JP7360294B2 - Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles - Google Patents

Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles Download PDF

Info

Publication number
JP7360294B2
JP7360294B2 JP2019180756A JP2019180756A JP7360294B2 JP 7360294 B2 JP7360294 B2 JP 7360294B2 JP 2019180756 A JP2019180756 A JP 2019180756A JP 2019180756 A JP2019180756 A JP 2019180756A JP 7360294 B2 JP7360294 B2 JP 7360294B2
Authority
JP
Japan
Prior art keywords
particles
dispersion
silica
mass
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180756A
Other languages
Japanese (ja)
Other versions
JP2021054685A (en
Inventor
渉 二神
光章 熊澤
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2019180756A priority Critical patent/JP7360294B2/en
Priority to CN202011031633.0A priority patent/CN112573526B/en
Priority to KR1020200125705A priority patent/KR20210038362A/en
Priority to TW109133746A priority patent/TW202114941A/en
Publication of JP2021054685A publication Critical patent/JP2021054685A/en
Application granted granted Critical
Publication of JP7360294B2 publication Critical patent/JP7360294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Description

本発明は、シリカを含む外殻の内側に空洞を有する粒子、該粒子の製造方法に関する。また、該粒子を含む透明被膜形成用塗布液及び該粒子を含む透明被膜付基材に関する。 The present invention relates to particles containing silica and having a cavity inside the outer shell, and a method for producing the particles. The present invention also relates to a coating liquid for forming a transparent film containing the particles and a substrate with a transparent film containing the particles.

従来、ガラス、プラスチック等で形成されたシートやレンズ等の基材表面の反射を防止するために、その表面に反射防止膜が形成されている。例えば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率な物質の被膜をガラスやプラスチックの基材表面に形成することが行われている。しかしながら、これらの方法は、コスト的に高価である。これに対して、屈折率が1.36~1.44である、シリカとシリカ以外の無機酸化物とからなる複合酸化物コロイド粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(例えば、特許文献1参照)。 BACKGROUND ART Conventionally, in order to prevent reflection on the surface of a base material such as a sheet or lens made of glass, plastic, etc., an antireflection film has been formed on the surface thereof. For example, a coating of a low refractive index substance such as a fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate by a coating method, a vapor deposition method, a CVD method, or the like. However, these methods are expensive. On the other hand, a coating liquid containing composite oxide colloidal particles made of silica and an inorganic oxide other than silica and having a refractive index of 1.36 to 1.44 is applied to the surface of the substrate to form an antireflection coating. There is a known method for forming (see, for example, Patent Document 1).

また、多孔性の中空粒子の製造方法が知られている(例えば、特許文献2参照)。この方法により得られる中空粒子は、屈折率が低く、この中空粒子を用いて形成された透明被膜は、屈折率が低く反射防止性能に優れている。 Furthermore, a method for producing porous hollow particles is known (see, for example, Patent Document 2). The hollow particles obtained by this method have a low refractive index, and the transparent coating formed using the hollow particles has a low refractive index and excellent antireflection performance.

さらに、中空粒子を含む透明被膜を表示装置の前面に設けると、反射防止性能に優れ表示性能が向上することが知られている(例えば、特許文献3参照)。 Furthermore, it is known that when a transparent film containing hollow particles is provided on the front surface of a display device, it has excellent antireflection performance and improves display performance (see, for example, Patent Document 3).

特開平7-133105号公報Japanese Patent Application Publication No. 7-133105 特開2001-233611号公報Japanese Patent Application Publication No. 2001-233611 特開2002-079616号公報JP2002-079616A

しかしながら、内部に空洞を有するシリカ系粒子を反射防止膜に使用すると、得られる膜の硬度や強度(耐擦傷性)が低下するおそれがある。また、粒子の低屈折率化を図るために、粒子の中空化を過剰に行うと、粒子自身が脆くなり、この粒子を使用する透明被膜の硬度、強度(耐擦傷性)も不十分となる。 However, when silica-based particles having internal cavities are used in an antireflection film, there is a risk that the hardness and strength (scratch resistance) of the resulting film may be reduced. In addition, if the particles are hollowed out excessively in order to lower their refractive index, the particles themselves become brittle, and the hardness and strength (scratch resistance) of the transparent coating using these particles will also be insufficient. .

このように、粒子の硬度及び強度が不十分であると、透明被膜の屈折率、硬度、強度の少なくとも一つが不十分となる課題があった。 As described above, if the hardness and strength of the particles are insufficient, there is a problem that at least one of the refractive index, hardness, and strength of the transparent film is insufficient.

このような課題を解決するため、以下のようなシリカを含む外殻と、その内側に空洞を有する粒子を透明被膜形成用塗布液に用いることとした。この粒子の平均粒子径(D)は20~250nm、空洞の径は粒子径の0.5~0.9倍、N吸着法による細孔容積は1.0cm/g未満、下記式(1)で求められる外殻の屈折率(n)は1.38以上、屈折率(n)は1.08~1.34、炭素含有量は3.0質量%以下である。 In order to solve these problems, we decided to use the following particles having a shell containing silica and a cavity inside the shell in a coating liquid for forming a transparent film. The average particle diameter (D) of these particles is 20 to 250 nm, the diameter of the cavity is 0.5 to 0.9 times the particle diameter, the pore volume by N 2 adsorption method is less than 1.0 cm 3 /g, and the following formula ( The refractive index (n S ) of the outer shell determined in 1) is 1.38 or more, the refractive index (n a ) is 1.08 to 1.34, and the carbon content is 3.0% by mass or less.

Figure 0007360294000001
Figure 0007360294000001

この粒子は、シリカを含む緻密な外殻の内側に空洞を有するため、十分な硬度と強度、及び低い屈折率を有する。このような粒子を含む塗布液によれば、高い硬度(鉛筆硬度)と高い強度(耐擦傷性)とを有する透明被膜付基材が得られる。 These particles have sufficient hardness and strength and a low refractive index because they have a cavity inside a dense outer shell containing silica. According to a coating liquid containing such particles, a substrate with a transparent film having high hardness (pencil hardness) and high strength (scratch resistance) can be obtained.

本発明の粒子によれば、反射率が低く、基材との密着性に優れ、高い硬度と強度とを有する透明被膜を作製可能な塗布液が得られる。 According to the particles of the present invention, a coating liquid can be obtained that can produce a transparent film that has low reflectance, excellent adhesion to a substrate, and high hardness and strength.

本発明の粒子の断面図である。FIG. 2 is a cross-sectional view of particles of the present invention.

本発明に係る粒子は、シリカを含む外殻と、その外殻の内側に空洞を有する粒子である。(以下、この本発明に係る粒子を単に粒子ということがある。)この粒子の断面を図1に模式的に示す。 The particles according to the present invention are particles having an outer shell containing silica and a cavity inside the outer shell. (Hereinafter, the particles according to the present invention may be simply referred to as particles.) A cross section of this particle is schematically shown in FIG.

粒子の平均粒子径Dは、20~250nmである。平均粒子径がこの範囲にあると、粒子が安定して存在できる。また、塗布液中や被膜中でも分散性が良く、被膜の高い透明性と硬度及び強度が得られる。平均粒子径は、30~150nmが好ましく、30~120nmがより好ましい。 The average particle diameter D of the particles is 20 to 250 nm. When the average particle diameter is within this range, the particles can exist stably. In addition, it has good dispersibility in the coating liquid and in the film, and provides a film with high transparency, hardness, and strength. The average particle diameter is preferably 30 to 150 nm, more preferably 30 to 120 nm.

外殻の内側の空洞の径は、粒子の径(外径)の0.5~0.9倍の長さである。空洞の径がこの範囲にあると、外殻の構造が安定して維持できるので、粒子として安定して存在できる。また、被膜の高い透明性と硬度及び強度が得られる。ここで、0.5倍未満であると外殻の厚みが厚すぎて十分な被膜の透明性が得られないおそれがある。0.9倍よりも大きいと外殻が薄くて粒子構造が維持できないおそれがある。空洞の径は、粒子の径の0.55~0.9倍が好ましく、0.6~0.85倍がより好ましい。 The diameter of the cavity inside the outer shell is 0.5 to 0.9 times the diameter (outer diameter) of the particle. When the diameter of the cavity is within this range, the structure of the outer shell can be maintained stably, so that the particle can exist stably. Moreover, high transparency, hardness, and strength of the coating can be obtained. Here, if it is less than 0.5 times, the thickness of the outer shell is too thick, and there is a possibility that sufficient transparency of the film cannot be obtained. If it is larger than 0.9 times, the outer shell may be too thin to maintain the particle structure. The diameter of the cavity is preferably 0.55 to 0.9 times the diameter of the particle, more preferably 0.6 to 0.85 times.

粒子のN吸着法による細孔容積は、1.0cm/g未満である。細孔容積がこの範囲にあると、外殻の構造が緻密である。1.0cm/gよりも大きいと、外殻の構造は疎(多孔質)であり、外殻の硬度や強度が弱いために、外殻の構造が維持できないおそれや、十分な被膜の硬度や強度が得られないおそれがある。細孔容積は、0.8cm/g未満が好ましく、0.5cm/g未満がより好ましく、0.0cm/gが最も好ましい。 The pore volume of the particles by N 2 adsorption is less than 1.0 cm 3 /g. When the pore volume is within this range, the structure of the outer shell is dense. If it is larger than 1.0 cm 3 /g, the structure of the outer shell is sparse (porous) and the hardness and strength of the outer shell are weak, so there is a risk that the structure of the outer shell cannot be maintained or that the hardness of the coating is insufficient. Otherwise, the strength may not be obtained. The pore volume is preferably less than 0.8 cm 3 /g, more preferably less than 0.5 cm 3 /g, and most preferably 0.0 cm 3 /g.

粒子の屈折率nは、1.08~1.34である。屈折率がこの範囲にあると、透明な被膜が得られる。屈折率は、1.08~1.32が好ましく、1.08~1.30がより好ましい。 The refractive index n a of the particles is between 1.08 and 1.34. When the refractive index is within this range, a transparent coating can be obtained. The refractive index is preferably 1.08 to 1.32, more preferably 1.08 to 1.30.

外殻の屈折率nは、1.38以上である。屈折率nが1.38以上であると、外殻は緻密である。屈折率nの上限は、特に設定されないが、例えば1.47である。屈折率nは、式(1)に示すように、粒子の径の平均値D、外殻の内側の空洞の径の平均値D、粒子の屈折率n、及び空洞の屈折率nから求められる。空洞の屈折率nは、空洞内部の状態によって異なる。例えば、空洞内部が気体であると、屈折率は1.00となる。また、空洞内部が液体であれば、その液体の屈折率となる。 The refractive index n S of the outer shell is 1.38 or more. When the refractive index n S is 1.38 or more, the outer shell is dense. The upper limit of the refractive index nS is not particularly set, but is, for example, 1.47. As shown in formula (1), the refractive index n S is the average value D of the particle diameter, the average value D O of the diameter of the cavity inside the outer shell, the refractive index n a of the particle, and the refractive index n of the cavity. It is determined from P. The refractive index n P of the cavity varies depending on the conditions inside the cavity. For example, if the inside of the cavity is gas, the refractive index is 1.00. Further, if the inside of the cavity is a liquid, the refractive index is that of the liquid.

屈折率nがこの範囲にあると、透明で、十分な硬度や強度を有する被膜が得られる。屈折率nが1.38よりも小さいと、被膜の硬度が不十分になるおそれがある。屈折率nは、1.40以上が好ましく、1.42以上がより好ましい。 When the refractive index n S is within this range, a transparent coating having sufficient hardness and strength can be obtained. If the refractive index n S is smaller than 1.38, the hardness of the coating may be insufficient. The refractive index n S is preferably 1.40 or more, more preferably 1.42 or more.

粒子の炭素含有量は、3.0質量%以下である。粒子に含有される炭素は、有機珪素化合物、金属塩、還元剤、pH調整剤、洗浄液、溶媒等の有機化合物に由来する。これには、粒子の製造のために、意図的に添加されたものの他、原料等に不可避的に存在するものも含まれる。有機化合物が含まれていると外殻の硬度や強度が弱いため、被膜にした場合、透明性が低下したり分散性が低下したりして、十分な硬度や強度の透明被膜が得られないおそれがある。このような有機物に由来する炭素含有量は、後述のように、C(カーボン)量を分析することで求めることができる。炭素含有量は、1.0質量%以下が好ましく、0.1質量%以下がより好ましく、0.05質量%以下が更に好ましい。 The carbon content of the particles is 3.0% by mass or less. The carbon contained in the particles originates from organic compounds such as organosilicon compounds, metal salts, reducing agents, pH adjusters, cleaning liquids, and solvents. This includes not only those intentionally added for the production of particles, but also those that are unavoidably present in raw materials, etc. If organic compounds are contained, the hardness and strength of the outer shell will be low, so when made into a film, transparency and dispersibility will decrease, making it impossible to obtain a transparent film with sufficient hardness and strength. There is a risk. The carbon content derived from such organic substances can be determined by analyzing the amount of C (carbon) as described later. The carbon content is preferably 1.0% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.05% by mass or less.

粒子の29Si-NMRスペクトル法における化学シフト-78~-88ppmに現れるピークの面積Qと、化学シフト-88~-98ppmに現れるピークの面積Qと、化学シフト-98~-108ppmに現れるピークの面積Qと、化学シフト-108~-117ppmに現れるピークの面積Qにおいて、比(Q/ΣQ)が実質0、比(Q/ΣQ)が実質0、比(Q/Q)が0.01~0.7であることが好ましい。ここで、ΣQ=Q+Q+Q+Qである。 In the 29 Si-NMR spectroscopy of particles, the area Q 1 of the peak that appears in the chemical shift range of -78 to -88 ppm, the area Q 2 of the peak that appears in the chemical shift range of -88 to -98 ppm, and the area Q 2 of the peak that appears in the chemical shift range of -98 to -108 ppm. In the area Q 3 of the peak and the area Q 4 of the peak appearing at a chemical shift of -108 to -117 ppm, the ratio (Q 1 /ΣQ) is essentially 0, the ratio (Q 2 /ΣQ) is essentially 0, and the ratio (Q 3 /ΣQ) is essentially 0. Q 4 ) is preferably 0.01 to 0.7. Here, ΣQ=Q 1 +Q 2 +Q 3 +Q 4 .

このQに帰属するピークはSi原子に1つの(-OSi)基と3つの(-OH)基が結合したもの、Qに帰属するピークはSi原子に2つの(-OSi)基と2つの(-OH)基が結合したもの、Qに帰属するピークはSi原子に3つの(-OSi)基と1つの(-OH)基が結合したもの、Qに帰属するピークはSi原子に4つの(-OSi)基が結合したものである。 The peak assigned to Q 1 is the combination of one (-OSi) group and three (-OH) groups to the Si atom, and the peak assigned to Q 2 is the combination of two (-OSi) groups and two The peak attributed to Q 3 is the combination of three (-OSi) groups and one (-OH) group to the Si atom, and the peak attributed to Q 2 is the Si atom. has four (-OSi) groups bonded to it.

ここで、比(Q/ΣQ)及び比(Q/ΣQ)が実質0とは、測定における検出限界やノイズ等によって不可避的に検出されるピークはあり得るが、例えそれらを考慮したとしても「0」と判断されることを意味する。具体的には、上式で求められる比は、両者とも0.0001以下である。比(Q/ΣQ)及び比(Q/ΣQ)が実質0で、比(Q/Q)が0.01~0.7であると、粒子が緻密で、十分な硬度や強度の透明被膜が得られる。比(Q/ΣQ)や(Q/ΣQ)が0.0001よりも大きいと、Si-O-Siの結合の割合が少ないため、被膜の硬度や強度が不十分になるおそれがある。 Here, when the ratio (Q 1 /ΣQ) and the ratio (Q 2 /ΣQ) are essentially 0, it means that there may be peaks that are unavoidably detected due to the detection limit in measurement, noise, etc., but even if these are taken into consideration, This means that the value is also judged as "0". Specifically, both ratios determined by the above formula are 0.0001 or less. When the ratio (Q 1 /ΣQ) and the ratio (Q 2 /ΣQ) are substantially 0 and the ratio (Q 3 /Q 4 ) is 0.01 to 0.7, the particles are dense and have sufficient hardness and strength. A transparent film is obtained. If the ratio (Q 1 /ΣQ) or (Q 2 /ΣQ) is larger than 0.0001, the ratio of Si--O--Si bonds is small, so the hardness and strength of the coating may be insufficient.

比(Q/Q)が0.01よりも小さいものは、得ることが難しい。比(Q/Q)が0.7よりも大きいと、Si-O-Siの結合の割合が少ないため、被膜の硬度が不十分になるおそれがある。比(Q/Q)は、0.02~0.5がより好ましく、0.03~0.2が更に好ましい。 It is difficult to obtain a ratio (Q 3 /Q 4 ) smaller than 0.01. When the ratio (Q 3 /Q 4 ) is larger than 0.7, the ratio of Si--O--Si bonds is low, so the hardness of the coating may be insufficient. The ratio (Q 3 /Q 4 ) is more preferably 0.02 to 0.5, and even more preferably 0.03 to 0.2.

