JPWO2010071010A1 - Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film - Google Patents

Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film Download PDF

Info

Publication number
JPWO2010071010A1
JPWO2010071010A1 JP2010542926A JP2010542926A JPWO2010071010A1 JP WO2010071010 A1 JPWO2010071010 A1 JP WO2010071010A1 JP 2010542926 A JP2010542926 A JP 2010542926A JP 2010542926 A JP2010542926 A JP 2010542926A JP WO2010071010 A1 JPWO2010071010 A1 JP WO2010071010A1
Authority
JP
Japan
Prior art keywords
silica
chain
fine particles
hollow fine
based hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010542926A
Other languages
Japanese (ja)
Other versions
JP5686604B2 (en
Inventor
渉 二神
渉 二神
良 村口
良 村口
政幸 松田
政幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2010542926A priority Critical patent/JP5686604B2/en
Publication of JPWO2010071010A1 publication Critical patent/JPWO2010071010A1/en
Application granted granted Critical
Publication of JP5686604B2 publication Critical patent/JP5686604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

外殻内部に貫通した空洞を有する低屈折率の鎖状シリカ系中空微粒子を提供する。この鎖状シリカ系中空微粒子は、外部に外殻を有し、内部に空洞を有するシリカ系中空微粒子(一次粒子)が鎖状に連結し、空洞が互いに貫通した貫通孔を有し、平均長さ(L)が20〜1500nmの範囲にあり、平均幅(W)が10〜300nmの範囲にあり、屈折率が1.10〜1.35の範囲にある。前記外殻の厚さ(TS)は2〜100nmの範囲にあり、前記平均幅(W)との比(TS)/(W)は0.05〜0.30の範囲にある。Provided is a low refractive index chain silica-based hollow fine particle having a cavity penetrating inside an outer shell. The chain silica-based hollow fine particles have an outer shell on the outside, silica-based hollow fine particles (primary particles) having cavities inside connected in a chain, and through holes in which the cavities penetrate each other. The thickness (L) is in the range of 20 to 1500 nm, the average width (W) is in the range of 10 to 300 nm, and the refractive index is in the range of 1.10 to 1.35. The thickness (TS) of the outer shell is in the range of 2 to 100 nm, and the ratio (TS) / (W) to the average width (W) is in the range of 0.05 to 0.30.

Description

本発明は、内部に貫通した空洞を有する鎖状のシリカ系中空微粒子、該鎖状シリカ系中空微粒子の製造方法および該鎖状シリカ系中空微粒子を含む透明被膜形成用塗布液ならびに鎖状シリカ系中空微粒子を含む透明被膜が基材表面上に形成された透明被膜付基材に関する。   The present invention relates to a chain silica-based hollow fine particle having a cavity penetrating inside, a method for producing the chain silica-based hollow fine particle, a coating liquid for forming a transparent film containing the chain silica-based hollow fine particle, and a chain silica-based The present invention relates to a substrate with a transparent film in which a transparent film containing hollow fine particles is formed on the surface of the substrate.

従来、粒径が0.1〜300μm程度の中空シリカ粒子は公知である(特許文献1、特許文献2など参照)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材料からなるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去することによって、稠密なシリカシェルからなる中空粒子を製造する方法が公知である(特許文献3など参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・シェル構造であるミクロンサイズの球状シリカ粒子が公知である(特許文献4など参照)。
Conventionally, hollow silica particles having a particle size of about 0.1 to 300 μm are known (see Patent Document 1, Patent Document 2, etc.). Also, there is a method for producing hollow particles made of a dense silica shell by precipitating active silica from an alkali metal silicate aqueous solution on a core made of a material other than silica and removing the material without destroying the silica shell. It is publicly known (see, for example, Patent Document 3).
Furthermore, micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell, the central portion is hollow, the outer shell is denser on the outer side, and has a coarser concentration gradient structure on the inner side are known (Patent Document 4, etc.) reference).

また、本願出願人は先に、多孔性の無機酸化物微粒子の表面をシリカ等で完全に被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られることを提案(特許文献5参照)すると共に、さらに、シリカとシリカ以外の無機酸化物からなる複合酸化物の核粒子にシリカ被覆層を形成し、ついでシリカ以外の無機酸化物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子が得られることを提案している(特許文献6参照)。   In addition, the applicant of the present application previously proposed that nano-sized composite oxide particles having a low refractive index can be obtained by completely covering the surface of porous inorganic oxide particles with silica or the like (Patent Document). 5), and further, a silica coating layer is formed on the core particles of the composite oxide composed of silica and an inorganic oxide other than silica, and then the inorganic oxide other than silica is removed, and silica is coated as necessary. By doing so, it has been proposed that nanometer-sized silica-based fine particles with a low refractive index having cavities inside can be obtained (see Patent Document 6).

一方、鎖状のシリカ粒子についても本出願人は先に、シリカ粒子に弱酸性条件で水熱処理することで鎖状化したシリカ粒子を形成することを提案している(特許文献7参照)。非中空の粒子では、粒子屈折率が1.45以下にはならないため、より低屈折率の粒子を得るために本出願人はさらに、中空シリカ粒子形成段階で電解質物質を添加することで、鎖状化した中空シリカ粒子が形成されることを提案している(特許文献8、9参照)。   On the other hand, the present applicant has previously proposed to form chained silica particles by hydrothermally treating silica particles under weakly acidic conditions (see Patent Document 7). In the case of non-hollow particles, since the particle refractive index does not become 1.45 or less, in order to obtain particles having a lower refractive index, the applicant further adds an electrolyte substance in the hollow silica particle formation stage, thereby creating a chain. It has been proposed that shaped hollow silica particles are formed (see Patent Documents 8 and 9).

しかしながら、上記本願出願人の提案に係るシリカ系中空粒子では、粒子の使用目的および用途によっては充分な低屈折率効果が得られない場合がある。即ち、個々の粒子の内部を空洞化しても、粒子強度の点から空洞容積には限りがあり、低屈折率化にも限界があることから、従来とは異なる粒子構造を有するシリカ系中空微粒子が求められていた。
However, in the silica-based hollow particles according to the proposal of the applicant of the present application, a sufficient low refractive index effect may not be obtained depending on the purpose and application of the particles. That is, even if the inside of each particle is hollowed out, the hollow volume is limited from the viewpoint of particle strength, and there is a limit to lowering the refractive index, so silica-based hollow fine particles having a particle structure different from conventional ones. Was demanded.

特開平6ー330606号公報JP-A-6-330606 特開平7ー013137号公報Japanese Patent Laid-Open No. 7-013137 特表2000ー500113号公報Special Table 2000-500113 特開平11ー029318号公報JP-A-11-029318 特開平07ー133105号公報Japanese Patent Laid-Open No. 07-133105 特開2001−233611号公報JP 2001-233611 A 特開2004−055298号公報JP 2004-055298 A 特表2004−099074号公報Special table 2004-099074 gazette 特開2005−186435号公報JP 2005-186435 A

本発明の鎖状シリカ系中空微粒子の断面の模式図である。It is a schematic diagram of the cross section of the chain silica-based hollow fine particles of the present invention.

本発明は、前記特許文献6記載の発明に基づきこれを発展させたものであり、低屈折率のシリカ系微粒子を得ることを目的とするものであって、シリカとシリカ以外の無機酸化物とからなる多孔質の複合酸化物粒子(一次粒子)を鎖状化させ、この鎖状化粒子の表面をシリカで被覆し、ついでシリカ以外の無機酸化物を除去することにより、外殻内部に貫通した空洞を有する鎖状シリカ系中空微粒子の製造方法を提供することを目的としている。   The present invention has been developed based on the invention described in Patent Document 6 and aims to obtain silica-based fine particles having a low refractive index, and includes silica and inorganic oxides other than silica. Porous composite oxide particles (primary particles) consisting of the above are chained, the surface of the chained particles is covered with silica, and then inorganic oxides other than silica are removed to penetrate inside the outer shell. It is an object of the present invention to provide a method for producing chain silica-based hollow fine particles having cavities.

また、本発明は前記鎖状シリカ系中空微粒子と被膜形成用マトリックス形成成分とを含み、安定性、膜形成性等に優れた被膜形成用塗料を提供することを目的とするものである。
また、本発明は前記鎖状シリカ系中空微粒子を含有する被膜を基材の表面に形成して、低屈折率で、基材との密着性、強度、耐擦傷性、反射防止能および防眩性能等に優れた被膜付きの基材を提供することを目的とするものである。
Another object of the present invention is to provide a coating material for forming a film, which contains the chain silica-based hollow fine particles and a matrix forming component for forming a film, and is excellent in stability, film forming property and the like.
In addition, the present invention provides a film containing the chain silica-based hollow fine particles on the surface of the base material, and has a low refractive index, adhesion to the base material, strength, scratch resistance, antireflection ability and antiglare. An object of the present invention is to provide a coated substrate having excellent performance and the like.

本発明に係る鎖状シリカ系中空微粒子は、外部に外殻を有し、内部に空洞を有するシリカ系中空微粒子(一次粒子)が鎖状に連結し、空洞が互いに貫通した貫通孔を有し、平均長さ(L)が20〜1500nmの範囲にあり、平均幅(W)が10〜300nmの範囲にあり、屈折率が1.10〜1.35の範囲にあることを特徴としている。   The chain silica-based hollow microparticles according to the present invention have outer shells, silica-based hollow microparticles (primary particles) having cavities inside, connected in a chain, and through holes through which the cavities penetrate each other. The average length (L) is in the range of 20 to 1500 nm, the average width (W) is in the range of 10 to 300 nm, and the refractive index is in the range of 1.10 to 1.35.

前記外殻の厚さ(TS)が2〜100nmの範囲にあり、前記平均幅(W)との比(TS)/(W)が0.05〜0.30の範囲にあることが好ましい。
前記貫通孔の平均径(DS)と前記平均幅(W)との比の(DS)/(W)が0.1〜0.9の範囲にあることが好ましい。
シリカとシリカ以外の無機酸化物からなり、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.0001〜0.2の範囲にあることが好ましい。
The thickness (T S ) of the outer shell is in the range of 2 to 100 nm, and the ratio (T S ) / (W) to the average width (W) is in the range of 0.05 to 0.30. preferable.
It is preferable that (D S ) / (W) of the ratio of the average diameter (D S ) of the through holes to the average width (W) is in the range of 0.1 to 0.9.
An inorganic oxide other than silica and silica, the molar ratio MO X / SiO 2 when the inorganic oxide other than silica, expressed in MO X is preferably in the range of 0.0001 to 0.2.

本発明に係る鎖状シリカ系中空微粒子の製造方法は、下記工程(a)〜(f)からなることを特徴としている。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に、または、固形分濃度が0.01〜2重量%の範囲にある種粒子が分散したアルカリ水溶液中に同時に添加して、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2(A)が0.1〜2の範囲にある複合酸化物一次粒子分散液を調製する工程
(b)前記一次粒子分散液を洗浄する工程
(c)洗浄後の一次粒子分散液を電解質存在下、50〜300℃で水熱処理して鎖状複合酸化物粒子分散液を調製する工程
(d)シリカまたはシリカ・アルミナ被覆層を形成して、シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液を調製する工程
(e)シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液に酸を加えて該複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去して鎖状シリカ系中空微粒子分散液とする工程
(f)得られた分散液を洗浄する工程
The method for producing chain silica-based hollow fine particles according to the present invention is characterized by comprising the following steps (a) to (f).
(A) An aqueous solution of a silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are dispersed in an alkaline aqueous solution or seed particles having a solid content concentration in the range of 0.01 to 2% by weight. The molar ratio MO X / SiO 2 (A) is 0.1 to 2 when the silica is represented by SiO 2 and the inorganic oxide other than silica is represented by MO X. A step of preparing a composite oxide primary particle dispersion (b) a step of washing the primary particle dispersion (c) a hydrothermal treatment of the washed primary particle dispersion at 50 to 300 ° C. in the presence of an electrolyte to form a chain Step (d) of preparing a composite oxide particle dispersion (d) Step of forming a silica or silica-alumina-coated chain composite oxide particle dispersion by forming a silica or silica-alumina coating layer (e) Silica or silica Alumina coating A step (f) was obtained in which acid was added to the chain composite oxide particle dispersion to remove at least a part of elements other than silicon constituting the composite oxide particles to form a chain silica-based hollow fine particle dispersion. Process for washing the dispersion

前記工程(c)における電解質がアルカリ土類金属塩であることが好ましい。
前記工程(f)についで下記工程(g)を実施することが好ましい。
(g)鎖状シリカ系中空微粒子分散液を50〜300℃の範囲で水熱処理する工程
It is preferable that the electrolyte in the step (c) is an alkaline earth metal salt.
Following the step (f), the following step (g) is preferably performed.
(G) Hydrothermal treatment of the chain silica-based hollow fine particle dispersion in the range of 50 to 300 ° C.

前記工程(d)が下記工程(d-1)、下記工程(d-2)、下記工程(d-3)のいずれかであることが好ましい。
(d-1)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、下記化学式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、鎖状複合酸化物粒子にシリカ被覆層を形成する工程
nSiX(4-n) ・・・(1)
〔但し、R:炭素数1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、メタクリル基、アミノ基、CF2基、X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素、n:0〜3の整数〕
(d-2)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、酸性ケイ酸液とを添加し、鎖状複合酸化物粒子にシリカ被覆層を形成する工程
(d-3)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、珪酸アルカリ水溶液と、アルミン酸水溶液とを添加し、鎖状複合酸化物粒子にシリカ・アルミナ被覆層を形成する工程
The step (d) is preferably any one of the following step (d-1), the following step (d-2), and the following step (d-3).
(D-1) An aqueous alkali solution and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof are added to the chain complex oxide particle dispersion obtained in the step (c). Step of adding and forming a silica coating layer on the chain composite oxide particles
R n SiX (4-n) (1)
[However, R: unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF 2 group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 to 3]
(D-2) An aqueous alkali solution and an acidic silicic acid solution are added to the chain composite oxide particle dispersion obtained in the step (c) to form a silica coating layer on the chain composite oxide particles. Step (d-3) An alkali silicate aqueous solution and an aqueous aluminate solution are added to the chain composite oxide particle dispersion obtained in the step (c), and the silica-alumina coating layer is added to the chain composite oxide particles. Forming process

本発明に係る透明被膜形成用塗布液は、前記鎖状シリカ系中空微粒子とマトリックス形成成分とを含んでなることを特徴としている。
本発明に係る透明被膜付基材は、前記透明被膜形成用塗布液を用いて形成された透明被膜が単独でまたは他の被膜とともに基材表面上に形成されたことを特徴としている。
The coating liquid for forming a transparent film according to the present invention is characterized by comprising the chain silica-based hollow fine particles and a matrix-forming component.
The substrate with a transparent coating according to the present invention is characterized in that the transparent coating formed using the coating solution for forming a transparent coating is formed on the surface of the substrate alone or together with other coatings.

