JP5642535B2 - Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film - Google Patents
Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film Download PDFInfo
- Publication number
- JP5642535B2 JP5642535B2 JP2010294028A JP2010294028A JP5642535B2 JP 5642535 B2 JP5642535 B2 JP 5642535B2 JP 2010294028 A JP2010294028 A JP 2010294028A JP 2010294028 A JP2010294028 A JP 2010294028A JP 5642535 B2 JP5642535 B2 JP 5642535B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- fine particles
- based hollow
- hollow fine
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Silicon Compounds (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
Description
本発明は、球状粒子表面に突起を有する新規なシリカ系中空微粒子、該微粒子を用いた透明被膜形成用塗料および透明被膜付基材に関する。さらに詳しくは、球状シリカ系中空微粒子の表面に所定の大きさの突起を有するために、強度、耐擦傷性、耐アルカリ性等が向上した反射防止性能に優れた透明被膜の形成に好適に用いることのできる新規シリカ系中空微粒子、該微粒子を用いた透明被膜形成用塗料および透明被膜付基材に関する。 The present invention relates to novel silica-based hollow fine particles having protrusions on the surface of spherical particles, a coating for forming a transparent film using the fine particles, and a substrate with a transparent film. More specifically, since it has protrusions of a predetermined size on the surface of the spherical silica-based hollow fine particles, it should be suitably used for forming a transparent film excellent in antireflection performance with improved strength, scratch resistance, alkali resistance, etc. The present invention relates to a novel silica-based hollow fine particle, a coating for forming a transparent film using the fine particle, and a substrate with a transparent film.
従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の反射を防止するため、その表面に反射防止膜を形成することが知られており、たとえば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの基材表面に形成したり、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(たとえば、特許文献1;特開平7-133105号公報など参照)。このとき、反射防止性能を高めるために反射防止被膜の下層に高屈折率の微粒子等を含む高屈折率膜を形成することも知られている。 Conventionally, in order to prevent reflection of the surface of a substrate such as glass, plastic sheet, plastic lens, etc., it is known to form an antireflection film on the surface, for example, by coating method, vapor deposition method, CVD method, etc. A coating of a low refractive index substance such as fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate, or a coating liquid containing low refractive index fine particles such as silica fine particles is applied to the surface of the substrate. A method of forming an antireflection coating is known (see, for example, Patent Document 1; Japanese Patent Laid-Open No. 7-133105). At this time, in order to improve the antireflection performance, it is also known to form a high refractive index film containing fine particles of high refractive index under the antireflection coating.
本願出願人は特開2001−23611号公報(特許文献2)において、内部に空洞を有するシリカ系微粒子の製造方法および得られるシリカ系微粒子は屈折率が低く、このシリカ系微粒子を用いて形成された透明被膜は屈折率が低く反射防止性能に優れていることを開示している。 The applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 2001-23611 (Patent Document 2) is a method for producing silica-based fine particles having cavities therein and the resulting silica-based fine particles have a low refractive index and are formed using the silica-based fine particles. It is disclosed that the transparent film has a low refractive index and excellent antireflection performance.
さらに、特開2002−79616号公報(特許文献3)において、このような透明被膜を表示装置の前面に形成して用いると反射防止性能に優れ表示性能が向上することを開示している。 Furthermore, Japanese Patent Application Laid-Open No. 2002-79616 (Patent Document 3) discloses that when such a transparent film is formed and used on the front surface of a display device, the antireflection performance is excellent and the display performance is improved.
しかしながら、従来のシリカ系微粒子を用いた透明被膜は反射防止性能には優れているもののさらに、強度、耐擦傷性等の向上が求められている。 However, although conventional transparent coatings using silica-based fine particles are excellent in antireflection performance, further improvements in strength, scratch resistance and the like are required.
本発明者らは、鋭意検討した結果、従来の球状のシリカ系中空微粒子を調製した後、少量のアルミナを含むように表面処理し、これに水ガラス溶液の存在下、水ガラス溶液をイオン交換樹脂で脱アルカリして得た酸性珪酸液を添加すると、球状のシリカ系中空微粒子の表面に突起を有する異形シリカ系中空微粒子が得られることを見出し、これを用いると耐擦傷性が大きく向上した透明被膜を形成できることを見出して本発明を完成するに至った。 As a result of intensive studies, the present inventors prepared conventional spherical silica-based hollow fine particles, and then surface-treated to contain a small amount of alumina, and ion-exchange the water glass solution in the presence of the water glass solution. It was found that when an acidic silicic acid solution obtained by dealkalization with a resin was added, deformed silica-based hollow fine particles having protrusions on the surface of spherical silica-based hollow fine particles were obtained, and when this was used, the scratch resistance was greatly improved. The inventors have found that a transparent film can be formed and have completed the present invention.
[1]平均粒子径(DP)が25〜200nmの範囲にあり、表面に凸部を有し、該凸部の底面部の平均直径(凸P)が平均粒子径(DP)の1/40〜1/2の範囲にある(なお、平均粒子径は、任意の20個の粒子について最長径(DL)と最長径と直行する径(DS)を測定し、粒子径を(DL)+(DS)の1/2とし、その平均値とする)シリカ系中空微粒子。
[2]凸部の高さ(凸H)が凸部の底面部の平均直径(凸P)の1/10〜1/1の範囲にある[1]のシリカ系中空微粒子。
[3]屈折率が1.10〜1.35の範囲にある[1]または[2]のシリカ系中空微粒子。
[4]前記[1]〜[3]シリカ系中空微粒子、マトリックス成分および極性溶媒を含むことを特徴とする透明被膜形成用塗料。
[5]塗料中のシリカ系中空微粒子の濃度が固形分として、0.2〜40重量%の範囲にあり、マトリックス成分の濃度が固形分として、0.2〜40重量%の範囲にあり、全固形分濃度が1.0〜50重量%の範囲にある[4]の透明被膜形成用塗料。
[6]前記マトリックス形成成分が紫外線硬化型樹脂である[4]または[5]の透明被膜形成用塗料。
[7]基材上に前記[4]〜[6]の透明被膜形成用塗料を用いて形成された透明被膜を有する透明被膜付基材。
[8]前記透明被膜中のシリカ系中空微粒子の含有量が20〜80重量%である[7]の透明被膜付基材。
[9]前記透明被膜の膜厚が30〜300nmであり、屈折率が1.20〜1.50の範囲にある[7]または[8]の透明被膜付基材。
[1] The average particle diameter (D P ) is in the range of 25 to 200 nm, has a convex portion on the surface, and the average diameter (convex P ) of the bottom surface portion of the convex portion is 1 of the average particle diameter (D P ). The average particle size is determined by measuring the longest diameter (D L ) and the diameter (D S ) perpendicular to the longest diameter for any 20 particles. (D L ) + (D S ) and the average value thereof) Silica-based hollow fine particles.
[2] The silica-based hollow fine particles according to [1], wherein the height of the convex portion (convex H 2 ) is in the range of 1/10 to 1/1 of the average diameter (convex P 2 ) of the bottom surface portion of the convex portion.
[3] The silica-based hollow fine particles of [1] or [2] having a refractive index in the range of 1.10 to 1.35.
[4] A paint for forming a transparent film, comprising [1] to [3] silica-based hollow fine particles, a matrix component, and a polar solvent.
[5] The concentration of the silica-based hollow fine particles in the paint is in the range of 0.2 to 40% by weight as the solid content, the concentration of the matrix component is in the range of 0.2 to 40% by weight as the solid content, and the total solid content concentration The paint for forming a transparent film according to [4], wherein is in the range of 1.0 to 50% by weight.
[6] The transparent film-forming paint according to [4] or [5], wherein the matrix-forming component is an ultraviolet curable resin.
[7] A substrate with a transparent coating, which has a transparent coating formed on the substrate by using the transparent coating-forming paint according to [4] to [6].
[8] The substrate with a transparent coating according to [7], wherein the content of the silica-based hollow fine particles in the transparent coating is 20 to 80% by weight.
[9] The substrate with a transparent coating according to [7] or [8], wherein the transparent coating has a thickness of 30 to 300 nm and a refractive index in the range of 1.20 to 1.50.
なお、本出願人は、特開2009-78936号公報、特開2009-78935号公報、特開2009-91197号公報、特開2010-24119号公報にて、金平糖状シリカ粒子の製造方法を提案している。しかしながら、これらの先願は、屈折率が1.45程度と高く、反射防止性能が不充分であるばかりか、マトリックス樹脂との粒子との接合効果が必ずしも充分ではなく耐擦傷性が不充分であった。 In addition, the present applicant proposes a method for producing fried sugar-like silica particles in JP-A-2009-78936, JP-A-2009-78935, JP-A-2009-91197, and JP-A-2010-24119. doing. However, these prior applications have a refractive index as high as about 1.45 and insufficient antireflection performance, and the bonding effect with the particles with the matrix resin is not always sufficient, and the scratch resistance is insufficient. there were.
本発明によれば、球状シリカ系中空微粒子の表面に所定の大きさの突起が形成されているので、かかる該微粒子を用いることで、強度、耐擦傷性、耐アルカリ性等に優れる透明被膜の形成することができる。 According to the present invention, since projections of a predetermined size are formed on the surface of the spherical silica-based hollow fine particles, formation of a transparent film excellent in strength, scratch resistance, alkali resistance, etc. by using such fine particles can do.
以下、先ず、本発明に係る新規シリカ系中空微粒子について具体的に説明する。
[新規シリカ系中空微粒子]
本発明に係る新規シリカ系中空微粒子は、表面に凸部を有しするものである。
Hereinafter, first, the novel silica-based hollow fine particles according to the present invention will be specifically described.
[New silica-based hollow fine particles]
The novel silica-based hollow fine particles according to the present invention have convex portions on the surface.
凸部は、球状シリカ微粒子を概ね1/2に切断したお碗状粒子の球面を外にした状態で、切断面を球状シリカ系中空微粒子の表面に接合した状態で形成されている。
凸部の底面部の平均直径(凸P)は、新規シリカ系中空微粒子の平均粒子径(DP)の1/40〜1/2、さらには1/10〜1/2.5の範囲にあることが好ましい。
The convex portion is formed in a state in which the spherical surface of the bowl-shaped particles obtained by cutting the spherical silica fine particles approximately in half is removed and the cut surface is joined to the surface of the spherical silica-based hollow fine particles.
The average diameter (convex P ) of the bottom surface of the convex part is in the range of 1/40 to 1/2, more preferably 1/10 to 1 / 2.5 of the average particle diameter (D P ) of the novel silica-based hollow fine particles. Preferably there is.
ここで、(凸P)とは、前記お碗状粒子の切断面の直径に相当する。
(凸P)がシリカ系中空微粒子に対して小さすぎると、凸部が小さすぎて、実質的に、凸部のない球状シリカ系中空微粒子と大きく変わることが無いためにアンカリング効果(マトリックス成分の接合効果)が不充分となり、透明被膜の耐擦傷性、強度、耐アルカリ性等を向上させる効果が不充分となる場合がある。一方、(凸P)が前記範囲の上限を超えて大きい凸部は形成することが困難であり、また得られたとしても、かかる凸部によって透明被膜への緻密な充填が困難となり、透明被膜のヘイズが悪化し、また屈折率の低下が不充分となり、反射防止性能が不十分となる場合がある。
Here, (convex P 2 ) corresponds to the diameter of the cut surface of the bowl-shaped particle.