粒子の不純分であるアルカリ金属に属する元素の各々の含有量は、前記元素を酸化物で表した時、SiOに対して、1ppm以下であることが好ましい。含有量が、この範囲にあると、粒子の合着が少なくなるため、粒子が塗布液中や被膜中で均一に分散され、透明な被膜が得られるので好ましい。また、塗布液の性能においても安定性が高くなり、被膜の性能においても膜硬度の上昇や、透明性が高くなるため、好ましい。ここで、含有量が1ppmよりも多いと、粒子の合着が増え、十分な膜の硬度が得られなかったり、透明性が不十分になったりするおそれがある。含有量は、0.1ppm以下がより好ましい。ここで、アルカリ金属とは、Li、Na、K、Rb、Cs、Frを表す。 The content of each element belonging to the alkali metal, which is an impurity in the particles, is preferably 1 ppm or less based on SiO 2 when the element is expressed as an oxide. When the content is within this range, coalescence of the particles is reduced, so that the particles are uniformly dispersed in the coating liquid and the coating, and a transparent coating can be obtained, which is preferable. In addition, the stability of the coating liquid is improved, and the film hardness and transparency are increased, which are preferable. Here, if the content is more than 1 ppm, coalescence of particles increases, and there is a possibility that sufficient hardness of the film may not be obtained or transparency may become insufficient. The content is more preferably 0.1 ppm or less. Here, the alkali metal represents Li, Na, K, Rb, Cs, and Fr.

また、粒子の不純分であるFe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々の含有量は0.1ppm未満、Cu、Ni、Crの各々の含有量は1ppb未満、U、Thの各々の含有量は0.3ppb未満であることが好ましい。これら不純分の含有量がこの範囲であれば、透明な被膜が得られるので好ましい。これら不純分の含有量が多くなると分散液が着色し、透明な被膜が得られない恐れがある。また、高純度が要求される高集積なロジックやメモリー等の半導体回路や光センサー等に使用する場合は、金属元素が回路の絶縁不良を起こしたり、回路を短絡させたり、光透過率が低下する。これによって、絶縁膜の誘電率低下や、金属配線のインピーダンスの増大、応答速度の遅れ、消費電力の増大等が起こるおそれがある。特に、U、Thの場合は、放射能を発生するため、微量でも存在した場合、放射能による半導体の誤作動を引き起こすため好ましくない。 In addition, the content of each of Fe, Ti, Zn, Pd, Ag, Mn, Co, Mo, Sn, Al, and Zr, which are impurities in the particles, is less than 0.1 ppm, and the content of each of Cu, Ni, and Cr is less than 0.1 ppm. is preferably less than 1 ppb, and the content of each of U and Th is preferably less than 0.3 ppb. If the content of these impurities is within this range, a transparent film can be obtained, which is preferable. If the content of these impurities increases, the dispersion liquid becomes colored, and there is a possibility that a transparent film may not be obtained. In addition, when used in highly integrated logic and memory semiconductor circuits that require high purity, optical sensors, etc., metal elements may cause circuit insulation failure, short circuits, or decrease in light transmittance. do. This may cause a decrease in the dielectric constant of the insulating film, an increase in the impedance of the metal wiring, a delay in response speed, an increase in power consumption, and the like. In particular, U and Th generate radioactivity, so if they are present in even a trace amount, they are undesirable because they cause semiconductor malfunctions due to the radioactivity.

このような不純分の含有量が少ない粒子を得るには、粒子を調製する際の装置の材質をこれらの元素を含まず、かつ耐薬品性が高いものにすることが好ましい。具体的には、テフロン(登録商標)、FRP、カーボンファイバー等のプラスチック、無アルカリガラス等が好ましい。また、使用する原料については、蒸留・イオン交換・フィルター除去で精製することが好ましい。 In order to obtain particles with a low content of such impurities, it is preferable that the material of the apparatus used for preparing the particles be one that does not contain these elements and has high chemical resistance. Specifically, plastics such as Teflon (registered trademark), FRP, carbon fiber, alkali-free glass, etc. are preferable. Further, it is preferable that the raw materials used be purified by distillation, ion exchange, or filter removal.

高純度な粒子を得る方法としては、上述のように、予め不純分の少ない原料を準備したり、粒子調製用の装置からの混入を抑えたりする方法がある。これ以外にも、そのような対策を十分にとらずに調製された粒子から不純分を低減することが可能である。 As described above, methods for obtaining highly pure particles include preparing raw materials with low impurities in advance and suppressing contamination from particle preparation equipment. In addition to this, it is possible to reduce impurities from particles prepared without sufficient such measures.

粒子の形状や空洞の形状は、特に限定されない。例えば、球状、楕円体(ラグビーボール)状、繭状、金平糖状、鎖状、サイコロ状などが挙げられる。ここで、透明被膜中に均一に分散できるため、粒子形状は、球状が好ましい。空洞の形状は、粒子形状に沿った形状が好ましい。外殻の厚みにもよるが、粒子に対して応力が加わった場合に、外殻が均一な厚みを有することにより、十分な硬度や強度を得ることができる。更には、空洞も球状粒子の形状と相似の球状であることが好ましい。 The shape of the particles and the shape of the cavities are not particularly limited. Examples include a spherical shape, an ellipsoid (rugby ball) shape, a cocoon shape, a confetti shape, a chain shape, and a dice shape. Here, the particle shape is preferably spherical because it can be uniformly dispersed in the transparent film. The shape of the cavity preferably follows the shape of the particle. Although it depends on the thickness of the outer shell, when stress is applied to the particles, if the outer shell has a uniform thickness, sufficient hardness and strength can be obtained. Furthermore, it is preferable that the cavity also has a spherical shape similar to the shape of the spherical particle.

また、屈折率を低下させ透明な被膜を得るには実質的に一つの空洞であることが好ましい。ここで、「実質的に一つの空洞である」とは、粒子の中には、粒子の合着等によって「外殻の内側に複数個の空洞が存在する粒子」は含まれ得るが、「外殻の内側の空洞が一つである粒子の割合」が90%以上であることを意味する。「外殻の内側の空洞が一つである粒子の個数割合」は、95%以上が好ましく、98%以上がより好ましく、99%以上が更に好ましく、100%が最も好ましい。 Moreover, in order to lower the refractive index and obtain a transparent coating, it is preferable that the cavity be substantially one. Here, "substantially one cavity" may include "particles in which multiple cavities exist inside the outer shell" due to coalescence of particles, etc., but " This means that the percentage of particles with one cavity inside the outer shell is 90% or more. The "number ratio of particles having one cavity inside the outer shell" is preferably 95% or more, more preferably 98% or more, even more preferably 99% or more, and most preferably 100%.

粒子は、珪素分をシリカとして90質量%以上含有することが好ましい。この範囲にあればマトリックス形成成分との相溶性が向上する。このため、透明被膜中に粒子が高分散し、被膜の強度や硬度が向上する。この珪素分の含有量は、シリカとして95質量%以上がより好ましく、98質量%以上が更に好ましく、100質量%が特に好ましい。 The particles preferably contain 90% by mass or more of silicon as silica. If it falls within this range, the compatibility with the matrix-forming component will improve. Therefore, the particles are highly dispersed in the transparent coating, and the strength and hardness of the coating are improved. The silicon content is more preferably 95% by mass or more as silica, still more preferably 98% by mass or more, and particularly preferably 100% by mass.

[粒子の製造方法]
本発明による製造方法は、珪素を含む化合物の溶液と、アルカリ可溶の珪素以外の無機元素の化合物の水溶液とを、珪素の酸化物をSiOと表し、珪素以外の無機元素の酸化物をMOxと表した時、モル比(MOx/SiO)が0.01~2となるように、アルカリ水溶液中に同時に添加して、複合酸化物粒子aの分散液を調製する第一工程と、前記工程のモル比よりも小さいモル比(MOx/SiO)で、珪素を含む化合物の溶液と、アルカリ可溶の珪素以外の無機元素の化合物の水溶液とを添加して、複合酸化物粒子bの分散液を調製する第二工程と、複合酸化物粒子bの分散液に酸を加えて、複合酸化物粒子bを構成する珪素以外の元素の少なくとも一部を除去して、シリカ系粒子の分散液を調製する第三工程と、シリカ系粒子の分散液を、昇温速度0.3~3.0℃/min.で200~800℃まで加温した後、0.04~2.0℃/min.の速度で降温させ、100℃以下にする第四工程とを含んでいる。必要に応じてシリカ系粒子を洗浄してもよい。
[Method for producing particles]
In the production method according to the present invention, a solution of a compound containing silicon and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are used. A first step of preparing a dispersion of composite oxide particles a by simultaneously adding them to an alkaline aqueous solution so that the molar ratio (MOx/SiO 2 ) is 0.01 to 2 when expressed as MOx; A solution of a silicon-containing compound and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are added at a molar ratio (MOx/SiO 2 ) smaller than the molar ratio in the above step to form composite oxide particles b. a second step of preparing a dispersion of composite oxide particles b, and adding an acid to the dispersion of composite oxide particles b to remove at least a part of the elements other than silicon constituting the composite oxide particles b; In the third step of preparing a dispersion liquid, the dispersion liquid of silica-based particles is heated at a heating rate of 0.3 to 3.0°C/min. After heating to 200-800°C at 0.04-2.0°C/min. and a fourth step of lowering the temperature to 100° C. or less. The silica particles may be washed if necessary.

以下に、各工程について詳細に説明する。 Each step will be explained in detail below.

[第一工程]
第一工程により、平均粒子径が10~225nmの複合酸化物粒子aの分散液を調製する。珪素を含む化合物は、珪酸塩、酸性珪酸液、有機珪素化合物から選ばれる少なくとも一つである。
[First step]
In the first step, a dispersion of composite oxide particles a having an average particle diameter of 10 to 225 nm is prepared. The silicon-containing compound is at least one selected from silicates, acidic silicic acid solutions, and organic silicon compounds.

珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1 種または2種以上の珪酸塩が好ましい。アルカリ金属珪酸塩としては、例えば、珪酸ナトリウム(水ガラス)や珪酸カリウムが挙げられる。有機塩基としては、例えば、テトラエチルアンモニウム塩などの第4 級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類が挙げられる。アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。 The silicate is preferably one or more silicates selected from alkali metal silicates, ammonium silicates, and silicates of organic bases. Examples of alkali metal silicates include sodium silicate (water glass) and potassium silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. Ammonium silicates or organic base silicates include alkaline solutions prepared by adding ammonia, quaternary ammonium hydroxide, amine compounds, etc. to a silicic acid solution.

酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2~pH4でSiO濃度が約7質量% 以下の酸性珪酸液が好ましい。 As the acidic silicic acid solution, a silicic acid solution obtained by removing alkali by treating an alkaline silicate aqueous solution with a cation exchange resin can be used, and in particular, a silicic acid solution with a SiO 2 concentration of about 7% by mass at pH 2 to pH 4 can be used. The following acidic silicic acid solutions are preferred.

有機珪素化合物としては、下記式(2)の有機珪素化合物が好ましい。 As the organosilicon compound, an organosilicon compound represented by the following formula (2) is preferable.

-SiX4-n・・・(2)
但し、式中、Rは炭素数1~10の非置換又は置換炭化水素基で、互いに同一であっても異なっていてもよい。置換基としては、エポキシ基、アルコキシ基、(メタ)アクリロイロキシ基、メルカプト基、ハロゲン原子、アミノ基、フェニルアミノ基が挙げられる。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン原子、水素原子であり、nは0~3の整数を示す。
R n -SiX 4-n ...(2)
However, in the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different. Examples of the substituent include an epoxy group, an alkoxy group, a (meth)acryloyloxy group, a mercapto group, a halogen atom, an amino group, and a phenylamino group. X is an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a halogen atom, or a hydrogen atom, and n is an integer of 0 to 3.

ところで、式(2)の有機珪素化合物において、nが1~3の化合物は親水性に乏しいので、予め加水分解して反応系に均一に混合できるようにすることが好ましい。加水分解には、周知の方法を採用できる。加水分解触媒として、アルカリ金属の水酸化物、アンモニア水、アミン等の塩基性のものを用いた場合、加水分解後にこれらの塩基性触媒を除去して、酸性溶液にして用いることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調製した場合、加水分解後にイオン交換等によって酸性触媒を除去することが好ましい。なお、得られた有機珪素化合物の加水分解物は、水溶液の形態で使用することが望ましい。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有している状態を意味する。 By the way, in the organosilicon compound of formula (2), the compound where n is 1 to 3 has poor hydrophilicity, so it is preferable to hydrolyze it in advance so that it can be mixed uniformly into the reaction system. Well-known methods can be employed for hydrolysis. When a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or amine is used as a hydrolysis catalyst, these basic catalysts can be removed after hydrolysis and an acidic solution can be used. Further, when a hydrolyzate is prepared using an acidic catalyst such as an organic acid or an inorganic acid, it is preferable to remove the acidic catalyst by ion exchange or the like after hydrolysis. Note that the obtained hydrolyzate of the organosilicon compound is preferably used in the form of an aqueous solution. Here, the term "aqueous solution" refers to a state in which the hydrolyzate is not cloudy as a gel but is transparent.

有機珪素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシトリプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。 Specific examples of organic silicon compounds include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane. , phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(βmethoxyethoxy)silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3 , 3,3-trifluoropropyldimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, Sidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl ) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-amino Propyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane , vinyltrichlorosilane, trimethylbromosilane, diethylsilane and the like.

珪素以外の無機元素の酸化物(MOx)としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等の1種または2種以上が挙げられる。また、これら珪素以外の無機元素の複合酸化物として、TiO-Al、TiO-ZrO等が挙げられる。 Oxides of inorganic elements other than silicon (MOx) include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3, etc., or two or more thereof may be used. Furthermore, examples of composite oxides of inorganic elements other than silicon include TiO 2 --Al 2 O 3 and TiO 2 --ZrO 2 .

このような無機酸化物の原料としては、アルカリ可溶の無機化合物が好ましい。例えば、珪素以外の無機元素の酸化物を構成する金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げられる。具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウム等が好適である。 As a raw material for such an inorganic oxide, an alkali-soluble inorganic compound is preferable. Examples include alkali metal salts or alkaline earth metal salts, ammonium salts, and quaternary ammonium salts of metal or nonmetal oxoacids constituting oxides of inorganic elements other than silicon. Specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate, etc. are suitable.

複合酸化物粒子aの分散液を調製するためには、予め、珪素以外の無機元素の化合物のアルカリ水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目的とする珪素酸化物(SiO)と珪素以外の無機元素の酸化物(MOx)の複合割合に応じて、アルカリ水溶液中に、攪拌しながら徐々に添加する。このアルカリ水溶液は、pH10以上に調整されていることが好ましい。添加は連続であっても断続的であってもよいが、両者を同時に添加することが好ましい。 In order to prepare a dispersion of composite oxide particles a, in advance, an alkaline aqueous solution of a compound of an inorganic element other than silicon is prepared individually, or a mixed aqueous solution is prepared, and this aqueous solution is used for the purpose. The silicon oxide (SiO 2 ) and the oxide of an inorganic element other than silicon (MOx) are gradually added to the aqueous alkaline solution while stirring, depending on the composite ratio. The pH of this aqueous alkaline solution is preferably adjusted to 10 or higher. The addition may be continuous or intermittent, but it is preferable to add both at the same time.

アルカリ水溶液中に添加する、珪素を含む化合物と、珪素以外の無機元素の化合物の添加割合は、モル比(MOx/SiO)を0.01~2とする。モル比がこの範囲にあれば、複合酸化物粒子の構造は主として、珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、珪素原子の4つの結合手に酸素原子が結合し、この酸素原子に珪素以外の元素M が結合した構造が多く生成する。これによって、後述する第三工程で珪素以外の元素M を除去する際に、複合酸化物粒子の形状を破壊することなく、元素M に随伴させて珪素原子も珪酸モノマーやオリゴマーとして除去できる。ここで、モル比が0.01未満であると最終的に得られる粒子の空洞容積が十分大きくならない。モル比が2よりも大きいと、第三工程で珪素以外の元素を除去する際に、複合酸化物粒子が破壊され、外殻の内側に空洞を有する粒子が得られない。モル比は、0.1~1.5とすることが好ましい。また、このモル比を漸次小さくなるように変更しながら添加することもできる。添加後の複合酸化物粒子の平均粒子径(Da)は、概ね10~225nmになるように調製することが好ましい(以下、この時の複合酸化物粒子を一次粒子ということがある)。 The molar ratio (MOx/SiO 2 ) of the compound containing silicon and the compound of an inorganic element other than silicon is set to be 0.01 to 2 in the alkaline aqueous solution. If the molar ratio is within this range, the structure of the composite oxide particles will mainly be a structure in which silicon and elements other than silicon are alternately bonded with oxygen interposed. That is, many structures are generated in which an oxygen atom is bonded to the four bonds of a silicon atom, and an element M other than silicon is bonded to this oxygen atom. As a result, when the element M other than silicon is removed in the third step described below, the silicon atoms can also be removed as silicic acid monomers or oligomers along with the element M 2 without destroying the shape of the composite oxide particles. Here, if the molar ratio is less than 0.01, the cavity volume of the final particles will not be large enough. If the molar ratio is greater than 2, the composite oxide particles will be destroyed when elements other than silicon are removed in the third step, and particles having cavities inside the outer shell will not be obtained. The molar ratio is preferably 0.1 to 1.5. Further, the molar ratio can be gradually decreased while being added. The average particle diameter (Da) of the composite oxide particles after addition is preferably adjusted to approximately 10 to 225 nm (hereinafter, the composite oxide particles at this time may be referred to as primary particles).

ところで、このモル比が上述の範囲にあっても、一次粒子の平均粒子径が10nm未満の場合は、最終的に得られる粒子の外殻が厚くなり、粒子の空洞容積が十分大きくならない。また、一次粒子の平均粒子径が225nmを越えると、後述する第三工程で珪素以外の元素M の除去が不十分となり、粒子の空洞容積が十分大きくならず、低屈折率の粒子を得ることが困難になる。 By the way, even if this molar ratio is within the above-mentioned range, if the average particle diameter of the primary particles is less than 10 nm, the outer shell of the finally obtained particles will be thick and the cavity volume of the particles will not be sufficiently large. Furthermore, if the average particle diameter of the primary particles exceeds 225 nm, the removal of elements M other than silicon will be insufficient in the third step described below, and the cavity volume of the particles will not be sufficiently large, making it difficult to obtain particles with a low refractive index. becomes difficult.