本発明によれば、外殻内部に貫通した空洞を有する新規な鎖状シリカ系中空微粒子を提供することができる。この新規な鎖状シリカ系中空微粒子は、中空微粒子が鎖状に連結したシリカ系中空微粒子よりも低屈折率である。
本発明の製造方法によれば、低屈折率の鎖状シリカ系中空微粒子を提供することができる。
また、前記鎖状シリカ系中空微粒子と被膜形成用マトリックス形成成分とを含み、安定性、膜形成性等に優れた被膜形成用塗料を提供することができる。
また、前記鎖状シリカ系中空微粒子を含有する被膜を基材の表面に形成して、低屈折率で、基材との密着性、強度、耐擦傷性および反射防止能等に優れた被膜付きの基材を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the novel chain silica type hollow microparticle which has the cavity penetrated inside the outer shell can be provided. The novel chain silica-based hollow fine particles have a lower refractive index than silica-based hollow fine particles in which the hollow fine particles are connected in a chain.
According to the production method of the present invention, it is possible to provide chain silica-based hollow fine particles having a low refractive index.
Further, it is possible to provide a coating material for forming a coating film that includes the chain silica-based hollow fine particles and a matrix forming component for forming a coating film and is excellent in stability, film forming property, and the like.
In addition, a film containing the chain silica-based hollow fine particles is formed on the surface of the base material, and has a low refractive index, excellent adhesion to the base material, strength, scratch resistance, antireflection ability, etc. The substrate can be provided.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

[鎖状シリカ系中空微粒子]
まず、本発明に係る鎖状シリカ系中空微粒子について説明する。
本発明に係る鎖状シリカ系中空微粒子は、外部に外殻を有し、内部に空洞を有するシリカ系中空微粒子(一次粒子)が鎖状に連結し、空洞が互いに貫通した貫通孔を有し、平均長さ(L)が20〜1500nmの範囲にあり、平均幅(W)が10〜300nmの範囲にあり、屈折率が1.10〜1.35の範囲にあることを特徴としている。
[Chaline silica-based hollow fine particles]
First, the chain silica-based hollow fine particles according to the present invention will be described.
The chain silica-based hollow microparticles according to the present invention have outer shells, silica-based hollow microparticles (primary particles) having cavities inside, connected in a chain, and through holes through which the cavities penetrate each other. The average length (L) is in the range of 20 to 1500 nm, the average width (W) is in the range of 10 to 300 nm, and the refractive index is in the range of 1.10 to 1.35.

シリカ系中空微粒子(一次粒子)
鎖状シリカ系中空微粒子は、外部に外殻を有し、内部に空洞を有するシリカ系中空微粒子(一次粒子)が鎖状に連結している。
本発明に係る鎖状シリカ系中空微粒子の断面の模式図を図1に示す。
Silica-based hollow fine particles (primary particles)
The chain silica-based hollow fine particles have an outer shell on the outside, and silica-based hollow fine particles (primary particles) having cavities inside are connected in a chain.
A schematic view of a cross section of the chain silica-based hollow fine particles according to the present invention is shown in FIG.

本発明においてシリカ系中空微粒子(一次粒子)の大きさは概ね10〜300nm、さらには15〜200nmの範囲にあることが好ましい。
一次粒子の大きさが10nm未満の場合は、鎖状化しにくく凝集する傾向があり、所望の低屈折率の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
一次粒子の大きさが300nmを越えると粒子が大きすぎて、鎖状化することが困難で、やはり、所望の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
In the present invention, the size of the silica-based hollow fine particles (primary particles) is preferably in the range of about 10 to 300 nm, more preferably 15 to 200 nm.
When the size of the primary particles is less than 10 nm, there is a tendency that they are not easily chained and agglomerate, and it may be difficult to obtain desired low refractive index chain silica-based hollow fine particles.
If the size of the primary particles exceeds 300 nm, the particles are too large to be chained, and it may be difficult to obtain the desired chain silica-based hollow fine particles.

鎖状シリカ系中空微粒子の平均幅(W)は図1に示すように一次粒子径と同程度かそれより大きい値をとり、10〜300nmmさらには15〜200nmの範囲にあることが好ましい。
鎖状シリカ系中空微粒子は、一次粒子が鎖状に連結しているが、平均長さ(L)が20〜1500nm、さらには40〜1000nmの範囲にあることが好ましい。
平均長さ(L)が20nm未満の場合は最小の粒子径10nmの一次粒子が2個未満となることを意味し、所望の低屈折率の鎖状シリカ系中空微粒子とならず、平均長さ(L)が1500nmを越えると凝集したり、互いに交絡し、所望の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
As shown in FIG. 1, the average width (W) of the chain silica-based hollow fine particles is approximately equal to or larger than the primary particle diameter, and is preferably in the range of 10 to 300 nm, more preferably 15 to 200 nm.
In the chain silica-based hollow fine particles, the primary particles are linked in a chain shape, but the average length (L) is preferably in the range of 20 to 1500 nm, more preferably 40 to 1000 nm.
When the average length (L) is less than 20 nm, it means that the primary particle having a minimum particle diameter of 10 nm is less than 2, and the average length does not become the desired low refractive index chain silica-based hollow fine particles. When (L) exceeds 1500 nm, it may be agglomerated or entangled with each other, and it may be difficult to obtain desired chain silica-based hollow fine particles.

外殻の厚さ(TS)は一次粒子径あるいは平均幅(W)によっても異なるが2〜100nm、さらには3〜50nmの範囲にあることが好ましい。
外殻の厚さ(TS)が2nm未満のものは、後述する珪素以外の元素の少なくとも一部を除去した場合に中空構造を保てない場合があり、所望の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
外殻の厚さ(TS)が100nmを越えると内部の空隙が小さく、所望の低屈折率の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
The thickness (T S ) of the outer shell varies depending on the primary particle diameter or average width (W), but is preferably in the range of 2 to 100 nm, more preferably 3 to 50 nm.
When the outer shell has a thickness (T S ) of less than 2 nm, the hollow structure may not be maintained when at least a part of elements other than silicon to be described later is removed. It may be difficult to obtain.
If the thickness of the outer shell (T S ) exceeds 100 nm, the internal voids are small, and it may be difficult to obtain a desired low-refractive chain silica-based hollow fine particle.

また、外殻の厚さ(TS)は前記平均幅(W)との比(TS)/(W)が0.05〜0.30、さらには0.05〜0.2の範囲にあることが好ましい。
(TS)/(W)が0.05未満の場合は、珪素以外の元素の少なくとも一部を除去した場合に中空構造を保てない場合があり、鎖状シリカ系中空微粒子を得ることが困難な場合がある。
(TS)/(W)が0.30を越えると内部の空隙が小さく、所望の低屈折率の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
Further, the thickness (T S ) of the outer shell is in the range of 0.05 to 0.30, more preferably 0.05 to 0.2, with the ratio (T S ) / (W) to the average width (W). Preferably there is.
When (T S ) / (W) is less than 0.05, a hollow structure may not be maintained when at least a part of elements other than silicon is removed, and chain silica-based hollow fine particles can be obtained. It can be difficult.
If (T S ) / (W) exceeds 0.30, the internal voids are small, and it may be difficult to obtain desired low-refractive chain silica-based hollow fine particles.

前記貫通孔の平均径(DS)と前記平均幅(W)との比の(DS)/(W)が0.1〜0.9、さらには0.3〜0.8の範囲にあることが好ましい。
(DS)/(W)が0.1未満の場合は、貫通孔の空隙が小さく、低屈折率化への寄与度が小さく、所望の低屈折率の鎖状シリカ系中空微粒子を得ることが困難な場合がある。
(DS)/(W)が0.9を越える鎖状シリカ系中空微粒子を得ることは困難である。
The ratio (D S ) / (W) of the average diameter (D S ) and the average width (W) of the through holes is in the range of 0.1 to 0.9, and further 0.3 to 0.8. Preferably there is.
When (D S ) / (W) is less than 0.1, the pores of the through-holes are small, and the degree of contribution to lowering the refractive index is small, and a desired low refractive index chain silica-based hollow fine particle is obtained. May be difficult.
It is difficult to obtain chain silica-based hollow fine particles with (D S ) / (W) exceeding 0.9.

このような鎖状シリカ系中空微粒子は屈折率が1.10〜1.35、さらには1.10〜1.30の範囲にあることが好ましい。
鎖状シリカ系中空微粒子の屈折率が1.10未満のものは得ることが困難であり、屈折率が1.35を越えるものは、基材との密着性、強度、耐擦傷性には優れるものの反射防止能が不充分となる場合がある。
Such chain silica-based hollow fine particles preferably have a refractive index in the range of 1.10 to 1.35, more preferably 1.10 to 1.30.
It is difficult to obtain chain silica hollow fine particles having a refractive index of less than 1.10, and those having a refractive index of more than 1.35 are excellent in adhesion to a substrate, strength, and scratch resistance. In some cases, the antireflection ability of the object becomes insufficient.

本発明に係る鎖状シリカ系中空微粒子は、シリカとシリカ以外の無機酸化物からなり、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.0001〜0.2の範囲にあることが好ましい。
モル比MOX/SiO2が0.0001未満の鎖状シリカ系中空微粒子は得ることが困難であり、モル比MOX/SiO2が0.2を越えるものは、製造方法について後述するが、シリカ以外の無機酸化物の除去が少ないために低屈折率の鎖状シリカ系中空微粒子が得られない場合がある。
Chain silica hollow particles according to the present invention comprises an inorganic oxide other than silica and silica, the molar ratio MO X / SiO 2 when the inorganic oxide other than silica, expressed in MO X is 0.0001 to 0 Preferably it is in the range of .2.
It is difficult to obtain a chain silica-based hollow fine particle having a molar ratio MO X / SiO 2 of less than 0.0001, and those having a molar ratio MO X / SiO 2 of more than 0.2 will be described later with respect to the production method. Since there is little removal of inorganic oxides other than silica, chain silica-based hollow fine particles having a low refractive index may not be obtained.

本発明の鎖状シリカ系中空微粒子ではシリカ以外の無機酸化物としては、Al23、B23、TiO2、ZrO2、SnO2、Ce23、P25、Sb23、MoO3、ZnO2、WO3等の1種または2種以上を挙げることができる。2種以上の無機酸化物として、TiO2−Al23、TiO2−ZrO2等を例示することができる。この中ではAl23が好ましい。In the chain silica-based hollow fine particles of the present invention, inorganic oxides other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2. One or more of O 3 , MoO 3 , ZnO 2 , WO 3 and the like can be mentioned. Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 . Of these, Al 2 O 3 is preferred.

なお、本発明の鎖状シリカ系中空微粒子の平均長さ(L)、平均幅(W)は鎖状シリカ系中空微粒子の透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子についてノギスにより長さおよび幅を測定し、この平均値として求める。
また、外殻の平均厚さ(TS)、貫通孔の平均径(DS)は粒子断面の透過型電子顕微鏡写真(TEM)を観察し、測定することができる。
The average length (L) and average width (W) of the chain silica-based hollow microparticles of the present invention were obtained by taking a transmission electron micrograph (TEM) of the chain silica-based hollow microparticles and measuring 100 particles with calipers. The length and width are measured by the above, and the average value is obtained.
Further, the average thickness (T S ) of the outer shell and the average diameter (D S ) of the through holes can be measured by observing a transmission electron micrograph (TEM) of the particle cross section.

また、屈折率は次の手順によって求める。
(1)鎖状シリカ系中空微粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折率液を2,3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折率液で行い、混合液が透明になったときの標準屈折率液の屈折率を鎖状シリカ系中空微粒子の屈折率とする。
The refractive index is obtained by the following procedure.
(1) Take the chain silica-based hollow fine particle dispersion in an evaporator and evaporate the dispersion medium.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refractive index liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid becomes transparent is set as the refractive index of the chain silica-based hollow fine particles.

[シリカ系微粒子の製造方法]
つぎに、本発明の鎖状シリカ系中空微粒子の製造方法について説明する。
本発明に係る鎖状シリカ系中空微粒子の製造方法は、下記工程(a)〜(f)からなることを特徴としている。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に、または、固形分濃度が0.01〜2重量%の範囲にある種粒子が分散したアルカリ水溶液中に同時に添加して、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2(A)が0.1〜2の範囲にある複合酸化物一次粒子分散液を調製する工程
(b)前記一次粒子分散液を洗浄する工程
(c)洗浄後の一次粒子分散液を電解質存在下、50〜300℃で水熱処理して鎖状複合酸化物粒子分散液を調製する工程
(d)シリカまたはシリカ・アルミナ被覆層を形成して、シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液を調製する工程
(e)シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液に酸を加えて該複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去して鎖状シリカ系中空微粒子分散液とする工程
(f)得られた分散液を洗浄する工程
[Method for producing silica-based fine particles]
Next, a method for producing the chain silica-based hollow fine particles of the present invention will be described.
The method for producing chain silica-based hollow fine particles according to the present invention is characterized by comprising the following steps (a) to (f).
(A) An aqueous solution of a silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are dispersed in an alkaline aqueous solution or seed particles having a solid content concentration in the range of 0.01 to 2% by weight. The molar ratio MO X / SiO 2 (A) is 0.1 to 2 when the silica is represented by SiO 2 and the inorganic oxide other than silica is represented by MO X. A step of preparing a composite oxide primary particle dispersion (b) a step of washing the primary particle dispersion (c) a hydrothermal treatment of the washed primary particle dispersion at 50 to 300 ° C. in the presence of an electrolyte to form a chain Step (d) of preparing a composite oxide particle dispersion (d) Step of forming a silica or silica-alumina-coated chain composite oxide particle dispersion by forming a silica or silica-alumina coating layer (e) Silica or silica Alumina coating A step (f) was obtained in which acid was added to the chain composite oxide particle dispersion to remove at least a part of elements other than silicon constituting the composite oxide particles to form a chain silica-based hollow fine particle dispersion. Process for washing the dispersion

工程(a)
珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましく用いられる。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2〜pH4、SiO2濃度が約7重量%以下の酸性珪酸液が好ましい。
Step (a)
As the silicate, one or more silicates selected from alkali metal silicates, ammonium silicates and organic base silicates are preferably used. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution in which ammonia, quaternary ammonium hydroxide, an amine compound, or the like is added to the silicic acid solution.
As the acidic silicic acid solution, a silicic acid solution obtained by removing an alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like can be used. In particular, pH 2 to pH 4 and SiO 2 concentration is about 7% by weight. The following acidic silicic acid solutions are preferred.