If the (protrusion P ) is too small relative to the silica-based hollow fine particles, the convex portions are too small to substantially change substantially from the spherical silica-based hollow fine particles without the convex portions. The effect of improving the scratch resistance, strength, alkali resistance, etc. of the transparent film may be insufficient. On the other hand, it is difficult to form a protrusion having a large (convex P ) exceeding the upper limit of the above range, and even if it is obtained, it becomes difficult to densely fill the transparent film with such a protrusion. In some cases, the haze is deteriorated, the refractive index is not sufficiently lowered, and the antireflection performance is insufficient.
凸部の高さ(凸H)は、前記凸部の平均直径(凸P)の1/10〜1/1、さらには2/10〜8/10の範囲にあることが好ましい。
凸部の高さ(凸H)が小さいと、マトリックス成分との接合面積が小さく、アンカリング効果が不充分となり、透明被膜の耐擦傷性、強度、耐アルカリ性等を向上させる効果が不充分となる場合がある。高さ(凸H)が高すぎても前記上限を越えるものは得ることが困難であり、得られたとしても、凸部が透明被膜中で新規シリカ系中空微粒子の緻密な充填を阻害し、透明被膜のヘイズ、透過率が不充分となり、また、屈折率の低下が不充分となるために反射防止性能が不充分となる場合がある。
The height of the convex portion (convex H 2 ) is preferably in the range of 1/10 to 1/1, more preferably 2/10 to 8/10, of the average diameter (convex P 2 ) of the convex portion.
If the height of the convex portion (convex H ) is small, the bonding area with the matrix component is small, the anchoring effect is insufficient, and the effect of improving the scratch resistance, strength, alkali resistance, etc. of the transparent coating is insufficient. There is a case. Even if the height (convex H ) is too high, it is difficult to obtain one that exceeds the above upper limit, and even if it is obtained, the convex portion inhibits dense packing of the novel silica-based hollow fine particles in the transparent film, In some cases, the haze and transmittance of the transparent coating are insufficient, and the refractive index is not sufficiently lowered, so that the antireflection performance is insufficient.
このような、表面に凸部を有する新規シリカ系中空微粒子の平均粒子径(DP)は25〜200nm、さらには30〜80nmの範囲にあることが好ましい。(これは最終的な粒子径であり、Dpはシリカ系中空粒子表面の凸部を含む直径である)
なお本発明の新規微粒子の形状は、中空粒子の表面に複数の凸部が形成された形状となる。
The average particle diameter (D P ) of such novel silica-based hollow fine particles having convex portions on the surface is preferably in the range of 25 to 200 nm, more preferably 30 to 80 nm. (This is the final particle size, and Dp is the diameter including the convex portion of the silica-based hollow particle surface)
The shape of the novel fine particles of the present invention is a shape in which a plurality of convex portions are formed on the surface of the hollow particles.
新規シリカ系中空微粒子の平均粒子径(DP)が小さいものは、前記した表面に凸部を形成する困難であり、得られたとしても、中空の割合が低くなるが、屈折率が不充分となる。新規シリカ系中空微粒子の平均粒子径(DP)が大きいと、透明性が低下し、透明被膜の膜厚を越える場合は膜強度、耐擦傷性、耐アルカリ性が低下する問題がある。 When the average particle diameter (D P ) of the novel silica-based hollow fine particles is small, it is difficult to form convex portions on the surface, and even if obtained, the hollow ratio is low, but the refractive index is insufficient. It becomes. When the average particle diameter (D P ) of the novel silica-based hollow fine particles is large, the transparency is lowered, and when exceeding the film thickness of the transparent coating, there is a problem that the film strength, scratch resistance and alkali resistance are lowered.
また、本発明に係る新規シリカ系中空微粒子の屈折率は1.10〜1.35、さらには1.10〜1.30の範囲にあることが好ましい。新規シリカ系中空微粒子の屈折率は、中空部分や表面凸部の割合にもよるが、が1.10未満のものは得ることが困難であり、1.35を越えると、粒子の含有量、大きさによっては反射防止性能が不充分となる場合がある。 The refractive index of the novel silica-based hollow fine particles according to the present invention is preferably in the range of 1.10 to 1.35, more preferably 1.10 to 1.30. Although the refractive index of the novel silica-based hollow fine particles depends on the ratio of the hollow part and the surface convex part, it is difficult to obtain a refractive index of less than 1.10, and if it exceeds 1.35, the content of the particles, Depending on the size, the antireflection performance may be insufficient.
このような、本発明の新規シリカ系中空微粒子の断面のモデル図および電子顕微鏡(TEM)写真を図1および2に示す。 図2より中空部分は、淡い陰影となっている。
上記した平均粒子径(DP)、凸部の大きさ(凸P)および凸部の高さ(凸H)は、新規シリカ系中空微粒子の透過型電子顕微鏡写真を撮影して求めた。
FIGS. 1 and 2 show a cross-sectional model view and an electron microscope (TEM) photograph of such a novel silica-based hollow fine particle of the present invention. As shown in FIG. 2, the hollow portion is lightly shaded.
The average particle diameter (D P ), the size of the convex portion (convex P 2 ), and the height of the convex portion (convex H 2 ) were determined by taking a transmission electron micrograph of the novel silica-based hollow fine particles.
平均粒子径(DP)は、任意の20個の粒子について最長径(DL)と最長径と直行する径(DS)を測定し、粒子径を(DL)+(DS)の1/2とし、その平均値とした。
凸部の平均直径(凸P)は、凸部の最下部の径を測定し、その平均値とした。
凸部の高さ(凸H)は粒子周縁部の高さを測定し、その平均値とした。
The average particle diameter (D P ) is determined by measuring the longest diameter (D L ) and the diameter (D S ) perpendicular to the longest diameter for any 20 particles, and the particle diameter is (D L ) + (D S ) The average value was taken as 1/2.
The average diameter (convex P ) of the convex portion was determined by measuring the diameter of the lowest portion of the convex portion, and taking the average value.
The height of the convex portion (convex H 2 ) was obtained by measuring the height of the peripheral portion of the particle and taking the average value.
また、新規シリカ系中空微粒子の屈折率は下記の方法によって測定する。
(1)複合酸化物分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
The refractive index of the novel silica-based hollow fine particles is measured by the following method.
(1) The composite oxide dispersion is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the fine particles.
中空部分は、周りの環境によって、気体ないし溶媒で充填されており、また、中空部分は、ボールのように粒子内部に空洞構造を構成するものであるが、中空部分は、粒子内に1室でもあって2つ以上の複数室が存在するものであってもよい。 The hollow part is filled with a gas or a solvent depending on the surrounding environment, and the hollow part forms a hollow structure inside the particle like a ball, but the hollow part has one chamber in the particle. However, there may be two or more plural chambers.
中空部分の空隙率は通常、20体積%〜80体積%の範囲にあり、かかる中空部分の測定は、実際に測定した屈折率から、空洞部を空気(屈折率=1.0)とし、外殻層をシリカ(屈折率=1.45)として計算により求める。 The void ratio of the hollow portion is usually in the range of 20% by volume to 80% by volume, and the measurement of the hollow portion is performed by setting the cavity to air (refractive index = 1.0) from the actually measured refractive index, and The shell layer is obtained by calculation with silica (refractive index = 1.45).
製造方法
このような新規シリカ系中空微粒子の製造方法は、前記した凸部を有し、平均粒子径および屈折率が前記範囲の新規シリカ系中空微粒子が得られれば特に制限は無いが、以下に例示する方法は好適に採用することができる。
Production method The production method of such a novel silica-based hollow fine particle is not particularly limited as long as a novel silica-based hollow fine particle having the above-described convex portions and having an average particle diameter and a refractive index within the above range is obtained. The exemplified method can be suitably employed.
(i)シリカ系中空微粒子
まず、凸部を形成するための母体となるシリカ系中空微粒子を製造するが、シリカ系中空微粒子の製造方法は本願出願人の出願による、特開2001−233611号公報、特開2004−203683号公報、特開2006−21938号公報、WO2006/009132号公報等に開示した方法により製造することができる。
(i) Silica-based hollow fine particles First, silica-based hollow fine particles serving as a base for forming convex portions are produced. A method for producing silica-based hollow fine particles is disclosed in Japanese Patent Application Laid-Open No. 2001-233611, filed by the present applicant. , JP 2004-203683 A, JP 2006-21938 A, WO 2006/009132 and the like.
具体的には、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とし、必要に応じてシリカ被覆層(1)を形成した後、シリカ以外の無機酸化物を除去し、さらに必要に応じてシリカ被覆層(2)を形成し、必要に応じて高温で水熱処理することによって得ることができる。シリカ系中空微粒子は、平均粒子径が約20〜190nmの範囲にある核粒子に、シリカ被覆層(1)とシリカ被覆層(2)の合計の厚さが約1〜10nm程度になるようにシリカ被覆層を形成することによって得ることができる。 Specifically, the composite oxide fine particles composed of silica and an inorganic oxide other than silica are used as a core, and after forming the silica coating layer (1) as necessary, the inorganic oxide other than silica is removed, It can be obtained by forming the silica coating layer (2) as necessary and hydrothermally treating at a high temperature as necessary. The silica-based hollow fine particles are formed so that the total thickness of the silica coating layer (1) and the silica coating layer (2) is about 1 to 10 nm on the core particles having an average particle diameter of about 20 to 190 nm. It can be obtained by forming a silica coating layer.
上記した方法は一例であって、これらの方法に限定するものではない。
本発明では、シリカ系中空微粒子として、平均粒子径は概ね20〜200nm、好ましくは25〜75nmの範囲にある粒子を用いる。(凸部形成前)
シリカ被覆層の厚さは粒子径によっても異なるが1〜20nmの範囲にあり、空隙率は概ね20体積%〜80体積%の範囲にある。
The method described above is an example, and the present invention is not limited to these methods.
In the present invention, particles having an average particle diameter of about 20 to 200 nm, preferably 25 to 75 nm are used as silica-based hollow fine particles. (Before formation of convex part)
The thickness of the silica coating layer varies depending on the particle diameter, but is in the range of 1 to 20 nm, and the porosity is generally in the range of 20% by volume to 80% by volume.
(ii) アルミン酸アルカリ水溶液の添加
まず、固形分濃度1〜20重量%のシリカ系中空微粒子の水分散液を調製し、これにアルミン酸アルカリ水溶液を混合する。この時、アルミン酸アルカリ水溶液の添加量は、シリカ系中空微粒子の平均粒子径によっても異なるが、Al2O3としてシリカ系中空微粒子の固形分重量の0.01〜10重量%、好ましくは0.1〜0.5重量%の範囲である。
(ii) Addition of alkali aluminate aqueous solution First, an aqueous dispersion of silica-based hollow fine particles having a solid concentration of 1 to 20% by weight is prepared, and an aqueous alkali aluminate solution is mixed therewith. At this time, the addition amount of the alkali aluminate aqueous solution varies depending on the average particle diameter of the silica-based hollow fine particles, but is 0.01 to 10% by weight, preferably 0, of the solid content weight of the silica-based hollow fine particles as Al 2 O 3. .1 to 0.5% by weight.