本発明の製造方法では、複合酸化物粒子aの分散液を調製する際に、種粒子を含む分散液を出発原料とすることも可能である。この場合には、種粒子として、SiO、Al、TiO、ZrO、SnO、CeO等の1種または2種以上の粒子が挙げられる。また、複合酸化物として、SiO-Al、TiO-Al、TiO-ZrO、SiO-TiO、SiO-TiO-Al等の粒子が挙げられる。種粒子を含む分散液は、通常、これらのゾルを用いることができる。このような種粒子は、公知の方法によって調製できる。例えば、上記無機酸化物に対応する金属塩、金属塩の混合物あるいは金属アルコキシド等に、酸またはアルカリを添加して加水分解し、必要に応じて熟成することによって得ることができる。 In the production method of the present invention, when preparing a dispersion of composite oxide particles a, it is also possible to use a dispersion containing seed particles as a starting material. In this case, the seed particles include one or more particles of SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 and the like. In addition, examples of composite oxides include particles such as SiO 2 -Al 2 O 3 , TiO 2 -Al 2 O 3 , TiO 2 -ZrO 2 , SiO 2 -TiO 2 , SiO 2 -TiO 2 -Al 2 O 3 , etc. It will be done. These sols can usually be used as dispersions containing seed particles. Such seed particles can be prepared by known methods. For example, it can be obtained by adding an acid or an alkali to a metal salt, a mixture of metal salts, or a metal alkoxide corresponding to the above-mentioned inorganic oxide, hydrolyzing it, and aging it if necessary.

この種粒子分散アルカリ水溶液中に、上述の珪素を含む化合物の溶液と、アルカリ可溶の珪素以外の無機元素の化合物の水溶液とを、上記したアルカリ水溶液中に添加する方法と同様にして、添加する。この時、種粒子分散アルカリ水溶液のpHは、10以上に調整されていることが好ましい。 A solution of the above-mentioned silicon-containing compound and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are added to this kind of particle-dispersed alkaline aqueous solution in the same manner as in the above-mentioned aqueous alkaline solution. do. At this time, the pH of the aqueous alkaline solution in which the seed particles are dispersed is preferably adjusted to 10 or more.

このように、種粒子をシードとして複合酸化物粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。種粒子分散液中に添加する珪素を含む化合物の溶液と、アルカリ可溶の前記珪素以外の無機元素の化合物の水溶液の添加割合は、上述のアルカリ水溶液に添加する場合と同じ範囲とする。ただし、添加液のモル比(MOx/SiO)は、種粒子の分を差し引いて計算する。 In this way, when composite oxide particles are grown using seed particles as seeds, the particle size of the grown particles can be easily controlled and particles with uniform particle size can be obtained. The addition ratio of the solution of the silicon-containing compound added to the seed particle dispersion and the aqueous solution of the alkali-soluble compound of the inorganic element other than silicon is in the same range as in the case of addition to the aqueous alkaline solution described above. However, the molar ratio (MOx/SiO 2 ) of the additive liquid is calculated by subtracting the amount of seed particles.

珪素を含む化合物及び珪素以外の無機元素の化合物は、アルカリ側で高い溶解度をもつ。しかしながら、この溶解度の高いpH領域で両者を混合すると、珪酸イオンおよびアルミン酸イオンなどのオキソ酸イオンの溶解度が低下し、これらの複合物が析出してコロイド粒子に成長し、あるいは、種粒子上に析出して粒子成長が起こる。 Compounds containing silicon and compounds of inorganic elements other than silicon have high solubility on the alkali side. However, when they are mixed in this pH range where their solubility is high, the solubility of oxoacid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into colloidal particles, or they form on seed particles. It precipitates and grain growth occurs.

[第二工程]
次に、第一工程のモル比よりも小さいモル比(MOx/SiO)で、珪素を含む化合物の溶液と、アルカリ可溶の珪素以外の無機元素の化合物の水溶液とを添加して、複合酸化物粒子bの分散液を調製する。これによって、複合酸化物粒子a(一次粒子)を成長させる。添加後の複合酸化物粒子bの平均粒子径Dbは、20~250nmになるように調製することが好ましい。
[Second process]
Next, a solution of a silicon-containing compound and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are added at a molar ratio (MOx/SiO 2 ) smaller than the molar ratio in the first step to form a composite. A dispersion of oxide particles b is prepared. As a result, composite oxide particles a (primary particles) are grown. The average particle diameter Db of the composite oxide particles b after addition is preferably adjusted to 20 to 250 nm.

第二工程で使用する珪素を含む化合物と、アルカリ可溶の珪素以外の無機元素の化合物は、第一工程で例示したものから選ばれる。これらの化合物は、第一工程で使用したものと同じ種類でも構わないし、第一工程で例示した別の種類でも構わない。 The silicon-containing compound and the alkali-soluble compound of an inorganic element other than silicon used in the second step are selected from those exemplified in the first step. These compounds may be of the same type as those used in the first step, or may be of different types as exemplified in the first step.

第一工程におけるモル比(MOx/SiO)をA、第二工程におけるモル比(MOx/SiO)をBとすると、比B/Aを1未満とすることが好ましい。比B/Aが1 未満であれば、複合酸化物粒子の表層がシリカに富み、殻の形成が容易となる。その結果、後述する第三工程で珪素以外の元素を除去しても複合酸化物粒子の形状が破壊されることはなく、シリカを含む外殻の内側に空洞を有する粒子を安定的に得ることができる。比B/Aが1以上であると、シリカ成分の多い殻の生成ができないため、第三工程で珪素以外の元素を除去する際に複合酸化物粒子が破壊されて粒子形状が維持できない。このため、シリカを含む外殻の内側に空洞を有する粒子が得られないおそれがある。比B/A は、0.8以下とすることがより好ましく、0.7以下とすることが更に好ましい。 When the molar ratio (MOx/SiO 2 ) in the first step is A, and the molar ratio (MOx/SiO 2 ) in the second step is B, it is preferable that the ratio B/A is less than 1. If the ratio B/A is less than 1, the surface layer of the composite oxide particles will be rich in silica, making it easy to form a shell. As a result, even if elements other than silicon are removed in the third step described below, the shape of the composite oxide particles is not destroyed, and particles having a cavity inside the outer shell containing silica can be stably obtained. I can do it. When the ratio B/A is 1 or more, a shell containing a large amount of silica cannot be generated, and therefore, when elements other than silicon are removed in the third step, the composite oxide particles are destroyed and the particle shape cannot be maintained. For this reason, there is a possibility that particles having a cavity inside the outer shell containing silica cannot be obtained. The ratio B/A is more preferably 0.8 or less, and even more preferably 0.7 or less.

複合酸化物粒子a(一次粒子)の平均粒子径Daと、これを粒子成長させた複合酸化物粒子bの平均粒子径Dbの比(Da/Db)は、0.5~0.9にあることが好ましい。比(Da/Db)が0.5未満の場合は、第三工程で珪素以外の元素の除去が不十分となり、得られた粒子の空洞容積が十分大きくならず、低屈折率の粒子を得ることが困難となるおそれがある。また、比(Da/Db)が0.9よりも大きいと粒子径によっては( 具体的には、平均粒子径(Db)が20nm未満の複合酸化物粒子)、シリカを含む外殻の内側に空洞を有する粒子が得られないおそれがある。比(Da/Db)は、0.6~0.88がより好ましく、0.7~0.85が更に好ましい。 The ratio (Da/Db) of the average particle diameter Da of composite oxide particles a (primary particles) to the average particle diameter Db of composite oxide particles b obtained by growing the same is in the range of 0.5 to 0.9. It is preferable. If the ratio (Da/Db) is less than 0.5, the removal of elements other than silicon in the third step will be insufficient, the cavity volume of the obtained particles will not be sufficiently large, and particles with a low refractive index will be obtained. It may become difficult to do so. In addition, if the ratio (Da/Db) is larger than 0.9, depending on the particle size (specifically, composite oxide particles with an average particle size (Db) of less than 20 nm), the inside of the outer shell containing silica may There is a possibility that particles having cavities may not be obtained. The ratio (Da/Db) is more preferably from 0.6 to 0.88, even more preferably from 0.7 to 0.85.

第二工程において、平均粒子径Daが、概ね10~225nmの複合酸化物粒子aの分散液に、電解質塩を添加しても良い。 In the second step, an electrolyte salt may be added to the dispersion of composite oxide particles a having an average particle diameter Da of approximately 10 to 225 nm.

ここで、電解質塩としては、具体的に、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、硫酸カリウム、硝酸アンモニウム、硫酸アンモニウム、塩化マグネシウム、硝酸マグネシウム等の水溶性の電解質塩が挙げられる。 Here, specific examples of the electrolyte salt include water-soluble electrolyte salts such as sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, magnesium chloride, and magnesium nitrate.

電荷質塩を添加することによって、第三工程で珪素以外の元素を除去する際に外殻が形成されやすくなる。このような効果が得られるメカニズムについては明らかではないが、粒子成長した複合酸化物粒子の表面にシリカが多くなり、酸に不溶性のシリカが複合酸化物粒子の保護膜的な作用をしているものと考えている。 By adding a charged salt, an outer shell is more likely to be formed when elements other than silicon are removed in the third step. Although the mechanism by which such an effect is obtained is not clear, there is a large amount of silica on the surface of the grown composite oxide particles, and the acid-insoluble silica acts as a protective film for the composite oxide particles. I think of it as something.

電解質塩の添加量は、電解質塩のモル数をM,第二工程で使用する珪素を含む化合物をSiOと表した時のモル数をMとした時、比(M/M)が0.1~10であることが好ましい。比(M/M)が0.1未満だと、電解質塩を添加した効果は十分に見出せない。比(M/M)が10よりも大きくしても電解質塩を添加する効果が向上することはなく、これが緩衝材となるためか、第二工程での粒子成長が損なわれたり、第三工程での珪素以外の元素の除去に時間を要したりして、経済性が低下するおそれがある。比(M/M)は、0.2~8がより好ましい。なお、電解質塩は、第二工程の開始時に全量を添加しても良いし、珪素を含む化合物の溶液と、アルカリ可溶の珪素以外の無機元素の化合物の水溶液とを添加している際に、連続的にあるいは断続的に添加しても良い。 The amount of electrolyte salt to be added is determined by the ratio (M E / MS ) is preferably 0.1 to 10. When the ratio (M E /M S ) is less than 0.1, the effect of adding the electrolyte salt cannot be sufficiently seen. Even if the ratio (M E / M S ) is larger than 10, the effect of adding electrolyte salt will not be improved, and perhaps because this acts as a buffer, particle growth in the second step will be impaired or It takes time to remove elements other than silicon in the three steps, which may reduce economic efficiency. The ratio (M E /M S ) is more preferably 0.2 to 8. The electrolyte salt may be added in its entirety at the start of the second step, or may be added in its entirety when adding the solution of a compound containing silicon and the aqueous solution of an alkali-soluble compound of an inorganic element other than silicon. , may be added continuously or intermittently.

[第三工程]
第三工程では、複合酸化物粒子bの分散液に酸を加えて、複合酸化物粒子bを構成する珪素以外の元素の少なくとも一部を除去して、シリカ系粒子の分散液を調製する。元素の除去は、例えば、鉱酸や有機酸を使用して溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除去したり、あるいは、これらの方法を組合せることによって除去する。
[Third step]
In the third step, an acid is added to the dispersion of composite oxide particles b to remove at least a portion of the elements other than silicon constituting the composite oxide particles b, thereby preparing a dispersion of silica-based particles. The elements can be removed, for example, by dissolving them using mineral acids or organic acids, by ion exchange removal by bringing them into contact with a cation exchange resin, or by a combination of these methods.

複合酸化物粒子bの分散液の濃度は、処理温度によっても異なるが、複合酸化物粒子bを酸化物に換算して0.1~50質量%が好ましい。ここで、濃度が0.1質量%未満だと、シリカの溶解量が多くなるため、複合酸化物粒子の形状を維持できないおそれがある。また、低濃度のために処理効率が低くなる。濃度が50質量%よりも高いと、粒子の分散性が不十分となり、特に、珪素以外の元素の含有量が多い複合酸化物粒子では、均一に、あるいは効率的に、珪素以外の元素を除去できないおそれがある。複合酸化物粒子bの分散液の濃度は、0.5~25質量%がより好ましい。 The concentration of the dispersion of the composite oxide particles b varies depending on the treatment temperature, but is preferably 0.1 to 50% by mass of the composite oxide particles b in terms of oxide. Here, if the concentration is less than 0.1% by mass, the amount of dissolved silica will increase, so there is a possibility that the shape of the composite oxide particles cannot be maintained. Also, the processing efficiency is low due to the low concentration. If the concentration is higher than 50% by mass, the dispersibility of the particles will be insufficient, and in particular, in composite oxide particles with a high content of elements other than silicon, it will be difficult to remove elements other than silicon uniformly or efficiently. There is a possibility that it cannot be done. The concentration of the dispersion liquid of composite oxide particles b is more preferably 0.5 to 25% by mass.

上記元素の除去は、得られるシリカ系粒子のモル比(MOx/SiO)が、0.2以下となるまで行うことが好ましい。モル比(MOx/SiO)が0.2よりも大きいと、最終的に得られる「シリカを含む外殻の内側に空洞を有する粒子」の屈折率や、粒子の硬度及び強度が不十分となるおそれがある。モル比(MOx/SiO)は、0.1以下がより好ましい。 It is preferable to remove the above elements until the molar ratio (MOx/SiO 2 ) of the obtained silica-based particles becomes 0.2 or less. If the molar ratio (MOx/SiO 2 ) is larger than 0.2, the refractive index of the finally obtained "particles having a cavity inside the outer shell containing silica" and the hardness and strength of the particles may be insufficient. There is a risk that this may occur. The molar ratio (MOx/SiO 2 ) is more preferably 0.1 or less.

本工程では、第二工程と同様に電解質塩を添加しても構わない。その添加量も、第二工程と同様に、比(M/M)として0.1~10が好ましい。なお、電解質塩は、第三工程の開始時に全量を添加しても良いし、珪素以外の元素の少なくとも一部を除去する際に、連続的にあるいは断続的に添加しても良い。ただし、第三工程での添加量は、第二工程で電解質塩を添加した場合、それを除去しない限り、第二工程と第三工程の合計量が、上記の範囲内となるように添加する。比(M/M)は、0.2~8がより好ましい。 In this step, an electrolyte salt may be added as in the second step. The amount added is also preferably 0.1 to 10 as a ratio (M E /M S ), similarly to the second step. The electrolyte salt may be added in its entirety at the start of the third step, or may be added continuously or intermittently when removing at least a portion of the elements other than silicon. However, the amount added in the third step should be such that if electrolyte salt is added in the second step, the total amount of the second and third steps will be within the above range unless it is removed. . The ratio (M E /M S ) is more preferably 0.2 to 8.

[第四工程]
第四工程では、シリカ系粒子を必要に応じて洗浄し、昇温速度を0.3~3.0℃/min.で200~800℃まで加温した後、0.04~2.0℃/min.の速度で降温し、少なくとも100℃未満にする。
[Fourth step]
In the fourth step, the silica particles are washed as necessary, and the temperature increase rate is set at 0.3 to 3.0°C/min. After heating to 200-800°C at 0.04-2.0°C/min. temperature at a rate of at least below 100°C.

珪素以外の元素の少なくとも一部を除去したシリカ系粒子の分散液は、必要に応じて限外濾過等の公知の洗浄方法により洗浄することができる。洗浄によって溶解した珪素以外の元素の少なくとも一部を除去する。この場合、予め分散液中のアルカリ金属イオン等の一部を除去した後に限外濾過すれば、分散安定性の高いシリカ系粒子の分散液が得られる。 The dispersion of silica-based particles from which at least a portion of elements other than silicon have been removed can be washed by a known washing method such as ultrafiltration, if necessary. At least a portion of the dissolved elements other than silicon are removed by cleaning. In this case, if a portion of the alkali metal ions and the like in the dispersion are removed in advance and then subjected to ultrafiltration, a dispersion of silica-based particles with high dispersion stability can be obtained.

また、元素を除去した分散液は、陽イオン交換樹脂と陰イオン交換樹脂の少なくとも一方と接触させることによっても、溶解した珪素以外の元素の一部あるいはアルカリ金属イオン等を除去することができる。また、洗浄する際、加温して行うと効果的に洗浄することができる。 Further, by bringing the element-removed dispersion into contact with at least one of a cation exchange resin and an anion exchange resin, a portion of the dissolved elements other than silicon or alkali metal ions can be removed. Further, when cleaning, heating can be performed for effective cleaning.

このように洗浄することによって、シリカ系粒子を加熱処理して得られる「シリカを含む外殻の内側に空洞を有する粒子」中の不純分であるアルカリ金属等の含有量を効果的に低減することができる。これらの含有量は、上述の「シリカを含む外殻の内側に空洞を有する粒子」の不純分の含有量に準じる。例えば、洗浄されたシリカ系粒子中のアルカリ金属に属する元素は、酸化物で表した時、SiOに対して各々500ppm以下である。 By washing in this way, the content of impurities such as alkali metals in "particles containing silica and having a cavity inside the outer shell" obtained by heat-treating silica-based particles is effectively reduced. be able to. These contents conform to the impurity contents of the above-mentioned "particles containing silica and having a cavity inside the outer shell." For example, the elements belonging to alkali metals in the washed silica-based particles are each 500 ppm or less relative to SiO 2 when expressed as an oxide.

もし、シリカ系粒子中の不純分の各々の含有量が、上述の粒子の不純分の範囲内であれば、本工程での洗浄は特に必要としない。 If the content of each impurity in the silica-based particles is within the range of impurities in the particles described above, washing in this step is not particularly required.