無機酸化物としては、Al23、B23、TiO2、ZrO2、SnO2、Ce23、P25、Sb23、MoO3、ZnO2、WO3等の1種または2種以上を挙げることができる。2種以上の無機酸化物として、TiO2−Al23、TiO2−ZrO2等を例示することができる。
なかでも、Al23は球状の一次粒子を得やすく、除去することが容易であるので好ましい。
Examples of the inorganic oxide include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3 . 1 type or 2 or more types can be mentioned. Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 .
Of these, Al 2 O 3 is preferable because it is easy to obtain spherical primary particles and is easy to remove.

このような無機酸化物の原料として、アルカリ可溶の無機化合物を用いることが好ましく、前記した無機酸化物を構成する金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウム等が好適である。   As a raw material for such an inorganic oxide, an alkali-soluble inorganic compound is preferably used, and an alkali metal salt, an alkaline earth metal salt, or an ammonium salt of a metal or a non-metal oxo acid constituting the inorganic oxide described above. And quaternary ammonium salts, and more specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, Sodium phosphate and the like are preferred.

複合酸化物一次粒子分散液を調製するためには、予め、前記無機化合物のアルカリ水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目的とするシリカとシリカ以外の無機酸化物の複合割合に応じて、アルカリ水溶液中に、好ましくはpH10以上のアルカリ水溶液中に攪拌しながら徐々に添加する。 In order to prepare a composite oxide primary particle dispersion, an alkali aqueous solution of the inorganic compound is separately prepared in advance, or a mixed aqueous solution is prepared, and the aqueous solution other than the target silica and silica is prepared. Depending on the composite ratio of the inorganic oxide, it is gradually added with stirring to an aqueous alkali solution, preferably an aqueous alkali solution having a pH of 10 or higher.

アルカリ水溶液中に添加するシリカ原料と無機化合物原料の添加割合は、シリカ成分をSiO2で表し、シリカ以外の無機化合物をMOXで表したときのモル比MOX/SiO2が0.01〜2、特に、0. 1〜1の範囲となるようにすることが好ましい。MOX/SiO2が0. 01未満では、最終的に得られる鎖状シリカ系中空微粒子の空洞容積が十分大きくならず、他方、MOX/SiO2が2を越えると、球状の複合酸化物一次粒子を得ることが困難であったり、できたとしても珪素以外の元素を除去する際に球状の複合酸化物微粒子が破壊し、この結果、内部に空洞を有する鎖状シリカ系中空微粒子が得られないことがある。
モル比MOX/SiO2が0. 01〜2の範囲にあれば、複合酸化物一次粒子の構造は主として、珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、珪素原子の4つの結合手に酸素原子が結合し、この酸素原子にはシリカ以外の元素が結合した構造が多く生成し、後述の工程(e)で珪素以外の元素を除去する際、鎖状に連結した複合酸化物一次粒子の形状を破壊することなく、元素Mを除去することができるようになる。
The addition ratio of the silica raw material and the inorganic compound raw material added to the alkaline aqueous solution is such that the molar ratio MO X / SiO 2 is 0.01 to when the silica component is represented by SiO 2 and the inorganic compound other than silica is represented by MO X. 2, In particular, it is preferable to be in the range of 0.1 to 1. If the MO X / SiO 2 is less than 0.01, the finally obtained chain silica-based hollow fine particles do not have a sufficiently large cavity volume. On the other hand, if the MO X / SiO 2 exceeds 2, the spherical composite oxide It is difficult to obtain primary particles, or even if it can be done, spherical complex oxide fine particles are destroyed when elements other than silicon are removed. As a result, chain silica hollow fine particles having cavities inside are obtained. It may not be possible.
When the molar ratio MO X / SiO 2 is in the range of 0.01 to 2, the structure of the composite oxide primary particles is mainly a structure in which silicon and elements other than silicon are alternately bonded through oxygen. That is, oxygen atoms are bonded to the four bonds of silicon atoms, and many structures other than silica are bonded to the oxygen atoms. When removing elements other than silicon in the step (e) described later, The element M can be removed without destroying the shape of the composite oxide primary particles connected in a chain.

複合酸化物一次粒子の平均粒子径は5〜280nm、さらには10〜200nmの範囲にあることが好ましい。
複合酸化物一次粒子の平均粒子径が5nm未満の場合は、最終的に得られる鎖状シリカ系中空微粒子の外殻の割合が多くなり、空洞容積の割合が十分大きくならず、また、複合酸化物一次粒子の平均粒子径が280nmを越えると、工程(b)で鎖状化が困難であったり、工程(d)で珪素以外の元素の除去が不充分となり、鎖状シリカ系中空微粒子の空洞容積が十分大きくならず低屈折率の粒子を得ることが困難となることがある。
The average particle diameter of the composite oxide primary particles is preferably in the range of 5 to 280 nm, more preferably 10 to 200 nm.
When the average particle diameter of the composite oxide primary particles is less than 5 nm, the proportion of the outer shell of the finally obtained chain silica-based hollow fine particles increases, the proportion of the cavity volume does not increase sufficiently, and the composite oxidation If the average particle diameter of the primary particles exceeds 280 nm, it is difficult to form a chain in the step (b), or the removal of elements other than silicon is insufficient in the step (d). The cavity volume may not be sufficiently large, and it may be difficult to obtain particles with a low refractive index.

本発明の製造方法では、複合酸化物一次粒子分散液を調製する際に種粒子の分散液を出発原料とすることが好ましい。
種粒子としては、SiO2、Al23、TiO2、ZrO2、SnO2およびCeO2等の無機酸化物またはこれらの複合酸化物、例えば、SiO2−Al23、TiO2−Al23、TiO2−ZrO2、SiO2−TiO2、SiO2−TiO2−Al23等の微粒子が用いられ、通常、これらのゾルを用いることが好ましい。このような種粒子の分散液は、従来公知の方法によって調製することができる。例えば、上記無機酸化物に対応する金属塩、金属塩の混合物あるいは金属アルコキシド等に酸またはアルカリを添加して加水分解し、必要に応じて熟成することによって得ることができる。
In the production method of the present invention, it is preferable to use a seed particle dispersion as a starting material when preparing a composite oxide primary particle dispersion.
Seed particles include inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2, and CeO 2 , or composite oxides thereof such as SiO 2 —Al 2 O 3 , TiO 2 —Al. Fine particles such as 2 O 3 , TiO 2 —ZrO 2 , SiO 2 —TiO 2 , SiO 2 —TiO 2 —Al 2 O 3 are used, and it is usually preferable to use these sols. Such a dispersion of seed particles can be prepared by a conventionally known method. For example, it can be obtained by adding an acid or alkali to a metal salt, a mixture of metal salts, a metal alkoxide, or the like corresponding to the inorganic oxide, hydrolyzing, and aging as necessary.

種粒子分散アルカリ水溶液中に、好ましくはpH10以上に調整した種粒子分散アルカリ水溶液中に前記化合物の水溶液を、上記したアルカリ水溶液中に添加する方法と同様にして、攪拌しながら添加する。このように、種粒子を種として複合酸化物微粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。種粒子分散液中に添加するシリカ原料および無機酸化物の添加割合は、前記したアルカリ水溶液に添加する場合と同じ範囲とする。
上記したシリカ原料および無機酸化物原料はアルカリ側で高い溶解度をもっている。しかしながら、この溶解度の高いpH領域で両者を混合すると、珪酸イオンおよびアルミン酸イオンなどのオキソ酸イオンの溶解度が低下し、これらの複合物が析出してコロイド粒子に成長し、あるいは、種粒子上に析出して粒子成長が起こる。
In the seed particle-dispersed alkaline aqueous solution, the aqueous solution of the compound is preferably added to the seed particle-dispersed alkaline aqueous solution adjusted to a pH of 10 or more with stirring in the same manner as in the above-described method of adding the alkali solution. As described above, when the composite oxide fine particles are grown using the seed particles as seeds, it is easy to control the particle size of the grown particles, and particles having uniform particle sizes can be obtained. The addition ratio of the silica raw material and the inorganic oxide to be added to the seed particle dispersion is set to the same range as the case of adding to the aqueous alkali solution.
The silica raw material and inorganic oxide raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into colloidal particles, or on the seed particles. Precipitates into particles and causes particle growth.

本発明では、複合酸化物一次粒子の平均粒子径(DP1)が5〜280nmになるまで、珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶とを添加するが、添加は連続であっても断続的であってもよいが、両者を同時に添加することが好ましい。
さらに、このときのモル比MOX/SiO2(A)は0.01〜2の範囲であるが、このモル比が小さくなるように変更しながら添加することもできる。
In the present invention, an aqueous solution of silicate and / or an acidic silicic acid solution and an alkali-soluble inorganic compound aqueous solution are added until the average particle diameter (D P1 ) of the composite oxide primary particles becomes 5 to 280 nm. The addition may be continuous or intermittent, but it is preferable to add both at the same time.
Further, the molar ratio MO X / SiO 2 (A) at this time is in the range of 0.01 to 2 , but it can be added while changing the molar ratio to be small.

本発明では、工程(a)において、必用に応じて電解質塩の存在下で複合酸化物一次粒子を調製することもできる。
このとき、電解質塩のモル数(MEa)とSiO2 のモル数(MSa)との比(MEa)/(MSa)が0.1〜10、好ましくは0.2〜8の範囲で添加することができる。
電解質塩としては、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、硫酸カリウム、硝酸アンモニウム、硫酸アンモニウム、塩化マグネシウム、硝酸マグネシウムなどの水溶性の電解質塩が挙げられる。
電解質塩を用いる場合は、得られる複合酸化物一次粒子の平均粒子径の概ね1/5〜4/5の時点で添加することが好ましく、添加はこの時点で全量を添加してもよく、アルカリ金属珪酸塩やシリカ以外の無機化合物を添加して複合酸化物微粒子の粒子成長を行いながら連続的にあるいは断続的に添加してもよい。
In the present invention, in the step (a), the composite oxide primary particles can be prepared in the presence of an electrolyte salt as necessary.
At this time, the number of moles of the electrolyte salt (M Ea) and SiO 2 of moles (M Sa) and the ratio of (M Ea) / (M Sa ) from 0.1 to 10, preferably from 0.2 to 8 Can be added.
Examples of the electrolyte salt include water-soluble electrolyte salts such as sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, magnesium chloride, and magnesium nitrate.
When an electrolyte salt is used, it is preferably added at a time point that is approximately 1/5 to 4/5 of the average particle diameter of the resulting composite oxide primary particles. You may add continuously or intermittently, adding inorganic compounds other than a metal silicate and a silica, and carrying out the particle growth of composite oxide fine particles.

電解質塩の添加量は、複合酸化物一次粒子分散液の濃度にもよるが、前記モル比(MEa)/(MSa)が0.1未満の場合は、電解質塩を加えた効果が不充分となり、工程(e)で酸を加えて複合酸化物一次粒子を構成する珪素以外の元素の少なくとも一部を除去する際に複合酸化物微粒子が球状を維持できず破壊され、内部に空洞を有する鎖状シリカ系中空微粒子を得ることが困難となることがある。このような電解質塩を加える効果についてその理由は明らかではないが、粒子成長した複合酸化物一次粒子の表面にシリカが多くなり、酸に不溶性のシリカが複合酸化物一次粒子の保護膜的な作用をしているものと考えられる。
このため、後述する工程(d)でシリカまたはシリカ・アルミナ被覆層を形成するが、形成するシリカまたはシリカ・アルミナ被覆層を薄くすることもできる。
The amount of electrolyte salt added depends on the concentration of the composite oxide primary particle dispersion. However, when the molar ratio (M Ea ) / (M Sa ) is less than 0.1, the effect of adding the electrolyte salt is ineffective. When removing at least a part of the elements other than silicon constituting the composite oxide primary particles by adding an acid in step (e), the composite oxide fine particles cannot be maintained in a spherical shape and are destroyed, and voids are formed inside. It may be difficult to obtain the chain silica-based hollow fine particles. The reason for the effect of adding such an electrolyte salt is not clear, but silica is increased on the surface of the grown composite oxide primary particles, and acid-insoluble silica acts as a protective film for the composite oxide primary particles. It is thought that it is doing.
For this reason, although the silica or silica-alumina coating layer is formed in the step (d) described later, the silica or silica-alumina coating layer to be formed can be thinned.

前記モル比(MEa)/(MSa)が10を越えても、前記電解質を添加する効果が向上することもなく、新たな微粒子が生成したり、経済性が低下する。Even if the molar ratio (M Ea ) / (M Sa ) exceeds 10, the effect of adding the electrolyte is not improved, new fine particles are formed, and the economical efficiency is lowered.

工程(b)
工程(a)で調製した複合酸化物一次粒子分散液は、ついで洗浄してカチオン、アニオン、電解質を除去する。
洗浄方法としてはカチオン、アニオン、電解質を除去できれば特に制限はなく従来公知の方法を採用することができる。本発明では、粒子が微粒であるので限外濾過膜法、イオン交換樹脂法が好適に採用される。両者を併用することもできる。
洗浄が不充分であると、次工程(c)で鎖状複合酸化物一次粒子を得ることが困難である。
Step (b)
The composite oxide primary particle dispersion prepared in step (a) is then washed to remove cations, anions and electrolytes.
The washing method is not particularly limited as long as it can remove cations, anions, and electrolytes, and a conventionally known method can be employed. In the present invention, since the particles are fine particles, the ultrafiltration membrane method and the ion exchange resin method are preferably employed. Both can be used together.
If the washing is insufficient, it is difficult to obtain the chain composite oxide primary particles in the next step (c).

工程(c)
複合酸化物一次粒子分散液に電解質を添加し、電解質存在下、50〜300℃、さらには80〜250℃で水熱処理して鎖状複合酸化物粒子分散液を調製する。
電解質としては、複合酸化物一次粒子を鎖状化できれば特に制限はないが、本発明では、アルカリ土類金属塩が好ましい。
アルカリ土類金属塩としては、マグネシウム、カルシウム等の塩酸塩、硝酸塩、硫酸塩、有機酸塩等が挙げられる。
Step (c)
An electrolyte is added to the composite oxide primary particle dispersion, and a hydrous heat treatment is performed at 50 to 300 ° C. and further 80 to 250 ° C. in the presence of the electrolyte to prepare a chain composite oxide particle dispersion.
The electrolyte is not particularly limited as long as the composite oxide primary particles can be chained, but in the present invention, an alkaline earth metal salt is preferable.
Examples of alkaline earth metal salts include hydrochlorides such as magnesium and calcium, nitrates, sulfates, and organic acid salts.

