も内側のヘリカル層を平滑ヘリカル層とする、タンクの製造方法。
  9. 繊維が巻回されて形成されるフープ層およびヘリカル層からなるFPR層を有する筒体であって、
    少なくとも最も内側のヘリカル層が平滑ヘリカル層である、筒体。
JP2011508169A 2009-04-10 2009-04-10 タンクおよびその製造方法 Active JP5182596B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057354 WO2010116527A1 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2010116527A1 true JPWO2010116527A1 (ja) 2012-10-18
JP5182596B2 JP5182596B2 (ja) 2013-04-17

Family

ID=42935835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011508169A Active JP5182596B2 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法

Country Status (5)

Country Link
US (1) US9316359B2 (ja)
EP (1) EP2418413B1 (ja)
JP (1) JP5182596B2 (ja)
CN (1) CN102388255B (ja)
WO (1) WO2010116527A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354481B2 (ja) 2009-04-28 2013-11-27 トヨタ自動車株式会社 フィラメントワインディング装置およびフィラメントワインディング方法
IT1401106B1 (it) 2010-07-02 2013-07-12 Automobili Lamborghini Spa Processo, stampo, dispositivi e kit per fabbricare prodotti in materiali compositi, nonche' prodotti fabbricati con questo processo e/o con questi mezzi
JP5531040B2 (ja) 2012-02-27 2014-06-25 トヨタ自動車株式会社 高圧ガスタンクの製造方法
AR093458A1 (es) 2012-11-12 2015-06-10 Southwire Co Un paquete de alambre y cable
DE102013215384A1 (de) * 2013-08-05 2015-02-26 Wobben Properties Gmbh Verfahren zur Herstellung eines Verbundformteils, Verbundformteil, Sandwichbauteil und Rotorblattelement und Windenergieanlage
CN104989943B (zh) * 2015-06-25 2017-03-29 武汉武船重型装备工程有限责任公司 一种包覆绝热材料的船用低温储罐及其施工方法
WO2017008899A1 (de) * 2015-07-10 2017-01-19 Rehau Ag + Co Drucktankanordnung zur speicherung und abgabe komprimierter fluidischer kraftstoffe
DE202015105815U1 (de) * 2015-09-24 2016-12-28 Rehau Ag + Co Druckbehälter zur Speicherung von Gasen oder Flüssigkeiten unter Drücken oberhalb von 200 bar
US20180347757A1 (en) * 2015-11-25 2018-12-06 United Technologies Corporation Composite pressure vessel assembly with an integrated heating element
CN108139022B (zh) * 2015-11-25 2021-11-26 联合工艺公司 具有集成喷嘴组件的复合压力容器组件
JP6468234B2 (ja) 2016-04-01 2019-02-13 トヨタ自動車株式会社 ガスタンクを搭載した車両
CN106979455B (zh) * 2016-07-05 2019-03-26 上海瀚氢动力科技有限公司 一种轻质长寿命复合材料氢气瓶及其制造方法
KR20180017377A (ko) * 2016-08-09 2018-02-21 현대자동차주식회사 고압 용기
JP2018119579A (ja) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 高圧容器
JP6487480B2 (ja) * 2017-03-17 2019-03-20 本田技研工業株式会社 高圧タンク
JP6729472B2 (ja) * 2017-04-20 2020-07-22 株式会社豊田自動織機 繊維構造体、圧力容器、及び繊維構造体の製造方法
KR102322373B1 (ko) * 2017-05-26 2021-11-05 현대자동차주식회사 후프층 및 헬리컬층이 와인딩된 고압용기
JP6927139B2 (ja) * 2018-05-10 2021-08-25 トヨタ自動車株式会社 フィラメントワインディング装置、フィラメントワインディングの設計方法およびタンクの製造方法
JP7044003B2 (ja) * 2018-07-25 2022-03-30 トヨタ自動車株式会社 高圧タンク
DE102018121012A1 (de) * 2018-08-28 2020-03-05 Alzchem Trostberg Gmbh Verfahren zur Herstellung eines Druckgasbehälters
KR102208701B1 (ko) * 2018-08-28 2021-01-28 손승희 필라멘트 와인딩 장치
JP2020034121A (ja) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 タンクの製造方法
DE102018217252B4 (de) * 2018-10-10 2021-03-11 Audi Ag Drucktank und Verfahren zum Herstellen eines Drucktanks zur Speicherung von Brennstoff in einem Kraftfahrzeug
JP7035976B2 (ja) * 2018-11-15 2022-03-15 トヨタ自動車株式会社 高圧タンクおよびその取付け構造
US20200347992A1 (en) 2019-05-02 2020-11-05 Agility Fuel Systems Llc Polymeric liner based gas cylinder with reduced permeability
JP7091407B2 (ja) * 2020-09-08 2022-06-27 本田技研工業株式会社 高圧容器
CN112124284B (zh) * 2020-09-29 2022-06-24 东风商用车有限公司 复合材料贮气筒
JP2022144646A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 高圧タンク及びその製造方法
JP2024517462A (ja) * 2021-05-07 2024-04-22 アジリティ・フューエル・システムズ・エルエルシー 複合織合せガス格納容器組立体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133236A (en) * 1961-10-09 1964-05-12 Gen Motors Corp Filament winding machine control
US3696812A (en) * 1970-08-13 1972-10-10 Tampax Inc Tampon applicator
US3969812A (en) * 1974-04-19 1976-07-20 Martin Marietta Corporation Method of manufacturing an overwrapped pressure vessel
DE2421619C3 (de) 1974-05-04 1982-07-08 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Verfahren zum Herstellen eines glasfaserverstärkten Kunststoff-Formteils und Vorrichtung zur Durchführung des Verfahrens
US4671831A (en) * 1985-08-26 1987-06-09 Edo Corporation Fiber Science Division Method of manufacture of large high pressure composite bottles
FR2694066B1 (fr) * 1992-07-23 1994-10-07 Aerospatiale Récipient pour le stockage de fluide sous pression, à rupture sans fragmentation.
JPH08131588A (ja) 1994-11-08 1996-05-28 Tonen Corp ゴルフクラブシャフト
JPH0996399A (ja) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd 圧力容器
JPH1119257A (ja) 1997-07-08 1999-01-26 Sumitomo Rubber Ind Ltd ゴルフクラブシャフト
JP4639085B2 (ja) 2002-12-02 2011-02-23 三菱レイヨン株式会社 圧力容器およびその製造方法
JP4736312B2 (ja) * 2003-07-31 2011-07-27 トヨタ自動車株式会社 タンク
CN1243194C (zh) 2004-04-08 2006-02-22 上海交通大学 50升碳纤维全缠绕增强铝内衬储氢复合气瓶
US7641949B2 (en) * 2004-05-20 2010-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pressure vessel with improved impact resistance and method of making the same
JP4771209B2 (ja) 2004-07-28 2011-09-14 東レ株式会社 Frp筒体およびその製造方法
US8464893B2 (en) 2005-06-06 2013-06-18 Toyota Jidosha Kabushiki Kaisha Pressure container and method of producing the same
JP2008032088A (ja) 2006-07-27 2008-02-14 Toyota Motor Corp タンク
JP4284705B2 (ja) 2006-12-11 2009-06-24 トヨタ自動車株式会社 成形体の製造方法、成形体、並びにタンク
JP4457359B2 (ja) 2006-12-13 2010-04-28 トヨタ自動車株式会社 圧力容器
JP5067533B2 (ja) * 2007-02-15 2012-11-07 村田機械株式会社 フィラメントワインディング装置
JP4599380B2 (ja) * 2007-09-04 2010-12-15 八千代工業株式会社 高圧容器のシール構造
US8074826B2 (en) * 2008-06-24 2011-12-13 Composite Technology Development, Inc. Damage and leakage barrier in all-composite pressure vessels and storage tanks
DE112008004073B4 (de) * 2008-11-11 2017-10-19 Toyota Jidosha Kabushiki Kaisha Tank