このように、アルカリ金属等の含有量が少ないシリカ系粒子の分散液を、昇温速度を0.3~3.0℃/min.で200~800℃まで加温する。加温後は、0.04~2.0℃/min.の速度で降温し、少なくとも100℃未満にする。 In this way, a dispersion of silica-based particles containing a small amount of alkali metal etc. is heated at a heating rate of 0.3 to 3.0°C/min. Heat to 200-800℃. After heating, the temperature is 0.04 to 2.0°C/min. temperature at a rate of at least below 100°C.

本発明は、シリカ系粒子の分散液を加温することで、シリカ系粒子に熱遊離性の珪素分を析出させ、これを降温することでシリカ系粒子に沈着させて固定化することで、「シリカを含む外殻の内側に空洞を有する粒子」を作製する。 In the present invention, by heating a dispersion of silica-based particles, thermally liberated silicon is precipitated in the silica-based particles, and by lowering the temperature, it is deposited and immobilized on the silica-based particles. ``Particles that have a cavity inside an outer shell containing silica'' are produced.

このようなシリカを含む外殻は、緻密であるために、内部が屈折率の低い気相あるいは液相に保たれる。このため、粒子自身も緻密で低屈折率な粒子となる。 Since the outer shell containing such silica is dense, the interior is maintained in a gas phase or liquid phase with a low refractive index. Therefore, the particles themselves are dense and have a low refractive index.

ここで、昇温速度が0.3℃/min.未満であると、目標とする温度まで昇温する時間がかかりすぎて生産効率が悪い。昇温速度が3.0℃/min.よりも速いと、粒子中の珪素分の溶解が急激に起こり、粒子の緻密化が図れないおそれがある。昇温速度は、0.5~2.5℃/min.が好ましく、0.8~2.2℃/min.がより好ましい。 Here, the temperature increase rate is 0.3°C/min. If it is less than that, it takes too much time to raise the temperature to the target temperature, resulting in poor production efficiency. The temperature increase rate is 3.0°C/min. If it is faster than this, the silicon content in the particles will rapidly dissolve, and there is a risk that the particles will not be densified. The temperature increase rate is 0.5 to 2.5°C/min. is preferably 0.8 to 2.2°C/min. is more preferable.

次に、加温した温度が200℃未満だと、粒子中の珪素分の析出が不十分となるおそれがある。温度が800℃を超えても、それ以上の粒子中の析出の向上は得られないし、製造コストがかかるおそれがある。目標とする温度まで加温した後は、降温しても構わないが、安定的に生産するために、その温度を30分間以上保持することが好ましい。加温は、360~750℃が好ましく、400~750℃がより好ましい。 Next, if the heating temperature is less than 200° C., there is a risk that the silicon content in the particles will be insufficiently precipitated. Even if the temperature exceeds 800° C., no further improvement in precipitation in the particles can be obtained, and there is a risk that manufacturing costs will increase. After heating to the target temperature, the temperature may be lowered, but in order to produce stably, it is preferable to maintain that temperature for 30 minutes or more. The heating is preferably performed at 360 to 750°C, more preferably from 400 to 750°C.

次に、降温速度が0.04℃/min未満であると、製造コストがかかるおそれがある。降温速度が2.0℃/min.よりも速いと、珪素分のシリカ系粒子への沈着は進むものの、粒子の緻密化が図れないおそれがある。降温速度は、0.08~1.8℃/min.が好ましく、0.12~1.5℃/min.がより好ましい。 Next, if the temperature decreasing rate is less than 0.04° C./min, manufacturing costs may increase. The temperature decreasing rate is 2.0°C/min. If the speed is faster than that, the silicon content will be deposited onto the silica-based particles, but the particles may not be densified. The temperature decreasing rate is 0.08 to 1.8°C/min. is preferably 0.12 to 1.5°C/min. is more preferable.

降温した温度は、100℃未満であればよい。取り扱いを容易にするために、常温まで温度を下げても構わない。ただし、後述のように、再び昇温する場合は、温度を下げすぎると、降温や昇温に時間がかかったり、余計なエネルギーを要したりするおそれがある。100℃を下回れば、上述の降温速度の範囲にとらわれず、例えば、降温速度を上げて、降温しても構わない。 The lowered temperature may be less than 100°C. For ease of handling, the temperature may be lowered to room temperature. However, as will be described later, when the temperature is raised again, if the temperature is lowered too much, there is a risk that it will take time to lower or raise the temperature or that extra energy will be required. As long as the temperature is lower than 100° C., the temperature may be lowered by increasing the temperature lowering rate without being limited to the range of the temperature lowering rate described above.

上述の昇温及び降温の操作は、複数回繰り返すことが好ましい。この操作を繰り返すことによって、珪素分の溶解・沈着も繰り返し行われるため、より緻密で低屈折率な「シリカを含む外殻の内側に空洞を有する粒子」が得られる。操作を繰り返す際の条件は、毎回同じでも構わないし、昇温速度や温度を変更しても良い。 It is preferable to repeat the temperature raising and temperature lowering operations described above multiple times. By repeating this operation, the dissolution and deposition of the silicon component is also repeated, so that "particles having a cavity inside the outer shell containing silica" which are denser and have a lower refractive index can be obtained. The conditions for repeating the operation may be the same each time, or the heating rate and temperature may be changed.

このようにして得られる「シリカを含む外殻の内側に空洞を有する粒子」を用いて得られる被膜形成用塗料は、安定性、塗膜性等が向上する。また、このような粒子を被膜等に使用する場合、屈折率の高い物質、例えば、マトリックス形成成分等が、粒子外殻の内側には進入できない。このため、屈折率が低く透明な被膜が得られる。更に、この被膜は、基材との密着性に優れ、高い硬度と強度を有する。 The film-forming paint obtained using the thus obtained "particles containing silica and having a cavity inside the shell" has improved stability, coating properties, and the like. Furthermore, when such particles are used in a coating or the like, substances with a high refractive index, such as matrix-forming components, cannot enter the inside of the outer shell of the particles. Therefore, a transparent film with a low refractive index can be obtained. Furthermore, this coating has excellent adhesion to the base material and has high hardness and strength.

本発明では、第三工程の後、シリカ系粒子の分散液に不純分の含有量が少ないシリカゾルや珪酸液あるいは有機珪素化合物といったシリカ源を添加することが好ましい。これを第四工程の水熱処理の前に行うことにより、シリカを含む外殻は、より緻密化されて、低屈折率で高い硬度と強度を有する「シリカを含む外殻の内側に空洞を有する粒子」が得られる。 In the present invention, after the third step, it is preferable to add a silica source such as a silica sol, a silicic acid solution, or an organic silicon compound having a low content of impurities to the silica-based particle dispersion. By performing this before the fourth step of hydrothermal treatment, the outer shell containing silica becomes more dense and has a low refractive index, high hardness and strength. "particles" are obtained.

このシリカ源の添加は、第四工程での珪素分の溶解・沈着をより積極的に行うためのものである。このため、シリカ源としては微細なものが好ましい。例えば、シリカ源としてシリカゾルを使用する場合、その平均粒子径は、シリカ系粒子の平均粒子径にもよるが、概ね30nm未満であることが好ましい。また、使用するシリカ源が、有機珪素化合物の場合、上述の第一工程の式(2)に示す有機珪素化合物を用いることができる。式(2)において、nが0の有機珪素化合物を用いる場合は、有機珪素化合物の部分加水分解物を用いることが好ましい。シリカ源は、単独で使用しても組み合わせて使用してもよい。 The purpose of adding this silica source is to more actively dissolve and deposit silicon in the fourth step. For this reason, a fine silica source is preferable. For example, when using silica sol as a silica source, the average particle diameter thereof is preferably less than 30 nm, although it depends on the average particle diameter of the silica-based particles. Moreover, when the silica source used is an organic silicon compound, the organic silicon compound shown in formula (2) in the above-mentioned first step can be used. In formula (2), when using an organosilicon compound in which n is 0, it is preferable to use a partial hydrolyzate of the organosilicon compound. Silica sources may be used alone or in combination.

シリカ源の量は、シリカ系粒子100質量部に対して、SiOとして1~200質量部、固形分として存在することが好ましい。ここで、シリカ源量が1質量部未満であると、その添加効果は十分に得られない。シリカ源量が200質量部よりも多くても、粒子の緻密化が更に向上する訳ではない。その上、粒子の屈折率が上昇し、所望の屈折率を有する粒子が得られないおそれがある。シリカ源量は、5~100質量部がより好ましく、20~55質量部が更に好ましい。 The amount of the silica source is preferably 1 to 200 parts by weight as SiO 2 as a solid content, based on 100 parts by weight of the silica particles. Here, if the amount of silica source is less than 1 part by mass, the effect of its addition cannot be sufficiently obtained. Even if the amount of silica source is more than 200 parts by mass, the densification of the particles will not be further improved. Moreover, the refractive index of the particles increases, and there is a possibility that particles having a desired refractive index cannot be obtained. The amount of silica source is more preferably 5 to 100 parts by mass, and even more preferably 20 to 55 parts by mass.

これらのシリカ源を添加する場合も、昇温及び降温の操作は、上述したように複数回繰り返すことが好ましい。この添加は、被膜層の形成と粒子の緻密化の観点から、昇温前に行うことが好ましい。 Also when adding these silica sources, it is preferable to repeat the temperature raising and temperature lowering operations multiple times as described above. From the viewpoint of forming a coating layer and densifying the particles, this addition is preferably carried out before the temperature is raised.

これらのシリカ源の添加の時期は、昇温前の1回だけでも良いし、昇温及び降温の操作の繰返しの都度、あるいは断続的に行っても構わない。 These silica sources may be added only once before the temperature is raised, or may be added every time the temperature raising and lowering operations are repeated, or intermittently.

本発明では、第四工程の後、有機珪素化合物を添加して、粒子を表面処理することが好ましい。 In the present invention, after the fourth step, it is preferable to add an organic silicon compound to surface-treat the particles.

使用する有機珪素化合物としては、上述の第一工程の式(2)に示すnが1~3の有機珪素化合物を用いることが好ましい。ここで、nが0の有機珪素化合物を用いる場合は、有機珪素化合物の部分加水分解物を用いることが好ましい。 As the organosilicon compound used, it is preferable to use an organosilicon compound in which n is 1 to 3 as shown in formula (2) in the above-mentioned first step. Here, when using an organosilicon compound in which n is 0, it is preferable to use a partial hydrolyzate of the organosilicon compound.

粒子の表面処理は、粒子のアルコール分散液を準備して、これに所定量の式(2)に示す有機珪素化合物と水とを加えて、有機珪素化合物を加水分解して行う。この加水分解には、必要に応じて、加水分解用触媒として酸またはアルカリを使用する。 The surface treatment of the particles is carried out by preparing an alcohol dispersion of the particles, adding a predetermined amount of the organosilicon compound represented by formula (2) and water, and hydrolyzing the organosilicon compound. For this hydrolysis, an acid or alkali is used as a hydrolysis catalyst, if necessary.

有機珪素化合物は、粒子100質量部に対し、R-SiO(4-n)/2として0.1~100質量部、固形分として存在することが好ましい。有機珪素化合物で粒子が表面処理されていれば、マトリックス形成成分との相溶性が向上する。 The organosilicon compound is preferably present as a solid content in an amount of 0.1 to 100 parts by mass as R n --SiO (4-n)/2 based on 100 parts by mass of particles. If the particles are surface-treated with an organosilicon compound, their compatibility with the matrix-forming components will be improved.

ここで、有機珪素化合物量が0.1質量部未満であると、その添加効果は十分に得られない。むしろ、粒子の分散性が不十分となり、得られる透明被膜にヘイズが発生するおそれがある。有機珪素化合物量が100質量部よりも多くても、粒子の分散性が更に向上する訳ではない。その上、マトリックスと結合するサイトが増えるので、基材との密着性が不十分となるおそれがある。有機珪素化合物量は、概ね2~80質量部がより好ましく、3~50質量部が更に好ましい。 Here, if the amount of the organosilicon compound is less than 0.1 part by mass, the effect of its addition cannot be sufficiently obtained. On the contrary, the dispersibility of the particles may become insufficient and haze may occur in the resulting transparent film. Even if the amount of the organosilicon compound is more than 100 parts by mass, the dispersibility of the particles will not be further improved. Moreover, since the number of sites that bond with the matrix increases, there is a risk that the adhesion to the base material will be insufficient. The amount of the organosilicon compound is more preferably approximately 2 to 80 parts by weight, and even more preferably 3 to 50 parts by weight.

[透明被膜形成用塗布液]
上述した粒子は、透明被膜形成用の塗布液に適用できる。すなわち、塗布液は、粒子とマトリックス形成成分と有機溶媒とを含む。これ以外に、重合開始剤、レベリング剤、界面活性剤等の添加剤を含んでいてもよい。次に、この塗布液に含まれる主要成分について説明する。
[Coating liquid for forming transparent film]
The particles described above can be applied to a coating liquid for forming a transparent film. That is, the coating liquid contains particles, a matrix forming component, and an organic solvent. In addition to this, additives such as a polymerization initiator, a leveling agent, and a surfactant may be included. Next, the main components contained in this coating liquid will be explained.

塗布液中の粒子の濃度は、含まれる粒子やマトリックス形成成分等の固形分の合計量に対して、固形分として5~95質量%が好ましい。粒子が5質量%未満であると、被膜の屈折率が十分に低減できないおそれがある。逆に、95質量%より多いと、被膜にクラックが発生するおそれ、基材との密着性が不十分となるおそれ、硬度や強度、透明性、ヘイズ等が悪化するおそれがある。この粒子の濃度は、10~85質量%がより好ましく、20~70質量%が更に好ましい。 The concentration of particles in the coating liquid is preferably 5 to 95% by mass as solid content, based on the total amount of solid content such as particles and matrix-forming components. If the amount of particles is less than 5% by mass, the refractive index of the coating may not be sufficiently reduced. On the other hand, if it is more than 95% by mass, there is a risk that cracks will occur in the film, that the adhesion to the base material will be insufficient, and that the hardness, strength, transparency, haze, etc. may deteriorate. The concentration of the particles is more preferably 10 to 85% by mass, and even more preferably 20 to 70% by mass.

マトリックス形成成分としては、有機樹脂系マトリックス形成成分が好適である。例えば、紫外線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等のマトリックスを形成する成分が挙げられる。 As the matrix-forming component, an organic resin-based matrix-forming component is suitable. Examples include components forming a matrix such as ultraviolet curable resin, thermosetting resin, and thermoplastic resin.

紫外線硬化性樹脂としては、(メタ)アクリル酸系樹脂、γ‐グリシルオキシ系樹脂、ウレタン系樹脂、ビニル系樹脂等がある。熱硬化性樹脂としては、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂等がある。熱可塑性樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴム等がある。これらの樹脂は、2種以上の共重合体や変性体でもよく、組み合わせて使用してもよい。また、これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。 Examples of ultraviolet curable resins include (meth)acrylic acid resins, γ-glycyloxy resins, urethane resins, and vinyl resins. Examples of thermosetting resins include urethane resins, melamine resins, silicone resins, butyral resins, reactive silicone resins, phenol resins, epoxy resins, unsaturated polyester resins, and thermosetting acrylic resins. Examples of the thermoplastic resin include polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluororesin, vinyl acetate resin, silicone rubber, and the like. These resins may be copolymers or modified products of two or more types, or may be used in combination. Moreover, these resins may be emulsion resins, water-soluble resins, or hydrophilic resins.

これらの樹脂を形成する成分は、粒子の分散性、塗膜の容易さから、モノマーやオリゴマーが好ましい。 The components forming these resins are preferably monomers or oligomers from the viewpoint of particle dispersibility and ease of coating.

塗布液中のマトリックス形成成分の濃度は、含まれる粒子やマトリックス形成成分等の固形分の合計量に対して、固形分として5~95質量%が好ましい。マトリックス形成成分が5質量%未満の場合、被膜化が困難である。また、被膜が得られたとしても、被膜にクラックが発生するおそれ、基材との密着性が不十分となるおそれ、硬度や強度、透明性、ヘイズ等が悪化するおそれがある。逆に95質量%よりも多いと、粒子の量が少ないため、屈折率が十分に低減できないおそれがある。このマトリックス形成成分の濃度は、15~90質量%がより好ましく、30~80質量%が更に好ましい。 The concentration of the matrix-forming component in the coating liquid is preferably 5 to 95% by mass as a solid content, based on the total amount of solid content such as particles and matrix-forming components contained. When the matrix-forming component is less than 5% by mass, it is difficult to form a film. Furthermore, even if a film is obtained, there is a risk that cracks will occur in the film, that the adhesion to the base material will be insufficient, and that the hardness, strength, transparency, haze, etc. may deteriorate. On the other hand, if it is more than 95% by mass, the amount of particles is small, so there is a risk that the refractive index cannot be reduced sufficiently. The concentration of this matrix-forming component is more preferably 15 to 90% by mass, and even more preferably 30 to 80% by mass.

有機溶媒としては、粒子を均一に分散でき、マトリックス形成成分や重合開始剤等の添加剤を溶解あるいは分散できるものが用いられる。中でも、親水性溶媒や極性溶媒が好ましい。親水性溶媒としては、例えば、アルコール類、エステル類、グリコール類、エーテル類等が挙げられる。極性溶媒としては、例えば、エステル類、ケトン類等が挙げられる。 As the organic solvent, one that can uniformly disperse particles and dissolve or disperse additives such as matrix forming components and polymerization initiators is used. Among these, hydrophilic solvents and polar solvents are preferred. Examples of the hydrophilic solvent include alcohols, esters, glycols, and ethers. Examples of the polar solvent include esters and ketones.

アルコール類としては、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等がある。 Examples of alcohols include methanol, ethanol, propanol, 2-propanol, butanol, diacetone alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol.