電解質を添加する際の複合酸化物一次粒子分散液の濃度は固形分として0.1〜20重量%、さらには0.5〜10重量%の範囲にあることが好ましい。
複合酸化物一次粒子分散液の濃度が固形分として0.1重量%未満の場合は、鎖状化することはできるが生産性が低く、複合酸化物一次粒子分散液の濃度が固形分として20重量%を越えると粒子が凝集体となる場合がある。
The concentration of the composite oxide primary particle dispersion when the electrolyte is added is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, as a solid content.
When the concentration of the composite oxide primary particle dispersion is less than 0.1% by weight as a solid content, chain formation is possible but productivity is low, and the concentration of the composite oxide primary particle dispersion is 20 as a solid content. If the weight percentage is exceeded, the particles may form aggregates.

また、電解質の添加量は、分散液中の複合酸化物一次粒子の重量(WP1)と電解質の重量(WEL)との比(WEL)/(WP1)が0.001〜0.8、さらには0.01〜0.2の範囲にあることが好ましい。
(WEL)/(WP1)が0.001未満の場合は、複合酸化物一次粒子が鎖状化しない場合があり、(WEL)/(WP1)が0.8を越えると複合酸化物一次粒子が凝集体となる場合がある。
Further, the amount of electrolyte added is such that the ratio (W EL ) / (W P1 ) of the weight (W P1 ) of the composite oxide primary particles in the dispersion to the weight (W EL ) of the electrolyte is 0.001 to 0.001. 8, more preferably in the range of 0.01 to 0.2.
If (W EL ) / (W P1 ) is less than 0.001, the composite oxide primary particles may not be chained, and if (W EL ) / (W P1 ) exceeds 0.8, composite oxidation may occur. In some cases, the primary particles of the product become aggregates.

本発明では、電解質に加えて、酸性珪酸液を添加することができる。酸性珪酸液は後述する工程(d−2)で用いる酸性珪酸液と同様の酸性珪酸液であり、酸性珪酸液の添加量は、分散液中の複合酸化物一次粒子の重量(WP1)と酸性珪酸液のSiO2の重量(WS)との比(WS)/(WP1)が0.01〜1、さらには0.02〜0.5の範囲にあることが好ましい。
(WS)/(WP1)が0.01未満の場合は、複合酸化物一次粒子の粒子径によっても異なるが、鎖状化を促進したり、鎖状化した複合酸化物一次粒子の鎖状を維持することができない場合があり、(WS)/(WP1)が1を越えると、後述する工程(e)で珪素以外の元素の除去が困難となる場合があり、除去できたとしても鎖状粒子内部の空洞が互いに貫通した貫通孔が形成されない場合がある。
In the present invention, an acidic silicic acid solution can be added in addition to the electrolyte. The acidic silicic acid liquid is an acidic silicic acid liquid similar to the acidic silicic acid liquid used in the step (d-2) to be described later. The amount of the acidic silicic acid liquid is the same as the weight (W P1 ) of the composite oxide primary particles in the dispersion. The ratio (W S ) / (W P1 ) of the acidic silicic acid solution to the weight (W S ) of SiO 2 is preferably in the range of 0.01 to 1, more preferably 0.02 to 0.5.
When (W S ) / (W P1 ) is less than 0.01, although depending on the particle diameter of the composite oxide primary particles, chain formation is promoted or chains of the composite oxide primary particles are formed. In some cases, when (W S ) / (W P1 ) exceeds 1, it may be difficult to remove elements other than silicon in step (e) to be described later. In some cases, a through hole in which cavities in chain particles penetrate each other may not be formed.

水熱処理温度が50℃未満の場合は鎖状化が進行せず、単分散の複合酸化物一次粒子が多く残存し、水熱処理温度が300℃を越えると凝集粒子が増大する傾向にある。
なお、水熱処理時間は、温度によっても異なるが概ね1〜24時間である。
When the hydrothermal treatment temperature is lower than 50 ° C., chaining does not proceed, and a large amount of monodispersed composite oxide primary particles remain, and when the hydrothermal treatment temperature exceeds 300 ° C., aggregated particles tend to increase.
The hydrothermal treatment time is generally 1 to 24 hours, although it varies depending on the temperature.

工程(d)
ついで、シリカまたはシリカ・アルミナ被覆層を形成する。
シリカまたはシリカ・アルミナ被覆層を形成するには3つの方法がある。
第1の方法は、工程(d-1)であり、前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、下記化学式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加する方法である。
nSiX(4-n) ・・・(1)
〔但し、R:炭素数1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、メタクリル基、アミノ基、CF2基、X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素、n:0〜3の整数〕
Step (d)
Next, a silica or silica-alumina coating layer is formed.
There are three methods for forming a silica or silica-alumina coating layer.
The first method is the step (d-1), and an aqueous alkali solution and an organosilicon compound represented by the following chemical formula (1) are added to the chain complex oxide particle dispersion obtained in the step (c). And / or a partial hydrolyzate thereof.
R n SiX (4-n) (1)
[However, R: unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF 2 group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 to 3]

該有機珪素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシトリプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。   Specific examples of the organosilicon compound include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, and dimethyldiethoxy. Silane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl- 3,3,3-trifluoropropyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, -Glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ- Methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxy Silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane Examples include orchid, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, and diethylsilane.

第2の方法は、工程(d-2)であり、前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、酸性ケイ酸液とを添加する方法である。
酸性ケイ酸液としては、珪酸アルカリ水溶液、例えば水ガラスをイオン交換樹脂で脱アルカリした酸性ケイ酸液が用いられる。このような酸性ケイ酸液は濃度がSiO2として0.1〜7重量%、pHが0.1〜4の範囲にある。
The second method is step (d-2) in which an aqueous alkali solution and an acidic silicic acid solution are added to the chain composite oxide particle dispersion obtained in step (c).
As the acidic silicate solution, an alkaline silicate aqueous solution, for example, an acidic silicate solution obtained by dealkalizing water glass with an ion exchange resin is used. Such an acidic silicic acid solution has a concentration of 0.1 to 7% by weight as SiO 2 and a pH of 0.1 to 4.

第3の方法は、工程(d-3)であり、前記工程(c)で得られた鎖状複合酸化物粒子分散液に、珪酸アルカリ水溶液と、アルミン酸水溶液とを添加する方法である。   The third method is step (d-3), in which an aqueous alkali silicate solution and an aqueous aluminate solution are added to the chain composite oxide particle dispersion obtained in step (c).

上記において、シリカ被覆層の形成に用いる有機珪素化合物または酸性ケイ酸液の添加量は、固形分として鎖状複合酸化物粒子の10〜2000重量%、さらには20〜1000重量%の範囲である。
有機珪素化合物または酸性ケイ酸液の添加量が固形分として鎖状複合酸化物粒子の10重量%未満の場合は、被覆層が薄いために、工程(e)において、珪素以外の元素を除去する際に鎖状化した粒子が崩壊したり、外部に開放した空洞を有する鎖状シリカ系中空微粒子となる場合がある。
有機珪素化合物または酸性ケイ酸液の添加量が固形分として鎖状複合酸化物粒子の2000重量%を超えると、珪素以外の元素の除去が困難となったり、外殻が厚すぎて所望の低屈折率の鎖状シリカ系中空微粒子が得られない場合がある。
In the above, the addition amount of the organosilicon compound or acidic silicic acid solution used for forming the silica coating layer is in the range of 10 to 2000% by weight, more preferably 20 to 1000% by weight of the chain complex oxide particles as the solid content. .
When the addition amount of the organosilicon compound or the acidic silicic acid solution is less than 10% by weight of the chain composite oxide particles as a solid content, the coating layer is thin, so that elements other than silicon are removed in the step (e). In some cases, the chained particles may collapse or become chained silica-based hollow fine particles having cavities open to the outside.
If the addition amount of the organosilicon compound or the acidic silicic acid solution exceeds 2000% by weight of the chain composite oxide particles as a solid content, it is difficult to remove elements other than silicon, or the outer shell is too thick and the desired low In some cases, chain silica hollow fine particles having a refractive index cannot be obtained.

また、アルカリ水溶液の添加は、鎖状複合酸化物粒子分散液のpHが7〜13.5、さらには10〜13に維持されるように添加することが好ましい。
鎖状複合酸化物粒子分散液のpHが7未満の場合は、鎖状複合酸化物粒子が凝集し、均一な被覆層の形成、粒子成長ができない場合がある。
鎖状複合酸化物粒子分散液のpHが13.5を超えると、シリカ、アルミナの溶解性が高いためにシリカ層、シリカ・アルミナ層の形成、粒子成長が困難となり、所望の鎖状シリカ系中空微粒子が得られない場合がある。
Moreover, it is preferable to add alkaline aqueous solution so that pH of a chain | strand-shaped complex oxide particle dispersion liquid may be maintained at 7-13.5, Furthermore, 10-13.
When the pH of the chain complex oxide particle dispersion is less than 7, the chain complex oxide particles may aggregate to form a uniform coating layer or particle growth.
When the pH of the chain composite oxide particle dispersion exceeds 13.5, the silica and alumina are highly soluble, so formation of the silica layer and silica / alumina layer and particle growth become difficult. Hollow fine particles may not be obtained.

また、工程(d−3)で、シリカ・アルミナ被覆層の形成に珪酸アルカリ水溶液と、アルミン酸水溶液とを添加する場合、モル比Al23/SiO2は0.01〜0.5、さらには0.05〜0.3の範囲にあることが好ましい。
モル比Al23/SiOが0.01未満の場合は、前記シリカ層を形成するのと違いが無く、シリカ・アルミナ被覆層の形成による珪素以外の元素の除去の容易性が低下する。
モル比Al23/SiOが0.5を越えると、被覆層中のアルミナが多すぎて、工程(e)で珪素以外の元素を除去した際に、被覆層を維持できず、外部に開放した空洞を有する鎖状シリカ系中空微粒子となる場合がある。
In addition, when an alkali silicate aqueous solution and an aluminate aqueous solution are added to the formation of the silica / alumina coating layer in the step (d-3), the molar ratio Al 2 O 3 / SiO 2 is 0.01 to 0.5, Furthermore, it is preferable that it exists in the range of 0.05-0.3.
When the molar ratio Al 2 O 3 / SiO is less than 0.01, there is no difference from the formation of the silica layer, and the ease of removing elements other than silicon by the formation of the silica / alumina coating layer is reduced.
When the molar ratio Al 2 O 3 / SiO exceeds 0.5, there is too much alumina in the coating layer, and when the elements other than silicon are removed in step (e), the coating layer cannot be maintained, In some cases, it becomes a chain silica-based hollow fine particle having an open cavity.

シリカ・アルミナ被覆層の形成に珪酸アルカリ水溶液と、アルミン酸水溶液とを添加する場合の添加量は、シリカ・アルミナ固形分として鎖状複合酸化物粒子の10〜2000重量%、さらには20〜1000重量%の範囲にあることが好ましい。
珪酸アルカリ水溶液と、アルミン酸水溶液の添加量が固形分として鎖状複合酸化物粒子の10重量%未満の場合は、被覆層が薄いために、工程(e)において、珪素以外の元素を除去する際に鎖状化した粒子が崩壊したり、外部に開放した空洞を有する鎖状シリカ系中空微粒子となる場合がある。
珪酸アルカリ水溶液と、アルミン酸水溶液の添加量が固形分として鎖状複合酸化物粒子の2000重量%を超えると、珪素以外の元素の除去が困難となったり、外殻が厚すぎて所望の低屈折率の鎖状シリカ系中空微粒子が得られない場合がある。
The addition amount in the case of adding the alkali silicate aqueous solution and the aluminate aqueous solution to the formation of the silica / alumina coating layer is 10 to 2000% by weight of the chain composite oxide particles as the silica / alumina solid content, and further 20 to 1000%. It is preferably in the range of wt%.
When the addition amount of the alkali silicate aqueous solution and the aluminate aqueous solution is less than 10% by weight of the chain composite oxide particles as a solid content, elements other than silicon are removed in step (e) because the coating layer is thin. In some cases, the chained particles may collapse or become chained silica-based hollow fine particles having cavities open to the outside.
When the addition amount of the alkali silicate aqueous solution and the aluminate aqueous solution exceeds 2000% by weight of the chain composite oxide particles as a solid content, it is difficult to remove elements other than silicon, or the outer shell is too thick and the desired low In some cases, chain silica hollow fine particles having a refractive index cannot be obtained.

シリカ層、シリカ・アルミナ層を形成する際の鎖状複合酸化物粒子分散液の濃度は固形分として0.5〜20重量%、さらには1〜10重量%の範囲にあることが好ましい。
鎖状複合酸化物粒子分散液の濃度が固形分として0.5重量%未満の場合は生産性が低く、20重量%を越えると粒子が凝集体となる場合がある。
The concentration of the chain composite oxide particle dispersion when forming the silica layer and the silica-alumina layer is preferably in the range of 0.5 to 20% by weight, more preferably 1 to 10% by weight as the solid content.
When the concentration of the chain complex oxide particle dispersion is less than 0.5% by weight as the solid content, the productivity is low, and when it exceeds 20% by weight, the particles may be aggregated.

シリカまたはシリカ・アルミナ被覆層を形成する際の温度は通常30〜150℃、さらには50〜100℃の範囲が好ましい。
シリカまたはシリカ・アルミナ被覆層を形成する際の温度が30℃未満の場合は、シリカ・アルミナ被服層の形成に長時間を要したり、所望の厚さの被覆層が形成できない場合がある。
シリカまたはシリカ・アルミナ被覆層を形成する際の温度が150℃を超えると、濃度によっても異なるが鎖状複合酸化物粒子が凝集する場合がある。
The temperature at which the silica or silica-alumina coating layer is formed is preferably 30 to 150 ° C, more preferably 50 to 100 ° C.
If the temperature at which the silica or silica-alumina coating layer is formed is less than 30 ° C., it may take a long time to form the silica-alumina coating layer, or a coating layer having a desired thickness may not be formed.
When the temperature at the time of forming the silica or silica-alumina coating layer exceeds 150 ° C., the chain composite oxide particles may be aggregated depending on the concentration.

工程(e)
シリカまたはシリカ・アルミナ被覆複合酸化物粒子分散液に酸を加えてシリカまたはシリカ・アルミナ被覆複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去して鎖状シリカ系中空微粒子分散液とする。
珪素以外の元素の除去に際しては、例えば、鉱酸や有機酸を添加することによって溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除去したり、あるいは、これらの方法を組み合わせることによって除去する。
Step (e)
A chain silica-based hollow fine particle dispersion in which an acid is added to the silica or silica-alumina-coated composite oxide particle dispersion to remove at least a part of elements other than silicon constituting the silica or silica-alumina-coated composite oxide particles. And
When removing elements other than silicon, for example, it is removed by dissolution by adding mineral acid or organic acid, ion exchange removal by contacting with a cation exchange resin, or a combination of these methods. To do.