アルミン酸アルカリ水溶液の混合量が前記範囲にあれば、後述する酸性珪酸液を添加して凸部を形成する際の拠点となるアルミナが表面に形成されたアルミナ修飾シリカ系中空微粒子を調製することができる。 If the mixing amount of the alkali aluminate aqueous solution is within the above range, an alumina-modified silica-based hollow microparticle having alumina formed on the surface as a base for forming a convex portion by adding an acidic silicic acid solution described later is prepared. Can do.
アルミン酸アルカリ水溶液の添加量がAl2O3としてシリカ系中空微粒子の固形分重量の0.01重量%未満の場合は、前記拠点が少ないためか、凸部の数が少なすぎたり、凸部が大きすぎて膜強度、耐擦傷性、耐アルカリ性の向上が不充分となったり、低下する場合がある。 When the amount of the alkali aluminate aqueous solution added is less than 0.01% by weight of the solid content of the silica-based hollow fine particles as Al 2 O 3 , the number of convex portions is too small or the convex portions Is too large, the improvement in film strength, scratch resistance and alkali resistance may be insufficient or may be reduced.
アルミン酸アルカリ水溶液の添加量が10重量%を越えると、シリカ系中空微粒子表面をAl2O3が被覆するようになり、酸性珪酸液を添加した場合の凸部の形成が困難となり、シリカで被覆した粒子となる場合がある。 When the amount of the alkali aluminate aqueous solution exceeds 10% by weight, the surface of the silica-based hollow fine particles is covered with Al 2 O 3 , and it becomes difficult to form protrusions when the acidic silicic acid solution is added. It may become coated particles.
この時、添加速度は、シリカ系中空微粒子の平均粒子径、添加量等によっても異なるが、徐々に添加することが好ましい。急速に添加するとAl2O3(アルミナ水和物)微粒子がシリカ系中空微粒子表面に吸着するとともに、吸着することなく液中でAl2O3(アルミナ水和物)粒子を形成することがある。ついで、分散液を40〜150℃に加温し、概ね3〜12時間撹拌熟成する。 At this time, the addition rate varies depending on the average particle diameter, the addition amount, and the like of the silica-based hollow fine particles, but it is preferable to add gradually. When added rapidly, Al 2 O 3 (alumina hydrate) fine particles adsorb on the surface of the silica-based hollow fine particles and may form Al 2 O 3 (alumina hydrate) particles in the liquid without adsorbing. . Next, the dispersion is heated to 40 to 150 ° C. and aged with stirring for about 3 to 12 hours.
上記加温下、撹拌熟成することによって、シリカ系中空微粒子の表面に凸部形成のアルミナ拠点となるAlをドーピング(Si原子とAl原子が置換したかたち)あるいはAl2O3(アルミナ水和物)微粒子が吸着したシリカ系中空微粒子を得ることができる。 By stirring and aging under the above-mentioned heating, the surface of the silica-based hollow fine particles is doped with Al serving as an alumina base for forming convex portions (a form in which Si atoms and Al atoms are substituted) or Al 2 O 3 (alumina hydrate) ) Silica-based hollow fine particles with adsorbed fine particles can be obtained.
(iii)珪酸アルカリ水溶液の添加
ついで、珪酸アルカリ水溶液を添加する。珪酸アルカリの添加量はシリカ系中空微粒子の平均粒子径、前記アルミン酸アルカリ水溶液によるアルミナ添加量によっても異なるが、SiO2としてシリカ系中空微粒子の固形分重量の0.1〜30重量%、好ましくは1〜10重量%の範囲である。珪酸アルカリ水溶液を添加すると、シリカ系中空微粒子分散液のpHがアルカリ性になり、かつ分散液中に溶解シリカが存在するようになるため、後述する酸性珪酸液を添加した際に、酸性珪酸液中のシリカの析出が促進されるものと考えられる。
(iii) Addition of alkali silicate aqueous solution Next, an alkali silicate aqueous solution is added. The addition amount of the alkali silicate has an average particle size of the silica-based hollow particles, the varies of alumina added amount of alkali aluminate solution, 0.1 to 30 wt% of the solid weight of the silica-based hollow fine particles as SiO 2, preferably Is in the range of 1 to 10% by weight. When the aqueous alkali silicate solution is added, the pH of the silica-based hollow fine particle dispersion becomes alkaline, and dissolved silica is present in the dispersion. Therefore, when the acidic silicate liquid described later is added, It is considered that precipitation of silica is promoted.
珪酸アルカリ水溶液の添加量が少ないと、後述する酸性珪酸液を添加しても、この添加量に対応した所望の凸部の大きさ、高さを有する凸部の形成ができない場合がある。珪酸アルカリ水溶液の添加量が多すぎても、理由は明らかではないが、所望の凸部の大きさ、高さを有する凸部の形成ができない場合がある。
上記範囲で珪酸アルカリ水溶液を添加すると、後述する酸性珪酸液を添加することによって前記アルミナ拠点上にシリカを析出させて所望の凸部を形成することができる。
When the addition amount of the aqueous alkali silicate solution is small, even if an acidic silicate solution described later is added, it may not be possible to form a projection having a desired projection size and height corresponding to the addition amount. If the amount of the alkali silicate aqueous solution added is too large, the reason is not clear, but it may not be possible to form a protrusion having a desired protrusion size and height.
When an aqueous alkali silicate solution is added within the above range, a desired convex portion can be formed by depositing silica on the alumina base by adding an acidic silicic acid solution described later.
(iv)酸性珪酸液の添加
ついで、珪酸アルカリ水溶液を添加した分散液を40〜150℃に加温し、酸性珪酸液を添加する。これによって、酸性珪酸液中のシリカが中空粒子表面のアルミナ拠点上に析出し、凸部を形成する。
(iv) Addition of acidic silicic acid solution Next, the dispersion to which the aqueous alkali silicate solution has been added is heated to 40 to 150 ° C, and the acidic silicic acid solution is added. Thereby, the silica in the acidic silicic acid solution is deposited on the alumina base on the surface of the hollow particles to form a convex portion.
酸性珪酸液の添加量は、シリカ系中空微粒子の平均粒子径、前記アルミン酸アルカリ水溶液によるアルミナ添加量によっても異なるが、SiO2としてシリカ系中空微粒子の固形分重量の1〜100重量%、好ましくは10〜80重量%の範囲である。 The addition amount of the acidic silicic acid solution, the average particle size of the silica-based hollow particles, the varies of alumina added amount of alkali aluminate solution, 1 to 100 wt% of the solid weight of the silica-based hollow fine particles as SiO 2, preferably Is in the range of 10-80% by weight.
酸性珪酸液の添加量が少ないと、形成される凸部の大きさ(凸P)が小さすぎたり、凸部の高さ(凸H)が低すぎて、本願発明の効果、膜強度、耐擦傷性、耐アルカリ性等が不充分となる場合がある。酸性珪酸液の添加量が多すぎても、一度形成された凸部と凸部の間にシリカが析出して凸部が平坦化し、膜強度、耐擦傷性、耐アルカリ性等が不充分となったり、粒子の屈折率が低下するために反射防止性能が不充分となる場合がある。 When the amount of the acidic silicic acid solution is small, the size of the convex portion (convex P ) formed is too small, or the height of the convex portion (convex H ) is too low. The scratch resistance, alkali resistance, etc. may be insufficient. Even if the amount of acidic silicic acid solution is too large, silica is deposited between the projections once formed and the projections are flattened, resulting in insufficient film strength, scratch resistance, alkali resistance, etc. Or the antireflective performance may be insufficient due to a decrease in the refractive index of the particles.
酸性珪酸液の添加速度は、シリカ系中空微粒子の平均粒子径、添加量等によっても異なるが、徐々に添加することが好ましい。急速に添加すると、凸部の形成、成長に関与しない新たなシリカ微粒子が副生することがあり、最終的に凸部が平坦化した粒子が得られる場合がある。 The addition rate of the acidic silicic acid solution varies depending on the average particle diameter, addition amount, etc. of the silica-based hollow fine particles, but it is preferable to add gradually. When added rapidly, new silica fine particles that are not involved in the formation and growth of the convex portions may be by-produced, and in some cases, particles having a flat convex portion may be finally obtained.
ついで、イオン交換樹脂で脱イオンしたり、限外濾過膜等で洗浄することによって新規シリカ系中空微粒子分散液を製造することができる。
新規シリカ系中空微粒子分散液はアルコールなどの有機溶媒に溶媒置換して用いることもできる。
Next, a novel silica-based hollow fine particle dispersion can be produced by deionization with an ion exchange resin or washing with an ultrafiltration membrane or the like.
The novel silica-based hollow fine particle dispersion can also be used after solvent substitution with an organic solvent such as alcohol.
表面処理
さらに、従来公知の方法でシランカップリング剤などで処理して用いることもできる。
具体的には、本発明の新規シリカ系中空微粒子は下記式(1)で表される有機珪素化合物、これらの加水分解物で表面処理されていることが好ましい。
Surface treatment Furthermore, it can be used after being treated with a silane coupling agent or the like by a conventionally known method.
Specifically, the novel silica-based hollow fine particles of the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (1) and a hydrolyzate thereof.
Rn-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)
このような式(1)で表される有機珪素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。 Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyl Triethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriiso Propoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Minoechiru) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.
このような有機珪素化合物で表面処理されていると、マトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。
新規シリカ系中空微粒子の表面処理は微粒子のアルコール分散液に前記有機珪素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて有機珪素化合物を加水分解する。
When the surface treatment is performed with such an organosilicon compound, it can be uniformly dispersed in the matrix and densely filled, and a transparent film excellent in film strength and scratch resistance can be obtained.
The surface treatment of the novel silica-based hollow fine particles is carried out by adding a predetermined amount of the above organosilicon compound to an alcohol dispersion of fine particles, adding water thereto, and adding an acid or alkali as a hydrolysis catalyst as necessary to hydrolyze the organosilicon compound. Decompose.
このときの新規シリカ系中空微粒子と有機珪素化合物との量比(有機珪素化合物の固形分としての重量/新規シリカ系中空微粒子の重量)は新規シリカ系中空微粒子の平均粒子径によっても異なるが0.005〜1.0さらには0.01〜0.3の範囲にあることが好ましい。 The amount ratio of the new silica-based hollow fine particles to the organosilicon compound (weight as the solid content of the organosilicon compound / weight of the new silica-based hollow fine particles) varies depending on the average particle size of the new silica-based hollow fine particles. 0.005 to 1.0, more preferably 0.01 to 0.3.
前記重量比が低い場合は、後述するマトリックス形成性分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で微粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となることがある。前記重量比が高すぎても、塗料中での分散性がさらに向上することもなく、新規シリカ系中空微粒子の屈折率が高くなり、所望の低屈折率の透明被膜が得られないことがあり、反射防止性能が不充分となることがある。
ついで、本発明に係る透明被膜付基材について具体的に説明する。
When the weight ratio is low, the affinity with the matrix-forming component described later is low, the dispersibility and stability in the paint are insufficient, and the fine particles may aggregate in the paint. May not be obtained, and adhesion to the substrate, film strength, scratch resistance, etc. may be insufficient. Even if the weight ratio is too high, the dispersibility in the paint is not further improved, the refractive index of the novel silica-based hollow fine particles is increased, and a transparent film having a desired low refractive index may not be obtained. The antireflection performance may be insufficient.