エステル類としては、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3-メトキシブチル、酢酸2-エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセテート等がある。 Examples of esters include methyl acetate, ethyl acetate, isopropyl acetate, propyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate, etc. .

グリコール類としては、エチレングリコール、ヘキシレングリコール等がある。 Examples of glycols include ethylene glycol and hexylene glycol.

エーテル類としては、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等がある。 Ethers include diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , propylene glycol monomethyl ether acetate, etc.

ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン等がある。 Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, and the like.

極性溶媒としては、他に、炭酸ジメチル、トルエン等がある。 Other polar solvents include dimethyl carbonate, toluene, and the like.

これらは単独で使用してもよく、2種以上を混合して使用してもよい。 These may be used alone or in combination of two or more.

添加剤としては、反射防止膜形成に従来使用可能なものが任意に使用できる。例えば、マトリックス形成成分の重合促進や造膜性を向上させるために、重合開始剤、レベリング剤等が使用される。 As the additive, any additive that can be used conventionally for forming an antireflection film can be used. For example, a polymerization initiator, a leveling agent, etc. are used to promote polymerization of matrix-forming components and improve film-forming properties.

重合開始剤としては、例えば、ビス(2、4、6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2、6-ジメトキシベンゾイル)2、4、4-トリメチル-ペンチルフォスフィンオキサイド、2-ヒドロキシメチル-2-メチルフェニル-プロパン-1-ケトン、2、2-ジメトキシ-1、2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。 Examples of the polymerization initiator include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)2,4,4-trimethyl-pentylphosphine oxide, and 2-hydroxymethyl -2-methylphenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1-[4-(methylthio)phenyl] -2-morpholinopropan-1-one and the like.

レベリング剤としては、例えば、アクリル系レベリング剤、シリコーン系レベリング剤、アクリルシリコーン系レベリング剤等が挙げられる。これらのレベリング剤にはフッ素基を有するものが好ましく使用される。 Examples of the leveling agent include acrylic leveling agents, silicone leveling agents, acrylic silicone leveling agents, and the like. These leveling agents preferably have a fluorine group.

これらの添加剤の塗布液中の濃度は、被膜化した際に固形分として含まれるものは、便宜上、マトリックス形成成分として計上し、被膜化後はマトリックスとして計上する。 Regarding the concentration of these additives in the coating solution, those contained as solids when formed into a film are counted as matrix-forming components for convenience, and after forming into a film, they are counted as the matrix.

塗布液の固形分濃度(塗布液に対する、粒子の固形分とマトリックス形成成分の固形分とを合計した固形分の割合)は、0.1~60質量%が好ましい。塗布液の固形分濃度が0.1質量%未満であると、塗料の濃縮安定性が低いため、塗工が困難となり、均一な被膜が得られ難いおそれがある。また、ヘイズあるいは外観が悪くなるため、生産性、製造信頼性等が低下するおそれがある。逆に、60質量%より高いと、塗布液の安定性が悪くなるおそれがある。また、塗布液の粘度が高くなるため、塗工性が低下するおそれがある。更に、被膜のヘイズが高くなって、表面粗さが大きくなり、強度が不十分となるおそれがある。塗布液の固形分濃度は、1~50質量%がより好ましい。 The solid content concentration of the coating liquid (the ratio of the solid content of the total solid content of particles and matrix-forming components to the coating liquid) is preferably 0.1 to 60% by mass. If the solid content concentration of the coating liquid is less than 0.1% by mass, the concentration stability of the coating material will be low, making coating difficult and possibly making it difficult to obtain a uniform film. Further, due to haze or poor appearance, productivity, manufacturing reliability, etc. may be reduced. On the other hand, if it is higher than 60% by mass, the stability of the coating liquid may deteriorate. Furthermore, since the viscosity of the coating liquid increases, there is a risk that the coating properties will be reduced. Furthermore, the haze of the coating increases, the surface roughness increases, and the strength may become insufficient. The solid content concentration of the coating liquid is more preferably 1 to 50% by mass.

[透明被膜付基材の製造方法]
上述の塗布液を用いて、透明被膜を基材に形成する。
[Method for producing base material with transparent film]
A transparent film is formed on a base material using the above-mentioned coating liquid.

具体的には、基材上に塗布液を塗布した後、乾燥及び紫外線照射を行い、基材上に透明被膜を形成する。塗布液の塗布方法としては、基材に透明被膜を形成できるものであれば特に制限されない。例えば、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法が採用できる。乾燥は、例えば、50~150℃程度に加熱し、溶媒を蒸発させて除去する。その後、紫外線を照射し、樹脂成分の重合を促進させて被膜の硬度化を図る。透明被膜は、主にマトリックス(樹脂)成分と粒子とで形成される。 Specifically, after applying a coating liquid onto a base material, drying and ultraviolet ray irradiation are performed to form a transparent film on the base material. The method for applying the coating liquid is not particularly limited as long as it can form a transparent film on the substrate. For example, well-known methods such as a spray method, a spinner method, a roll coating method, a bar coating method, a slit coater printing method, a gravure printing method, a microgravure printing method, etc. can be employed. Drying is performed by heating, for example, to about 50 to 150° C. to evaporate and remove the solvent. Thereafter, ultraviolet rays are irradiated to promote polymerization of the resin component and harden the coating. The transparent film is mainly formed of a matrix (resin) component and particles.

このようにして、基材上に透明被膜が形成された透明被膜付基材が作製される。透明被膜には、粒子とマトリックスとが含まれる。透明被膜では、塗布液中の粒子とマトリックス形成成分の固形分の割合が、そのまま被膜中の粒子成分とマトリックスの割合となる。上述のように、塗布液中の添加剤の内、固形分として残存するものは、ここではマトリックスとして計上する。 In this way, a base material with a transparent film on which a transparent film is formed is produced. The transparent film includes particles and a matrix. In a transparent film, the ratio of the solid content of the particles in the coating liquid to the matrix-forming component directly becomes the ratio of the particle components to the matrix in the film. As mentioned above, among the additives in the coating liquid, those remaining as solid content are counted here as the matrix.

透明被膜の膜厚は、80~350nmが好ましい。膜厚が80nmより薄いと、膜の強度、耐擦傷性が不十分となる場合がある。また、膜が薄すぎて十分な反射防止性能が得られないことがある。逆に、膜厚が350nmより厚いと、膜にクラックが入りやすくなるために膜の強度が不十分となる場合があり、また、膜が厚すぎて反射防止性能が低下する場合がある。また、収縮が非常に大きい場合には、クラックが発生するおそれもある。この膜厚は、85~220nmがより好ましく、90~110nmが更に好ましい。 The thickness of the transparent film is preferably 80 to 350 nm. If the film thickness is less than 80 nm, the strength and scratch resistance of the film may be insufficient. Furthermore, the film may be too thin to provide sufficient antireflection performance. On the other hand, if the film thickness is thicker than 350 nm, the film may be prone to cracks and the strength of the film may be insufficient, or the film may be too thick and the antireflection performance may deteriorate. Furthermore, if the shrinkage is extremely large, cracks may occur. This film thickness is more preferably 85 to 220 nm, and even more preferably 90 to 110 nm.

また、透明被膜の屈折率は1.10~1.45が好ましい。 Further, the refractive index of the transparent film is preferably 1.10 to 1.45.

透明被膜の屈折率が1.10未満のものは得ることが困難であり、屈折率が1.45を越えると基材の屈折率あるいは必要に応じて形成される透明被膜の下層に形成される他の膜の屈折率によっても異なるが反射防止性能が不十分となることがある。 It is difficult to obtain a transparent film with a refractive index of less than 1.10, and if the refractive index exceeds 1.45, it will be formed on the refractive index of the base material or the lower layer of the transparent film formed as necessary. Although it varies depending on the refractive index of other films, the antireflection performance may be insufficient.

本発明の透明被膜の屈折率はエリプソメーター(ULVAC社製 EMS-1)により測定する。透明被膜の屈折率は、1.15~1.35がより好ましい。 The refractive index of the transparent coating of the present invention is measured using an ellipsometer (EMS-1 manufactured by ULVAC). The refractive index of the transparent film is more preferably 1.15 to 1.35.

透明被膜付基材の光透過率は、85.0%以上が好ましい。光透過率が85.0%より低いと、表示装置等において画像の鮮明度が不十分となるおそれがある。この光透過率は、90.0%以上がより好ましい。 The light transmittance of the transparent coated substrate is preferably 85.0% or more. When the light transmittance is lower than 85.0%, there is a risk that the image clarity in a display device or the like may be insufficient. This light transmittance is more preferably 90.0% or more.

また、透明被膜付基材のヘイズは、3%以下が好ましく、0.3%以下がより好ましい。 Further, the haze of the transparent coated substrate is preferably 3% or less, more preferably 0.3% or less.

また、透明被膜付基材の反射率は、2.0%以下が好ましく、1.2%以下がより好ましい。 Further, the reflectance of the transparent coated substrate is preferably 2.0% or less, more preferably 1.2% or less.

透明被膜の強度(耐擦傷性)は、#0000のスチールウールを用い、荷重1kg/cmにて摺動させて評価する。この摺動回数が少なくとも100回の時点で膜表面に筋状の傷が認められないことが好ましく、500回の時点で傷が認められないことがより好ましく、1000回の時点で傷が認められないことが更に好ましい。 The strength (scratch resistance) of the transparent film is evaluated by sliding it on #0000 steel wool at a load of 1 kg/cm 2 . It is preferable that no streak-like scratches be observed on the membrane surface after at least 100 sliding cycles, more preferably no scratches should be observed after 500 sliding cycles, and no scratches should be observed after 1000 sliding cycles. It is even more preferable not to have any.

透明被膜の鉛筆硬度は、2H以上が好ましい。2H未満では、反射防止膜として硬度が不十分である。この鉛筆硬度は、3H以上がより好ましく、4H以上が更に好ましい。 The pencil hardness of the transparent coating is preferably 2H or higher. If the hardness is less than 2H, the hardness is insufficient as an antireflection film. The pencil hardness is more preferably 3H or higher, and even more preferably 4H or higher.

基材は、公知のものが使用可能である。例えば、ポリカーボネート、アクリル樹脂、ポリエチレンテレフタラート(PET)、トリアセチルセルロース(TAC)、ポリメタクリル酸メチル樹脂(PMMA)、シクロオレフィンポリマー(COP)等の透明な樹脂基材が好ましい。これらの基材は、上述の塗布液によって形成される透明被膜との密着性が優れ、硬度、強度等に優れた透明被膜付基材を得ることができる。このため、薄い基材に好適に用いられる。基材の厚みに特に制限はないが、10~100μmが好ましく、20~80μmがより好ましい。 Any known base material can be used. For example, transparent resin base materials such as polycarbonate, acrylic resin, polyethylene terephthalate (PET), triacetyl cellulose (TAC), polymethyl methacrylate resin (PMMA), and cycloolefin polymer (COP) are preferred. These base materials have excellent adhesion to the transparent film formed by the above-mentioned coating liquid, and can provide a transparent film-coated base material having excellent hardness, strength, and the like. Therefore, it is suitably used for thin base materials. The thickness of the base material is not particularly limited, but is preferably 10 to 100 μm, more preferably 20 to 80 μm.

また、このような基材上に、他の被膜が形成された被膜付基材を用いこともできる。他の被膜としては、例えば、従来公知のプライマー膜、ハードコート膜、高屈折率膜、導電性膜等が挙げられる。 Moreover, a coated base material in which another coat is formed on such a base material can also be used. Other coatings include, for example, conventionally known primer films, hard coat films, high refractive index films, conductive films, and the like.

以下、本発明の実施例を説明する。ここでは、有機珪素化合物で表面処理された粒子を例示する。 Examples of the present invention will be described below. Here, particles surface-treated with an organic silicon compound are exemplified.

[実施例1]
〈シリカを含む外殻の内側に空洞を有する粒子(P1)の製造〉
種粒子の水分散液(日揮触媒化成(株)製 USBB-120、平均粒子径25nm、固形分濃度20質量%、固形分中のAl23含有量27質量%)50gに純水9950gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、98℃に加温して、SiOとしての濃度が1.5質量%の珪酸ナトリウム水溶液1.87kgと、Alとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液1.87kgとを添加した。その後、遠心沈降法で洗浄を行い、複合酸化物粒子(a-1)の分散液を得た。この複合酸化物粒子(a-1)の平均粒子径は44nmであった。
[Example 1]
<Production of particles (P1) having a cavity inside the outer shell containing silica>
Add 9950 g of pure water to 50 g of an aqueous dispersion of seed particles (USBB-120, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 25 nm, solid content concentration 20 mass %, Al 2 O 3 content in solid content 27 mass %). After the addition, 1% by weight of sodium hydroxide was added to adjust the pH to 11.0. Thereafter, it was heated to 98° C., and 1.87 kg of a sodium silicate aqueous solution with a concentration of 1.5% by mass as SiO 2 and 1.87 kg of a sodium aluminate aqueous solution with a concentration of 0.5% by mass as Al 2 O 3 were added. 87 kg were added. Thereafter, washing was performed by centrifugal sedimentation to obtain a dispersion of composite oxide particles (a-1). The average particle diameter of the composite oxide particles (a-1) was 44 nm.

この複合酸化物粒子(a-1)を98℃に加温して、SiOとしての濃度が1.5質量%の珪酸ナトリウム水溶液6.31kgと、Alとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液2.10kgとを添加した。その後、限外濾過膜で洗浄して固形分濃度を13質量%にした後、目開き1μmのカプセルフィルターで濾過し、複合酸化物粒子(b-1)の分散液を得た。この複合酸化物粒子(b-1)の平均粒子径は58nmであった。 The composite oxide particles (a-1) were heated to 98°C, and 6.31 kg of a sodium silicate aqueous solution having a concentration of 1.5% by mass as SiO 2 and 0.5% as Al 2 O 3 were added. 2.10 kg of a sodium aluminate aqueous solution of % by mass was added. Thereafter, the mixture was washed with an ultrafiltration membrane to make the solid content concentration 13% by mass, and then filtered through a capsule filter with an opening of 1 μm to obtain a dispersion of composite oxide particles (b-1). The average particle diameter of the composite oxide particles (b-1) was 58 nm.

この複合酸化物粒子(b-1)の分散液500gに純水1125gを加え、更に濃塩酸(濃度35.5質量%)を滴下してpH1.0とした。これに、pH3の塩酸水溶液10Lと純水5Lを加えながら、限外濾過膜で溶解したアルミニウム塩を分離・洗浄して、濃度5質量%のシリカ系粒子(c-1)を得た。 1125 g of pure water was added to 500 g of this dispersion of composite oxide particles (b-1), and concentrated hydrochloric acid (concentration 35.5% by mass) was further added dropwise to adjust the pH to 1.0. While adding 10 L of a pH 3 aqueous hydrochloric acid solution and 5 L of pure water, the dissolved aluminum salt was separated and washed using an ultrafiltration membrane to obtain silica-based particles (c-1) with a concentration of 5% by mass.

次に、シリカ系粒子(c-1)100gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を12.8g加えて、十分に撹拌した。その後、アンモニア水を添加して分散液のpHを10.8に調整した。これを25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却した。その後、再度25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却し、もう一度同じ操作を行った(計3回)。その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P1)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Next, 100 g of silica-based particles (c-1) were added with silica sol (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20% by mass, Na 2 O concentration 0.8) as a silica source. % by mass) was added thereto and thoroughly stirred. Thereafter, aqueous ammonia was added to adjust the pH of the dispersion to 10.8. The temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 420 minutes. Thereafter, the temperature was again raised from 25° C. to 360° C. over 335 minutes, held for 24 hours, and then cooled to 25° C. over 420 minutes, and the same operation was performed once again (3 times in total). Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and the particles (P1 ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P1)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P1)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P1) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P1) with a solid content concentration of 20% by mass.

次いで、この粒子(P1)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をメチルイソブチルケトン(MIBK)に置換し、固形分濃度20質量%の粒子(P1)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P1), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with methyl isobutyl ketone (MIBK) using an evaporator to obtain an MIBK dispersion of particles (P1) with a solid content concentration of 20% by mass.

この粒子(P1)の製造条件を表1に示す。また、粒子(P1)について以下の方法で測定した各性状を表2に示す(以下の実施例、比較例も同様)。 Table 1 shows the manufacturing conditions for this particle (P1). Further, Table 2 shows the properties of the particles (P1) measured by the following methods (the same applies to the following Examples and Comparative Examples).

粒子(P1)の物性を画像解析法により測定した。具体的には、まず、粒子(P1)のMIBK分散液をメタノールで0.01質量%に希釈した後、電子顕微鏡用銅セルのコロジオン膜上で乾燥させた。次に、これを電解放出型透過電子顕微鏡(株式会社日立ハイテクノロジーズ製 HF5000)にて、倍率100万倍で写真撮影した。得られた写真投影図(SEM像、TEM写真)の任意の1000個の粒子について、以下の方法(1)~(5)にて測定した。 The physical properties of the particles (P1) were measured by an image analysis method. Specifically, first, the MIBK dispersion of particles (P1) was diluted with methanol to 0.01% by mass, and then dried on a collodion membrane of a copper cell for an electron microscope. Next, this was photographed using a field emission transmission electron microscope (HF5000, manufactured by Hitachi High-Technologies Corporation) at a magnification of 1,000,000 times. An arbitrary 1000 particles in the obtained photographic projection diagram (SEM image, TEM photograph) were measured by the following methods (1) to (5).

(1)平均粒子径(D)
SEM像の画像処理から粒子(P1)の面積を求め、その面積から円相当径を求めた。その円相当径の平均値を粒子の平均粒子径とした。
(1) Average particle diameter (D)
The area of the particle (P1) was determined from image processing of the SEM image, and the equivalent circle diameter was determined from the area. The average value of the equivalent circle diameter was defined as the average particle diameter of the particles.