珪素以外の元素を除去する際のシリカまたはシリカ・アルミナ被覆複合酸化物粒子分散液中のシリカまたはシリカ・アルミナ被覆複合酸化物粒子の濃度は処理温度によっても異なるが、酸化物に換算して0.1〜50重量%、特に0.5〜25重量%の範囲にあることが好ましい。シリカ被覆複合酸化物粒子の濃度が0.1重量%未満の場合は生産効率が低く、50重量%を越えると、珪素以外の元素の含有量が多い複合酸化物粒子では均一に、あるいは効率的に少ない回数で除去できない場合がある。   The concentration of silica or silica / alumina-coated composite oxide particles in the dispersion of silica or silica-alumina-coated composite oxide particles when removing elements other than silicon varies depending on the treatment temperature, but is 0 in terms of oxide. 0.1 to 50% by weight, particularly 0.5 to 25% by weight is preferred. When the concentration of the silica-coated composite oxide particles is less than 0.1% by weight, the production efficiency is low. When the concentration exceeds 50% by weight, the composite oxide particles having a large content of elements other than silicon are uniform or efficient. May not be removed in a small number of times.

上記元素の除去は、前記した理由により得られる鎖状シリカ系中空微粒子のMOX/SiO2が、0. 0001〜0. 2、特に、0. 0001〜0. 1となるまで行うことが好ましい。The removal of the above elements is preferably carried out until the MO X / SiO 2 of the chain silica-based hollow fine particles obtained for the above-described reason is 0.0001 to 0.2, particularly 0.001 to 0.1. .

工程(f)
工程(e)で得られた鎖状シリカ系中空微粒子分散液は、主に酸、珪素以外の元素のカチオンおよび溶解したシリカが存在するのでこれらを洗浄して除去する。
洗浄方法としては、工程(b)と同様である。洗浄程度は酸、珪素以外の元素のカチオンおよび溶解したシリカが実質的になくなるまで行うことが好ましい。
Step (f)
The chain silica-based hollow fine particle dispersion obtained in the step (e) mainly contains an acid, a cation of an element other than silicon, and dissolved silica.
The cleaning method is the same as in step (b). The washing is preferably performed until the acid, cations of elements other than silicon, and dissolved silica are substantially eliminated.

工程(g)
鎖状シリカ系中空微粒子分散液を50〜300℃、さらに好ましくは80〜250℃で水熱処理する。
本発明では、工程(f)で得られた鎖状シリカ系中空微粒子をそのまま使用することができるが、前記工程(f)についで水熱処理することが好ましい。
Step (g)
The chain silica-based hollow fine particle dispersion is hydrothermally treated at 50 to 300 ° C, more preferably at 80 to 250 ° C.
In the present invention, the chain silica-based hollow fine particles obtained in the step (f) can be used as they are, but it is preferable to perform a hydrothermal treatment after the step (f).

水熱処理温度が50℃未満の場合は、得られる鎖状シリカ系中空微粒子の外殻の緻密化が不充分となり、鎖状シリカ系中空微粒子の用法によっては溶媒あるいは透明被膜形成用のマトリックス形成成分が空洞内に入り、低屈折率の効果が得られない場合がある。また、得られる鎖状シリカ系中空微粒子中のアルカリ金属あるいはアンモニア等の不純物含有量を効果的に低減することができず、被膜形成用塗布液の安定性が不充分となり、このため得られる被膜の強度が不充分となる場合がある。
水熱処理温度が300℃を越えると、鎖状シリカ系中空微粒子の凝集体となる場合がある。
When the hydrothermal treatment temperature is lower than 50 ° C., densification of the outer shell of the obtained chain silica-based hollow fine particles is insufficient, and depending on the usage of the chain silica-based hollow fine particles, a solvent or a matrix-forming component for forming a transparent film May enter the cavity and the low refractive index effect may not be obtained. In addition, the content of impurities such as alkali metals or ammonia in the obtained chain silica-based hollow fine particles cannot be effectively reduced, and the stability of the coating liquid for forming a film becomes insufficient. May be insufficient in strength.
When the hydrothermal treatment temperature exceeds 300 ° C., an aggregate of chain silica-based hollow fine particles may be formed.

水熱処理した後、必要に応じて前記工程(b)と同様に洗浄することができる。
洗浄することによって、水熱処理によって溶出したアルカリおよび/またはアンモニアをさらに低減することができる。
After the hydrothermal treatment, washing can be performed as necessary in the same manner as in the step (b).
By washing, alkali and / or ammonia eluted by hydrothermal treatment can be further reduced.

なお、本発明の鎖状シリカ系中空微粒子の製造方法では、得られた鎖状シリカ系中空微粒子分散液を限外濾過膜、ロータリーエバポレーター等を用いて有機溶媒で置換することによって有機溶媒分散ゾルを得ることができる。
また、得られた鎖状シリカ系中空微粒子は従来公知の方法によりシランカップリング剤等で処理して用いることもできる。
また、本発明の鎖状シリカ系中空微粒子の製造方法では、洗浄後、乾燥し、必要に応じて焼成することができる。
In the method for producing the chain silica-based hollow fine particles of the present invention, the obtained chain silica-based hollow fine particle dispersion is replaced with an organic solvent using an ultrafiltration membrane, a rotary evaporator, or the like, to thereby obtain an organic solvent-dispersed sol. Can be obtained.
The obtained chain silica-based hollow fine particles can also be used after being treated with a silane coupling agent or the like by a conventionally known method.
Moreover, in the manufacturing method of the chain | strand-shaped silica type hollow microparticles of this invention, after washing | cleaning, it can dry and it can bake as needed.

[透明被膜形成用塗布液]
ついで、透明被膜形成用塗布液について説明する。
本発明に係る透明被膜形成用塗布液は前記鎖状シリカ系中空微粒子とマトリックス形成成分とを含んでいる。
[Transparent coating solution]
Next, the coating liquid for forming a transparent film will be described.
The coating liquid for forming a transparent film according to the present invention contains the chain silica-based hollow fine particles and a matrix-forming component.

分散媒
塗布液の分散媒として従来公知の分散媒を用いることができ、具体的には水、各種有機溶媒が挙げられる。
本発明に用いる有機溶媒としては後述するマトリックス形成成分、必用に応じて用いる重合開始剤を溶解あるいは分散できるとともに前記した鎖状シリカ系中空微粒子を均一に分散することができれば特に制限はなく、従来公知の分散媒を用いることができる。
具体的には、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステルなどのケトン類、トルエン、キシレン等が挙げられる。これらは単独で使用してもよく、また2種以上混合して使用することもできる。
A conventionally well-known dispersion medium can be used as a dispersion medium of a dispersion medium coating liquid, and specifically, water and various organic solvents are mentioned.
The organic solvent used in the present invention is not particularly limited as long as it can dissolve or disperse a matrix-forming component, which will be described later, and a polymerization initiator used as necessary, and can uniformly disperse the chain silica-based hollow fine particles described above. A known dispersion medium can be used.
Specifically, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; methyl acetate , Esters such as ethyl acetate, butyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl Ethers such as ether and propylene glycol monoethyl ether; Acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, acetylacetone, ketones such as acetoacetate, toluene, xylene and the like. These may be used alone or in combination of two or more.

重合開始剤
本発明の塗布液では、鎖状シリカ系中空微粒子、マトリックス形成成分とともに重合開始剤が含まれていてもよい。重合開始剤としては、公知のものを特に制限なく使用することが可能であり、例えば、ビス(2、4、6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2、6−ジメトキシベンゾイル)2、4、4−トリメチル-ペンチルフォスフィンオキサイド、2−ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2、2-ジメトキシ-1、2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。
Polymerization initiator The coating liquid of the present invention may contain a polymerization initiator together with the chain silica-based hollow fine particles and the matrix-forming component. As the polymerization initiator, known ones can be used without particular limitation. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2, 4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl-phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy- Examples include cyclohexyl-phenyl-ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.

鎖状シリカ系中空微粒子
鎖状シリカ系中空微粒子としては前記鎖状シリカ系中空微粒子が用いられる。
本発明の塗布液では、必要に応じて鎖状シリカ系中空微粒子以外の無機酸化物微粒子を含んでいてもよい。
無機酸化物微粒子として従来公知の低屈折率無機酸化物微粒子、高屈折率無機酸化物微粒子、導電性無機酸化物微粒子等が挙げられる。
Chain silica-based hollow fine particles As the chain silica-based hollow fine particles, the chain silica-based hollow fine particles are used.
The coating liquid of the present invention may contain inorganic oxide fine particles other than the chain silica-based hollow fine particles as necessary.
Examples of the inorganic oxide fine particles include conventionally known low refractive index inorganic oxide fine particles, high refractive index inorganic oxide fine particles, and conductive inorganic oxide fine particles.

マトリックス形成成分とは、前記微粒子の分散体であり、基材の表面に被膜を形成し得る成分をいい、基材との密着性や硬度、塗工性等の条件に適合する樹脂等から選択して用いることができ、例えば、従来から用いられているポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、シリコン樹脂、ブチラール樹脂、フェノール樹脂、酢酸ビニル樹脂、紫外線硬化樹脂、電子線硬化樹脂、エマルジョン樹脂、水溶性樹脂、親水性樹脂、これら樹脂の混合物、さらにはこれら樹脂の共重合体や変性体などの塗料用樹脂、または前記アルコキシシラン等の加水分解性有機珪素化合物およびこれらの部分加水分解物等が挙げられる。   The matrix-forming component is a dispersion of the fine particles, and refers to a component that can form a film on the surface of the substrate. The matrix-forming component is selected from resins that meet conditions such as adhesion to the substrate, hardness, and coatability. For example, conventionally used polyester resin, acrylic resin, urethane resin, vinyl chloride resin, epoxy resin, melamine resin, fluororesin, silicone resin, butyral resin, phenol resin, vinyl acetate resin, UV curable resins, electron beam curable resins, emulsion resins, water-soluble resins, hydrophilic resins, mixtures of these resins, and coating resins such as copolymers and modified products of these resins, or hydrolysis of alkoxysilanes, etc. Organic organosilicon compounds and partial hydrolysates thereof.

透明被膜形成用塗布液のマトリックス形成成分と鎖状シリカ系中空微粒子との合計濃度は固形分として1〜60重量%、さらには2〜50重量%の範囲にあることが好ましい。
透明被膜形成用塗布液の固形分濃度1重量%未満の場合は、一回の塗布では必用な膜厚が得られないことがあり、このため塗布、乾燥を繰り返すと密着性等が不充分となったり、経済性において不利である。
固形分濃度が60重量%を越えると、得られる透明被膜の膜厚が不均一になったり、クラックが発生する場合がある。
The total concentration of the matrix-forming component and the chain silica-based hollow fine particles in the coating solution for forming a transparent film is preferably in the range of 1 to 60% by weight, more preferably 2 to 50% by weight as the solid content.
When the solid content concentration of the coating liquid for forming a transparent film is less than 1% by weight, a necessary film thickness may not be obtained by a single application. For this reason, if coating and drying are repeated, adhesion and the like are insufficient. It is disadvantageous in economic efficiency.
When the solid content concentration exceeds 60% by weight, the film thickness of the obtained transparent film may become non-uniform or cracks may occur.

透明被膜形成用塗布液中の鎖状シリカ系中空微粒子の濃度は、得られる透明被膜中の鎖状シリカ系中空微粒子の含有量が固形分として5〜80重量%、さらには10〜50重量%の範囲となるように用いる。
透明被膜中の鎖状シリカ系中空微粒子の含有量が固形分として5重量%未満の場合は所望の低屈折率の透明被膜が得られない場合があり、また、本発明の鎖状シリカ系中空微粒子によらず他の従来公知の低屈折率の粒子を使用すればよい。
透明被膜中の鎖状シリカ系中空微粒子の含有量が固形分として80重量%を越えると膜の透明性、強度等が不充分となる場合がある。
なお、必要に応じて鎖状シリカ系中空微粒子以外の無機酸化物微粒子を用いる場合も、粒子の合計濃度は前記と同じ範囲であることが好ましい。
The concentration of the chain silica-based hollow fine particles in the coating liquid for forming a transparent film is such that the content of the chain silica-based hollow fine particles in the obtained transparent film is 5 to 80% by weight, further 10 to 50% by weight as the solid content. The range is used.
When the content of the chain silica-based hollow fine particles in the transparent film is less than 5% by weight as the solid content, a transparent film having a desired low refractive index may not be obtained, and the chain silica-based hollow of the present invention may not be obtained. Other conventionally known low refractive index particles may be used regardless of the fine particles.
If the content of the chain silica hollow fine particles in the transparent coating exceeds 80% by weight as the solid content, the transparency and strength of the film may be insufficient.
In addition, when using inorganic oxide fine particles other than the chain silica-based hollow fine particles as necessary, the total concentration of the particles is preferably in the same range as described above.

また、透明被膜形成用塗布液中のマトリックス形成成分の濃度は、得られる透明被膜中のマトリックス成分の含有量が固形分として20〜95重量%、さらには50〜90重量%の範囲となるように用いる。   The concentration of the matrix-forming component in the coating solution for forming a transparent coating is such that the content of the matrix component in the resulting transparent coating is in the range of 20 to 95% by weight, further 50 to 90% by weight as the solid content. Used for.

さらに具体的には、透明被膜形成用塗布液中の鎖状シリカ系中空微粒子の濃度は、固形分として0.05〜48重量%、さらには0.1〜30重量%の範囲にあることが好ましい。
透明被膜形成用塗布液中のマトリックス形成成分の濃度は、固形分として0.2〜57重量%、さらには0.5〜54重量%の範囲にあることが好ましい。
More specifically, the concentration of the chain silica-based hollow fine particles in the coating solution for forming a transparent film is in the range of 0.05 to 48% by weight, further 0.1 to 30% by weight as the solid content. preferable.
The concentration of the matrix-forming component in the coating liquid for forming a transparent film is preferably in the range of 0.2 to 57% by weight, more preferably 0.5 to 54% by weight as the solid content.

上記した透明被膜形成用塗布液をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。
得られた透明被膜の膜厚は、200nm〜20μmの範囲にあることが好ましい。
The above-mentioned coating liquid for forming a transparent film is applied to a substrate by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, or a micro gravure printing method, dried, and then irradiated with ultraviolet rays. A transparent film can be formed by curing by conventional methods such as irradiation and heat treatment.
The film thickness of the obtained transparent coating is preferably in the range of 200 nm to 20 μm.