Also Published As

Publication number Publication date
US9316359B2 (en) 2016-04-19
EP2418413A1 (en) 2012-02-15
CN102388255A (zh) 2012-03-21
CN102388255B (zh) 2013-02-06
WO2010116527A1 (ja) 2010-10-14
EP2418413B1 (en) 2015-06-17
JP5182596B2 (ja) 2013-04-17
US20120024745A1 (en) 2012-02-02
EP2418413A4 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5182596B2 (ja) タンクおよびその製造方法
JP5182597B2 (ja) タンクおよびその製造方法
JP5348570B2 (ja) タンクおよびその製造方法
JP5354481B2 (ja) フィラメントワインディング装置およびフィラメントワインディング方法
JP5621631B2 (ja) 高圧タンクの製造方法、および、高圧タンク
JP5741006B2 (ja) 高圧タンクの製造方法、および、高圧タンク
JP2010265931A (ja) タンクおよびその製造方法
JP2006132746A (ja) 圧力容器及び水素貯蔵タンク並びに圧力容器の製造方法
JP7093010B2 (ja) 高圧タンク
JP2008169893A (ja) 圧力容器及びその製造方法
WO2010116529A1 (ja) タンクおよびその製造方法
JP4771209B2 (ja) Frp筒体およびその製造方法
JP7439744B2 (ja) 高圧タンクおよびその製造方法
JP7314771B2 (ja) 圧力容器及びその製造方法
JP2013224856A (ja) 高圧タンクの破裂強度を求めるシミュレーション方法
JP5730718B2 (ja) 高圧ガスタンクの製造方法
JP2020142388A (ja) 高圧タンクの製造方法
JP7093240B2 (ja) 高圧タンク
JP2024520748A (ja) フィラメントワインディング方法およびこれによって製造された圧力容器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130102

R151 Written notification of patent or utility model registration

Ref document number: 5182596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3