Next, the transparent film-coated substrate according to the present invention will be specifically described.
[透明被膜付基材]
本発明に係る透明被膜付基材は、基材上に、新規シリカ系中空微粒子とマトリックス成分とからなる透明被膜が形成された透明被膜付基材であって、該新規シリカ系中空微粒子の平均粒子径(DP)が30〜200nmの範囲にあり、表面に凸部を有し、該凸部の底面の平均直径(凸P)が平均粒子径(DP)の1/40〜1/2の範囲にあり、屈折率が1.10〜1.35の範囲にあることを特徴としている。
[Base material with transparent coating]
The substrate with a transparent coating according to the present invention is a substrate with a transparent coating in which a transparent coating composed of a novel silica-based hollow fine particle and a matrix component is formed on the substrate, and the average of the novel silica-based hollow fine particle The particle diameter (D P ) is in the range of 30 to 200 nm, the surface has a convex portion, and the average diameter (convex P ) of the bottom surface of the convex portion is 1/40 to 1/1 / of the average particle diameter (D P ). 2 and the refractive index is in the range of 1.10 to 1.35.
基材
基材としては、従来公知の基材を用いることができ、ガラスの他、トリアセチルセルロースフィルム(TAC)、ジアセチルセルロースフィルム、アセテートブチレートセルロースフィルム等のセルロース系基材、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系基材、ポリエチレンフィルム、ポリプロピレンフィルム、環状ポリオレフィンフィルム等のポリオレフィン系基材、ナイロン−6、ナイロン−66等のポリアミド系基材、ポリアクリル系フィルム、ポリウレタン系フィルム、ポリカーボネートフィルム、ポリエーテウフィルム、ポリエーテルサルホンフィルム、ポリスチレンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、アクリロニトリルフィルム等の基材が挙げられる。また、このような基材上に、ハードコート膜等他の被膜が形成された被膜付基材を用いこともできる。
As the base material , a conventionally known base material can be used. In addition to glass, cellulose base materials such as triacetyl cellulose film (TAC), diacetyl cellulose film, acetate butyrate cellulose film, polyethylene terephthalate (PET) ), Polyester base materials such as polyethylene naphthalate, polyolefin base materials such as polyethylene film, polypropylene film and cyclic polyolefin film, polyamide base materials such as nylon-6, nylon-66, polyacrylic film, polyurethane film , Polycarbonate film, polyether film, polyethersulfone film, polystyrene film, polymethylpentene film, polyetherketone film, acrylonitrile film, etc. And the like. In addition, a coated substrate in which another coating such as a hard coat film is formed on such a substrate can also be used.
透明被膜
透明被膜を構成する新規シリカ系中空微粒子としては、前記した表面に凸部を有するシリカ系中空微粒子を用いる。
透明被膜中の新規シリカ系中空微粒子の含有量は20〜80重量%、さらには30〜60重量%の範囲にあることが好ましい。
As the novel silica-based hollow fine particles constituting the transparent coating transparent coating, the silica-based hollow fine particles having convex portions on the surface are used.
The content of the novel silica-based hollow fine particles in the transparent film is preferably in the range of 20 to 80% by weight, more preferably 30 to 60% by weight.
透明被膜中の新規シリカ系中空微粒子が少ないと、屈折率の充分に低い透明被膜が得られないことがあり、透明被膜中の新規シリカ系中空微粒子が多すぎて喪、後述するマトリックス成分の含有量が少なくなるために透明被膜の強度、耐擦傷性、耐アルカリ性等が不充分となることがある。 If there are few new silica-based hollow microparticles in the transparent coating, a transparent coating with a sufficiently low refractive index may not be obtained, and there will be too much new silica-based hollow microparticles in the transparent coating. Since the amount is small, the strength, scratch resistance, alkali resistance, etc. of the transparent film may be insufficient.
マトリックス成分としては、シリコーン系マトリックス成分、有機樹脂系マトリックス成分等が用いられる。シリコーン系マトリックス成分としては前記式(1)と同様の有機珪素化合物の加水分解重縮合物が好適に用いられ、またゾル−ゲル系マトリックスであってもよい。 As the matrix component, a silicone matrix component, an organic resin matrix component, or the like is used. As the silicone matrix component, a hydrolyzed polycondensate of an organosilicon compound similar to the formula (1) is preferably used, and may be a sol-gel matrix.
また、有機樹脂系マトリックス成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂、紫外線硬化樹脂等が挙げられる。
このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。
Examples of the organic resin matrix component include known thermosetting resins, thermoplastic resins, electron beam curable resins, and ultraviolet curable resins as coating resins.
Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc., UV curable type An acrylic resin etc. are mentioned. Further, it may be a copolymer or modified body of two or more of these resins. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.
本発明では、なかでも、紫外線硬化型樹脂あるいは電子線硬化型樹脂が好ましく、特に、紫外線硬化型樹脂を用いることが好ましい。
透明被膜中のマトリックス成分の含有量は20〜80重量%、さらには40〜70重量%の範囲にあることが好ましい。
In the present invention, among them, an ultraviolet curable resin or an electron beam curable resin is preferable, and an ultraviolet curable resin is particularly preferable.
The content of the matrix component in the transparent coating is preferably in the range of 20 to 80% by weight, more preferably 40 to 70% by weight.
透明被膜中のマトリックス成分が少ないと、マトリックス成分が少ないために基材との密着性が不充分となったり、耐擦傷性、強度、耐アルカリ性等に優れた透明被膜を得ることが困難であり、さらに透明被膜のヘイズが高くなることがある。一方、透明被膜中のマトリックス成分が多すぎても、屈折率の充分に低い透明被膜が得られないことがある。 If the matrix component in the transparent film is small, the matrix component is small, resulting in insufficient adhesion to the substrate, and it is difficult to obtain a transparent film excellent in scratch resistance, strength, alkali resistance, etc. Further, the haze of the transparent film may be increased. On the other hand, even if there are too many matrix components in the transparent film, a transparent film having a sufficiently low refractive index may not be obtained.
透明被膜の膜厚は30nm〜300nm、さらには70〜200nmの範囲にあることが好ましい。透明被膜の膜厚が薄い場合、フレネルの原理から外れた光学膜厚となり充分な反射防止性能が得られない場合がある。透明被膜の膜厚が厚すぎても、膜にクラックが生じたり膜の強度が低下することがあり、また、膜が厚すぎて反射防止性能が不充分となることがある。 The film thickness of the transparent coating is preferably in the range of 30 nm to 300 nm, more preferably 70 to 200 nm. When the film thickness of the transparent film is thin, the optical film thickness deviates from the Fresnel principle, and sufficient antireflection performance may not be obtained. If the film thickness of the transparent coating is too thick, cracks may occur in the film or the strength of the film may be reduced, and the film may be too thick and the antireflection performance may be insufficient.
また、透明被膜の屈折率が1.20〜1.50、さらには1.20〜1.35の範囲にあることが好ましい。上記粒子を使用することで、このような範囲の屈折率が低く、反射防止性能が高い透明被膜が形成できる。 Moreover, it is preferable that the refractive index of a transparent film exists in the range of 1.20-1.50, Furthermore, 1.20-1.35. By using the particles, a transparent film having a low refractive index in such a range and high antireflection performance can be formed.
本発明の透明被膜の屈折率はエリプソメーター(ULVAC社製、EMS−1)により測定した。
このような透明被膜付基材の形成方法としては従来公知の方法を採用することができる。
The refractive index of the transparent coating of the present invention was measured with an ellipsometer (ULVAC, EMS-1).
A conventionally well-known method is employable as a formation method of such a base material with a transparent film.
具体的には、後述する本発明に係る透明被膜形成用塗料を周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。 Specifically, a transparent film can be formed by applying a transparent film-forming coating composition according to the present invention, which will be described later, to a substrate by a well-known method, drying, and curing by a conventional method such as ultraviolet irradiation or heat treatment. it can.
なお、本発明の透明被膜付基材には、透明被膜とともにプライマー膜、高屈折率膜、導電性膜等の従来公知の薄膜を設けることができる。この時、プライマー膜を設けると、耐衝撃性、基材との密着性等が向上し、高屈折率膜を設けると反射防止性能がさらに向上し、導電性膜を設けると帯電防止性能、電磁波遮蔽能等を有する透明被膜付基材が得られる。 In addition, the base material with a transparent film of the present invention can be provided with a conventionally known thin film such as a primer film, a high refractive index film, and a conductive film together with the transparent film. At this time, the provision of a primer film improves impact resistance, adhesion to the substrate, etc., the provision of a high refractive index film further improves the antireflection performance, and the provision of a conductive film provides antistatic performance and electromagnetic waves. A substrate with a transparent coating having shielding ability and the like is obtained.
[透明被膜形成用塗料]
つぎに、本発明に係る透明被膜形成塗料について説明する。
本発明に係る透明被膜形成塗料は、前記新規シリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなることを特徴としている。
[Transparent coating paint]
Next, the transparent film forming paint according to the present invention will be described.
The transparent film-forming paint according to the present invention is characterized by comprising the novel silica-based hollow fine particles, a matrix-forming component, and a polar solvent.
塗料中の新規シリカ系中空微粒子の濃度は固形分として0.2〜40重量%、さらには0.3〜35重量%の範囲にあることが好ましい。塗料中の新規シリカ系中空微粒子が少ないと、得られる透明被膜中の新規シリカ系中空微粒子の含有量が少なく屈折率の充分に低い透明被膜が得られないことがある。塗料中の新規シリカ系中空微粒子が多すぎても、塗料の安定性が不充分となることがあり、得られる透明被膜の密着性、強度等が低下することがある。 The concentration of the novel silica-based hollow fine particles in the paint is preferably in the range of 0.2 to 40% by weight, more preferably 0.3 to 35% by weight as the solid content. When there are few new silica type hollow microparticles in a coating material, the content of the new silica type hollow microparticles in the obtained transparent film is small, and a transparent film having a sufficiently low refractive index may not be obtained. Even if there are too many novel silica-based hollow fine particles in the paint, the stability of the paint may be insufficient, and the adhesiveness, strength, etc. of the resulting transparent film may be reduced.
マトリックス形成成分としては、前記のようにシリコーン系(ゾルゲル系も含む)マトリックス成分、有機樹脂系マトリックス形成成分等が用いられる。マトリックス形成成分は前記マトリックス成分の前駆体であり、シリコーン系マトリックス成分の場合、前記式(1)と同様の有機珪素化合物、および加水分解重縮合物が用いられる。また、有機樹脂系マトリックス形成成分としては、熱可塑性樹脂の場合、マトリックス成分とマトリックス形成成分が同じであり、熱硬化性樹脂、電子線硬化樹脂の場合は、反応前のモノマーであり、必要に応じて、触媒や、硬化促進剤、硬化助剤、増感剤などが含まれていてもよい。 As the matrix-forming component, as described above, a silicone-based (including sol-gel-based) matrix component, an organic resin-based matrix-forming component, or the like is used. The matrix-forming component is a precursor of the matrix component, and in the case of a silicone-based matrix component, the same organosilicon compound and hydrolyzed polycondensate as in the formula (1) are used. In addition, as the organic resin matrix forming component, in the case of a thermoplastic resin, the matrix component and the matrix forming component are the same, and in the case of a thermosetting resin and an electron beam curable resin, it is a monomer before the reaction. Accordingly, a catalyst, a curing accelerator, a curing aid, a sensitizer, and the like may be included.