[透明被膜付基材]
つぎに、透明被膜付基材について説明する。
本発明に係る透明被膜付基材は、前記透明被膜形成用塗布液を用いて形成された透明被膜が単独でまたは他の被膜とともに基材表面上に形成されている。
[Base material with transparent film]
Next, the substrate with a transparent coating will be described.
In the substrate with a transparent coating according to the present invention, the transparent coating formed using the coating solution for forming a transparent coating is formed on the surface of the substrate alone or together with other coatings.

基材
基材としては、ガラス、ポリカーボネート、アクリル樹脂、PET、TAC等のプラスチックシート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、陰極線管、蛍光表示管、液晶表示板等の基材の表面に被膜を形成したものであり、用途によって異なるが被膜が単独であるいは基材上に保護膜、ハードコート膜、平坦化膜、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属微粒子膜、導電性金属酸化物微粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されている。なお、組み合わせて用いる場合、本発明の被膜が最外表面に形成されていることが好ましい。
Base materials such as glass, polycarbonate, acrylic resin, plastic sheets such as PET and TAC, plastic films, plastic lenses, plastic panels, and other substrates, cathode ray tubes, fluorescent display tubes, liquid crystal display plates, etc. A coating film is formed on the surface. Depending on the application, the coating film is used alone or on a substrate. A protective film, a hard coat film, a planarizing film, a high refractive index film, an insulating film, a conductive resin film, a conductive metal It is formed in combination with a fine particle film, a conductive metal oxide fine particle film, and a primer film used as necessary. In addition, when using in combination, it is preferable that the film of this invention is formed in the outermost surface.

このような透明被膜は、前記透明被膜形成用塗布液をディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、加熱あるいは紫外線照射等により硬化して得ることができる。   Such a transparent coating is prepared by applying the coating solution for forming the transparent coating to a substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, drying, and heating or It can be obtained by curing by ultraviolet irradiation or the like.

上記基材の表面に形成される透明被膜の屈折率は、鎖状シリカ系中空微粒子とマトリックス成分等の混合比率および使用するマトリックスの屈折率によっても異なるが、1.15〜1.42と低屈折率である。なお、本発明の鎖状シリカ系中空微粒子自体の屈折率は、1.10〜1.35である。
これは、本発明の鎖状シリカ系中空微粒子が内部に空洞を有し、樹脂等のマトリックス形成成分は粒子外部に止まり、鎖状シリカ系中空微粒子内部の空洞が保持されるからである。
The refractive index of the transparent film formed on the surface of the base material varies depending on the mixing ratio of the chain silica hollow fine particles and the matrix components and the refractive index of the matrix used, but is as low as 1.15 to 1.42. Refractive index. In addition, the refractive index of the chain silica-based hollow fine particles of the present invention is 1.10 to 1.35.
This is because the chain silica-based hollow fine particles of the present invention have cavities inside, matrix forming components such as resin remain outside the particles, and the cavities inside the chain silica-based hollow fine particles are retained.

さらに、上記した透明被膜付基材において、基材の屈折率が1. 60以下の場合には、基材表面に屈折率が1. 60以上の被膜(以下、中間被膜ということがある。)を形成した上で、前記本発明の鎖状シリカ系中空微粒子を含む透明被膜を形成することが推奨される。中間被膜の屈折率が1. 60以上であれば前記本発明の鎖状シリカ系中空微粒子を含む透明被膜の屈折率との差が大きく、より反射防止性能に優れた透明被膜付基材が得られる。中間被膜の屈折率は、中間被膜の屈折率を高めるために用いる金属酸化物微粒子の屈折率、金属酸化物微粒子と樹脂等の混合比率および使用する樹脂の屈折率によって調整することができる。   Furthermore, in the above-mentioned substrate with a transparent coating, when the refractive index of the substrate is 1.60 or less, a coating having a refractive index of 1.60 or more on the surface of the substrate (hereinafter sometimes referred to as an intermediate coating). It is recommended to form a transparent film containing the chain silica-based hollow fine particles of the present invention. If the refractive index of the intermediate coating is 1.60 or more, the difference between the refractive index of the transparent coating containing the chain silica-based hollow fine particles of the present invention is large, and a substrate with a transparent coating having more excellent antireflection performance is obtained. It is done. The refractive index of the intermediate coating can be adjusted by the refractive index of the metal oxide fine particles used for increasing the refractive index of the intermediate coating, the mixing ratio of the metal oxide fine particles and the resin, and the refractive index of the resin used.

中間被膜の被膜形成用塗布液は、金属酸化物粒子と被膜形成用マトリックスとの混合液であり、必要により有機溶媒が混合される。被膜形成用マトリックスとしては前記本発明のシリカ系微粒子を含む被膜と同様のものを用いることができ、同一の被膜形成用マトリックスを用いることにより、両被膜間の密着性に優れた被膜付基材が得られる。
以下に示す実施例により、本発明を更に具体的に説明する。
The coating solution for forming an intermediate coating is a mixed solution of metal oxide particles and a matrix for forming a coating, and an organic solvent is mixed as necessary. As the film forming matrix, the same film as that containing the silica-based fine particles of the present invention can be used. By using the same film forming matrix, the coated substrate having excellent adhesion between the two films Is obtained.
The following examples further illustrate the present invention.

鎖状シリカ系中空微粒子(P-1)の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを6時間で添加して、SiO2・Al23一次粒子(P-1)分散液を得た。このときのモル比MOX/SiO2=0.2であった。また、このときの反応液のpHは12.0であった。この分散液の一次粒子平均粒子径は35nmであった。(工程(a))
Preparation of chain silica-based hollow fine particles (P-1) Silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content in Al 2 O 3 content 27 wt%) was added to deionized water 3900g was warmed to 98 ° C. to 100 g, while maintaining this temperature, concentration of 1.5 wt% aqueous solution of sodium silicate 1750g as SiO 2 and Al 2 O 3 As a result, 1750 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight was added over 6 hours to obtain a dispersion of primary particles of SiO 2 .Al 2 O 3 (P-1). The molar ratio at this time was MO X / SiO 2 = 0.2. Further, the pH of the reaction solution at this time was 12.0. The average primary particle diameter of this dispersion was 35 nm. (Process (a))

ついで、SiO2・Al23一次粒子(P-1)分散液を限外濾過膜法で洗浄し、濃縮して固形分濃度5重量%のSiO2・Al23一次粒子(P-1)分散液とした。(工程(b))
別途、SiO2として濃度2重量%の酸性ケイ酸液136gと、鎖状化のための電解質として濃度10重量%のCa(NO3)2水溶液5.4gを混合した水溶液を調製し、固形分濃度5重量%のSiO2・Al23一次粒子(P-1)分散液300gとを混合し、これに濃度2重量%のNaOH水溶液9gを加えた後、150℃にて3時間水熱処理を行い、固形分濃度5重量%の鎖状複合酸化物粒子(P-1)分散液を調製した。ついで常温に冷却した。この時の分散液のpHは10.9であった。(工程(c))
Next, the SiO 2 · Al 2 O 3 primary particle (P-1) dispersion is washed by the ultrafiltration membrane method and concentrated to obtain a SiO 2 · Al 2 O 3 primary particle (P- 1) A dispersion was obtained. (Process (b))
Separately, an aqueous solution prepared by mixing 136 g of an acidic silicic acid solution having a concentration of 2% by weight as SiO 2 and 5.4 g of an aqueous solution of Ca (NO 3 ) 2 having a concentration of 10% by weight as an electrolyte for chain formation is prepared. After mixing 300 g of 5 wt% SiO 2 · Al 2 O 3 primary particle (P-1) dispersion and adding 9 g of 2 wt% NaOH aqueous solution to this, hydrothermal treatment at 150 ° C. for 3 hours. Then, a chain composite oxide particle (P-1) dispersion having a solid content concentration of 5% by weight was prepared. Then it was cooled to room temperature. The pH of the dispersion at this time was 10.9. (Process (c))

ついで、固形分濃度5重量%の鎖状複合酸化物粒子(P-1)分散液300gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液500gを17時間で添加して、シリカ・アルミナ被覆鎖状複合酸化物粒子(P-1)分散液を得た。(工程(d))Then, the solid content concentration of 5 wt% of a chain-like composite oxides particles (P-1) dispersion liquid was added to deionized water 3900g was warmed to 98 ° C. to 300 g, while maintaining this temperature, concentration as SiO 2 1. 1530 g of 5 wt% sodium silicate aqueous solution and 500 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 17 hours, and silica-alumina coated chain composite oxide particles (P-1) A dispersion was obtained. (Process (d))

ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆鎖状複合酸化物粒子(P-1)分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%の鎖状シリカ系中空微粒子(P-1)の水分散液を得た。(工程(e))(工程(f))   Subsequently, 1,125 g of pure water was added to 500 g of the silica / alumina-coated chain composite oxide particle (P-1) dispersion which was washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight. Concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water is separated and washed with an ultrafiltration membrane, and water dispersion of the chain silica hollow particles (P-1) having a solid content concentration of 20% by weight is performed. A liquid was obtained. (Step (e)) (Step (f))

得られた鎖状シリカ系中空微粒子(P-1)について、平均幅、平均長さ、外殻厚さ、貫通孔の平均径、MOX/SiO2(モル比)および屈折率を測定し、結果を表1に示す。以下に示す実施例と比較例においても同様に測定し、結果を表1に示す。
ここで、平均粒子径は動的光散乱法により測定し、屈折率は標準屈折液としてCARGILL製のSeriesA、AAを用い、前記した方法で測定した。MOXはICP発光分光分析装置(島津製作所:ICPS-8100)で測定し、SiO2は1000℃で焼成した際の残存固形分の重量より、MOX、Na2Oの重量を除去した値を用いた。
For the obtained chain silica-based hollow fine particles (P-1), the average width, average length, outer shell thickness, average diameter of through-holes, MO X / SiO 2 (molar ratio) and refractive index were measured, The results are shown in Table 1. The same measurement was performed in the following examples and comparative examples, and the results are shown in Table 1.
Here, the average particle diameter was measured by a dynamic light scattering method, and the refractive index was measured by the above-described method using Series A and AA manufactured by CARGILL as a standard refractive liquid. MO X is measured with an ICP emission spectrophotometer (Shimadzu Corporation: ICPS-8100), and SiO 2 is a value obtained by removing the weight of MO X and Na 2 O from the weight of the residual solid when calcined at 1000 ° C. Using.

透明被膜付基材(A-1)の製造
上記で得た、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-1)の水分散液を、限外濾過膜を用いて溶媒をエタノールで置換し、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-1)のアルコール分散液を調製した。
鎖状シリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して塗布液を調製した。
この塗布液をPETフィルムにバーコーター法で塗布し、80℃で、1分間乾燥させて、透明被膜の膜厚が100nmの透明被膜付基材(A-1)を得た。この透明被膜付基材(A-1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、密着性、耐擦傷性および鉛筆硬度を表2に示す。以下に示す実施例と比較例においても同様に測定し、結果を表2に示す。
Production of substrate with transparent coating (A- 1) The aqueous dispersion of chain silica-based hollow microparticles (P-1) having a solid content concentration of 20% by weight obtained above was used to remove the solvent using an ultrafiltration membrane. Substitution with ethanol was performed to prepare an alcohol dispersion of chain silica-based hollow fine particles (P-1) having a solid concentration of 20% by weight.
50 g of an alcohol dispersion of chain silica hollow fine particles (P-1) diluted with ethanol to a solid concentration of 5% by weight, 3 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.), isopropanol and n -A coating solution was prepared by thoroughly mixing 47 g of a butanol 1/1 (weight ratio) mixed solvent.
This coating solution was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a substrate with transparent coating (A-1) having a transparent coating thickness of 100 nm. Table 2 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the coating, adhesion, scratch resistance, and pencil hardness of the substrate with transparent coating (A-1). In the following examples and comparative examples, the same measurement was performed, and the results are shown in Table 2.

全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2. 0%、波長550nmの光線の反射率が7. 0%であった。   The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.

鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。   The pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the coating surface, a predetermined load was applied, and the film was pulled at a constant speed, and the presence or absence of scratches was observed.

また、透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。
残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
In addition, 11 parallel scratches were made on the surface of the substrate (A-1) with a transparent coating at intervals of 1 mm in length and width with a knife to make 100 squares, cellophane tape was adhered to this, and then cellophane tape was attached. Adhesion was evaluated by classifying the number of cells remaining without peeling off when the film was peeled into the following three stages.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △

耐擦傷性は、#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価した。
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
The scratch resistance was evaluated by the following criteria using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film.
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×

鎖状シリカ系中空微粒子(P-2)の調製
実施例1において、電解質として濃度10重量%のCa(NO3)2水溶液2.7gを混合した以外は同様にして固形分濃度20重量%の鎖状シリカ系中空微粒子(P-2)の水分散液を得た。
透明被膜付基材(A-2)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-2)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-2)を得た。
Preparation of chain silica-based hollow fine particles (P-2) In Example 1, a solid content concentration of 20% by weight was similarly used except that 2.7 g of a Ca (NO 3 ) 2 aqueous solution having a concentration of 10% by weight was mixed as an electrolyte. An aqueous dispersion of chain silica-based hollow fine particles (P-2) was obtained.
In the same manner as in Production Example 1 of substrate with transparent coating (A-2), except that an aqueous dispersion of chain silica-based hollow fine particles (P-2) having a solid content concentration of 20% by weight was used. And the base material (A-2) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

鎖状シリカ系中空微粒子(P-3)の調製
実施例1において、電解質として濃度10重量%のCa(NO3)2水溶液54gを混合した以外は同様にして固形分濃度20重量%の鎖状シリカ系中空微粒子(P-3)の水分散液を得た。
透明被膜付基材(A-3)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-3)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-3)を得た。
Preparation of chain silica-based hollow fine particles (P-3) In Example 1, a chain with a solid content of 20% by weight was prepared in the same manner except that 54 g of an aqueous Ca (NO 3 ) 2 solution having a concentration of 10% by weight was mixed as the electrolyte. An aqueous dispersion of silica-based hollow fine particles (P-3) was obtained.
In the same manner as in Production Example 1 of substrate with transparent coating (A-3), except that an aqueous dispersion of chain silica hollow particles (P-3) having a solid content concentration of 20% by weight was used, the coating solution And the base material (A-3) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

鎖状シリカ系中空微粒子(P-4)の調製
実施例1において、電解質として濃度10重量%のMg(NO3)2水溶液4.9gを混合した以外は同様にして固形分濃度20重量%の鎖状シリカ系中空微粒子(P-4)の水分散液を得た。
透明被膜付基材(A-4)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-4)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-4)を得た。
Preparation of chain silica-based hollow fine particles (P-4) In Example 1, a solid content concentration of 20 wt% was similarly obtained except that 4.9 g of an Mg (NO 3 ) 2 aqueous solution having a concentration of 10 wt% was mixed as the electrolyte. An aqueous dispersion of chain silica-based hollow fine particles (P-4) was obtained.
In the same manner as in Production Example 1 of substrate with transparent coating (A-4), except that an aqueous dispersion of chain silica-based hollow fine particles (P-4) having a solid content concentration of 20% by weight was used. And the base material (A-4) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