(2)空洞径
TEM写真から粒子(P1)の外殻内側の空洞の面積を求め、その面積から円相当径を求め、これを空洞径とした。また、この空洞径の平均値をDとした。
(2) Cavity diameter The area of the cavity inside the outer shell of the particle (P1) was determined from the TEM photograph, and the equivalent circle diameter was determined from the area, and this was defined as the cavity diameter. Moreover, the average value of this cavity diameter was defined as D O.

(3)粒子形状
SEM像から粒子(P1)の短径、長径の比率を求めた。ここで、長径/短径の比の平均値が1.2未満であれば球状とした。
(3) Particle shape The ratio of the short axis and long axis of the particle (P1) was determined from the SEM image. Here, if the average value of the ratio of major axis/minor axis was less than 1.2, it was considered to be spherical.

(4)空洞形状、空洞が一つである粒子割合
TEM写真から粒子(P1)の外殻内側の空洞の短径、長径の比率を求めた。ここで、長径/短径の比の平均値が1.2未満であれば球状とした。また、粒子内の空洞の個数を測定し、その割合を求めた。
(4) Cavity shape and proportion of particles with one cavity The ratio of the short axis and long axis of the cavity inside the outer shell of the particle (P1) was determined from the TEM photograph. Here, if the average value of the ratio of major axis/minor axis was less than 1.2, it was considered to be spherical. Additionally, the number of cavities within the particles was measured and the proportion thereof was determined.

(5)N吸着法による細孔容積
粒子(P1)のMIBK分散液をエバポレーターにて乾燥させ、105℃で乾燥させた。その粉体1gをセルに取り、窒素吸着装置(BELSORP-miniII(マイクロトラック・ベル株式会社製))を用いて窒素を吸着させ、細孔容積を測定した。
(5) Pore volume by N 2 adsorption method The MIBK dispersion of particles (P1) was dried in an evaporator and dried at 105°C. One gram of the powder was placed in a cell, nitrogen was adsorbed using a nitrogen adsorption device (BELSORP-mini II (manufactured by Microtrac Bell Co., Ltd.)), and the pore volume was measured.

(6)粒子の屈折率(n
粒子(P1)のMIBK分散液をエバポレーターに採り分散媒を蒸発させた。次に、これを120℃で乾燥し、粉末とした。ガラス板上に、屈折率が既知の標準屈折液を2、3滴滴下し、これに上記粉末を混合した。この操作を種々の標準屈折液で行い、混合液が透明になった時の標準屈折液の屈折率をシリカ系中空粒子の屈折率とした。
(6) Refractive index of particles (n a )
The MIBK dispersion of particles (P1) was taken into an evaporator to evaporate the dispersion medium. Next, this was dried at 120°C to form a powder. Two or three drops of a standard refractive liquid with a known refractive index were dropped onto a glass plate, and the above powder was mixed therein. This operation was performed using various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid became transparent was taken as the refractive index of the silica-based hollow particles.

(7)粒子の外殻屈折率(ns
前述の方法で求めた、粒子の平均粒子径(D)、外殻内側の空洞径の平均値(D)、粒子の屈折率(n)を用いて、下記式にて粒子の外殻屈折率(ns)を求めた。
(7) Particle outer shell refractive index ( ns )
Using the average particle diameter (D) of the particles, the average value of the cavity diameter inside the outer shell (D O ), and the refractive index ( na ) of the particles, determined by the method described above, the outer shell of the particle can be calculated using the following formula. The refractive index ( ns ) was determined.

Figure 0007360294000002
Figure 0007360294000002

(8)炭素含有量
粒子(P1)中の炭素含有量は、粒子(P1)のMIBK分散液を120 ℃ で乾燥して、400℃で焼成したものを炭素硫黄分析装置(HORIBA製 EMIA -320V) を用いて測定した。
(8) Carbon content The carbon content in the particles (P1) was determined by drying the MIBK dispersion of the particles (P1) at 120°C and calcining it at 400°C using a carbon sulfur analyzer (EMIA-320V manufactured by HORIBA). ).

(9)29Si-NMRによるQ1、Q2、Q3、Q4及びその比率
専用ガラスセルに粒子(P1)のMIBK分散液を入れ、基準物質としてテトラメチルシランを5質量% 添加し、NMR装置( 日本電子(株)製 JNM-EX270 型、解析ソフト 日本電子(株)製Excalibur) にて測定した。より具体的には、シングルパルスノンデカップリング法にて、29Si-NMRスペクトル法における化学シフト-78~-88ppmに現れるピークの面積(Q)と、化学シフト-88~-98ppmに現れるピークの面積(Q)と、化学シフト-98~-108ppmに現れるピークの面積(Q)と、化学シフト-108~-117ppmに現れるピークの面積(Q)において、比(Q/ΣQ)、比(Q/ΣQ)及び比(Q3/Q4)を求めた。
(9) 29 Q 1 , Q 2 , Q 3 , Q 4 and their ratios by Si-NMR A MIBK dispersion of particles (P1) was placed in a dedicated glass cell, and 5% by mass of tetramethylsilane was added as a reference substance. Measurement was performed using an NMR device (JNM-EX270 model manufactured by JEOL Ltd., analysis software Excalibur manufactured by JEOL Ltd.). More specifically, in the single pulse non-decoupling method, the area (Q 1 ) of the peak appearing at the chemical shift of -78 to -88 ppm in 29 Si-NMR spectroscopy and the peak appearing at the chemical shift of -88 to -98 ppm (Q 2 ), the area of the peak appearing at the chemical shift of -98 to -108 ppm (Q 3 ), and the area of the peak appearing at the chemical shift of -108 to -117 ppm (Q 4 ), the ratio (Q 1 /ΣQ ), the ratio (Q 2 /ΣQ) and the ratio (Q 3 /Q 4 ) were determined.

(10)アルカリ金属、その他元素の含有量
粒子(P1)中のアルカリ金属の含有量、Fe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの含有量、Cu、Ni、Crの含有量、及びU、Thの含有量、については、粒子をフッ酸で溶解し、加熱してフッ酸を除去した後、必要に応じて純水を加え、得られた溶液についてICP誘導結合プラズマ発光分光質量分析装置(例えば、株式会社島津製作所製 ICPM-8500)を用いて測定した。
(10) Content of alkali metals and other elements Content of alkali metals in particles (P1), content of Fe, Ti, Zn, Pd, Ag, Mn, Co, Mo, Sn, Al, Zr, Cu, Regarding the content of Ni and Cr, and the content of U and Th, the particles are dissolved in hydrofluoric acid, heated to remove the hydrofluoric acid, and then pure water is added as necessary, and the resulting solution is determined. Measurement was performed using an ICP inductively coupled plasma emission spectrometer mass spectrometer (for example, ICPM-8500 manufactured by Shimadzu Corporation).

(11)シリカ含有量
粒子(P1)のMIBK分散液を120℃で12時間乾燥した。これを蛍光X線分析装置(株式会社日立ハイテクサイエンス製 EA600VX)を使用して、シリカ(SiO)の含有量を求めた。
(11) Silica content The MIBK dispersion of particles (P1) was dried at 120°C for 12 hours. The content of silica (SiO 2 ) was determined using a fluorescent X-ray analyzer (EA600VX, manufactured by Hitachi High-Tech Science Co., Ltd.).

〈反射防止用透明被膜形成用塗布液(1)の製造〉
粒子(P1)のMIBK分散液を固形分濃度5質量%に希釈した。この希釈分散液50gと、アクリル樹脂(日立化成(株)製 ヒタロイド1007)1.67g及びイソプロパノールとn-ブタノールの1/1(質量比)混合溶媒52.6gとを十分に混合して、透明被膜形成用塗布液(1)を製造した。この透明被膜形成用塗布液について表3に示す(以下の実施例、比較例も同様)。
<Production of coating liquid (1) for forming an antireflection transparent film>
The MIBK dispersion of particles (P1) was diluted to a solid content concentration of 5% by mass. 50 g of this diluted dispersion, 1.67 g of acrylic resin (Hitalloid 1007 manufactured by Hitachi Chemical Co., Ltd.) and 52.6 g of a mixed solvent of isopropanol and n-butanol (1/1 (mass ratio)) were thoroughly mixed to create a transparent A film-forming coating liquid (1) was produced. The coating liquid for forming a transparent film is shown in Table 3 (the same applies to the following Examples and Comparative Examples).

〈反射防止用透明被膜付基材(1)の製造〉
ハードコート塗料(日揮触媒化成(株)製 ELCOM HP-1004)を、TACフィルム(パナック(株)製 FT-PB80UL-M、厚さ 80μm、屈折率 1.51)にバーコーター法(#18)で塗布し、80℃で120秒間乾燥した。その後、300mJ/cmの紫外線を照射して硬化させてハードコート膜を作製した。ハードコート膜の膜厚は8μmであった。
<Production of base material with anti-reflection transparent coating (1)>
Hard coat paint (ELCOM HP-1004 manufactured by JGC Catalysts Kasei Co., Ltd.) was applied to TAC film (FT-PB80UL-M manufactured by Panac Corporation, thickness 80 μm, refractive index 1.51) using a bar coater method (#18). and dried at 80° C. for 120 seconds. Thereafter, a hard coat film was prepared by irradiating and curing ultraviolet rays at 300 mJ/cm 2 . The thickness of the hard coat film was 8 μm.

次いで、反射防止用透明被膜形成用塗布液(1)をバーコーター法(#4)で塗布し、80℃で120秒間乾燥した後、N雰囲気下で600mJ/cmの紫外線を照射して硬化させて反射防止用透明被膜付基材(1)を製造した。 Next, the coating liquid (1) for forming an antireflection transparent film was applied using a bar coater method (#4), dried at 80°C for 120 seconds, and then irradiated with ultraviolet rays of 600 mJ/cm 2 in an N 2 atmosphere. It was cured to produce an antireflection transparent coated substrate (1).

反射防止用透明被膜付基材(1)を以下の項目について測定した。結果を表3に示す(以下の実施例、比較例も同様)。 The antireflection transparent coated substrate (1) was measured for the following items. The results are shown in Table 3 (the same applies to the following Examples and Comparative Examples).

(12)膜厚、屈折率、反射率
エリプソメーター(ULVAC社製、EMS-1)を使用して、反射防止用透明被膜付基材(1)の膜厚、膜屈折率、波長550nmの光線の反射率を測定した。
(12) Film thickness, refractive index, reflectance Using an ellipsometer (manufactured by ULVAC, EMS-1), the film thickness, film refractive index, and light beam with a wavelength of 550 nm of the base material with antireflection transparent coating (1) were measured. The reflectance was measured.

(13)全光線透過率、ヘイズ
ヘーズメーター(スガ試験機(株)製)を使用して、反射防止用透明被膜付基材(1)の全光線透過率、ヘイズを測定した。
(13) Total light transmittance and haze Using a haze meter (manufactured by Suga Test Instruments Co., Ltd.), the total light transmittance and haze of the antireflection transparent coated substrate (1) were measured.

(14)密着性
反射防止用透明被膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。
残存升目の数90個以上 :◎
残存升目の数85~89個:○
残存升目の数84個以下 :△
(14) Adhesion On the surface of the anti-reflection transparent coated base material (1), use a knife to make 11 parallel scratches at 1 mm intervals vertically and horizontally to create 100 squares, adhere cellophane tape to these, and then Adhesion was evaluated by classifying the number of squares that remained without the film peeling off when the cellophane tape was peeled off into the following three levels.
Number of remaining squares: 90 or more: ◎
Number of remaining squares: 85-89:○
Number of remaining squares: 84 or less: △

(15)耐擦傷性の測定
#0000スチールウールを用い、荷重1,500g/cmで100回摺動し、膜の表面を目視観察し、以下の基準で評価した。
評価基準;
筋状の傷が認められない :◎
筋状の傷が僅かに認められる:○
筋状の傷が多数認められる :△
面が全体的に削られている :×
(15) Measurement of scratch resistance Using #0000 steel wool, sliding was performed 100 times at a load of 1,500 g/cm 2 , the surface of the film was visually observed, and evaluated using the following criteria.
Evaluation criteria;
No streaky scars are observed: ◎
Slight streak-like scratches are observed: ○
Many streak-like scratches are observed: △
The entire surface is scraped: ×

(16)鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
(16) Pencil hardness Pencil hardness was measured using a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the transparent coating, and the pencil was pulled at a constant speed under a predetermined load, and the presence or absence of scratches was observed.

[実施例2]
〈シリカを含む外殻の内側に空洞を有する粒子(P2)の製造〉
種粒子の水分散液(日揮触媒化成(株)製 USBB-120、平均粒子径25nm、固形分濃度20質量%、固形分中のAl23含有量27質量%)750gに純水29250gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、98℃に加温して、SiOとしての濃度が1.5質量%の珪酸ナトリウム水溶液5.83kgとAlとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液5.83kgとを添加した。その後、遠心沈降法で洗浄を行い、複合酸化物粒子(a-2)の分散液を得た。このとき、複合酸化物粒子(a-2)の平均粒子径は225nmであった。
[Example 2]
<Production of particles (P2) having a cavity inside the outer shell containing silica>
Add 29,250 g of pure water to 750 g of an aqueous dispersion of seed particles (USBB-120, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 25 nm, solid content concentration 20 mass %, Al 2 O 3 content in solid content 27 mass %). After the addition, 1% by weight of sodium hydroxide was added to adjust the pH to 11.0. Thereafter, it was heated to 98°C, and 5.83 kg of a sodium silicate aqueous solution with a concentration of 1.5% by mass as SiO 2 and 5.83 kg of a sodium aluminate aqueous solution with a concentration of 0.5% by mass as Al 2 O 3 were added. was added. Thereafter, washing was performed by centrifugal sedimentation to obtain a dispersion of composite oxide particles (a-2). At this time, the average particle diameter of the composite oxide particles (a-2) was 225 nm.

この複合酸化物粒子(a-2)を98℃に加温して、SiOとしての濃度が1.5質量%の珪酸ナトリウム水溶液2.21kgと、Alとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液0.74kgとを添加した。その後、限外濾過膜で洗浄して固形分濃度を13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物粒子(b-2)の分散液を得た。この複合酸化物粒子(b-2)の平均粒子径は240nmであった。 The composite oxide particles (a-2) were heated to 98°C, and 2.21 kg of a sodium silicate aqueous solution having a concentration of 1.5% by mass as SiO 2 and 0.5% as Al 2 O 3 were added. 0.74 kg of a sodium aluminate aqueous solution of % by mass was added. Thereafter, the mixture was washed with an ultrafiltration membrane to make the solid content concentration 13% by mass, and then filtered through a capsule filter with an opening of 1 μm to obtain a dispersion of composite oxide particles (b-2). The average particle diameter of the composite oxide particles (b-2) was 240 nm.

この複合酸化物粒子(b-2)の分散液500gに純水1125gを加え、更に濃塩酸(濃度35.5質量%)を滴下してpH1.0とした。これに、pH3の塩酸水溶液10Lと純水5Lを加えながら、限外濾過膜で溶解したアルミニウム塩を分離・洗浄して、濃度5質量%のシリカ系粒子(c-2)を得た。 1125 g of pure water was added to 500 g of this dispersion of composite oxide particles (b-2), and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0. While adding 10 L of aqueous hydrochloric acid solution at pH 3 and 5 L of pure water, the dissolved aluminum salt was separated and washed using an ultrafiltration membrane to obtain silica-based particles (c-2) with a concentration of 5% by mass.

次にシリカ系粒子(c-2)100gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-50、平均粒子径25nm、固形分濃度48質量%、NaO濃度0.5質量%)を2.5g加えて、十分に撹拌した。その後、アンモニア水を添加して分散液のpHを10.5に調整した。これを25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却した。その後、再度25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却し、もう一度同じ操作を行った(計3回)。その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P2)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Next, 100 g of silica particles (c-2) were added with silica sol (Cataroid SI-50 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 25 nm, solid content concentration 48% by mass, Na 2 O concentration 0.5 mass) as a silica source. %) was added and thoroughly stirred. Thereafter, aqueous ammonia was added to adjust the pH of the dispersion to 10.5. The temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 420 minutes. Thereafter, the temperature was again raised from 25° C. to 360° C. over 335 minutes, held for 24 hours, and then cooled to 25° C. over 420 minutes, and the same operation was performed once again (3 times in total). Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P2 ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P2)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P2)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P2) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P2) with a solid content concentration of 20% by mass.

次いで、この粒子(P2)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)2gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P2)のMIBK分散液を得た。 Next, 2 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P2), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P2) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(2)及び該被膜付基材(2)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P2)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(2)、反射防止用透明被膜付基材(2)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (2) and the coated substrate (2)>
The coating liquid for forming an antireflection transparent film (2) and the antireflection coating solution were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P2) was used instead of the MIBK dispersion of particles (P1). A substrate with a transparent film (2) was produced and its properties were evaluated.

[実施例3]
〈シリカを含む外殻の内側に空洞を有する粒子(P3)の製造〉
種粒子の水分散液(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、SiO濃度20質量%)3000gに純水17000gを加えた後、1質量%の水酸化ナトリウムを添加してpHを10.0に調整した。その後、80℃に加温して、SiOとして濃度が1.5質量%の珪酸ナトリウム水溶液1369gと、Alとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液1369gとを添加した。その後、遠心沈降法で洗浄を行い、複合酸化物粒子(a-3)の分散液を得た。このとき、複合酸化物粒子(a-3)の平均粒子径は19nmであった。
この複合酸化物粒子(a-3)を85℃に加温してSiOとしての濃度が1.5質量%の珪酸ナトリウム水溶液2820gと、Alとしての濃度が0.5質量%のアルミン酸ナトリウム水溶液940gとを添加した。その後、限外濾過膜で洗浄して固形分濃度を13質量%にした後、目開き1μmのカプセルフィルターで濾過し、複合酸化物粒子(b-3)の分散液を得た。この複合酸化物粒子(b-3)の平均粒子径は22nmであった。
[Example 3]
<Production of particles (P3) having a cavity inside the outer shell containing silica>
After adding 17,000 g of pure water to 3,000 g of an aqueous dispersion of seed particles (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, SiO 2 concentration 20 mass %), 1 mass % of sodium hydroxide was added. The pH was adjusted to 10.0. Thereafter, the mixture was heated to 80° C., and 1369 g of a sodium silicate aqueous solution having a concentration of 1.5% by mass as SiO 2 and 1369 g of a sodium aluminate aqueous solution having a concentration of 0.5% by mass as Al 2 O 3 were added. . Thereafter, washing was performed by centrifugal sedimentation to obtain a dispersion of composite oxide particles (a-3). At this time, the average particle diameter of the composite oxide particles (a-3) was 19 nm.
The composite oxide particles (a-3) were heated to 85°C, and 2820 g of a sodium silicate aqueous solution with a concentration of 1.5% by mass as SiO 2 and 0.5% by mass as Al 2 O 3 were added. 940 g of a sodium aluminate aqueous solution was added. Thereafter, the mixture was washed with an ultrafiltration membrane to make the solid content concentration 13% by mass, and then filtered through a capsule filter with an opening of 1 μm to obtain a dispersion of composite oxide particles (b-3). The average particle diameter of the composite oxide particles (b-3) was 22 nm.

この複合酸化物粒子(b-3)の分散液500gに純水1125gを加え、更に濃塩酸(濃度35.5質量%)を滴下してpH1.0とした。これに、pH3の塩酸水溶液10Lと純水5Lを加えながら、限外濾過膜で溶解したアルミニウム塩を分離・洗浄して、濃度5質量%のシリカ系粒子(c-3)を得た。 1125 g of pure water was added to 500 g of this dispersion of composite oxide particles (b-3), and concentrated hydrochloric acid (concentration 35.5% by mass) was further added dropwise to adjust the pH to 1.0. While adding 10 L of a pH 3 aqueous hydrochloric acid solution and 5 L of pure water, the dissolved aluminum salt was separated and washed using an ultrafiltration membrane to obtain silica-based particles (c-3) with a concentration of 5% by mass.

次にシリカ系粒子(c-3)100gに、シリカ源として珪酸液(SiOとして4.0質量%、NaO濃度12ppm)を52.5g加えて、十分に撹拌した。その後、アンモニア水を添加して分散液のpHを9.5に調整した。これを25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却した。その後、再度25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却し、もう一度同じ操作を行った(計3回)。その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P3)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Next, 52.5 g of a silicic acid solution (4.0% by mass as SiO 2 , Na 2 O concentration 12 ppm) as a silica source was added to 100 g of silica-based particles (c-3), and the mixture was thoroughly stirred. Thereafter, aqueous ammonia was added to adjust the pH of the dispersion to 9.5. The temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 420 minutes. Thereafter, the temperature was again raised from 25° C. to 360° C. over 335 minutes, held for 24 hours, and then cooled to 25° C. over 420 minutes, and the same operation was performed once again (3 times in total). Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P3) having a cavity inside the outer shell containing silica were washed. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P3)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P3)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P3) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P3) with a solid content concentration of 20% by mass.

次いで、この粒子(P3)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)10gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P3)のMIBK分散液を得た。 Next, 10 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P3), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P3) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(3)及び該被膜付基材(3)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P3)のMIBK分散液を使用して、アクリル樹脂(日立化成(株)製 ヒタロイド1007)を1.07g、イソプロパノールとn-ブタノールの1/1(質量比)混合溶媒を85.7g使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(3)、反射防止用透明被膜付基材(3)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (3) and base material with the film (3)>
Instead of the MIBK dispersion of particles (P1), use the MIBK dispersion of particles (P3), add 1.07 g of acrylic resin (Hitalloid 1007, manufactured by Hitachi Chemical Co., Ltd.), and mix 1/2 of isopropanol and n-butanol. 1 (mass ratio) A coating liquid for forming an antireflection transparent film (3) and a substrate with an antireflection transparent film (3) were produced in the same manner as in Example 1, except that 85.7g of the mixed solvent was used. and evaluated each characteristic.

[実施例4]
〈シリカを含む外殻の内側に空洞を有する粒子(P4)の製造〉
シリカ系粒子(c-1)1000gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を128g加えて、十分に撹拌した。次に、これを陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用いて1時間イオン交換した。
[Example 4]
<Production of particles (P4) having a cavity inside the outer shell containing silica>
Silica sol (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20 mass %, Na 2 O concentration 0.8 mass %) was added to 1000 g of silica particles (c-1) as a silica source. 128g of was added and thoroughly stirred. Next, this was ion-exchanged for 1 hour using 200 g of a cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation).

次に、アンモニア水を添加して分散液のpHを10.0に調整し、110℃にて6時間かけて乾燥して粉を得た。これを、25℃から750℃に258分かけて昇温して5時間保持した後、375分かけて50℃に冷却した。 Next, aqueous ammonia was added to adjust the pH of the dispersion to 10.0, and the dispersion was dried at 110° C. for 6 hours to obtain powder. This was heated from 25°C to 750°C over 258 minutes, held for 5 hours, and then cooled to 50°C over 375 minutes.

その後、粉50gに水500gを加えた後、1%のNaOH水溶液をpHが10.2になるように加えた。その後、0.02mmのZrOメジアを用いてビーズミルにより、分散処理を行った。 Thereafter, 500 g of water was added to 50 g of powder, and then a 1% aqueous NaOH solution was added so that the pH was 10.2. Thereafter, dispersion treatment was performed using a bead mill using a 0.02 mm ZrO 2 media.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P4)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P4) having a cavity inside the outer shell containing silica were washed. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P4)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P4)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P4) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P4) with a solid content concentration of 20% by mass.

次いで、この粒子(P4)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P4)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P4), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P4) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(4)及び該被膜付基材(4)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P4)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(4)、反射防止用透明被膜付基材(4)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (4) and base material with the film (4)>
The coating liquid for forming an antireflection transparent film (4) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P4) was used instead of the MIBK dispersion of particles (P1). A transparent coated substrate (4) was produced and its properties were evaluated.

[実施例5]
〈シリカを含む外殻の内側に空洞を有する粒子(P5)の製造〉
シリカ系粒子(c-1)1000gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を62.5g加えて、十分に撹拌した。
[Example 5]
<Production of particles (P5) having a cavity inside the outer shell containing silica>
Silica sol (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20 mass %, Na 2 O concentration 0.8 mass %) was added to 1000 g of silica particles (c-1) as a silica source. 62.5g of was added and thoroughly stirred.

次に、アンモニア水を添加して分散液のpHを10.5に調整し、25℃から200℃に583分かけて昇温して24時間保持した後、4400分かけて25℃に冷却した。この操作は2回繰り返した。 Next, aqueous ammonia was added to adjust the pH of the dispersion to 10.5, and the temperature was raised from 25°C to 200°C over 583 minutes, held for 24 hours, and then cooled to 25°C over 4400 minutes. . This operation was repeated twice.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P5)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of a cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P5) having a cavity inside the outer shell containing silica were washed. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P5)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P5)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P5) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P5) with a solid content concentration of 20% by mass.

次いで、この粒子(P5)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P5)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P5), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P5) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(5)及び該被膜付基材(5)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P5)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(5)、反射防止用透明被膜付基材(5)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (5) and base material with the film (5)>
The coating liquid for forming an antireflection transparent film (5) and the antireflection coating solution were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P5) was used instead of the MIBK dispersion of particles (P1). A transparent coated base material (5) was produced and its properties were evaluated.

[実施例6]
〈シリカを含む外殻の内側に空洞を有する粒子(P6)の製造〉
シリカ系粒子(c-1)1000gに、エタノール1000g、アンモニア水50gを加えた後、液温を35℃に調整した。これに、シリカ源としてテトラエトキシシランを88.5g加えて、十分に撹拌した。その後、限外濾過膜を用いて、溶媒を水に置換した。
[Example 6]
<Production of particles (P6) having a cavity inside the outer shell containing silica>
After adding 1000 g of ethanol and 50 g of aqueous ammonia to 1000 g of silica particles (c-1), the liquid temperature was adjusted to 35°C. To this was added 88.5 g of tetraethoxysilane as a silica source, and the mixture was thoroughly stirred. Thereafter, the solvent was replaced with water using an ultrafiltration membrane.

次に、アンモニア水を添加して分散液のpHを10.5に調整し、25℃から360℃に335分かけて昇温して24時間保持した後、419分かけて25℃に冷却した。この操作は3回繰り返した。 Next, aqueous ammonia was added to adjust the pH of the dispersion to 10.5, and the temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 419 minutes. . This operation was repeated three times.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P6)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P6 ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P6)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P6)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P6) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P6) with a solid content concentration of 20% by mass.

次いで、この粒子(P6)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P6)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P6), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P6) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(6)及び該被膜付基材(6)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P6)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(6)、反射防止用透明被膜付基材(6)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (6) and base material with the film (6)>
The coating liquid for forming an antireflection transparent film (6) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P6) was used instead of the MIBK dispersion of particles (P1). A substrate with a transparent film (6) was manufactured and its properties were evaluated.

[実施例7]
〈シリカを含む外殻の内側に空洞を有する粒子(P7)の製造〉
シリカ系粒子(c-1)1000gにアンモニア水を添加して、分散液のpHを10.5に調整した後、110℃にて6時間かけて乾燥して粉を得た。これを、25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却した。この操作は3回繰り返した。
[Example 7]
<Production of particles (P7) having a cavity inside the outer shell containing silica>
Aqueous ammonia was added to 1000 g of silica particles (c-1) to adjust the pH of the dispersion to 10.5, and then dried at 110° C. for 6 hours to obtain a powder. The temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 420 minutes. This operation was repeated three times.

その後、粉50gに水500gを加えた後、1%のNaOH水溶液をpHが10.2になるように加えた。その後、0.02mmのZrOメジアを用いてビーズミルにより、分散処理を行った。 Thereafter, 500 g of water was added to 50 g of powder, and then a 1% aqueous NaOH solution was added so that the pH was 10.2. Thereafter, dispersion treatment was performed using a bead mill using a 0.02 mm ZrO 2 media.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P7)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P7) having a cavity inside the outer shell containing silica were washed. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P7)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P7)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P7) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P7) with a solid content concentration of 20% by mass.

次いで、この粒子(P7)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P7)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P7), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P7) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(7)及び該被膜付基材(7)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P7)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(7)、反射防止用透明被膜付基材(7)を形成し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (7) and base material with the film (7)>
The coating liquid for forming an antireflection transparent film (7) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P7) was used instead of the MIBK dispersion of particles (P1). A transparent film-coated base material (7) was formed and its properties were evaluated.

[実施例8]
〈シリカを含む外殻の内側に空洞を有する粒子(P8)の製造〉
シリカ系粒子(c-1)1000gにシリカ源として高純度シリカゾル(日揮触媒化成(株)製 LNA-2000、平均粒子径23nm、固形分濃度12.6質量%)を128g加えて、十分に撹拌した。
[Example 8]
<Production of particles (P8) having a cavity inside the outer shell containing silica>
Add 128 g of high-purity silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd. LNA-2000, average particle diameter 23 nm, solid content concentration 12.6% by mass) as a silica source to 1000 g of silica-based particles (c-1), and stir thoroughly. did.

次に、アンモニア水を添加して分散液のpHを10.8に調整し、110℃にて6時間かけて乾燥して粉を得た。これを、25℃から360℃に335分かけて昇温して24時間保持した後、420分かけて25℃に冷却した。この操作は3回繰り返した。 Next, aqueous ammonia was added to adjust the pH of the dispersion to 10.8, and the dispersion was dried at 110° C. for 6 hours to obtain powder. The temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 420 minutes. This operation was repeated three times.

その後、粉50gに水500gを加えた後、1%のNaOH水溶液をpHが10.2になるように加えた。その後、0.02mmのZrOメジアを用いてビーズミルにより、分散処理を行った。 Thereafter, 500 g of water was added to 50 g of powder, and then a 1% aqueous NaOH solution was added so that the pH was 10.2. Thereafter, dispersion treatment was performed using a bead mill using a 0.02 mm ZrO 2 media.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P8)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of a cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P8)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P8)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P8) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P8) having a solid content concentration of 20% by mass.

次いで、この粒子(P8)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P8)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P8), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P8) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(8)及び該被膜付基材(8)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P8)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(8)、反射防止用透明被膜付基材(8)を形成し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (8) and base material with the film (8)>
The coating liquid for forming an antireflection transparent film (8) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P8) was used instead of the MIBK dispersion of particles (P1). A transparent film-coated base material (8) was formed and its properties were evaluated.

[実施例9]
〈シリカを含む外殻の内側に空洞を有する粒子(P9)の製造〉
シリカ系粒子(c-1)1000gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を128g加えて、十分に撹拌した。次に、これを陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用いて1時間イオン交換した。
[Example 9]
<Production of particles (P9) having a cavity inside the outer shell containing silica>
Silica sol (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20 mass %, Na 2 O concentration 0.8 mass %) was added to 1000 g of silica particles (c-1) as a silica source. 128g of was added and thoroughly stirred. Next, this was ion-exchanged for 1 hour using 200 g of a cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation).

その後、アンモニア水を添加して分散液のpHを10.8に調整した後、110℃にて6時間かけて乾燥して粉を得た。これを、25℃から600℃に575分かけて昇温して5時間保持した後、550分かけて50℃に冷却した。この操作は3回繰り返した。 Thereafter, aqueous ammonia was added to adjust the pH of the dispersion to 10.8, followed by drying at 110° C. for 6 hours to obtain powder. This was heated from 25°C to 600°C over 575 minutes, held for 5 hours, and then cooled to 50°C over 550 minutes. This operation was repeated three times.

その後、粉50gに水500gを加えた後、1%のNaOH水溶液をpHが10.0になるように加えた。その後、0.02mmのZrOメジアを用いてビーズミルにより、分散処理を行った。 Thereafter, 500 g of water was added to 50 g of powder, and then 1% NaOH aqueous solution was added so that the pH was 10.0. Thereafter, dispersion treatment was performed using a bead mill using a 0.02 mm ZrO 2 media.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(P9)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, using 200 g of cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation), ion exchange was performed at 80°C for 3 hours for cleaning, and particles (P9) having a cavity inside the outer shell containing silica were washed. ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(P9)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(P9)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (P9) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (P9) with a solid content concentration of 20% by mass.

次いで、この粒子(P9)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(P9)のMIBK分散液を得た。
〈反射防止用透明被膜形成用塗布液(9)及び該被膜付基材(9)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(P9)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(9)、反射防止用透明被膜付基材(9)を形成し、各特性を評価した。
Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (P9), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (P9) with a solid content concentration of 20% by mass.
<Production of coating liquid for forming an antireflection transparent film (9) and base material with the film (9)>
The coating liquid for forming an antireflection transparent film (9) and the antireflection coating solution were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (P9) was used instead of the MIBK dispersion of particles (P1). A transparent film-coated base material (9) was formed and its properties were evaluated.

[比較例1]
〈シリカを含む外殻の内側に空洞を有する粒子(R1)の製造〉
シリカ系粒子(c-1)1000gに、シリカ源としてシリカゾル(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を62.5g加えて、十分に撹拌した。
[Comparative example 1]
<Production of particles (R1) having a cavity inside the outer shell containing silica>
Silica sol (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20 mass %, Na 2 O concentration 0.8 mass %) was added to 1000 g of silica particles (c-1) as a silica source. 62.5g of was added and thoroughly stirred.

次に、アンモニア水を添加して分散液のpHを10.5に調整し、25℃から150℃に25分かけて昇温して24時間保持した後、42分かけて25℃に冷却した。 Next, aqueous ammonia was added to adjust the pH of the dispersion to 10.5, and the temperature was raised from 25°C to 150°C over 25 minutes, held for 24 hours, and then cooled to 25°C over 42 minutes. .

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(R1)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, the particles (R1 ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(R1)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(R1)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (R1) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (R1) with a solid content concentration of 20% by mass.

次いで、この粒子(R1)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(R1)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (R1), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (R1) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(R1)及び該被膜付基材(R1)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(R1)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗料(R1)、反射防止用透明被膜付基材(R1)を製造し、各特性を評価した。
<Production of the coating liquid for forming an antireflection transparent film (R1) and the coated substrate (R1)>
The coating for forming an antireflection transparent film (R1) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (R1) was used instead of the MIBK dispersion of particles (P1). A coated base material (R1) was produced and its properties were evaluated.

[比較例2]
〈シリカを含む外殻の内側に空洞を有する粒子(R2)の製造〉
シリカ系粒子(c-1)1000gに、エタノール1000g、アンモニア水50gを加えた後、液温を35℃に調整した。これに、シリカ源としてメチルトリメトキシシランを57.9g加えて、十分に撹拌した。その後、限外濾過膜を用いて、溶媒を水に置換した。
[Comparative example 2]
<Production of particles (R2) having a cavity inside the outer shell containing silica>
After adding 1000 g of ethanol and 50 g of aqueous ammonia to 1000 g of silica particles (c-1), the liquid temperature was adjusted to 35°C. To this, 57.9 g of methyltrimethoxysilane was added as a silica source and thoroughly stirred. Thereafter, the solvent was replaced with water using an ultrafiltration membrane.

次に、アンモニア水を添加して分散液のpHを10.5に調整した後、25℃から360℃に335分かけて昇温して24時間保持した後、419分かけて25℃に冷却した。この操作は3回繰り返した。 Next, after adding ammonia water to adjust the pH of the dispersion to 10.5, the temperature was raised from 25°C to 360°C over 335 minutes, held for 24 hours, and then cooled to 25°C over 419 minutes. did. This operation was repeated three times.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(R2)の水分散液を得た。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, the particles (R2 ) was obtained. The solid content concentration of this dispersion was 20% by mass.

この粒子(R2)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(R2)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (R2) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (R2) with a solid content concentration of 20% by mass.

次いで、この粒子(R2)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%の粒子(R2)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (R2), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion of particles (R2) with a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(R2)及び該被膜付基材(R2)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(R2)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(R2)、反射防止用透明被膜付基材(R2)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (R2) and base material with the film (R2)>
The coating liquid for forming an antireflection transparent film (R2) and the antireflection coating solution were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (R2) was used instead of the MIBK dispersion of particles (P1). A substrate with a transparent film (R2) was manufactured and its properties were evaluated.

[比較例3]
〈シリカを含む外殻の内側に空洞を有する粒子(R3)の製造〉
シリカ系粒子(c-1)1000gに、シリカ源としてシリカ粒子(日揮触媒化成(株)製 カタロイドSI-550、平均粒子径5nm、固形分濃度20質量%、NaO濃度0.8質量%)を62.5g加えて、十分に撹拌した。
[Comparative example 3]
<Production of particles (R3) having a cavity inside the outer shell containing silica>
Silica particles (Cataroid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle diameter 5 nm, solid content concentration 20 mass %, Na 2 O concentration 0.8 mass %) were added to 1000 g of silica particles (c-1) as a silica source. ) was added thereto and thoroughly stirred.

次に、10%NaOH水溶液を10.6g添加して分散液のpHを10.5に調整し、した後、25℃から360℃に335分かけて昇温して24時間保持した後、419分かけて25℃に冷却した。この操作は3回繰り返した。 Next, 10.6 g of 10% NaOH aqueous solution was added to adjust the pH of the dispersion to 10.5. After that, the temperature was raised from 25°C to 360°C over 335 minutes and held for 24 hours, and then the temperature was increased to 419°C. It was cooled to 25° C. over several minutes. This operation was repeated three times.

その後、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)400gを用いて3時間イオン交換し、次いで、陰イオン交換樹脂(三菱化学(株)製 ダイヤイオンSA20A)200gを用いて3時間イオン交換した。その後、更に、陽イオン交換樹脂(三菱化学(株)製 ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、シリカを含む外殻の内側に空洞を有する粒子(R2)の水分散液を得た。ただし、この粒子は外殻に穴が開いており、外殻内側の空洞は外殻によって閉ざされていない形状であった。この分散液の固形分濃度は、20質量%であった。 Thereafter, ion exchange was performed for 3 hours using 400 g of a cation exchange resin (Diaion SK1B, manufactured by Mitsubishi Chemical Corporation), and then for 3 hours using 200 g of an anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Corporation). Ion exchanged. Thereafter, the particles (R2 ) was obtained. However, this particle had a hole in its outer shell, and the cavity inside the outer shell was not closed by the outer shell. The solid content concentration of this dispersion was 20% by mass.

この粒子(R3)の水分散液を、限外濾過膜を用いて溶媒をメタノールに置換して、固形分濃度20質量%の粒子(R3)のメタノール分散液を調製した。 The solvent of this aqueous dispersion of particles (R3) was replaced with methanol using an ultrafiltration membrane to prepare a methanol dispersion of particles (R3) with a solid content concentration of 20% by mass.

次いで、この粒子(R3)のメタノール分散液100gに3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製 KBM-503)6gを添加し、50℃で6時間、加熱処理を行った。その後、エバポレーターにて溶媒をMIBKに置換し、固形分濃度20質量%粒子(R3)のMIBK分散液を得た。 Next, 6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of a methanol dispersion of the particles (R3), and heat treatment was performed at 50° C. for 6 hours. Thereafter, the solvent was replaced with MIBK using an evaporator to obtain an MIBK dispersion with particles (R3) having a solid content concentration of 20% by mass.

〈反射防止用透明被膜形成用塗布液(R3)及び該被膜付基材(R3)の製造〉
粒子(P1)のMIBK分散液の代わりに、粒子(R3)のMIBK分散液を使用した以外は、実施例1と同様にして、反射防止用透明被膜形成用塗布液(R3)、反射防止用透明被膜付基材(R3)を製造し、各特性を評価した。
<Production of coating liquid for forming an antireflection transparent film (R3) and base material with the film (R3)>
The coating liquid for forming an antireflection transparent film (R3) and the antireflection transparent coating were prepared in the same manner as in Example 1, except that the MIBK dispersion of particles (R3) was used instead of the MIBK dispersion of particles (P1). A substrate with a transparent film (R3) was manufactured and its properties were evaluated.

Figure 0007360294000003
Figure 0007360294000003

Figure 0007360294000004
Figure 0007360294000004

Figure 0007360294000005
Figure 0007360294000005

Claims (9)

シリカを含む外殻の内側に空洞を有する粒子であって、
前記粒子の平均粒子径(D)が20~250nm、
前記空洞の径が前記粒子の径の0.6~0.85倍、
前記粒子のN吸着法による細孔容積が1.0cm/g未満、
前記粒子の屈折率(n)が1.08~1.34、
前記粒子の炭素含有量が3.0質量%以下、
下記式で求められる前記外殻の屈折率(n)が1.38~1.47、
前記粒子の 29 Si-NMRスペクトル法における化学シフト-78~-88ppmに現れるピークの面積(Q )と、化学シフト-88~-98ppmに現れるピークの面積(Q )と、化学シフト-98~-108ppmに現れるピークの面積(Q )と、化学シフト-108~-117ppmに現れるピークの面積(Q )において、比(Q /(Q +Q +Q +Q ))が実質0、比(Q /(Q +Q +Q +Q ))が実質0、比(Q /Q )が0.01~0.7であることを特徴とする粒子。
Figure 0007360294000006
A particle having a cavity inside an outer shell containing silica,
The average particle diameter (D) of the particles is 20 to 250 nm,
The diameter of the cavity is 0.6 to 0.85 times the diameter of the particle,
The pore volume of the particles measured by N 2 adsorption method is less than 1.0 cm 3 /g;
The refractive index (n a ) of the particles is 1.08 to 1.34,
The carbon content of the particles is 3.0% by mass or less,
The refractive index (n S ) of the outer shell determined by the following formula is 1.38 to 1.47,
The area ( Q 1 ) of the peak appearing at chemical shift -78 to -88 ppm , the area (Q 2 ) of the peak appearing at chemical shift -88 to -98 ppm, and the chemical shift -98 in 29 Si-NMR spectroscopy of the particles. The ratio (Q 1 / (Q 1 +Q 2 + Q 3 + Q 4 )) is essentially 0, the ratio (Q 2 /(Q 1 +Q 2 +Q 3 +Q 4 )) is substantially 0, and the ratio (Q 3 /Q 4 ) is 0.01 to 0.7 .
Figure 0007360294000006
前記粒子の炭素含有量が0.02~3.0質量%であることを特徴とする請求項1に記載の粒子。 The particles according to claim 1, wherein the particles have a carbon content of 0.02 to 3.0% by mass. 前記粒子のアルカリ金属に属する元素の各々の含有量が、前記元素を酸化物で表した時、SiOに対して、1ppm以下であることを特徴とする請求項1に記載の粒子。 The particles according to claim 1, wherein the content of each element belonging to an alkali metal in the particles is 1 ppm or less based on SiO 2 when the elements are expressed as oxides. 前記粒子のFe、Ti、Zn、Pd、Ag、Mn、Co、Mo、Sn、Al、Zrの各々の含有量が0.1ppm未満、Cu、Ni、Crの各々の含有量が1ppb未満、U、Thの各々の含有量が0.3ppb未満であることを特徴とする請求項1に記載の粒子。 The content of each of Fe, Ti, Zn, Pd, Ag, Mn, Co, Mo, Sn, Al, and Zr in the particles is less than 0.1 ppm, the content of each of Cu, Ni, and Cr is less than 1 ppb, and U , Th is less than 0.3 ppb. 請求項1に記載の粒子と、マトリックス形成成分と、有機溶媒と、を含む透明被膜形成用の塗布液。 A coating liquid for forming a transparent film, comprising the particles according to claim 1, a matrix-forming component, and an organic solvent. 請求項1に記載の粒子と、マトリックスとを含む透明被膜が、基材上に形成された透明被膜付基材。 A base material with a transparent film, wherein a transparent film containing the particles according to claim 1 and a matrix is formed on the base material. 珪素を含む化合物の溶液と、アルカリ可溶の前記珪素以外の無機元素の化合物の水溶液とを、前記珪素の酸化物をSiOと表し、前記無機元素の酸化物をMOxと表した時、モル比(MOx/SiO)が0.01~2となるように、アルカリ水溶液中に同時に添加して、複合酸化物粒子aの分散液を調製する第一工程と、
次に、前記第一工程のモル比よりも小さいモル比(MOx/SiO)で、珪素を含む化合物の溶液と、アルカリ可溶の前記珪素以外の無機元素の化合物の水溶液とを添加して、複合酸化物粒子bの分散液を調製する第二工程と、
次に、複合酸化物粒子bの分散液に酸を加えて、前記複合酸化物粒子bを構成する珪素以外の元素の少なくとも一部を除去して、シリカ系粒子の分散液を調製する第三工程と、
前記シリカ系粒子の分散液を、昇温速度0.3~3.0℃/min.で200~800℃まで加温した後、0.04~2.0℃/min.の速度で降温し、100℃未満にする第四工程と、
を含むシリカを含む外殻の内側に空洞を有する粒子の製造方法。
When a solution of a compound containing silicon and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are expressed, the oxide of silicon is expressed as SiO 2 and the oxide of the inorganic element is expressed as MOx. A first step of preparing a dispersion of composite oxide particles a by simultaneously adding them to an alkaline aqueous solution so that the ratio (MOx/SiO 2 ) is 0.01 to 2;
Next, a solution of a compound containing silicon and an aqueous solution of an alkali-soluble compound of an inorganic element other than silicon are added at a molar ratio (MOx/SiO 2 ) smaller than the molar ratio in the first step. , a second step of preparing a dispersion of composite oxide particles b;
Next, a third step is to prepare a dispersion of silica-based particles by adding an acid to the dispersion of the composite oxide particles b to remove at least a part of the elements other than silicon constituting the composite oxide particles b. process and
The dispersion liquid of the silica-based particles was heated at a heating rate of 0.3 to 3.0°C/min. After heating to 200-800°C at 0.04-2.0°C/min. A fourth step of lowering the temperature to below 100°C at a rate of
A method for producing particles having a cavity inside an outer shell containing silica.
前記加温及び前記降温する処理を複数回繰り返すことを特徴とする請求項7に記載の粒子の製造方法。 8. The method for producing particles according to claim 7, wherein the heating and temperature lowering processes are repeated multiple times. 前記第三工程と前記第四工程の間に、前記シリカ系粒子の分散液に、下記式(2)で表される有機珪素化合物とその部分加水分解物の少なくとも一方を添加する工程を含むことを特徴とする請求項7に記載の粒子の製造方法。
-SiX4-n (2)
(式中、Rは炭素数1~10の非置換又は置換炭化水素基で、互いに同一であっても異なっていてもよい。置換基としては、エポキシ基、アルコキシ基、(メタ)アクリロイロキシ基、メルカプト基、ハロゲン原子、アミノ基、フェニルアミノ基が挙げられる。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン原子、水素原子であり、nは0~3の整数を示す)
Between the third step and the fourth step, a step of adding at least one of an organosilicon compound represented by the following formula (2) and a partial hydrolyzate thereof to the dispersion of silica-based particles. The method for producing particles according to claim 7, characterized in that:
R n -SiX 4-n (2)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different from each other. Substituents include an epoxy group, an alkoxy group, a (meth)acryloyloxy group, Examples include mercapto group, halogen atom, amino group, and phenylamino group.
JP2019180756A 2019-09-30 2019-09-30 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles Active JP7360294B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019180756A JP7360294B2 (en) 2019-09-30 2019-09-30 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
CN202011031633.0A CN112573526B (en) 2019-09-30 2020-09-27 Particles having voids inside shell, method for producing same, coating liquid containing same, and substrate with transparent coating film containing same
KR1020200125705A KR20210038362A (en) 2019-09-30 2020-09-28 Particles with hollow inside outer-shell containing silica, production method of same, coating liquid containing same, and substrate with transparent coat containing same
TW109133746A TW202114941A (en) 2019-09-30 2020-09-29 Particles with hollow inside outer-shell containing silica,production method of same, coating liquid containing same, and substrate with transparent coat containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180756A JP7360294B2 (en) 2019-09-30 2019-09-30 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles

Publications (2)

Publication Number Publication Date
JP2021054685A JP2021054685A (en) 2021-04-08
JP7360294B2 true JP7360294B2 (en) 2023-10-12

Family

ID=75119614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180756A Active JP7360294B2 (en) 2019-09-30 2019-09-30 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles

Country Status (4)

Country Link
JP (1) JP7360294B2 (en)
KR (1) KR20210038362A (en)
CN (1) CN112573526B (en)
TW (1) TW202114941A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074970A (en) * 2021-11-18 2023-05-30 日揮触媒化成株式会社 Dispersion of particles having outer shells containing functional groups and silicon and cavities thereinside, and production method of the same
WO2023175994A1 (en) * 2022-03-18 2023-09-21 株式会社アドマテックス Hollow inorganic particle material, method for producing same, inorganic filler, slurry composition and resin composition
WO2023189785A1 (en) * 2022-03-31 2023-10-05 日揮触媒化成株式会社 Dispersion of hollow silica particles, and method for producing same
WO2024047769A1 (en) * 2022-08-30 2024-03-07 株式会社アドマテックス Spherical silica particles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247664A (en) 2007-03-30 2008-10-16 Jsr Corp Method for producing silica-base hollow particle, and method for producing silica-base hollow particle-dispersed body
JP2010083744A (en) 2008-09-05 2010-04-15 Jsr Corp Silica particle dispersion and method for producing the same
WO2010050263A1 (en) 2008-10-31 2010-05-06 旭硝子株式会社 Hollow particle, method for producing the same, coating composition and article
JP2011042527A (en) 2009-08-21 2011-03-03 Denki Kagaku Kogyo Kk Hollow silica powder, method for producing the same and application thereof
JP2012136363A (en) 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2013014506A (en) 2005-11-25 2013-01-24 Jgc Catalysts & Chemicals Ltd Hollow silica microparticle, composition for forming transparent coating film containing the same, and substrate with transparent coating film
JP2013121911A (en) 2004-07-21 2013-06-20 Jgc Catalysts & Chemicals Ltd Silica-based fine particles, coating for forming coating film, and base material having coating film formed thereon
JP2016041643A (en) 2014-08-19 2016-03-31 学校法人東京理科大学 Production method of hollow silica particle
JP2018123043A (en) 2017-02-03 2018-08-09 日揮触媒化成株式会社 Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972866B (en) * 2004-07-08 2010-12-01 日挥触媒化成株式会社 Process for producing silica-based particle, coating for coating film formation, and base material with coating film
KR101633530B1 (en) * 2008-12-18 2016-06-24 닛키 쇼쿠바이카세이 가부시키가이샤 Chain-shaped Silica-based Hollow Fine Particles and Process for Producing Same, Coating Fluid for Transparent Coating Film Formation Containing the Fine Particles, and Substrate with Transparent Coating Film
JP6044792B2 (en) * 2012-02-02 2016-12-14 日産化学工業株式会社 Composition for forming low refractive index film
JP6266230B2 (en) * 2013-05-15 2018-01-24 日揮触媒化成株式会社 Surface-modified metal oxide fine particles, coating liquid for thin film formation, substrate with thin film, photoelectric cell, and method for producing surface-modified metal oxide fine particles
JP5766251B2 (en) * 2013-10-30 2015-08-19 日揮触媒化成株式会社 Method for producing a coating for forming a transparent film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121911A (en) 2004-07-21 2013-06-20 Jgc Catalysts & Chemicals Ltd Silica-based fine particles, coating for forming coating film, and base material having coating film formed thereon
JP2013014506A (en) 2005-11-25 2013-01-24 Jgc Catalysts & Chemicals Ltd Hollow silica microparticle, composition for forming transparent coating film containing the same, and substrate with transparent coating film
JP2008247664A (en) 2007-03-30 2008-10-16 Jsr Corp Method for producing silica-base hollow particle, and method for producing silica-base hollow particle-dispersed body
JP2010083744A (en) 2008-09-05 2010-04-15 Jsr Corp Silica particle dispersion and method for producing the same
WO2010050263A1 (en) 2008-10-31 2010-05-06 旭硝子株式会社 Hollow particle, method for producing the same, coating composition and article
JP2011042527A (en) 2009-08-21 2011-03-03 Denki Kagaku Kogyo Kk Hollow silica powder, method for producing the same and application thereof
JP2012136363A (en) 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2016041643A (en) 2014-08-19 2016-03-31 学校法人東京理科大学 Production method of hollow silica particle
JP2018123043A (en) 2017-02-03 2018-08-09 日揮触媒化成株式会社 Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film

Also Published As

Publication number Publication date
KR20210038362A (en) 2021-04-07
TW202114941A (en) 2021-04-16
JP2021054685A (en) 2021-04-08
CN112573526A (en) 2021-03-30
CN112573526B (en) 2024-03-29

Similar Documents

Publication Publication Date Title
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JPWO2006009132A1 (en) Silica-based fine particles, process for producing the same, film-forming coating material and film-coated substrate
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP6112753B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles
JP5148846B2 (en) Paint for forming transparent film and substrate with transparent film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
WO2006006207A1 (en) Process for producing fine silica-based particle, coating composition for coating film formation, and base with coating film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP2022089560A (en) Modified hollow particle and method for producing the same
JP2006021938A (en) Method of manufacturing silica-based fine particle, coating material for film formation, and base material with film
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP5501117B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230929

R150 Certificate of patent or registration of utility model

Ref document number: 7360294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150