本発明では、なかでも、紫外線硬化型樹脂あるいは電子線硬化型樹脂が好ましく、特に、紫外線硬化型樹脂を用いることが好ましい。このような紫外線硬化型樹脂を用いると、短時間の処理で耐擦傷性や、硬度等に優れた透明被膜を生産することができる。 In the present invention, among them, an ultraviolet curable resin or an electron beam curable resin is preferable, and an ultraviolet curable resin is particularly preferable. When such an ultraviolet curable resin is used, a transparent film excellent in scratch resistance, hardness, and the like can be produced in a short time.
塗料中のマトリックス形成性分の固形分としての濃度は0.2〜40重量%、さらには0.3〜30重量%の範囲にあることが好ましい。
塗料中のマトリックス形成成分が少なければ、得られる透明被膜の膜強度、耐摩耗性等が不充分となる場合があり、また、充分な膜厚を有した透明被膜が得られないことがある。
The concentration of the matrix-forming component in the paint as a solid content is preferably 0.2 to 40% by weight, more preferably 0.3 to 30% by weight.
If there are few matrix forming components in the paint, the film strength, abrasion resistance, etc. of the obtained transparent film may be insufficient, and a transparent film having a sufficient film thickness may not be obtained.
また、充分な膜厚を有した透明被膜が得られないことがある。塗料中のマトリックス形成成分の多すぎても、塗料の安定性が低下し、基材との密着性、膜強度、耐擦傷性等が低下することがある。 In addition, a transparent film having a sufficient film thickness may not be obtained. Even if there are too many matrix-forming components in the paint, the stability of the paint may be reduced, and adhesion to the substrate, film strength, scratch resistance, etc. may be reduced.
極性溶媒
本発明に用いる極性溶媒としてはマトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともに新規シリカ系中空微粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
Polar Solvent The polar solvent used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component and, if necessary, the polymerization initiator, and can uniformly disperse the novel silica-based hollow fine particles. Can be used.
具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等が挙げられる。 Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, acetone Ketones such as acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like.
なかでも、アルコール類、カルボニル基を有する溶媒は表面処理した新規シリカ系中空微粒子が均一に分散するとともに塗料の安定性がよく、塗工性に優れ、均一性、基材との密着性、強度等にも優れた透明被膜を再現性よく形成することができる。 Among them, alcohols and carbonyl group-containing solvents are uniformly dispersed with the surface-treated new silica-based hollow fine particles, and the stability of the paint is excellent, the coating property is excellent, the uniformity, the adhesion to the substrate, and the strength. It is possible to form a transparent film with excellent reproducibility.
上記した各成分からなる透明被膜形成用塗料の濃度は全固形分として1〜50重量%、さらには2〜40重量%の範囲にあることが好ましい。全固形分濃度が少ないと、透明被膜の膜厚が30nm未満となることがあり、充分な膜強度、反射防止性能が得られないことがある。全固形分濃度が多すぎても、塗料の粘度が高くなるために塗布性が低下したり、塗料の安定性が不充分となることがあり、得られる透明被膜の基材との密着性、膜強度、耐擦傷性等が不充分となる場合がある。 The concentration of the coating for forming a transparent film comprising the above-described components is preferably in the range of 1 to 50% by weight, more preferably 2 to 40% by weight as the total solid content. If the total solid content concentration is low, the film thickness of the transparent film may be less than 30 nm, and sufficient film strength and antireflection performance may not be obtained. Even if the total solid content is too much, the viscosity of the paint is increased, so that the applicability may be lowered or the stability of the paint may be insufficient. The film strength, scratch resistance, etc. may be insufficient.
本発明に係る透明被膜形成用塗料を用いて透明被膜を形成する方法として従来公知の方法を採用することができる。
具体的には、透明被膜形成用塗料を前記したようなディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができるが、本発明ではロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。
A conventionally well-known method can be employ | adopted as a method of forming a transparent film using the coating material for transparent film formation which concerns on this invention.
Specifically, known methods such as the dipping method, spray method, spinner method, roll coating method, bar coating method, slit coater printing method, gravure printing method, and micro gravure printing method as described above for the paint for forming a transparent film It is possible to form a transparent film by applying to a base material, drying and curing by an ordinary method such as ultraviolet irradiation, heat treatment, etc., but in the present invention, a roll coating method, a slit coater printing method, a gravure printing method, Gravure printing is recommended.
[実施例]
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[実施例1]
新規シリカ系中空微粒子(1)分散液の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液3,740gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液3,740gを6時間で添加して、SiO2・Al2O3一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度0.8%であった。ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液15,400gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液5,100gを6時間で添加して、固形分濃度1.1重量%のシリカ・アルミナ被覆複合酸化物粒子分散液32,000gを得た。また、平均粒子径は61nmであった。
[Example 1]
Preparation of novel silica-based hollow fine particle (1) dispersion silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al 2 in solid content 3900 g of pure water was added to 100 g of O 3 content (27 wt%) and heated to 98 ° C., and while maintaining this temperature, 3,740 g of an aqueous sodium silicate solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3,740 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as 3 was added over 6 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.8%. Next, 15,400 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 5,100 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 6 hours to obtain a solid content concentration. 32,000 g of a 1.1% by weight silica-alumina-coated composite oxide particle dispersion was obtained. The average particle size was 61 nm.
ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆複合酸化物粒子分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。 Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated composite oxide particle dispersion which had been washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight, and then concentrated hydrochloric acid (concentration 35. 5 wt%) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved while adding 10 L of pH 3 aqueous hydrochloric acid and 5 L of pure water was separated and washed with an ultrafiltration membrane to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.
つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(1)の水分散液を得た。 Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), ion exchange is performed at 80 ° C. for 3 hours for washing, and an aqueous dispersion of silica-based hollow fine particles (1) having a solid content concentration of 20% by weight. Got.
ついで、固形分濃度20重量%のシリカ系微粒子(1)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液13gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(1)分散液を得た。 Next, 135 g of pure water was added to 100 g of the dispersion of silica-based fine particles (1) having a solid concentration of 20% by weight and stirred for 15 minutes, and then 13 g of a sodium aluminate aqueous solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain an alumina-modified silica-based hollow fine particle (1) dispersion.
得られた固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(1)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の酸性珪酸水溶液235gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(1)分散液を得た。 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% were added to 230 g of the resulting alumina-modified silica-based hollow fine particle (1) dispersion having a solid content concentration of 8.5 wt% and heated to 98 ° C. While maintaining the above, 235 g of an acidic silicic acid aqueous solution having a concentration of 3.0% by weight was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (1) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(1)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(1)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(1)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(1)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow microparticles (1) having a solid content concentration of 20% by weight, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (1) having a solid content of 20% by weight 81.2 wt%) 3 g of the silica particles, heat-treated at 50 ° C., and again using an ultrafiltration membrane, the solvent was replaced with ethanol. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (1), the refractive index, average particle diameter, convex part size (convex P ) and convex part height (convex H ) were measured, and the results are shown in the table.
透明被膜形成用塗料(1)の調製
表面処理新規シリカ系中空微粒子(1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液60gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)2.5gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒37.5gとを充分に混合して固形分濃度5.5重量%の透明被膜形成用塗料(1)を調製した。
Preparation of paint for forming transparent film (1) Surface treatment 60 g of an aqueous dispersion of silica-based hollow fine particles (1) diluted with ethanol to a solid concentration of 5% by weight, acrylic resin (Hitaroid 1007, Hitachi Chemical ( Co., Ltd.) 2.5 g, and 17.5 (weight ratio) mixed solvent of isopropanol and n-butanol 37.5 g mixed well, and a coating composition for forming a transparent film having a solid content concentration of 5.5 wt% (1) Was prepared.
ハードコート膜形成用塗布液の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン1.88g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で20時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
Preparation of coating liquid for forming hard coat film Silica sol dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by weight, dispersion medium: isopropanol, particle refractive index 1.46) 100 g is mixed with 1.88 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-503, SiO 2 component 81.2%) and 3.1 g of ultrapure water is added. Then, a 12 nm silica sol dispersion surface-treated by stirring at 50 ° C. for 20 hours was obtained (solid content concentration 40.5 wt%).
その後、ロータリーエバポレーターでプロピレングリコールモノプロピルエーテル(PGME)に溶剤置換した(固形分40.5%)。
ついで、固形分濃度40.5重量%のシリカゾル(1-8)のプロピレングリコールモノプロピルエーテル分散液51.85gと、ジヘキサエリスリトールトリアセテート(共栄社化学(株)製:DPE−6A)18.90g、と1.6−ヘキサンジオールジアクリレート(共栄社化学(株)製;ライトアクリレートSR−238F)2.10gとシリコーン系レベリング剤(楠本化成(株)製;ディスパロン1610)0.01gと光重合開始剤(チバジャパン(株))製:イルガキュア184、PGMEで固形分濃度10%に溶解)12.60gとPGME14.54gとを充分に混合して固形分濃度42.0重量%のハードコート膜形成用塗布液を調製した。
Thereafter, the solvent was replaced with propylene glycol monopropyl ether (PGME) by a rotary evaporator (solid content: 40.5%).
Then, a propylene glycol monopropyl ether dispersion 51.85g of solids concentration 40.5 wt% of silica sol (1-8), di-hexa erythritol triacetate (manufactured by Kyoeisha Chemical Co., Ltd.: D P E-6A) 18 . 90 g, and 1.6-hexanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate SR-238F) 2.10 g and a silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon 1610) 0.01 g photopolymerized. Initiator (Ciba Japan Co., Ltd.): Irgacure 184, dissolved in PGME to a solid content of 10%) 12.60 g and PGME 14.54 g are mixed well to form a hard coat film having a solid content of 42.0% by weight. A forming coating solution was prepared.
透明被膜付基材(1)の製造
まず、ハードコート膜形成用塗布液を、TACフィルム(パナック(株)製:FT−PB80UL−M、厚さ:80μm、屈折率:1.51)にバーコーター法(#14)で塗布し、80℃で120秒間乾燥した後、300mJ/cm2の紫外線を照射して硬化させてハードコート膜を形成した。ハードコート膜の膜厚は5μmであった。
Manufacture of substrate with transparent coating (1) First, the coating liquid for forming a hard coat film was applied to a TAC film (manufactured by Panac Corporation: FT-PB80UL-M, thickness: 80 μm, refractive index: 1.51). It was applied by the coater method (# 14), dried at 80 ° C. for 120 seconds, and then cured by irradiating with 300 mJ / cm 2 of ultraviolet rays to form a hard coat film. The film thickness of the hard coat film was 5 μm.