鎖状シリカ系中空微粒子(P-5)の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液405gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液405gを6時間で添加して、SiO2・Al23一次粒子(P-5)分散液を得た。このときのモル比MOX/SiO2=0.2であった。また、このときの反応液のpHは12.0であった。この分散液の一次粒子平均粒子径は28nmであった。(工程(a))
Preparation of chain silica-based hollow fine particles (P-5) Silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content in Al 2 O 3 content 27 wt%) was added to deionized water 3900g was warmed to 98 ° C. to 100 g, while maintaining this temperature, concentration of 1.5 wt% aqueous solution of sodium silicate 405g as SiO 2 and Al 2 O 3 405 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight was added over 6 hours to obtain a dispersion of primary particles of SiO 2 .Al 2 O 3 (P-5). The molar ratio at this time was MO X / SiO 2 = 0.2. Further, the pH of the reaction solution at this time was 12.0. The average primary particle diameter of this dispersion was 28 nm. (Process (a))

ついで、SiO2・Al23一次粒子(P-5)分散液を限外濾過膜法で洗浄し、濃縮して固形分濃度5重量%のSiO2・Al23一次粒子(P-5)分散液とした。(工程(b))
別途、SiO2として濃度2重量%の酸性ケイ酸液136gと、鎖状化のための電解質として濃度10重量%のCa(NO3)2水溶液5.4gを混合した水溶液を調製し、固形分濃度5重量%のSiO2・Al23一次粒子(P-5)分散液300gとを混合し、これに濃度2重量%のNaOH水溶液9gを加えた後、150℃にて3時間水熱処理を行い、固形分濃度5重量%の鎖状複合酸化物粒子(P-5)分散液を調製した。ついで常温に冷却した。この時の分散液のpHは10.9であった。(工程(c))
Next, the SiO 2 · Al 2 O 3 primary particles (P-5) dispersion was washed by the ultrafiltration membrane method and concentrated to concentrate SiO 2 · Al 2 O 3 primary particles (P- 5) A dispersion was obtained. (Process (b))
Separately, an aqueous solution prepared by mixing 136 g of an acidic silicic acid solution having a concentration of 2% by weight as SiO 2 and 5.4 g of an aqueous solution of Ca (NO 3 ) 2 having a concentration of 10% by weight as an electrolyte for chain formation is prepared. After mixing 300g of 5% by weight SiO 2 · Al 2 O 3 primary particle (P-5) dispersion and adding 9g of 2% by weight NaOH aqueous solution, hydrothermal treatment at 150 ° C for 3 hours. Then, a chain composite oxide particle (P-5) dispersion having a solid content concentration of 5% by weight was prepared. Then it was cooled to room temperature. The pH of the dispersion at this time was 10.9. (Process (c))

ついで、固形分濃度5重量%の鎖状複合酸化物粒子(P-5)分散液300gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液500gを17時間で添加して、シリカ・アルミナ被覆鎖状複合酸化物粒子(P-5)分散液を得た。(工程(d))Then, a chain-like composite oxide of a solid concentration of 5 wt% particles (P-5) was heated to 98 ° C. Pure water was added to 3900g to the dispersion 300 g, while maintaining this temperature, concentration as SiO 2 1. 1530 g of 5 wt% sodium silicate aqueous solution and 500 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 17 hours, and silica-alumina coated chain composite oxide particles (P-5) A dispersion was obtained. (Process (d))

ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆鎖状複合酸化物粒子(P-5)分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%の鎖状シリカ系中空微粒子(P-5)の水分散液を得た。(工程(e))(工程(f))   Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated chain composite oxide particle (P-5) dispersion which was washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight. Concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water is separated and washed with an ultrafiltration membrane, and water dispersion of the chain silica hollow particles (P-5) having a solid content concentration of 20% by weight is performed. A liquid was obtained. (Step (e)) (Step (f))

透明被膜付基材(A-5)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-5)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-5)を得た。
In the same manner as in Production Example 1 of substrate with transparent coating (A-5), except that an aqueous dispersion of chain silica hollow particles (P-5) having a solid content of 20% by weight was used, the coating solution And the base material (A-5) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

鎖状シリカ系中空微粒子(P-6)の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液20,900gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液20,900gを6時間で添加して、SiO2・Al23一次粒子(P-6)分散液を得た。このときのモル比MOX/SiO2=0.2であった。また、このときの反応液のpHは12.0であった。この分散液の一次粒子平均粒子径は70nmであった。(工程(a))
Preparation of chain silica-based hollow fine particles (P-6) Silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content in Al ( 2O 3 content 27 wt%) 100 g of pure water 3900 g was added and heated to 98 ° C., and while maintaining this temperature, 20,900 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and Al 2 An aqueous solution of sodium aluminate having a concentration of 0.5% by weight as O 3 was added in 6 hours to obtain a dispersion of primary particles of SiO 2 · Al 2 O 3 (P-6). The molar ratio at this time was MO X / SiO 2 = 0.2. Further, the pH of the reaction solution at this time was 12.0. The average primary particle diameter of this dispersion was 70 nm. (Process (a))

ついで、SiO2・Al23一次粒子(P-6)分散液を限外濾過膜法で洗浄し、濃縮して固形分濃度5重量%のSiO2・Al23一次粒子(P-6)分散液とした。(工程(b))
別途、SiO2として濃度2重量%の酸性ケイ酸液136gと、鎖状化のための電解質として濃度10重量%のCa(NO3)2水溶液5.4gを混合した水溶液を調製し、固形分濃度5重量%のSiO2・Al23一次粒子(P-6)分散液300gとを混合し、これに濃度2重量%のNaOH水溶液9gを加えた後、150℃にて3時間水熱処理を行い、固形分濃度5重量%の鎖状複合酸化物粒子(P-6)分散液を調製した。
Next, the SiO 2 · Al 2 O 3 primary particles (P-6) dispersion was washed by the ultrafiltration membrane method and concentrated to obtain a SiO 2 · Al 2 O 3 primary particles (P- 6) A dispersion was obtained. (Process (b))
Separately, an aqueous solution prepared by mixing 136 g of an acidic silicic acid solution having a concentration of 2% by weight as SiO 2 and 5.4 g of an aqueous solution of Ca (NO 3 ) 2 having a concentration of 10% by weight as an electrolyte for chain formation is prepared. After mixing 300 g of 5% by weight SiO 2 · Al 2 O 3 primary particle (P-6) dispersion and adding 9 g of 2% by weight NaOH aqueous solution to this, hydrothermal treatment at 150 ° C for 3 hours. Then, a chain composite oxide particle (P-6) dispersion having a solid content concentration of 5% by weight was prepared.

ついで常温に冷却した。この時の分散液のpHは10.9であった。(工程(c))
ついで、固形分濃度5重量%の鎖状複合酸化物粒子(P-6)分散液300gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液2,000gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液700gを17時間で添加して、シリカ・アルミナ被覆鎖状.複合酸化物粒子(P-6)分散液を得た。(工程(d))
Then it was cooled to room temperature. The pH of the dispersion at this time was 10.9. (Process (c))
Next, 3900 g of pure water was added to 300 g of the chain composite oxide particle (P-6) dispersion having a solid content concentration of 5% by weight and heated to 98 ° C., and while maintaining this temperature, the concentration of SiO 2 was 1. 2,000 g of 5 wt% sodium silicate aqueous solution and 700 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 17 hours to form silica-alumina coated chain-like composite oxide particles (P -6) A dispersion was obtained. (Process (d))

ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆鎖状複合酸化物粒子(P-6)分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%の鎖状シリカ系中空微粒子(P-6)の水分散液を得た。(工程(e))(工程(f))   Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated chain composite oxide particle (P-6) dispersion which was washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight. Concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water is separated and washed with an ultrafiltration membrane to disperse water of chain silica hollow fine particles (P-6) having a solid content concentration of 20% by weight. A liquid was obtained. (Step (e)) (Step (f))

透明被膜付基材(A-6)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-6)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-6)を得た。
In the same manner as in Production Example 1 of substrate with transparent coating (A-6), except that an aqueous dispersion of chain silica hollow fine particles (P-6) having a solid concentration of 20% by weight was used, the coating solution And the base material (A-6) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

透明被膜付基材(A-7)の製造
実施例1において、鎖状シリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液36.6gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3.7gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒58gとを用いた以外は同様にして塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-7)を得た。
Production of transparent coated substrate (A-7) In Example 1, 36.6 g of a dispersion obtained by diluting an alcohol dispersion of chain silica-based hollow fine particles (P-1) with ethanol to a solid content concentration of 5% by weight; Coating film and transparent coating film in the same manner except that 3.7 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 58 g of 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were used. A substrate with a transparent coating (A-7) having a thickness of 100 nm was obtained.

透明被膜付基材(A-8)の製造
実施例1において、鎖状シリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液55gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)2.75gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒43.1gとを用いた以外は同様にして塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-8)を得た。
Production of substrate with transparent coating (A-8) In Example 1, 55 g of a dispersion obtained by diluting an alcohol dispersion of chain silica hollow fine particles (P-1) with ethanol to a solid content concentration of 5% by weight, and acrylic Coating liquid and transparent coating film in the same manner except that 2.75 g of resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 43.1 g of a 1: 1 (weight ratio) mixed solvent of isopropanol and n-butanol were used. A substrate with a transparent coating (A-8) having a thickness of 100 nm was obtained.

鎖状シリカ系中空微粒子(P-7)の調製
限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆鎖状複合酸化物粒子(P-1)分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH0.5とし、脱アルミニウム処理を行った。次いで、pH3.0の塩酸水溶液25Lと純水10Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%の鎖状シリカ系中空微粒子(P-7)の水分散液を得た。(工程(e))(工程(f))
Preparation of chain silica-based hollow fine particles (P-7 ) Dispersion of silica-alumina-coated chain composite oxide particles (P-1) washed by ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight 1,500 g of pure water was added to 500 g, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 0.5, followed by dealumination. Next, the aluminum salt dissolved while adding 25 L of a hydrochloric acid aqueous solution of pH 3.0 and 10 L of pure water was separated and washed with an ultrafiltration membrane to form a chain silica hollow fine particle (P-7) having a solid content concentration of 20% by weight. An aqueous dispersion was obtained. (Step (e)) (Step (f))

透明被膜付基材(A-9)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(P-7)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(A-9)を得た。
In the same manner as in Production Example 1 of substrate with transparent coating (A-9), except that an aqueous dispersion of chain silica hollow particles (P-7) having a solid concentration of 20% by weight was used, the coating solution And the base material (A-9) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

比較例1Comparative Example 1

シリカ系中空微粒子(RP-1)の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを6時間で添加して、SiO2・Al23一次粒子(P-1)分散液を得た。このときのモル比MOX/SiO2=0.2であった。また、このときの反応液のpHは12.0であった。この分散液の一次粒子平均粒子径は35nmであった。(工程(a))
Preparation of silica -based hollow fine particles (RP-1) Silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content of Al 2 O 3 content 27 wt%) 100 g of pure water 3900 g was added and heated to 98 ° C., and while maintaining this temperature, 1750 g of sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 An aqueous solution of sodium aluminate having a concentration of 0.5% by weight was added over 6 hours to obtain a dispersion of primary particles of SiO 2 .Al 2 O 3 (P-1). The molar ratio at this time was MO X / SiO 2 = 0.2. Further, the pH of the reaction solution at this time was 12.0. The average primary particle diameter of this dispersion was 35 nm. (Process (a))

ついで、SiO2・Al23一次粒子(P-1)分散液を限外濾過膜法で洗浄し、濃縮して固形分濃度5重量%のSiO2・Al23一次粒子(P-1)分散液とした。(工程(b))
ついで、固形分濃度5重量%のSiO2・Al23一次粒子(P-1)分散液300gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液500gを17時間で添加して、シリカ・アルミナ被覆複合酸化物粒子(RP-1)分散液を得た。
Next, the SiO 2 · Al 2 O 3 primary particle (P-1) dispersion is washed by the ultrafiltration membrane method and concentrated to obtain a SiO 2 · Al 2 O 3 primary particle (P- 1) A dispersion was obtained. (Process (b))
Then, warmed to 98 ° C. Pure water was added to 3900g solids concentration of 5% by weight of SiO 2 · Al 2 O 3 primary particles (P-1) dispersion liquid 300 g, while maintaining this temperature, a SiO 2 1530 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight and 500 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 were added over 17 hours, and silica-alumina coated composite oxide particles (RP-1 ) A dispersion was obtained.

ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆複合酸化物粒子(RP-1)分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%の単分散したシリカ系中空微粒子(RP-1)の水分散液を得た。水分散液中のシリカ系中空微粒子(RP-1)は、鎖状化も凝集もしていなかった。   Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated composite oxide particle (RP-1) dispersion that had been washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight. Hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Next, the aluminum salt dissolved while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water was separated and washed with an ultrafiltration membrane, and the water of monodispersed silica-based hollow fine particles (RP-1) having a solid concentration of 20 wt% was obtained. A dispersion was obtained. The silica-based hollow fine particles (RP-1) in the aqueous dispersion were neither chained nor aggregated.

透明被膜付基材(RA-1)の製造
実施例1において、固形分濃度20重量%のシリカ系中空微粒子(RP-1)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(RA-1)を得た。
In the same manner as in Production Example 1 of substrate with transparent coating (RA-1), except that an aqueous dispersion of silica-based hollow fine particles (RP-1) having a solid content concentration of 20% by weight was used, the coating solution and transparent A substrate with a transparent film (RA-1) having a film thickness of 100 nm was obtained.

比較例2Comparative Example 2

鎖状シリカ系中空微粒子(RP-2)の調製
実施例1において、電解質として濃度10重量%のCa(NO3)2水溶液140gを混合した以外は同様にして工程(c)を実施した。この時、凝集粒子が得られたので、後の工程は実施しなかった。
Preparation of chain silica-based hollow fine particles (RP-2) In Example 1, step (c) was carried out in the same manner except that 140 g of a Ca (NO 3 ) 2 aqueous solution having a concentration of 10% by weight as an electrolyte was mixed. At this time, aggregated particles were obtained, so the subsequent steps were not performed.

比較例3Comparative Example 3

鎖状シリカ系中空微粒子(RP-3)の調製
実施例1において、電解質として濃度10重量%のCa(NO3)2水溶液0.1gを混合した以外は同様にして固形分濃度20重量%の鎖状シリカ系中空微粒子(RP-3)の水分散液を得た。しかしながら、多くは、比較例1と同様の単分散のシリカ系中空微粒子であった。一部の鎖状シリカ系中空微粒子(RP-3)について、実施例1と同様に物性を測定し、結果を表1に示す。
Preparation of chain silica-based hollow fine particles (RP-3) In Example 1, a solid content concentration of 20 wt% was similarly obtained except that 0.1 g of a Ca (NO 3 ) 2 aqueous solution having a concentration of 10 wt% was mixed as an electrolyte. An aqueous dispersion of chain silica-based hollow fine particles (RP-3) was obtained. However, many of them were monodispersed silica-based hollow fine particles as in Comparative Example 1. Physical properties of some chain silica-based hollow fine particles (RP-3) were measured in the same manner as in Example 1, and the results are shown in Table 1.

透明被膜付基材(RA-3)の製造
実施例1において、固形分濃度20重量%の鎖状シリカ系中空微粒子(RP-3)の水分散液を用いた以外は同様にして、塗布液および透明被膜の膜厚が100nmの透明被膜付基材(RA-3)を得た。
In the same manner as in Production Example 1 of substrate with transparent coating (RA-3), except that an aqueous dispersion of chain silica-based hollow fine particles (RP-3) having a solid content of 20% by weight was used, the coating solution And the base material (RA-3) with a transparent film whose film thickness of a transparent film is 100 nm was obtained.

比較例4Comparative Example 4

透明被膜付基材(RA-4)の製造
シリカゾル(日揮触媒化成(株)製:カタロイド-SI−45P、平均粒子径45nm、SiO2濃度40重量%)を、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度5重量%のシリカオルガノゾルを調製した。
固形分濃度5重量%のシリカオルガノゾル50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して塗布液を調製した。
この塗布液をPETフィルムにバーコーター法で塗布し、80℃で、1分間乾燥させて、透明被膜の膜厚が100nmの透明被膜付基材(RA-4)を得た。
Manufacture of substrate with transparent coating (RA-4) Silica sol ( manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid-SI-45P, average particle size 45 nm, SiO 2 concentration 40% by weight) using ultrafiltration membrane as solvent A silica organosol having a solid content concentration of 5% by weight was prepared by substituting ethanol with ethanol.
50 g of a silica organosol having a solid content concentration of 5% by weight, 3 g of an acrylic resin (Hitaloid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a mixed solvent of 1/1 (weight ratio) of isopropanol and n-butanol were sufficiently mixed. A coating solution was prepared.
This coating solution was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a substrate with transparent coating (RA-4) having a transparent coating thickness of 100 nm.

Figure 2010071010
Figure 2010071010

Figure 2010071010
Figure 2010071010

Claims (12)

外部に外殻を有し、内部に空洞を有するシリカ系中空微粒子(一次粒子)が鎖状に連結し、空洞が互いに貫通した貫通孔を有し、平均長さ(L)が20〜1500nmの範囲にあり、平均幅(W)が10〜300nmの範囲にあり、屈折率が1.10〜1.35の範囲にあることを特徴とする鎖状シリカ系中空微粒子。   Silica-based hollow fine particles (primary particles) having an outer shell on the outside and cavities inside are connected in a chain, the cavities have through-holes penetrating each other, and an average length (L) of 20 to 1500 nm A chain silica-based hollow fine particle characterized by being in the range, having an average width (W) in the range of 10 to 300 nm and a refractive index in the range of 1.10 to 1.35. 前記外殻の厚さ(TS)が2〜100nmの範囲にあり、前記平均幅(W)との比(TS)/(W)が0.05〜0.30の範囲にあることを特徴とする請求項1に記載の鎖状シリカ系中空微粒子。The thickness (T S ) of the outer shell is in the range of 2 to 100 nm, and the ratio (T S ) / (W) to the average width (W) is in the range of 0.05 to 0.30. 2. The chain silica-based hollow fine particles according to claim 1, wherein 前記貫通孔の平均径(DS)と前記平均幅(W)との比の(DS)/(W)が0.1〜0.9の範囲にあることを特徴とする請求項1または2に記載の鎖状シリカ系中空微粒子。The ratio (D S ) / (W) of the average diameter (D S ) and the average width (W) of the through holes is in the range of 0.1 to 0.9. 2. The chain silica-based hollow fine particles according to 2. シリカとシリカ以外の無機酸化物からなり、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2が0.0001〜0.2の範囲にあることを特徴とする請求項1〜3のいずれかに記載の鎖状シリカ系中空微粒子。An inorganic oxide other than silica and silica, the molar ratio MO X / SiO 2 when the inorganic oxide other than silica, expressed in MO X is lies in the range of 0.0001 to claims Item 4. The chain silica-based hollow fine particles according to any one of Items 1 to 3. 下記工程(a)〜(f)からなる鎖状シリカ系中空微粒子の製造方法。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に、または、固形分濃度が0.01〜2重量%の範囲にある種粒子が分散したアルカリ水溶液中に同時に添加して、シリカをSiO2で表し、シリカ以外の無機酸化物をMOXで表したときのモル比MOX/SiO2(A)が0.1〜2の範囲にある複合酸化物一次粒子分散液を調製する工程
(b)前記一次粒子分散液を洗浄する工程
(c)洗浄後の一次粒子分散液を電解質存在下、50〜300℃で水熱処理して鎖状複合酸化物粒子分散液を調製する工程
(d)シリカまたはシリカ・アルミナ被覆層を形成して、シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液を調製する工程
(e)シリカまたはシリカ・アルミナ被覆鎖状複合酸化物粒子分散液に酸を加えて該複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去して鎖状シリカ系中空微粒子分散液とする工程
(f)得られた分散液を洗浄する工程
A method for producing chain silica-based hollow fine particles comprising the following steps (a) to (f).
(A) An aqueous solution of a silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are dispersed in an alkaline aqueous solution or seed particles having a solid content concentration in the range of 0.01 to 2% by weight. The molar ratio MO X / SiO 2 (A) is 0.1 to 2 when the silica is represented by SiO 2 and the inorganic oxide other than silica is represented by MO X. A step of preparing a composite oxide primary particle dispersion (b) a step of washing the primary particle dispersion (c) a hydrothermal treatment of the washed primary particle dispersion at 50 to 300 ° C. in the presence of an electrolyte to form a chain Step (d) of preparing a composite oxide particle dispersion (d) Step of forming a silica or silica-alumina-coated chain composite oxide particle dispersion by forming a silica or silica-alumina coating layer (e) Silica or silica Alumina coating A step (f) was obtained in which acid was added to the chain composite oxide particle dispersion to remove at least a part of elements other than silicon constituting the composite oxide particles to form a chain silica-based hollow fine particle dispersion. Process for washing the dispersion
前記工程(c)における電解質がアルカリ土類金属塩であることを特徴とする請求項5に記載の鎖状シリカ系中空微粒子の製造方法。   6. The method for producing chain silica-based hollow fine particles according to claim 5, wherein the electrolyte in the step (c) is an alkaline earth metal salt. 前記工程(f)についで下記工程(g)を実施することを特徴とする請求項5または6に記載の鎖状シリカ系中空微粒子の製造方法。
(g)鎖状シリカ系中空微粒子分散液を50〜300℃の範囲で水熱処理する工程
The method for producing chain silica-based hollow fine particles according to claim 5 or 6, wherein the following step (g) is carried out following the step (f).
(G) Hydrothermal treatment of the chain silica-based hollow fine particle dispersion in the range of 50 to 300 ° C.
前記工程(d)が下記工程(d-1)であることを特徴とする請求項5〜7のいずれかに記載の鎖状シリカ系中空微粒子の製造方法。
(d-1)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、下記化学式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、鎖状複合酸化物粒子にシリカ被覆層を形成する工程
nSiX(4-n) ・・・(1)
〔但し、R:炭素数1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、メタクリル基、アミノ基、CF2基、X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素、n:0〜3の整数〕
The method for producing chain silica-based hollow fine particles according to any one of claims 5 to 7, wherein the step (d) is the following step (d-1).
(D-1) To the chain complex oxide particle dispersion obtained in the step (c), an alkaline aqueous solution and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof are added. Step of adding and forming a silica coating layer on the chain composite oxide particles
R n SiX (4-n) (1)
[However, R: unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF 2 group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 to 3]
前記工程(d)が下記工程(d-2)であることを特徴とする請求項5〜7のいずれかに記載の鎖状シリカ系中空微粒子の製造方法。
(d-2)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、アルカリ水溶液と、酸性ケイ酸液とを添加し、鎖状複合酸化物粒子にシリカ被覆層を形成する工程
The method for producing chain silica-based hollow fine particles according to any one of claims 5 to 7, wherein the step (d) is the following step (d-2).
(D-2) An aqueous alkali solution and an acidic silicic acid solution are added to the chain composite oxide particle dispersion obtained in the step (c) to form a silica coating layer on the chain composite oxide particles. Process
前記工程(d)が下記工程(d-3)であることを特徴とする請求項5〜7のいずれかに記載の鎖状シリカ系中空微粒子の製造方法。
(d-3)前記工程(c)で得られた鎖状複合酸化物粒子分散液に、珪酸アルカリ水溶液と、アルミン酸水溶液とを添加し、鎖状複合酸化物粒子にシリカ被覆層を形成する工程
The method for producing chain silica-based hollow fine particles according to any one of claims 5 to 7, wherein the step (d) is the following step (d-3).
(D-3) An alkali silicate aqueous solution and an aluminate aqueous solution are added to the chain complex oxide particle dispersion obtained in the step (c) to form a silica coating layer on the chain complex oxide particles. Process
請求項1〜10に記載の鎖状シリカ系中空微粒子とマトリックス形成成分とを含んでなる透明被膜形成用塗布液。   A coating solution for forming a transparent film, comprising the chain silica-based hollow fine particles according to claim 1 and a matrix-forming component. 請求項11に記載の透明被膜形成用塗布液を用いて形成された透明被膜が単独でまたは他の被膜とともに基材表面上に形成された透明被膜付基材。   The base material with a transparent film by which the transparent film formed using the coating liquid for transparent film formation of Claim 11 was formed on the base-material surface independently or with another film.
JP2010542926A 2008-12-18 2009-11-25 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film Active JP5686604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542926A JP5686604B2 (en) 2008-12-18 2009-11-25 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008321895 2008-12-18
JP2008321895 2008-12-18
PCT/JP2009/069830 WO2010071010A1 (en) 2008-12-18 2009-11-25 Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
JP2010542926A JP5686604B2 (en) 2008-12-18 2009-11-25 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film

Publications (2)

Publication Number Publication Date
JPWO2010071010A1 true JPWO2010071010A1 (en) 2012-05-24
JP5686604B2 JP5686604B2 (en) 2015-03-18

Family

ID=42268684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010542926A Active JP5686604B2 (en) 2008-12-18 2009-11-25 Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film

Country Status (4)

Country Link
JP (1) JP5686604B2 (en)
KR (1) KR101633530B1 (en)
TW (1) TWI510434B (en)
WO (1) WO2010071010A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642535B2 (en) * 2010-12-28 2014-12-17 日揮触媒化成株式会社 Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP2012240864A (en) * 2011-05-17 2012-12-10 Konica Minolta Holdings Inc Hollow particle, infrared reflection film, and infrared reflection body
US10254444B2 (en) 2011-07-26 2019-04-09 Dai Nippon Printing Co., Ltd. Anti-glare film, polarizer and image display device
JP5908230B2 (en) * 2011-08-19 2016-04-26 積水化学工業株式会社 Electret sheet
TWI455873B (en) * 2012-12-28 2014-10-11 Univ Chienkuo Technology Method for producing paint with porous hollow nanosphere
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups
EP3084036B1 (en) 2013-12-20 2019-08-14 Colgate-Palmolive Company Core shell silica particles and use for malodor reduction
BR112016013522B1 (en) 2013-12-20 2020-11-10 Colgate-Palmolive Company product for oral hygiene and teeth whitening with silica particles in core coating
JP7360294B2 (en) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
WO2023189785A1 (en) * 2022-03-31 2023-10-05 日揮触媒化成株式会社 Dispersion of hollow silica particles, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (en) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd Silica sol having long and thin particle form and production thereof
JP2002003212A (en) * 2000-06-14 2002-01-09 Catalysts & Chem Ind Co Ltd Silica-alumina coated chain silica sol and its production method
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle
WO2004099074A1 (en) * 2003-05-12 2004-11-18 Catalysts & Chemicals Industries Co., Ltd. Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330606A (en) 1993-05-24 1994-11-29 Soda Koryo Kk Fragrant straw mat
JPH0713137A (en) 1993-06-29 1995-01-17 Suzuki Yushi Kogyo Kk Inorganic hollow fine particle containing liquid crystal and liquid crystal display device using that
JP3761189B2 (en) 1993-11-04 2006-03-29 触媒化成工業株式会社 Composite oxide sol, method for producing the same, and substrate
FR2747669B1 (en) 1996-04-22 1998-05-22 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF HOLLOW SILICA PARTICLES
JPH1129318A (en) 1997-05-06 1999-02-02 Nippon Millipore Kk Spherical silica particle of microsize and its production
JP4046921B2 (en) 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
JP2004055298A (en) 2002-07-18 2004-02-19 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP3857968B2 (en) 2002-09-06 2006-12-13 麒麟麦酒株式会社 Packaging box
JP4540979B2 (en) 2003-12-25 2010-09-08 日揮触媒化成株式会社 Base material with hard coat film and coating liquid for forming hard coat film
TW200900354A (en) * 2007-03-16 2009-01-01 Asahi Glass Co Ltd Hollow micro particle, method for production thereof, coating composition, and article having coating film formed thereon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (en) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd Silica sol having long and thin particle form and production thereof
JP2002003212A (en) * 2000-06-14 2002-01-09 Catalysts & Chem Ind Co Ltd Silica-alumina coated chain silica sol and its production method
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle
WO2004099074A1 (en) * 2003-05-12 2004-11-18 Catalysts & Chemicals Industries Co., Ltd. Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate

Also Published As

Publication number Publication date
TW201034958A (en) 2010-10-01
TWI510434B (en) 2015-12-01
KR20110103934A (en) 2011-09-21
JP5686604B2 (en) 2015-03-18
KR101633530B1 (en) 2016-06-24
WO2010071010A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP5328101B2 (en) Method for producing silica-based fine particles
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5837155B2 (en) Method for producing microring-shaped inorganic oxide particles
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP2022089560A (en) Modified hollow particle and method for producing the same
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5501117B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5467948B2 (en) Substrate with transparent film and coating liquid for forming transparent film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5686604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250