ついで、透明被膜形成用塗料(1)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(1)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。この反射防止用透明被膜付基材(1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦り傷性を表2に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2. 0%、波長550nmの光線の反射率が6. 0%であった。 Next, the transparent film-forming paint (1) was applied by the bar coater method (bar # 4), dried at 80 ° C. for 120 seconds, then cured by irradiation with 600 mJ / cm 2 of UV light in an N 2 atmosphere, and reflected. A substrate (1) with a transparent coating for prevention was prepared. At this time, the film thickness of the antireflection transparent coating was 100 nm. Table 2 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (1) with a transparent coating for antireflection. The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 6.0%.
鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.
密着性
透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
残存升目の数90個以上 :◎
残存升目の数85〜89個 :○
残存升目の数84個以下 :△
Adhesive transparent film-coated substrate (A-1) on the surface of the substrate (A-1) with 11 parallel scratches at intervals of 1 mm in length and width to make 100 squares, cellophane tape is adhered to this, then cellophane tape is attached Adhesion was evaluated by classifying the number of cells remaining without peeling off when the film was peeled into the following three stages. The results are shown in the table.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85-89: ○
Number of remaining squares: 84 or less: △
耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価し、結果を表に示した。
評価基準:
筋条の傷が認められない :◎
筋条の傷が僅かに認められる :○
筋条の傷が多数認められる :△
面が全体的に削られている :×
Measurement of scratch resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in the table.
Evaluation criteria:
No streak injury is found: ◎
Slight flaws are observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×
耐アルカリ性
耐鹸化性評価
鹸化テスト方法:透明被膜付基材(1)を40℃の10wt%NaOH水溶液に80秒浸漬する。鹸化テスト前後の透明被膜表面のΔ接触角を測定し、以下の基準で評価し、結果を表に示した。
〈評価基準〉
±5°以内 :◎
±5〜10° :○
±10〜20° :△
±20°以上 :×
Alkali resistance Evaluation of saponification resistance Saponification test method: Substrate with transparent coating (1) is immersed in a 10 wt% NaOH aqueous solution at 40C for 80 seconds. The Δ contact angle on the surface of the transparent coating before and after the saponification test was measured and evaluated according to the following criteria, and the results are shown in the table.
<Evaluation criteria>
Within ± 5 °: ◎
± 5 to 10 °: ○
± 10-20 °: △
± 20 ° or more: ×
[実施例2]
新規シリカ系中空微粒子(2)分散液の調製
実施例1と同様にして調製した固形分濃度20重量%のシリカ系微粒子(1)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液6.7gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(2)を得た。
[Example 2]
Preparation of New Silica-Based Hollow Fine Particles (2) Dispersion After adding 135 g of pure water to 100 g of silica-based fine particles (1) dispersion having a solid content of 20% by weight prepared in the same manner as in Example 1, the mixture was stirred for 15 minutes. 6.7 g of a sodium aluminate aqueous solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain alumina-modified silica-based hollow fine particles (2).
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(2)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液182gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(2)分散液を得た。 Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% were added to 230 g of the alumina-modified silica-based hollow fine particle (2) dispersion having a solid content concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 182 g of a 3.0 wt% aqueous silicic acid solution was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (2) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(2)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(2)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(2)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(2)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow microparticles (2) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (2) having a solid content of 20% by weight 81.2 wt%) 3 g of the silica particles, heat-treated at 50 ° C., and again using a ultrafiltration membrane, the solvent was replaced with ethanol. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (2), the refractive index, average particle diameter, convex part size (convex P ) and convex part height (convex H ) were measured, and the results are shown in the table.
透明被膜形成用塗料(2)の調製
実施例1において、表面処理新規シリカ系中空微粒子(2)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(2)を調製した。
Preparation of transparent film-forming coating material (2) In Example 1, for the formation of a transparent film having a solid content of 5.5% by weight, except that an alcohol dispersion of the surface treated novel silica-based hollow fine particles (2) was used. A paint (2) was prepared.
透明被膜付基材(2)の製造
実施例1において、透明被膜形成用塗料(2)を用いた以外は同様にして透明被膜付基材(2)を得た。この透明被膜付基材(2)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent film (2) A substrate with transparent film (2) was obtained in the same manner as in Production Example 1 except that the paint for forming a transparent film (2) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance of this substrate with transparent film (2) were measured, and the results are shown in the table.
[実施例3]
新規シリカ系中空微粒子(3)分散液の調製
実施例1と同様にして調製した固形分濃度20重量%のシリカ系微粒子(1)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液13gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(3)を得た。
[Example 3]
Preparation of novel silica-based hollow fine particle (3) dispersion liquid After adding 135 g of pure water to 100 g of silica-based fine particle (1) dispersion liquid having a solid concentration of 20% by weight prepared in the same manner as in Example 1, the mixture was stirred for 15 minutes. 13 g of an aqueous sodium aluminate solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain alumina-modified silica-based hollow fine particles (3).
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(3)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液274gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(3)分散液を得た。 Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% are added to 230 g of the alumina-modified silica-based hollow fine particle (3) dispersion having a solid content concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 274 g of a 3.0% by weight aqueous silicic acid solution was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (3) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(3)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(3)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(3)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(3)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of a novel silica-based hollow microparticle (3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (3) having a solid content of 20% by weight 81.2% by weight) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (3), the refractive index, the average particle diameter, the size of the convex portions (convex P ) and the height of the convex portions (convex H ) are measured, and the results are shown in the table.
透明被膜形成用塗料(3)の調製
実施例1において、表面処理新規シリカ系中空微粒子(3)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(3)を調製した。
Preparation of transparent film-forming coating material (3) In Example 1, for the formation of a transparent film having a solid content of 5.5% by weight, except that an alcohol dispersion of the surface-treated novel silica-based hollow fine particles (3) was used. A paint (3) was prepared.
透明被膜付基材(3)の製造
実施例1において、透明被膜形成用塗料(3)を用いた以外は同様にして透明被膜付基材(3)を得た。この透明被膜付基材(3)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (3) In Example 1, a transparent film-coated substrate (3) was obtained in the same manner except that the transparent film-forming paint (3) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance evaluation of this substrate with transparent film (3) were measured, and the results are shown in the table.
[実施例4]
新規シリカ系中空微粒子(4)分散液の調製
実施例1と同様にして調製した固形分濃度20重量%のシリカ系微粒子(1)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液20gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(4)を得た。
[Example 4]
Preparation of novel silica-based hollow fine particle (4) dispersion liquid After adding 135 g of pure water to 100 g of silica-based fine particle (1) dispersion liquid having a solid content of 20% by weight prepared in the same manner as in Example 1, the mixture was stirred for 15 minutes. 20 g of an aqueous sodium aluminate solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain alumina-modified silica-based hollow fine particles (4).
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(4)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液306gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(4)分散液を得た。 Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% are added to 230 g of the alumina-modified silica-based hollow fine particle (4) dispersion having a solid concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 306 g of a 3.0% by weight aqueous silicic acid solution was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (4) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(4)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(4)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(4)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(4)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow microparticles (4) having a solid content concentration of 20% by weight, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacrylsilane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (4) having a solid content of 20% by weight 81.2% by weight) 3 g of the mixture, heat-treated at 50 ° C., and again using a ultrafiltration membrane, the solvent was replaced with ethanol. ) Alcohol dispersion was prepared.
For the obtained novel silica-based hollow fine particles (4), the refractive index, average particle diameter, convex size (convex P ) and convex height (convex H ) were measured, and the results are shown in the table.
透明被膜形成用塗料(4)の調製
実施例1において、表面処理新規シリカ系中空微粒子(4)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(4)を調製した。
Preparation of paint for forming transparent film (4) In Example 1, for the preparation of transparent film having a solid content concentration of 5.5% by weight, except that an alcohol dispersion of the surface-treated novel hollow silica fine particles (4) was used. A paint (4) was prepared.
透明被膜付基材(4)の製造
実施例1において、透明被膜形成用塗料(4)を用いた以外は同様にして透明被膜付基材(4)を得た。この透明被膜付基材(4)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (4) A transparent film-coated substrate (4) was obtained in the same manner as in Production Example 1 except that the transparent film-forming paint (4) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance of this substrate with transparent film (4) were measured, and the results are shown in the table.
[実施例5]
透明被膜形成用塗料(5)の調製
実施例1において、表面処理新規シリカ系中空微粒子(1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液41gと、アクリル樹脂(日立化成(株)製:ヒタロイド1007)3.7gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒60gとを充分に混合した以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(5)を調製した。
[Example 5]
Preparation of paint for forming transparent film (5) In Example 1, 41 g of a dispersion of a surface-treated novel silica-based hollow fine particle (1) diluted with ethanol to a solid content concentration of 5% by weight, and acrylic resin (Hitachi) Transparent with a solids concentration of 5.5% by weight, except that 3.7 g of Hitachi Chemical 1007) and 60 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed. A film-forming paint (5) was prepared.
透明被膜付基材(5)の製造
実施例1において、透明被膜形成用塗料(5)を用いた以外は同様にして透明被膜付基材(5)を得た。この透明被膜付基材(5)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (5) In Example 1, a transparent film-coated substrate (5) was obtained in the same manner except that the transparent film-forming paint (5) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance evaluation of this substrate with transparent film (5) were measured, and the results are shown in the table.
[実施例6]
透明被膜形成用塗料(6)の調製
表面処理新規シリカ系中空微粒子(1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液65.5gと、アクリル樹脂(日立化成(株)製:ヒタロイド1007、)3.3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒50.8gとを充分に混合した以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(6)を調製した。
[Example 6]
Preparation of paint for forming transparent film (6) Surface treatment 65.5 g of a dispersion of a novel silica-based hollow fine particle (1) diluted with ethanol to a solid content concentration of 5% by weight and acrylic resin (Hitachi Chemical Co., Ltd.) ) Made: Hitaloid 1007,) 3.3 g and transparent with a solid content concentration of 5.5% by weight, except that 50.8 g of a mixed solvent of isopropanol and n-butanol 1/1 (weight ratio) was thoroughly mixed. A film-forming paint (6) was prepared.
透明被膜付基材(6)の製造
実施例1において、透明被膜形成用塗料(6)を用いた以外は同様にして透明被膜付基材(6)を得た。この透明被膜付基材(6)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (6) A transparent film-coated substrate (6) was obtained in the same manner as in Production Example 1 except that the transparent film-forming paint (6) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance evaluation of this transparent film-coated substrate (6) were measured, and the results are shown in the table.
[実施例7]
新規シリカ系中空微粒子(7)分散液の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液740gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液740gを6時間で添加して、SiO2・Al2O3一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度0.6%であった。ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,500gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,500gを6時間で添加して、固形分濃度1.0重量%のシリカ・アルミナ被覆複合酸化物粒子分散液15,000gを得た。また、平均粒子径は40nmであった。
[Example 7]
Preparation of novel silica-based hollow fine particle (7) dispersion silica-alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al 2 in solid content 3900 g of pure water was added to 100 g of O 3 content (27 wt%) and heated to 98 ° C. While maintaining this temperature, 740 g of an aqueous sodium silicate solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 were used. Then, 740 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight was added over 6 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.6%. Next, 7,500 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 2,500 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 6 hours to obtain a solid content concentration. 15,000 g of a 1.0 wt% silica / alumina-coated composite oxide particle dispersion was obtained. Moreover, the average particle diameter was 40 nm.
ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆複合酸化物粒子分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。 Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated composite oxide particle dispersion which had been washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight, and then concentrated hydrochloric acid (concentration 35. 5 wt%) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Subsequently, the aluminum salt dissolved while adding 10 L of pH 3 aqueous hydrochloric acid and 5 L of pure water was separated and washed with an ultrafiltration membrane to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.
つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(1)の水分散液を得た。 Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), ion exchange is performed at 80 ° C. for 3 hours for washing, and an aqueous dispersion of silica-based hollow fine particles (1) having a solid content concentration of 20% by weight. Got.
ついで、固形分濃度20重量%のシリカ系微粒子(2)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液20gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(7)分散液を得た。 Next, 135 g of pure water was added to 100 g of a silica-based fine particle (2) dispersion having a solid content of 20% by weight and stirred for 15 minutes. Then, 20 g of a sodium aluminate aqueous solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain an alumina-modified silica-based hollow fine particle (7) dispersion.
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(7)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液352gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(7)分散液を得た。 Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% were added to 230 g of the alumina-modified silica-based hollow fine particle (7) dispersion having a solid concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 352 g of a 3.0% by weight aqueous silicic acid solution was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (7) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(7)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(7)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(7)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(7)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of a novel silica-based hollow fine particle (7) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (7) having a solid content concentration of 20% by weight 81.2% by weight) 3 g of the mixture, heat-treated at 50 ° C., and again using ultrafiltration membranes, the solvent was replaced with ethanol. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (7), the refractive index, the average particle diameter, the size of the convex portions (convex P ) and the height of the convex portions (convex H ) are measured, and the results are shown in the table.
透明被膜形成用塗料(7)の調製
実施例1において、固形分濃度20重量%の表面処理新規シリカ系中空微粒子(7)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(2)を調製した。
Preparation of Transparent Film Forming Paint (7) In Example 1, the solid content concentration was 5.5 in the same manner except that an alcohol dispersion of the surface-treated novel silica-based hollow fine particles (7) having a solid content concentration of 20% by weight was used. A paint (2) for forming a transparent coating film with a weight% was prepared.
透明被膜付基材(7)の製造
実施例1において、透明被膜形成用塗料(7)を用いた以外は同様にして透明被膜付基材(7)を得た。この透明被膜付基材(7)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (7) In Example 1, a transparent film-coated substrate (7) was obtained in the same manner except that the transparent film-forming paint (7) was used. The transparent film-coated substrate (7) was evaluated for total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance, and the results are shown in the table.
[実施例8]
新規シリカ系中空微粒子(8)分散液の調製
シリカ・アルミナゾル(日揮触媒化成(株)製:USBB−120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液9,600gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液9,600gを6時間で添加して、SiO2・Al2O3一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度0.9%であった。ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液34,400gとAl2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液11,500gを6時間で添加して、固形分濃度1.1重量%のシリカ・アルミナ被覆複合酸化物粒子分散液69,000gを得た。また、平均粒子径は81nmであった。
[Example 8]
Preparation of New Silica-Based Hollow Fine Particle (8) Dispersion Silica-Alumina Sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al 2 in solid content 3900 g of pure water was added to 100 g of O 3 content (27 wt%) and heated to 98 ° C., and while maintaining this temperature, 9,600 g of an aqueous sodium silicate solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 9,600 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as No. 3 was added in 6 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.9%. Subsequently, 34,400 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 11,500 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added over 6 hours to obtain a solid content concentration. As a result, 69,000 g of a 1.1 wt% silica / alumina-coated composite oxide particle dispersion was obtained. The average particle size was 81 nm.
ついで、限外濾過膜法で洗浄し、濃縮して固形分濃度13重量%としたシリカ・アルミナ被覆複合酸化物粒子分散液500gに純水1,125gを加え、ついで、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら溶解したアルミニウム塩を限外濾過膜で分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液(8)を得た。 Next, 1,125 g of pure water was added to 500 g of the silica / alumina-coated composite oxide particle dispersion which had been washed by the ultrafiltration membrane method and concentrated to a solid content concentration of 13% by weight, and then concentrated hydrochloric acid (concentration 35. 5 wt%) was added dropwise to adjust the pH to 1.0, and dealumination was performed. Next, the aluminum salt dissolved while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water was separated and washed with an ultrafiltration membrane to obtain an aqueous dispersion (8) of silica-based hollow fine particles having a solid content concentration of 20% by weight. .
ついで、固形分濃度20重量%のシリカ系微粒子(8)分散液100gに純水135gを加え、15分間攪拌したのち、濃度0.9重量%のアルミン酸ナトリウム水溶液18gを4時間で添加した。その後90℃に加温し、3時間熟成してアルミナ修飾シリカ系中空微粒子(8)分散液を得た。 Next, 135 g of pure water was added to 100 g of a dispersion of silica-based fine particles (8) having a solid concentration of 20% by weight and stirred for 15 minutes, and then 18 g of a sodium aluminate aqueous solution having a concentration of 0.9% by weight was added over 4 hours. Thereafter, the mixture was heated to 90 ° C. and aged for 3 hours to obtain a dispersion of alumina-modified silica-based hollow fine particles (8).
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(8)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液312gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(8)分散液を得た。 Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% are added to 230 g of the alumina-modified silica-based hollow fine particle (8) dispersion having a solid concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 312 g of a 3.0% by weight aqueous silicic acid solution was added over 14 hours to obtain a dispersion of novel silica-based hollow fine particles (8) having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(8)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(8)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(8)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(8)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow microparticles (8) having a solid concentration of 20% by weight, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of novel silica-based hollow fine particles (8) having a solid content of 20% by weight 81.2% by weight) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (8), the refractive index, the average particle diameter, the size of the convex portions (convex P ) and the height of the convex portions (convex H ) are measured, and the results are shown in the table.
透明被膜形成用塗料(8)の調製
実施例1において、固形分濃度20重量%の表面処理新規シリカ系中空微粒子(8)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(8)を調製した。
Preparation of Transparent Film Forming Paint (8) In Example 1, the solid content concentration was 5.5 except that an alcohol dispersion of the surface-treated novel silica-based hollow fine particles (8) having a solid content concentration of 20% by weight was used. A paint (8) for forming a transparent coating film with a weight% was prepared.
透明被膜付基材(8)の製造
実施例1において、透明被膜形成用塗料(8)を用いた以外は同様にして透明被膜付基材(8)を得た。この透明被膜付基材(8)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of transparent film-coated substrate (8) A transparent film-coated substrate (8) was obtained in the same manner as in Production Example 1 except that the transparent film-forming paint (8) was used. The transparent film-coated substrate (8) was measured for total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance evaluation, and the results are shown in the table.
[比較例1]
シリカ系中空微粒子(R1)分散液の調製
実施例1と同様にしてイオン交換して洗浄を行い、固形分濃度20重量%のシリカ系中空微粒子(1)の水分散液を得た。
[Comparative Example 1]
Preparation of Silica Hollow Fine Particle (R1) Dispersion Ion exchange was carried out in the same manner as in Example 1 to obtain a water dispersion of silica hollow fine particles (1) having a solid content concentration of 20% by weight.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(R1)のアルコール分散液を調製した。
固形分濃度20重量%のシリカ系中空微粒子(1)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理したシリカ系中空微粒子(R1)のアルコール分散液を調製した。
Next, an alcohol dispersion of silica-based hollow fine particles (R1) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component 81) as a methacryl silane coupling agent was added to 100 g of an alcohol dispersion of silica-based hollow fine particles (1) having a solid content of 20% by weight. .2 wt%) 3 g was added, heat-treated at 50 ° C., and the surface-treated silica-based hollow fine particles (R1) having a solid content concentration of 20 wt% were substituted with ethanol using an ultrafiltration membrane again. An alcohol dispersion was prepared.
透明被膜形成用塗料(R1)の調製
実施例1において、固形分濃度20重量%の表面処理シリカ系中空微粒子(R1)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R1)を調製した。
Preparation of Transparent Film Forming Paint (R1) In Example 1, the solid content concentration was 5.5 wt.% Except that an alcohol dispersion of surface-treated silica-based hollow fine particles (R1) having a solid content concentration of 20 wt% was used. % Transparent film-forming paint (R1) was prepared.
透明被膜付基材(R1)の製造
実施例1において、透明被膜形成用塗料(R1)を用いた以外は同様にして透明被膜付基材(R1)を得た。この透明被膜付基材(R1)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent coating (R1) A substrate with transparent coating (R1) was obtained in the same manner as in Example 1 except that the coating for forming a transparent coating (R1) was used. The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, scratch resistance and saponification resistance evaluation of this transparent film-coated substrate (R1) were measured, and the results are shown in the table.
[比較例2]
新規シリカ系中空微粒子(R2)分散液の調製
実施例1と同様にしてアルミナ修飾シリカ系中空微粒子(2)を得た。
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(2)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液52gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(R2)分散液を得た。
[Comparative Example 2]
Preparation of New Silica-Based Hollow Fine Particle (R2) Dispersion Alumina-modified silica-based hollow fine particles (2) were obtained in the same manner as in Example 1.
Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% were added to 230 g of the alumina-modified silica-based hollow fine particle (2) dispersion having a solid content concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 52 g of a 3.0% by weight aqueous silicic acid solution was added over 14 hours to obtain a novel silica-based hollow fine particle (R2) dispersion having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(R2)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(R2)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(R2)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(R2)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow fine particles (R2) having a solid content of 20% by weight, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (R2) having a solid content concentration of 20% by weight 81.2% by weight) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane. ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (R2), the refractive index, average particle diameter, convex size (convex P ) and convex height (convex H ) were measured, and the results are shown in the table.
透明被膜形成用塗料(R2)の調製
実施例1において、表面処理新規シリカ系中空微粒子(R2)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R2)を調製した。
Preparation of transparent film-forming coating material (R2) In Example 1, for the formation of a transparent film having a solid content concentration of 5.5% by weight, except that an alcohol dispersion of the surface treated novel silica-based hollow fine particles (R2) was used. A paint (R2) was prepared.
透明被膜付基材(R2)の製造
実施例1において、透明被膜形成用塗料(R2)を用いた以外は同様にして透明被膜付基材(R2)を得た。この透明被膜付基材(R2)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent coating (R2) A substrate with transparent coating (R2) was obtained in the same manner as in Example 1 except that the coating for forming a transparent coating (R2) was used. The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, scratch resistance and saponification resistance evaluation of this substrate with transparent film (R2) were measured, and the results are shown in the table.
[比較例3]
新規シリカ系中空微粒子(R3)分散液の調製
実施例1と同様にしてアルミナ修飾シリカ系中空微粒子(2)を得た。
つぎに、固形分濃度8.5重量%のアルミナ修飾シリカ系中空微粒子(2)分散液230gに、純水460g、濃度29%の珪酸ナトリウム水溶液6gを加えて98℃に加温し、この温度を保持しながら、濃度3.0重量%の珪酸水溶液 587gを14時間で添加して、表面に凸部を有する新規シリカ系中空微粒子(R3)分散液を得た。
[Comparative Example 3]
Preparation of New Silica-Based Hollow Fine Particle (R3) Dispersion Alumina-modified silica-based hollow fine particles (2) were obtained in the same manner as in Example 1.
Next, 460 g of pure water and 6 g of a sodium silicate aqueous solution with a concentration of 29% were added to 230 g of the alumina-modified silica-based hollow fine particle (2) dispersion having a solid content concentration of 8.5% by weight and heated to 98 ° C. While maintaining the above, 587 g of a 3.0 wt% aqueous silicic acid solution was added over 14 hours to obtain a novel silica-based hollow fine particle (R3) dispersion having convex portions on the surface.
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の新規シリカ系中空微粒子(R3)のアルコール分散液を調製した。
固形分濃度20重量%の新規シリカ系中空微粒子(R3)のアルコール分散液100gにメタクリルシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製:KBM-503、SiO2成分81.2重量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20重量%の表面処理した新規シリカ系中空微粒子(R3)のアルコール分散液を調製した。
得られた新規シリカ系中空微粒子(R3)について、屈折率、平均粒子径、凸部の大きさ(凸P)および凸部の高さ(凸H)を測定し、結果を表に示す。
Next, an alcohol dispersion of novel silica-based hollow fine particles (R3) having a solid content concentration of 20% by weight, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
Γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 component) as a methacryl silane coupling agent to 100 g of an alcohol dispersion of a novel silica-based hollow fine particle (R3) having a solid content of 20% by weight 81.2% by weight) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane, and the surface-treated novel silica-based hollow fine particles (R3 ) Alcohol dispersion was prepared.
With respect to the obtained novel silica-based hollow fine particles (R3), the refractive index, average particle diameter, convex size (convex P ) and convex height (convex H ) were measured, and the results are shown in the table.
透明被膜形成用塗料(R3)の調製
実施例1において、表面処理新規シリカ系中空微粒子(R3)のアルコール分散液を用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R3)を調製した。
Preparation of transparent film-forming paint (R3) In Example 1, except that an alcohol dispersion of surface-treated novel silica-based hollow fine particles (R3) was used, a transparent film-forming film having a solid content concentration of 5.5% by weight was used. A paint (R3) was prepared.
透明被膜付基材(R3)の製造
実施例1において、透明被膜形成用塗料(R3)を用いた以外は同様にして透明被膜付基材(R3)を得た。この透明被膜付基材(R3)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent coating (R3) A substrate with transparent coating (R3) was obtained in the same manner as in Example 1 except that the coating for forming a transparent coating (R3) was used. The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, scratch resistance, and saponification resistance of this substrate with transparent coating (R3) were measured, and the results are shown in the table.
[比較例4]
透明被膜形成用塗料(R4)の調製
実施例1において、表面処理新規シリカ系中空微粒子(1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液11gと、アクリル樹脂(日立化成(株)製:ヒタロイド1007、5gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒85gとを充分に混合した以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R4)を調製した。
[Comparative Example 4]
Preparation of Transparent Film Forming Coating Material (R4) In Example 1, 11 g of an alcohol dispersion of surface-treated novel silica-based hollow fine particles (1) diluted with ethanol to a solid content concentration of 5% by weight, and acrylic resin (Hitachi) Kasei Co., Ltd .: Forming a transparent film having a solid content of 5.5% by weight, except that 1007, 5 g of hyaloid and 85 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed. A paint (R4) was prepared.
透明被膜付基材(R4)の製造
実施例1において、透明被膜形成用塗料(R4)を用いた以外は同様にして透明被膜付基材(R4)を得た。この透明被膜付基材(R4)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent coating (R4) A substrate with transparent coating (R4) was obtained in the same manner as in Production Example 1 except that the coating for forming a transparent coating (R4) was used. The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, scratch resistance and saponification resistance evaluation of this substrate with transparent coating (R4) were measured, and the results are shown in the table.
[比較例5]
透明被膜形成用塗料(R5)の調製
表面処理新規シリカ系中空微粒子(1)のアルコール分散液をエタノールで固形分濃度5重量%に希釈した分散液98gと、アクリル樹脂(日立化成(株)製:ヒタロイド1007)0.6gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒1.4gとを充分に混合した以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R5)を調製した。
[Comparative Example 5]
Preparation of paint for transparent film formation (R5) Surface treatment New silica-based hollow fine particle (1) alcohol dispersion of 98g diluted with ethanol to a solid content concentration of 5% by weight, acrylic resin (manufactured by Hitachi Chemical Co., Ltd.) : Hitaloid 1007) For forming a transparent film having a solid content concentration of 5.5% by weight, except that 0.6 g and 1.4 g of a mixed solvent of isopropanol and n-butanol 1/1 (weight ratio) were sufficiently mixed. A paint (R5) was prepared.
透明被膜付基材(R5)の製造
実施例1において、透明被膜形成用塗料(R5)を用いた以外は同様にして透明被膜付基材(R5)を得た。この透明被膜付基材(R5)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、耐鹸化性評価を測定し、結果を表に示す。
Production of substrate with transparent coating (R5) A substrate with transparent coating (R5) was obtained in the same manner as in Example 1 except that the coating for forming a transparent coating (R5) was used. The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, scratch resistance and saponification resistance evaluation of this substrate with transparent film (R5) were measured, and the results are shown in the table.
Claims (7)
(i)平均粒子径が20〜200nm、シリカ被覆層の厚さが1〜20nmの範囲にあるシリカ系中空微粒子の水分散液を調製し、
(ii)これにアルミン酸アルカリ水溶液を、Al2O3としてシリカ系中空微粒子の固形分重量の0.01〜10重量%となるように添加して、中空微粒子表面に、凸部形成のアルミナ拠点を形成し、
(iii)ついで、珪酸アルカリ水溶液を、SiO2としてシリカ系中空微粒子の固形分重量の0.1〜30重量%の範囲で添加したのち、
(iv)40〜150℃に加温し、酸性珪酸液をSiO2としてシリカ系中空微粒子の固形分重量の1〜100重量%の範囲で添加して、酸性珪酸液中のシリカを中空微粒子表面のアルミナ拠点上に析出させて、凸部を形成したものである
ことを特徴とする請求項1または2に記載のシリカ系中空微粒子。 The silica-based hollow fine particles are
(i) preparing an aqueous dispersion of silica-based hollow fine particles having an average particle diameter of 20 to 200 nm and a silica coating layer having a thickness of 1 to 20 nm;
(ii) Alkali aluminate aqueous solution is added thereto as Al 2 O 3 so as to be 0.01 to 10% by weight of the solid content weight of the silica-based hollow fine particles. Forming a base,
(iii) Next, after adding an alkali silicate aqueous solution in the range of 0.1 to 30% by weight of the solid content weight of the silica-based hollow fine particles as SiO 2 ,
(iv) Heating to 40 to 150 ° C., adding the acidic silicic acid solution as SiO 2 in the range of 1 to 100 % by weight of the solid content weight of the silica-based hollow fine particles, so that the silica in the acidic silicic acid solution The silica-based hollow fine particles according to claim 1, wherein the silica-based hollow fine particles are precipitated on the alumina base to form convex portions.
シリカ系中空微粒子の濃度が固形分として、0.2〜40重量%の範囲にあり、マトリックス形成成分の濃度が固形分として、0.2〜40重量%の範囲にあり、全固形分濃度が1.0〜50重量%の範囲で含むことを特徴とする透明被膜形成用塗料。The silica-based hollow fine particles according to any one of claims 1 to 3, a matrix- forming component and a polar solvent,
The concentration of the silica-based hollow fine particles is in the range of 0.2 to 40% by weight as the solid content, the concentration of the matrix forming component is in the range of 0.2 to 40% by weight as the solid content, and the total solid content concentration is 1.0 to 50% by weight. A coating for forming a transparent film, characterized in that it is contained in the range of%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010294028A JP5642535B2 (en) | 2010-12-28 | 2010-12-28 | Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010294028A JP5642535B2 (en) | 2010-12-28 | 2010-12-28 | Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012140286A JP2012140286A (en) | 2012-07-26 |
JP5642535B2 true JP5642535B2 (en) | 2014-12-17 |
Family
ID=46676995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010294028A Active JP5642535B2 (en) | 2010-12-28 | 2010-12-28 | Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5642535B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI486412B (en) * | 2011-12-16 | 2015-06-01 | Eternal Materials Co Ltd | Anti-reflection coating composition and process for preparing the same |
GB2518202B (en) | 2013-09-13 | 2017-01-04 | Shayonano Singapore Pte Ltd | Composite pigments |
WO2018221406A1 (en) * | 2017-05-31 | 2018-12-06 | 日揮触媒化成株式会社 | Hollow particles and cosmetic |
JP7470079B2 (en) | 2021-03-31 | 2024-04-17 | 日揮触媒化成株式会社 | Method for producing a dispersion of spinous alumina-silica composite fine particles |
JPWO2023238558A1 (en) * | 2022-06-09 | 2023-12-14 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1787959B1 (en) * | 2004-07-21 | 2022-06-22 | JGC Catalysts and Chemicals Ltd. | Method for producing silica-based fine particles |
JP4636869B2 (en) * | 2004-12-21 | 2011-02-23 | 日揮触媒化成株式会社 | Method for producing porous silica-based particles and porous silica-based particles obtained from the method |
JP5370147B2 (en) * | 2007-03-16 | 2013-12-18 | 旭硝子株式会社 | Hollow fine particles, method for producing the same, coating composition and article on which coating film is formed |
WO2010071010A1 (en) * | 2008-12-18 | 2010-06-24 | 日揮触媒化成株式会社 | Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film |
-
2010
- 2010-12-28 JP JP2010294028A patent/JP5642535B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012140286A (en) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5757673B2 (en) | Substrate with transparent film and paint for forming transparent film | |
JP5378771B2 (en) | Base material with antireflection film and coating liquid for forming antireflection film | |
JP5078620B2 (en) | Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film | |
JP5700458B2 (en) | Silica-based fine particles, coating material for coating formation and substrate with coating | |
JP4428923B2 (en) | Method for producing silica-based hollow fine particles | |
JP5142617B2 (en) | Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film | |
JP6895760B2 (en) | Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film | |
JP5221084B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
JP2008163205A (en) | Coating for forming transparent coating film and substrate with transparent coating film | |
JP2003202406A (en) | Antireflection film and display device | |
JP5546239B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
JP2009066965A (en) | Transparent coat applied base material, and transparent coat forming paint | |
JP6016548B2 (en) | Coating liquid for forming transparent film and substrate with transparent film | |
JP5700903B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
JP7360294B2 (en) | Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles | |
JP5642535B2 (en) | Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film | |
JP5480743B2 (en) | Substrate with transparent film and paint for forming transparent film | |
JP5680372B2 (en) | Substrate with transparent film and coating liquid for forming transparent film | |
JP5084122B2 (en) | Film-coated substrate and coating solution for film formation | |
JP5159265B2 (en) | Substrate with transparent film and coating liquid for forming transparent film | |
JP4731137B2 (en) | Method for producing silica-based fine particles | |
JP5766251B2 (en) | Method for producing a coating for forming a transparent film | |
JP5404568B2 (en) | Silica-based fine particles, coating material for coating formation and substrate with coating | |
JP5501117B2 (en) | Substrate with transparent film and coating liquid for forming transparent film | |
JP5503241B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140930 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141029 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5642535 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |