JP5480743B2 - Substrate with transparent film and paint for forming transparent film - Google Patents

Substrate with transparent film and paint for forming transparent film Download PDF

Info

Publication number
JP5480743B2
JP5480743B2 JP2010172143A JP2010172143A JP5480743B2 JP 5480743 B2 JP5480743 B2 JP 5480743B2 JP 2010172143 A JP2010172143 A JP 2010172143A JP 2010172143 A JP2010172143 A JP 2010172143A JP 5480743 B2 JP5480743 B2 JP 5480743B2
Authority
JP
Japan
Prior art keywords
silica
fine particles
mass
based hollow
hollow fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010172143A
Other languages
Japanese (ja)
Other versions
JP2012030489A (en
Inventor
渉 二神
夕子 箱嶋
政幸 松田
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010172143A priority Critical patent/JP5480743B2/en
Publication of JP2012030489A publication Critical patent/JP2012030489A/en
Application granted granted Critical
Publication of JP5480743B2 publication Critical patent/JP5480743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異形のシリカ系中空微粒子が少ないために透明被膜の白化が抑制され、透明性、ヘーズ、反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材と該透明被膜形成用塗料とに関する。   The present invention provides a transparent coated substrate with excellent transparency, haze, antireflection performance, strength, scratch resistance, etc., and formation of the transparent coating because whitening of the transparent coating is suppressed due to a small number of deformed silica-based hollow fine particles It is related with paint.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の反射を防止するため、その表面に反射防止膜を形成することが知られており、たとえば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの基材表面に形成したり、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(たとえば、特開平7-133105号公報など参照)。このとき、反射防止性能を高めるために反射防止被膜の下層に高屈折率の微粒子等を含む高屈折率膜を形成することも知られている。   Conventionally, in order to prevent reflection of the surface of a substrate such as glass, plastic sheet, plastic lens, etc., it is known to form an antireflection film on the surface, for example, by coating method, vapor deposition method, CVD method, etc. A coating of a low refractive index substance such as fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate, or a coating liquid containing low refractive index fine particles such as silica fine particles is applied to the surface of the substrate. A method for forming an antireflection coating is known (for example, see JP-A-7-133105). At this time, in order to improve the antireflection performance, it is also known to form a high refractive index film containing fine particles of high refractive index under the antireflection coating.

本願出願人は特開2001−23611号公報(特許文献1)において、内部に空洞を有するシリカ系微粒子の製造方法および得られるシリカ系微粒子は屈折率が低く、このシリカ系微粒子を用いて形成された透明被膜は屈折率が低く反射防止性能に優れていることを開示している。   The applicant of the present invention disclosed in Japanese Patent Laid-Open No. 2001-23611 (Patent Document 1) a method for producing silica-based fine particles having cavities therein and the resulting silica-based fine particles have a low refractive index and are formed using the silica-based fine particles. It is disclosed that the transparent film has a low refractive index and excellent antireflection performance.

さらに、特開2002−79616号公報(特許文献2)において、このような透明被膜を表示装置の全面に形成して用いると反射防止性能に優れ表示性能が向上することを開示している。   Furthermore, Japanese Patent Application Laid-Open No. 2002-79616 (Patent Document 2) discloses that when such a transparent film is formed and used on the entire surface of a display device, the antireflection performance is excellent and the display performance is improved.

しかしながら、従来のシリカ系微粒子は、粒子径が小さいと殻の割合が高く、内部の空洞の割合が低いために屈折率が充分低いとはいえず、他方、粒子径が大きいと屈折率は低いものの得られる透明被膜の強度、耐擦傷性が低下する欠点があった。   However, the conventional silica-based fine particles have a high ratio of shells when the particle size is small, and the refractive index is not sufficiently low because the ratio of internal cavities is low, whereas the refractive index is low when the particle size is large. However, there is a drawback that the strength and scratch resistance of the transparent film obtained are lowered.

さらに、本願出願人は特開2009−66965号公報(特許文献3)において、平均粒子径(Dn)が20〜80nmの範囲にあり、粒子径変動係数(CV値)が50%以下の低屈折率シリカ系中空微粒子を用いると、得られる透明被膜の屈折率が低く、且つ膜の表面が平滑で耐擦傷性が向上するとともに強度が向上することを開示している。   Further, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 2009-66965 (Patent Document 3) is a low refractive index having an average particle diameter (Dn) in the range of 20 to 80 nm and a particle diameter variation coefficient (CV value) of 50% or less. It is disclosed that the use of high-efficiency silica-based hollow fine particles has a low refractive index of the transparent film obtained, a smooth surface of the film, improved scratch resistance, and improved strength.

特開2001−23611号公報JP 2001-23611 A 特開2002−79616号公報JP 2002-79616 A 特開2009−66965号公報JP 2009-66965 A

しかしながら、低屈折率シリカ系中空微粒子を用いた透明被膜において、白化現象が起きる問題があった。また、さらに、反射防止性能を更に向上させることが求められていた。   However, there is a problem that a whitening phenomenon occurs in a transparent coating using low refractive index silica-based hollow fine particles. Furthermore, there has been a demand for further improving the antireflection performance.

本発明者等は上記問題点について鋭意検討した結果、透明被膜表面に突起が形成された場合に白化が起きていることを見出した。その白化の原因の突起が、中空シリカ系微粒子に含まれる異形微粒子(例えば、シリカ系微粒子が2個以上連結した粒子)によるものであることを見出し、さらに、このような異形シリカ系微粒子は、製造の際に、低濃度でシリカ系中空微粒子前駆体粒子を調製することによって大幅に低減することを見出して本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that whitening occurs when protrusions are formed on the surface of the transparent coating. It has been found that the protrusions that cause whitening are due to irregularly shaped fine particles (for example, particles in which two or more silica-based fine particles are linked) contained in the hollow silica-based fine particles. In the production, the present invention was completed by finding that it is greatly reduced by preparing silica-based hollow fine particle precursor particles at a low concentration.

[1]基材と、
該基材上に形成された、シリカ系中空微粒子とマトリックス成分とからなる透明被膜とを含む透明被膜付基材であって、平均粒子径(Dn)の2倍以上の粒子径を有する異形シリカ系中空微粒子のシリカ系中空微粒子中の個数割合が1%以下にある透明被膜付基材。
[2]前記シリカ系中空微粒子の平均粒子径が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.30の範囲にある[1]の透明被膜付基材。
[3]前記透明被膜中のシリカ系中空微粒子の含有量が40〜90質量%の範囲にある[1]または[2]の透明被膜付基材。
[4]前記透明被膜の屈折率が1.15〜1.40の範囲にある[1]〜[3]の透明被膜付基材。
[5]シリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなる透明被膜形成用塗布液であって、
前記シリカ系中空微粒子は、平均粒子径(Dn)の2倍以上の粒子径を有する異形シリカ系中空微粒子の個数割合が1%以下にあり、かつ平均粒子径(Dn)が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.30の範囲にある透明被膜形成用塗布液。
[6]塗料中のシリカ系中空微粒子の濃度が固形分として0.4〜54質量%の範囲にあり、マトリックス形成成分の濃度が固形分とし0.1〜36質量%の範囲にあり、全固形分濃度が1〜60質量%の範囲にある[5]の透明被膜形成用塗料。
[1] a substrate;
A substrate with a transparent coating comprising a silica-based hollow fine particle and a transparent coating made of a matrix component, formed on the substrate, and having a particle size that is at least twice the average particle size (Dn) A substrate with a transparent coating, wherein the number ratio of the silica-based hollow fine particles in the silica-based hollow fine particles is 1% or less.
[2] The silica-based hollow fine particles have an average particle size in the range of 50 to 120 nm, a particle size variation coefficient (CV value) in the range of 1 to 50%, and a refractive index of 1.10 to 1.30. [1] The substrate with a transparent film in the range.
[3] The substrate with a transparent coating according to [1] or [2], wherein the content of silica-based hollow fine particles in the transparent coating is in the range of 40 to 90% by mass.
[4] The substrate with a transparent coating according to [1] to [3], wherein the refractive index of the transparent coating is in the range of 1.15 to 1.40.
[5] A coating solution for forming a transparent film comprising silica-based hollow fine particles, a matrix-forming component, and a polar solvent,
The silica-based hollow fine particles have a ratio of the number of irregular-shaped silica-based hollow fine particles having a particle size of twice or more the average particle size (Dn) of 1% or less, and an average particle size (Dn) in the range of 50 to 120 nm. A coating solution for forming a transparent film having a particle diameter variation coefficient (CV value) in the range of 1 to 50% and a refractive index in the range of 1.10 to 1.30.
[6] The concentration of the silica-based hollow fine particles in the paint is in the range of 0.4 to 54% by mass as the solid content, and the concentration of the matrix forming component is in the range of 0.1 to 36% by mass as the solid content. The paint for forming a transparent film according to [5], wherein the solid content concentration is in the range of 1 to 60 mass%.

本発明によれば、平均粒子径が所定の範囲にあり、均一な粒子径分布を有する屈折率の低いシリカ系中空微粒子を含み、該シリカ系中空微粒子と大きさ、形状がかけ離れたシリカ系中空微粒子を含まないために白化が抑制された反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材および該透明被膜形成用塗料を提供することができる。   According to the present invention, silica-based hollow particles having a mean particle diameter in a predetermined range, having a uniform particle size distribution and having a low refractive index and having a low refractive index, the silica-based hollow particles having a size and shape far from those of the silica-based hollow fine particles. A substrate with a transparent coating excellent in antireflection performance, strength, scratch resistance, etc., in which whitening is suppressed because it does not contain fine particles, and the coating for forming a transparent coating can be provided.

本発明の透明被膜付基材の概念を模式的に示す該略図である。It is this schematic which shows the concept of the base material with a transparent film of this invention typically. 従来の中空粒子を使った透明被膜付基材の概念を模式的に示す該略図である。It is this schematic which shows the concept of the base material with a transparent film using the conventional hollow particle typically.

以下、先ず、本発明に係る透明被膜付基材について具体的に説明する。
透明被膜付基材
本発明に係る透明被膜付基材は、基材および基材上に形成された透明被膜とからなる。
Hereinafter, first, the transparent film-coated substrate according to the present invention will be specifically described.
The substrate with a transparent coating The substrate with a transparent coating according to the present invention comprises a substrate and a transparent coating formed on the substrate.

基材
基材としては、従来公知の基材を用いることができ、ガラスの他、トリアセチルセルロースフィルム(TAC)、ジアセチルセルロースフィルム、アセテートブチレートセルロースフィルム等のセルロース系基材、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系基材、ポリエチレンフィルム、ポリプロピレンフィルム、環状ポリオレフィンフィルム等のポリオレフィン系基材、ナイロン−6、ナイロン−66等のポリアミド系基材、ポリアクリル系フィルム、ポリウレタン系フィルム、ポリカーボネートフィルム、ポリエーテウフィルム、ポリエーテルサルホンフィルム、ポリスチレンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、アクリロニトリルフィルム等の基材が挙げられる。
また、このような基材上に、ハードコート膜等他の被膜が形成された被膜付基材を用いこともできる。
Base material As the base material, a conventionally known base material can be used, and in addition to glass, a cellulose-based base material such as a triacetyl cellulose film (TAC), a diacetyl cellulose film, an acetate butyrate cellulose film, Polyester base materials such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefin base materials such as polyethylene film, polypropylene film and cyclic polyolefin film, polyamide base materials such as nylon-6 and nylon-66, polyacrylic films , Polyurethane film, polycarbonate film, polyether film, polyethersulfone film, polystyrene film, polymethylpentene film, polyetherketone film, acrylonitrile film, etc. Wood and the like.
In addition, a coated substrate in which another coating such as a hard coat film is formed on such a substrate can also be used.

透明被膜
透明被膜は、シリカ系中空微粒子とマトリックス成分とからなり、透明被膜の膜厚が80〜120nmの範囲にあることを特徴としている。
The transparent coating transparent coating consists of silica-based hollow fine particles and a matrix component, and is characterized in that the thickness of the transparent coating is in the range of 80 to 120 nm.

シリカ系中空微粒子
本発明に用いるシリカ系中空微粒子は、シリカを主成分として内部に空洞を有する粒子である。かかるシリカ系中空微粒子は、シリカ以外に、アルミナ、マグネシアなどの酸化物や、アルカリ金属の酸化物・水酸化物を含んでいてもよい。ただし、透明被膜の用途という点では、実質的にシリカからなることが好ましい。
Silica-based hollow fine particles The silica-based hollow fine particles used in the present invention are particles having silica as a main component and having cavities therein. Such silica-based hollow fine particles may contain oxides such as alumina and magnesia, and alkali metal oxides and hydroxides in addition to silica. However, in terms of the use of the transparent film, it is preferable that the film is substantially made of silica.

平均粒子径(Dn)が50〜120nm、さらには70〜80nmの範囲にあることが好ましい。
シリカ系中空微粒子の平均粒子径が小さすぎると、シリカ系中空微粒子の粒子径の割に殻が厚く、粒子内部の空洞の割合が小さいために屈折率が高く、屈折率が充分に低い透明被膜が得られない場合がある。
The average particle diameter (Dn) is preferably in the range of 50 to 120 nm, more preferably 70 to 80 nm.
If the average particle size of the silica-based hollow fine particles is too small, the shell is thick for the particle size of the silica-based hollow fine particles, and the ratio of cavities inside the particles is small, so that the refractive index is high and the refractive index is sufficiently low. May not be obtained.

シリカ系中空微粒子の平均粒子径が大きすぎると、シリカ系中空微粒子の屈折率は低いものの、粒子径が大きいために透明被膜の強度が不充分となる場合があり、加えて透明被膜の膜厚より大きいために透明被膜表面の平滑性が低下し耐擦傷性が不充分となる場合がある。   If the average particle diameter of the silica-based hollow fine particles is too large, the refractive index of the silica-based hollow fine particles is low, but the strength of the transparent film may be insufficient due to the large particle diameter. Since it is larger, the smoothness of the surface of the transparent coating may be lowered and the scratch resistance may be insufficient.

さらに、シリカ系中空微粒子の平均粒子径(Dn)が前記範囲にあれば、透明被膜中でシリカ系中空微粒子が概ね2層構造を採るとともに、膜厚が80〜120nmの透明被膜を形成することができ、白化が抑制されるとともに反射防止性能、強度、耐擦傷性等に優れた透明被膜付基材が得られる。   Further, if the average particle diameter (Dn) of the silica-based hollow fine particles is within the above range, the silica-based hollow fine particles generally have a two-layer structure in the transparent film, and a transparent film having a thickness of 80 to 120 nm is formed. And a substrate with a transparent coating excellent in antireflection performance, strength, scratch resistance and the like can be obtained.

中空微粒子の殻の厚さは粒子の大きさによるものの、3〜20nm、好ましくは5〜15nmの範囲にあることが好ましい。
従来、このようなシリカ系中空微粒子には、粒子が2個以上つながった異形粒子も含まれていたが、このような異形粒子の存在には着目されていなかった。シリカ系中空微粒子はそれ自体の屈折率が低いため、透明被膜の透明性も高いものと考えられていたが、透明被膜の白化したり、また、耐擦傷性が不充分となる場合があった。
Although the thickness of the shell of the hollow fine particles depends on the size of the particles, it is preferably in the range of 3 to 20 nm, preferably 5 to 15 nm.
Conventionally, such silica-based hollow fine particles have also included irregular particles in which two or more particles are connected, but attention has not been paid to the presence of such irregular particles. Silica-based hollow microparticles are considered to have high transparency of the transparent coating because of their low refractive index. However, the transparent coating may be whitened or the scratch resistance may be insufficient. .

このような問題を鑑み、その原因を本発明者らが検討した結果、シリカ系中空微粒子に極少量含まれる異形粒子が影響をおよぼしていることを突き止めた。そして、異形シリカ系中空微粒子の個数割合が多くなると、異形シリカ系中空微粒子が、透明被膜表面に突起を形成したり、異形シリカ系中空微粒子上の通常のシリカ系中空微粒子積層して突起を形成し、透明被膜の白化の原因となったり、また、耐擦傷性が不充分となる原因となっていることを見出した。   In view of such problems, the present inventors have examined the cause of the problem, and as a result, have found that irregularly shaped particles contained in a very small amount in silica-based hollow fine particles have an influence. And when the number ratio of irregular-shaped silica hollow particles increases, irregular-shaped silica hollow fine particles form protrusions on the surface of the transparent coating, or normal silica-based hollow fine particles are laminated on irregular-shaped silica hollow fine particles to form protrusions. The present inventors have found that this causes whitening of the transparent coating and causes insufficient scratch resistance.

このため、本発明では、シリカ系中空微粒子中の異形シリカ系中空微粒子の個数割合が1%以下とし、さらには0.5%以下であることが好ましい。
なお、異形シリカ系中空微粒子とは、平均粒子径(Dn)の2倍以上の粒子径であり、かつ球状シリカ系中空微粒子または球状シリカ系中空微粒子が2個以上結合したシリカ系中空微粒子を意味している。
For this reason, in the present invention, the number ratio of the deformed silica-based hollow fine particles in the silica-based hollow fine particles is 1% or less, and more preferably 0.5% or less.
The irregular-shaped silica-based hollow fine particle means a silica-based hollow fine particle having a particle diameter that is at least twice the average particle diameter (Dn) and having two or more spherical silica-based hollow fine particles or spherical silica-based hollow fine particles bonded together. doing.

本発明で使用されるシリカ系中空微粒子の粒子径変動係数(CV値)が1〜50%、さらには2〜30%の範囲にあることが好ましい。
シリカ系中空微粒子の粒子径変動係数(CV値)が小さい粒子は得ることが困難である。
シリカ系中空微粒子の粒子径変動係数(CV値)が大きすぎると、シリカ系中空微粒子の粒子径の差が大きく密に充填できないために透明被膜の強度が低下したり、屈折率が充分に低い透明被膜が得られない場合がある。
The silica-based hollow fine particles used in the present invention preferably have a particle diameter variation coefficient (CV value) in the range of 1 to 50%, more preferably 2 to 30%.
It is difficult to obtain particles having a small particle diameter variation coefficient (CV value) of silica-based hollow fine particles.
If the particle size variation coefficient (CV value) of the silica-based hollow fine particles is too large, the difference in the particle size of the silica-based hollow fine particles is so large that it cannot be densely packed, so that the strength of the transparent coating is lowered or the refractive index is sufficiently low. A transparent film may not be obtained.

本発明に用いるシリカ系中空微粒子の平均粒子径(Dn)は、電子顕微鏡写真を撮影し、任意の1000個の粒子について粒子径を測定し、その平均値として得られる。
また、本発明に用いるシリカ系中空微粒子の粒子径変動係数(CV値)は下記式によって計算される。
CV(%)=〔粒子径標準偏差(σ)/平均粒子径(Dn)〕×100
The average particle diameter (Dn) of the silica-based hollow fine particles used in the present invention is obtained as an average value obtained by taking an electron micrograph and measuring the particle diameter of any 1000 particles.
The particle diameter variation coefficient (CV value) of the silica-based hollow fine particles used in the present invention is calculated by the following formula.
CV (%) = [particle diameter standard deviation (σ) / average particle diameter (D n )] × 100

Figure 0005480743
i:個々の粒子の粒子径、n=1000
本発明で使用されるシリカ系中空微粒子は内部が中空のため、単なるシリカ粒子に比べて屈折率が低く、通常、屈折率は1.10〜1.30、さらには1.10〜1.25の範囲にあることが好ましい。
Figure 0005480743
D i : particle diameter of individual particles, n = 1000
Since the silica-based hollow fine particles used in the present invention are hollow inside, the refractive index is lower than that of mere silica particles, and the refractive index is usually 1.10 to 1.30, more preferably 1.10 to 1.25. It is preferable that it exists in the range.

シリカ系中空微粒子の屈折率が前記範囲の下限未満のものは得ることが困難であり、上限を超えると得られる透明被膜の屈折率が高く、本発明の目的とする反射防止性能が不充分となることがある。   When the refractive index of the silica-based hollow fine particles is less than the lower limit of the above range, it is difficult to obtain, and when the upper limit is exceeded, the obtained transparent film has a high refractive index, and the antireflection performance targeted by the present invention is insufficient. May be.

また、本発明に用いるシリカ系中空微粒子の屈折率は下記の方法によって測定する。
(1)シリカ系中空微粒子の分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をシリカ系中空微粒子の屈折率とする。
The refractive index of the silica-based hollow fine particles used in the present invention is measured by the following method.
(1) A dispersion of silica-based hollow fine particles is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is set as the refractive index of the silica-based hollow fine particles.

シリカ系中空微粒子の製法
本発明に用いるシリカ系中空微粒子としては、前記した異形シリカ系中空微粒子の数割合が1%以下で、平均粒子径、屈折率および粒子径変動係数が前記した範囲にあれば特に制限はないが、特開2001−23611号公報、特開2004−203683号公報、特開2006−21938号公報等に開示したシリカ系微粒子の製造方法に準拠して製造することができる。
Production method of silica-based hollow fine particles As the silica-based hollow fine particles used in the present invention, the number ratio of the above-mentioned deformed silica-based hollow fine particles is 1% or less, and the average particle diameter, refractive index, and particle diameter variation coefficient are within the above-mentioned ranges. Although there is no particular limitation, it can be produced according to the method for producing silica-based fine particles disclosed in JP-A Nos. 2001-23611, 2004-203683, and 2006-21938.

具体的には、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とし、必要に応じてシリカ被覆層(1)を形成した後、シリカ以外の無機酸化物を除去し、さらに必要に応じてシリカ被覆層(2)を形成し、必要に応じて高温で水熱処理することによって得ることができるが、シリカ以外の無機酸化物を除去する前の段階の粒子を調製する工程での濃度、即ち、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を調製する工程、必要に応じてシリカ被覆層(1)を形成する工程での濃度を低濃度にすることによって異形シリカ系中空微粒子の少ないシリカ系中空微粒子を得ることができる。   Specifically, the composite oxide fine particles composed of silica and an inorganic oxide other than silica are used as a core, and after forming the silica coating layer (1) as necessary, the inorganic oxide other than silica is removed, If necessary, it can be obtained by forming a silica coating layer (2) and hydrothermally treating at a high temperature if necessary, but in the step of preparing particles in the stage before removing inorganic oxides other than silica That is, the step of preparing composite oxide fine particles composed of silica and inorganic oxides other than silica, and if necessary, the concentration in the step of forming the silica coating layer (1) is reduced to a low concentration. Silica-based hollow fine particles with few silica-based hollow fine particles can be obtained.

この濃度は、シリカとシリカ以外の無機酸化物を固形分として0.1〜0.9質量%、さらには0.2〜0.6質量%の範囲であることが好ましい。
この濃度を低くしすぎると、異形シリカ系中空微粒子は無くなるか減少するものの、収率が低下し、生産効率が低下することがある。
この濃度を高くすると、異形シリカ系中空微粒子が増加し、透明被膜表面に突起を形成し、白化の原因となるとともに、耐擦傷性が不充分になる場合がある。
This concentration is preferably in the range of 0.1 to 0.9% by mass, more preferably 0.2 to 0.6% by mass, with silica and an inorganic oxide other than silica as the solid content.
If this concentration is too low, the deformed silica-based hollow fine particles are eliminated or reduced, but the yield decreases and the production efficiency may decrease.
When this concentration is increased, irregular-shaped silica-based hollow fine particles increase, and protrusions are formed on the surface of the transparent coating, which may cause whitening and may have insufficient scratch resistance.

本発明で使用される異形粒子が個数割合が少ないシリカ系中空微粒子の製造方法は、例えば、前記したシリカ系中空微粒子の製造方法の主要工程において、
(1)シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を核とする場合、粒径の揃った核を使用し、具体的には、核のCV値が100%以下、好ましくは50%以下の核粒子を用いる。この時の核粒子の調製は種粒子を用いたいわゆるシード法を採用することが好ましく、種粒子の粒子成長を可能な範囲でゆっくり行うことが好ましい。
(2)核粒子の粒子成長を行う場合、シリカ源、アルミナ源の添加を可能な範囲でゆっくり行うことが好ましい。この時の粒子成長速度は、核粒子の粒子径によっても異なるが、概ね0.1〜10nm/時間、さらには0.2〜5nm/時間、特に0.2〜3nm/時間の範囲にあることが好ましい。
(3)シリカ被覆層を形成する際、シリカ源の添加を可能な範囲でゆっくり行うことが好ましい。この時のシリカ被覆速度は、核粒子の粒子径によっても異なるが、概ね0.1〜10nm/時間、さらには0.2〜5nm/時間、特に0.2〜3nm/時間の範囲にあることが好ましい。
(4)上記各工程において、粒子成長後、シリカ被覆層形成後、熟成を行うことが好ましい。この時の熟成は、固形分濃度が1〜30質量%、温度が30〜100℃、時間が1〜12時間の範囲で行うことが好ましい。
(5)上記各工程において、超音波を照射するなどして凝集を防止したり、高分散化することが好ましい。
(6)分散が困難な凝集粒子、粗大粒子が存在する場合は、カプセルフィルター、遠心分離等でこれを除去することが好ましい。
The method for producing a silica-based hollow fine particle having a small number ratio of the irregular shaped particles used in the present invention is, for example, in the main process of the method for producing a silica-based hollow fine particle described above,
(1) When a composite oxide fine particle composed of silica and an inorganic oxide other than silica is used as a nucleus, a nucleus having a uniform particle diameter is used. Specifically, the nucleus has a CV value of 100% or less, preferably Use 50% or less of core particles. The so-called seed method using seed particles is preferably used for the preparation of the core particles at this time, and it is preferable that the seed particles are slowly grown as far as possible.
(2) When carrying out the particle growth of the core particles, it is preferable to slowly add the silica source and the alumina source as much as possible. The particle growth rate at this time varies depending on the particle diameter of the core particle, but is generally in the range of 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, and particularly 0.2 to 3 nm / hour. Is preferred.
(3) When forming the silica coating layer, it is preferable to slowly add the silica source as much as possible. The silica coating speed at this time varies depending on the particle diameter of the core particle, but is generally in the range of 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, and particularly 0.2 to 3 nm / hour. Is preferred.
(4) In each of the above steps, it is preferable to perform aging after the particle growth and after the silica coating layer is formed. The aging at this time is preferably carried out in a range where the solid content concentration is 1 to 30% by mass, the temperature is 30 to 100 ° C., and the time is 1 to 12 hours.
(5) In each of the above steps, it is preferable to prevent aggregation or achieve high dispersion by irradiating ultrasonic waves.
(6) When there are aggregated particles and coarse particles that are difficult to disperse, it is preferable to remove them by a capsule filter, centrifugation, or the like.

本発明に用いるシリカ系中空微粒子は下記式(1)で表される有機珪素化合物、これらの加水分解物で表面処理されていることが好ましい。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
The silica-based hollow fine particles used in the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (1) and a hydrolyzate thereof.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)

このような式(1)で表される有機珪素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。   Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acrylooxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysiloctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, Isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltri Isopropoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β Aminoethyl) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.

このような有機珪素化合物で表面処理されていると、マトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。   When the surface treatment is performed with such an organosilicon compound, it can be uniformly dispersed in the matrix and densely filled, and a transparent film excellent in film strength and scratch resistance can be obtained.

シリカ系中空微粒子の表面処理は微粒子のアルコール分散液に前記有機珪素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて有機珪素化合物を加水分解する。   Surface treatment of silica-based hollow fine particles is performed by adding a predetermined amount of the above-mentioned organosilicon compound to an alcohol dispersion of fine particles, adding water thereto, and adding an acid or alkali as a hydrolysis catalyst as necessary to hydrolyze the organosilicon compound. To do.

このときのシリカ系中空微粒子と有機珪素化合物との量比(有機珪素化合物の固形分(Rn-SiX(4-n)/2)としての重量/シリカ系中空微粒子の重量)はシリカ系中空微粒子の平均粒子径によっても異なるが0.005〜0.3さらには0.01〜0.2の範囲にあることが好ましい。 The amount ratio of silica based hollow fine particles and the organosilicon compound at this time (the solid content of the organosilicon compound (R n -SiX (4-n ) / 2 weight / weight of silica-based hollow microparticles as)) silica based hollow Although it varies depending on the average particle diameter of the fine particles, it is preferably in the range of 0.005 to 0.3, more preferably 0.01 to 0.2.

前記重量比が少ないと、後述するマトリックス形成成分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で微粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となることがある。   If the weight ratio is small, the affinity with the matrix-forming component described later is low, the dispersibility and stability in the paint are insufficient, and fine particles may aggregate in the paint, resulting in a dense transparent film. In some cases, adhesion to the substrate, film strength, scratch resistance, and the like may be insufficient.

前記重量比が多すぎても、塗料中での分散性がさらに向上することもなく、シリカ系中空微粒子の屈折率が高くなり、所望の低屈折率の透明被膜が得られないことがあり、反射防止性能が不充分となることがある。   Even if the weight ratio is too large, the dispersibility in the paint is not further improved, the refractive index of the silica-based hollow fine particles is increased, and a transparent film having a desired low refractive index may not be obtained. The antireflection performance may be insufficient.

マトリックス成分
マトリックス成分としては、シリコーン系(ゾルゲル系)マトリックス成分、有機樹脂系マトリックス成分等が用いられる。
As the matrix component , a silicone (sol-gel) matrix component, an organic resin matrix component, or the like is used.

シリコーン系マトリックス成分としては前記式(1)と同様の有機珪素化合物の加水分解重縮合物が好適に用いられる。
また、有機樹脂系マトリックス成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。
As the silicone matrix component, a hydrolyzed polycondensate of an organosilicon compound similar to the formula (1) is preferably used.
Examples of the organic resin-based matrix component include known thermosetting resins, thermoplastic resins, and electron beam curable resins as coating resins.

このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。   Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc., UV curable type An acrylic resin etc. are mentioned. Further, it may be a copolymer or modified body of two or more of these resins. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.

本発明の透明被膜付基材の概念を図1に模式的に示す。図1に示すように異形シリカ系中空微粒子が無く、平均粒子径、屈折率および粒子径変動係数が前記した範囲にあるシリカ系中空微粒子を用いると、基材と透明被膜との密着性が高く、透明被膜の上部表面は凹凸が小さく平滑になり、このため透明被膜は、白化が抑制され、強度、耐擦傷性に優れ、低屈折率で反射防止性能に優れている。   The concept of the substrate with a transparent coating of the present invention is schematically shown in FIG. As shown in FIG. 1, when silica-based hollow fine particles having no irregular-shaped silica-based hollow fine particles and having an average particle size, refractive index, and particle size variation coefficient in the above-described ranges are used, the adhesion between the substrate and the transparent film is high. The upper surface of the transparent coating is smooth with small irregularities, and thus the transparent coating is suppressed in whitening, has excellent strength and scratch resistance, and has a low refractive index and excellent antireflection performance.

これに対し、従来の透明被膜付基材の概念は、図2に模式的に示される。図2に示すように異形シリカ系中空微粒子が存在していると、透明被膜の上部表面は凹凸が形成され、これにより、透明被膜が、白化したり、この凸部によって、強度や耐擦傷性が低下することがある。   On the other hand, the concept of a conventional substrate with a transparent coating is schematically shown in FIG. As shown in FIG. 2, when irregular-shaped silica-based hollow fine particles are present, the upper surface of the transparent film is uneven, which causes the transparent film to be whitened or to have strength and scratch resistance due to the protrusions. May decrease.

透明被膜のシリカ系中空微粒子の含有量は40〜90質量%、さらには50〜90質量%の範囲にあることが好ましい。なお残りの成分はマトリックス成分となる。透明被膜中のシリカ系中空微粒子の含有量が少ないと場合は屈折率の充分に低い透明被膜が得られないことがあり、透明被膜中のシリカ系中空微粒子の含有量が90質量%を越えると、後述するマトリックス成分の含有量が少な過ぎるために透明被膜の強度、耐擦傷性が不充分となることがある。   The content of the silica-based hollow fine particles in the transparent coating is preferably in the range of 40 to 90% by mass, more preferably 50 to 90% by mass. The remaining components are matrix components. When the content of the silica-based hollow fine particles in the transparent film is small, a transparent film having a sufficiently low refractive index may not be obtained. When the content of the silica-based hollow fine particles in the transparent film exceeds 90% by mass In addition, since the content of the matrix component described later is too small, the strength and scratch resistance of the transparent film may be insufficient.

透明被膜の膜厚は80〜120nm、さらには90〜110nmの範囲にあることが好ましい。
透明被膜が薄すぎると、膜の強度、耐擦傷性が不充分となる場合がある。また、膜が薄すぎて十分な反射防止性能が得られないことがある。透明被膜が厚すぎても、シリカ系中空微粒子の含有量が多い場合に透明被膜にクラックが入りやすくなるために膜の強度が不充分となる場合がある。
The film thickness of the transparent coating is preferably in the range of 80 to 120 nm, more preferably 90 to 110 nm.
If the transparent film is too thin, the film strength and scratch resistance may be insufficient. In addition, the film may be too thin to obtain sufficient antireflection performance. Even if the transparent film is too thick, if the content of silica-based hollow fine particles is large, cracks are likely to occur in the transparent film, and the film strength may be insufficient.

また、透明被膜の屈折率は1.15〜1.40、さらには1.20〜1.35の範囲にあることが好ましい。透明被膜の屈折率が前記範囲よりも低いものは、被膜組成の点で得ることが困難であり、また屈折率が大きくすると、基材の屈折率あるいは必要に応じて形成される透明被膜の下層に形成される他の膜の屈折率によっても異なるが反射防止性能が不充分となることがある。
本発明の透明被膜の屈折率はエリプソメーター(ULVAC社製、EMS−1)により測定する。
The refractive index of the transparent film is preferably in the range of 1.15 to 1.40, more preferably 1.20 to 1.35. If the refractive index of the transparent coating is lower than the above range, it is difficult to obtain from the viewpoint of coating composition, and if the refractive index is increased, the refractive index of the substrate or the lower layer of the transparent coating formed as necessary Depending on the refractive index of other films formed, the antireflection performance may be insufficient.
The refractive index of the transparent film of the present invention is measured with an ellipsometer (manufactured by ULVAC, EMS-1).

このような透明被膜付基材の形成方法としては従来公知の方法を採用することができる。
具体的には、後述する本発明に係る透明被膜形成用塗料をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。
A conventionally well-known method is employable as a formation method of such a base material with a transparent film.
Specifically, the transparent film-forming paint according to the present invention described later is well known such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method. A transparent coating film can be formed by applying to a substrate by the above method, drying, and curing by a conventional method such as ultraviolet irradiation or heat treatment.

透明被膜形成用塗料
本発明に係る透明被膜形成用塗料は、前記した平均粒子径(Dn)が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.30の範囲にあり、平均粒子径(Dn)の2倍以上の異形シリカ系中空微粒子のシリカ系中空微粒子中の個数割合が1%以下であるシリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなることを特徴としている。
Transparent Film Forming Paint The transparent film forming paint according to the present invention has an average particle diameter (Dn) in the range of 50 to 120 nm and a particle diameter variation coefficient (CV value) in the range of 1 to 50%. Silica-based hollow having a refractive index in the range of 1.10 to 1.30 and a number ratio of irregular-shaped hollow silica fine particles having an average particle diameter (Dn) of 2 times or more in the hollow silica fine particles of 1% or less. It is characterized by comprising fine particles, a matrix-forming component, and a polar solvent.

シリカ系中空微粒子
本発明に用いるシリカ系中空微粒子としては前記したと同様の異形シリカ系中空微粒子が少なく、所定の平均粒子径、屈折率、粒子径変動係数(CV値)を有するシリカ系中空微粒子が用いられる。
Silica-based hollow fine particles Silica-based hollow fine particles used in the present invention have few irregular-shaped silica-based hollow fine particles as described above, and have a predetermined average particle size, refractive index, and particle size variation coefficient (CV value). Is used.

マトリックス形成成分
マトリックス形成成分としては、前記したシリコーン系(ゾルゲル系)マトリックス形成成分、有機樹脂系マトリックス形成成分等が用いられる。
Matrix-forming component As the matrix-forming component, the aforementioned silicone (sol-gel) matrix-forming component, organic resin-based matrix-forming component, or the like is used.

極性溶媒
本発明に用いる極性溶媒としてはマトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともにシリカ系中空微粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
Polar solvent The polar solvent used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component, and the polymerization initiator used as necessary, and can uniformly disperse the silica-based hollow fine particles. Can be used.

具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等が挙げられる。   Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, acetone Ketones such as acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like.

なかでも、メタノール、エタノール、プロパノール、2-プロパノール(IPA)等のアルコール類は表面処理したシリカ系中空微粒子を均一に分散することができ、カルボニル基を有する溶媒は表面処理したシリカ系中空微粒子を均一に分散することができるとともに塗料の安定性がよく、均一性、基材との密着性、強度等に優れた透明被膜を再現性よく形成することができるので好適に用いることができる。   Among them, alcohols such as methanol, ethanol, propanol and 2-propanol (IPA) can uniformly disperse the surface-treated silica-based hollow fine particles, and the solvent having a carbonyl group can be obtained by treating the surface-treated silica-based hollow fine particles. Since it can disperse | distribute uniformly and the stability of a coating material is good and can form the transparent film excellent in uniformity, adhesiveness with a base material, intensity | strength, etc. with reproducibility, it can use it conveniently.

透明被膜形成用塗料中のシリカ系中空微粒子の濃度は固形分として0.5〜54質量%、さらには0.6〜54質量%の範囲にあることが好ましい。透明被膜形成用塗料中のシリカ系中空微粒子少ないと、透明被膜中のシリカ系中空微粒子の含有量が少なく屈折率の充分に低い透明被膜が得られないことがある。シリカ系中空微粒子が多すぎても、反対にマトリックス形成成分の含有量が少なくなるために透明被膜の強度が不充分となることがある。   The concentration of the silica-based hollow fine particles in the coating for forming a transparent film is preferably in the range of 0.5 to 54% by mass, more preferably 0.6 to 54% by mass as the solid content. If the silica-based hollow microparticles in the coating for forming a transparent coating are small, a transparent coating with a sufficiently low refractive index may not be obtained because the content of silica-based hollow microparticles in the transparent coating is small. Even if there are too many silica-based hollow fine particles, the strength of the transparent coating film may be insufficient because the content of the matrix-forming component is reduced.

透明被膜形成用塗料中のマトリックス形成成分の濃度は固形分とし0.1〜30質量%さらには0.1〜24質量%の範囲にあることが好ましい。
マトリックス形成成分の濃度が低い場合は、得られる透明被膜中のマトリックス成分が少なく、耐擦傷性、基材との密着性等が不充分となる場合がある。マトリックス形成成分の濃度が多すぎると、得られる透明被膜中のシリカ系中空微粒子の含有量が少なくなり、屈折率が不充分となり、反射防止性能が不充分となる場合がある。
It is preferable that the density | concentration of the matrix formation component in the coating material for transparent film formation is 0.1-30 mass% as solid content, and also exists in the range of 0.1-24 mass%.
When the concentration of the matrix-forming component is low, there are few matrix components in the obtained transparent film, and the scratch resistance, adhesion to the substrate, and the like may be insufficient. If the concentration of the matrix-forming component is too high, the content of silica-based hollow fine particles in the resulting transparent coating is reduced, the refractive index is insufficient, and the antireflection performance may be insufficient.

透明被膜形成用塗料の全固形分濃度は1〜60質量%、さらには3〜50質量%の範囲にあることが好ましい。
全固形分濃度が低すぎると、透明被膜の膜厚が薄すぎてしまい、耐擦傷性が不充分になる場合があり、また充分な反射防止性能が得られない場合がある。一方。全固形分濃度が多すぎると、塗料の粘度が高くなり、塗料の安定性が低下したり、塗工性が低下し、また、薄い膜を形成することが困難となり、さらに得られる透明被膜の均一性、基材との密着性、強度等が不充分となることがある。
The total solid content concentration of the coating for forming a transparent film is preferably in the range of 1 to 60% by mass, more preferably 3 to 50% by mass.
When the total solid content concentration is too low, the film thickness of the transparent coating is too thin, the scratch resistance may be insufficient, and sufficient antireflection performance may not be obtained. on the other hand. If the total solid content is too high, the viscosity of the paint increases, the stability of the paint decreases, the coatability decreases, and it becomes difficult to form a thin film. Uniformity, adhesion to the substrate, strength, etc. may be insufficient.

本発明に係る透明被膜形成用塗料を用いて透明被膜を形成する方法として従来公知の方法を採用することができる。
具体的には、透明被膜形成用塗料をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができるが、本発明ではロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。
A conventionally well-known method can be employ | adopted as a method of forming a transparent film using the coating material for transparent film formation which concerns on this invention.
Specifically, the transparent film-forming paint is applied to the substrate by a known method such as dipping, spraying, spinner, roll coating, bar coating, slit coater printing, gravure printing, or micro gravure printing. A transparent film can be formed by applying, drying, and curing by conventional methods such as ultraviolet irradiation, heat treatment, etc.In the present invention, roll coating, slit coater printing, gravure printing, and micro gravure printing are used. Recommended.

なお、マトリックス形成成分を重合や縮合などの反応を行うための触媒がふくまれていてもよい。その他、公知の透明被膜に用いられる成分が含まれていてもよい。   A catalyst for performing a reaction such as polymerization or condensation of the matrix-forming component may be included. In addition, the component used for a well-known transparent film may be contained.

[実施例]
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

[実施例1]
シリカ系中空微粒子(P-1)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2 濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液17,000gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液17,000gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.5質量%であった。また、平均粒子径は50nmであった。
[Example 1]
Preparation of silica -based hollow fine particles (P-1) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 17,000 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of a sodium aluminate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 , 000 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.5% by mass. Moreover, the average particle diameter was 50 nm.

ついで、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液54,000gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液18,000gを25時間で添加して複合酸化物微粒子(1)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.6質量%であった。 Subsequently, 54,000 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 18,000 g of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added in 25 hours to form composite oxide fine particles. (1) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.6% by mass.

分散液を限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(1) 分散液を得た。このとき、平均粒子径は78nm、CV値=14.0%であった。   The dispersion was washed with an ultrafiltration membrane to a solid content concentration of 13% by mass, and then filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (1) dispersion. At this time, the average particle size was 78 nm, and the CV value = 14.0%.

この複合酸化物微粒子(1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-1-1)の水分散液を得た。   To 500 g of the dispersion of composite oxide fine particles (1), 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-1-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-1-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-1-1) dispersion to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -1-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-1)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-1)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.2質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-1)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-1)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by mass. Component 81.2% by mass) 3 g of silica particles, heat-treated at 50 ° C., and again using an ultrafiltration membrane to replace the solvent with ethanol. Silica hollow fine particles having a solid content concentration of 20% by mass (P-1) An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (P-1) are shown in the table.

反射防止用透明被膜形成用塗料(1)の製造
シリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液60gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)2.5gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒37.5gとを充分に混合して透明被膜形成用塗料(1)を調製した。
Production of antireflection transparent coating film-forming paint (1) Silica-based hollow fine particle (P-1) alcohol dispersion obtained by diluting with ethanol to a solid content concentration of 5% by mass and acrylic resin (Hitaroid 1007, Hitachi) A transparent coating film-forming paint (1) was prepared by sufficiently mixing 2.5 g of Kasei Chemical Co., Ltd.) and 37.5 g of a mixed solvent of isopropanol and n-butanol in 1/1 (weight ratio).

ハードコート膜形成用塗布液(1)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5質量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン1.88g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で20時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5質量%)。
Preparation of coating liquid for hard coat film formation (1) Silica sol dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by mass, dispersion medium: isopropanol, Particle Refractive Index 1.46) 100 g is mixed with 1.88 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicon Co., Ltd .: KBM-503, SiO 2 component 81.2%), and ultrapure water 3 0.1 g was added and stirred at 50 ° C. for 20 hours to obtain a surface-treated 12 nm silica sol dispersion (solid content concentration: 40.5% by mass).

その後、ロータリーエバポレーターでプロピレングリコールモノプロピルエーテル(PGME)に溶剤置換した(固形分40.5%)。
ついで、固形分濃度40.5質量%のシリカゾル(1-8)のプロピレングリコールモノプロピルエーテル分散液51.85gと、ジヘキサエリスリトールトリアセテート(共栄社化学(株)製:DPE−6A)18.90g、と1.6−ヘキサンジオールジアクリレート(共栄社化学(株)製;ライトアクリレートSR−238F)2.10gとシリコーン系レベリング剤(楠本化成(株)製;ディスパロン1610)0.01gと光重合開始剤(チバジャパン(株))製:イルガキュア184、PGMEで固形分濃度10%に溶解)12.60gとPGME14.54gとを充分に混合して固形分濃度42.0質量%のハードコート膜形成用塗布液(1)を調製した。
Thereafter, the solvent was replaced with propylene glycol monopropyl ether (PGME) by a rotary evaporator (solid content: 40.5%).
Next, 51.85 g of a propylene glycol monopropyl ether dispersion of silica sol (1-8) having a solid content concentration of 40.5% by mass, 18.90 g of dihexaerythritol triacetate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A), And 1.6-hexanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate SR-238F) 2.10 g, silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon 1610) 0.01 g and a photopolymerization initiator (Ciba Japan Co., Ltd.): Irgacure 184, dissolved in PGME to a solid content concentration of 10%) 12.60 g and PGME 14.54 g are mixed well to form a hard coating film having a solid content concentration of 42.0% by mass. A coating solution (1) was prepared.

反射防止用透明被膜付基材(1)の製造
ハードコート膜形成用塗布液(1)を、TACフィルム(パナック(株)製:FT−PB80UL−M、厚さ:80μm、屈折率:1.51)にバーコーター法(#14)で塗布し、80℃で120秒間乾燥した後、300mJ/cm2の紫外線を照射して硬化させてハードコート膜を形成した。ハードコート膜の膜厚は6μmであった。
Production of substrate (1) with transparent coating for antireflection Hard coating film forming coating solution (1) was prepared by using a TAC film (manufactured by Panac Corporation: FT-PB80UL-M, thickness: 80 μm, refractive index: 1. 51) was coated by the bar coater method (# 14), dried at 80 ° C. for 120 seconds, and then cured by irradiating with 300 mJ / cm 2 of ultraviolet rays to form a hard coat film. The film thickness of the hard coat film was 6 μm.

ついで、反射防止用透明被膜形成用塗布液(1)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(1)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。この反射防止用透明被膜付基材(1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦り傷性を表に示す。 Next, the coating solution (1) for forming an antireflection transparent film was applied by the bar coater method (bar # 4), dried at 80 ° C. for 120 seconds, and then irradiated with 600 mJ / cm 2 of ultraviolet light in an N 2 atmosphere. And cured to produce a substrate (1) with a transparent coating for antireflection. At this time, the film thickness of the antireflection transparent coating was 100 nm. Table 1 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the coating, adhesion, pencil hardness, and scratch resistance of the substrate (1) with a transparent coating for antireflection.

全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2. 0%、波長550nmの光線の反射率が7. 0%であった。   The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.

鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.

密着性
透明被膜付基材(A-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
Adhesiveness The surface of the substrate (A-1) with a transparent coating is made of 11 parallel scratches with a knife at intervals of 1 mm in length and width to make 100 squares, and cellophane tape is adhered thereto, The adhesion was evaluated by classifying the number of cells remaining after the cellophane tape was peeled off without the film being peeled into the following three stages. The results are shown in the table.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △

耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価し、結果を表に示した。
Measurement of scratch resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in the table.

評価基準:
筋条の傷が認められない :◎
筋条の傷が僅かに認められる :○
筋条の傷が多数認められる :△
面が全体的に削られている :×
Evaluation criteria:
No streak injury is found: ◎
Slight flaws are observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×

白化の評価
塗膜表面を斜め(約30°)から目視し、評価を以下の4段階で評価した。
Evaluation of whitening The surface of the coating film was visually observed from an oblique direction (about 30 °), and the evaluation was evaluated in the following four stages.

評価基準:
白化が認められない :◎
若干の白化がある :○
一部白化している :△
全面的に白化している:×
Evaluation criteria:
No whitening is recognized: ◎
There is some whitening: ○
Partly whitened: △
Fully whitened: ×

[実施例2]
反射防止用透明被膜形成用塗料(2)の製造
実施例1と同様にして調製したシリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して透明被膜形成用塗料(2)を調製した。
[Example 2]
Preparation of antireflection transparent coating film-forming paint (2) 50 g of a dispersion of an alcohol dispersion of silica-based hollow fine particles (P-1) prepared in the same manner as in Example 1 with ethanol to a solid content concentration of 5% by mass Then, 3 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 47 g of a mixed solvent of isopropanol and n-butanol in 1/1 (weight ratio) are sufficiently mixed to prepare a paint (2) for forming a transparent film. did.

反射防止用透明被膜付基材(2)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(2)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(2)を作製した。このときの反射防止用透明被膜の膜厚は95nmであった。
この反射防止用透明被膜付基材(2)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Production of base material with antireflection transparent coating (2) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (2) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (2) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. The film thickness of the antireflection transparent coating at this time was 95 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (2) with a transparent coating for antireflection are shown in the table.

[実施例3]
反射防止用透明被膜形成用塗料(3)の製造
実施例1と同様にして調製したシリカ系中空微粒子(P-1)のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液72gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)1.9gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒26.1gとを充分に混合して透明被膜形成用塗料(3)を調製した。
[Example 3]
Preparation of antireflection transparent coating film-forming paint (3) 72 g of a dispersion of silica-based hollow fine particles (P-1) prepared in the same manner as in Example 1 diluted with ethanol to a solid content concentration of 5% by mass And 1.9 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 26.1 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed to form a transparent film-forming paint ( 3) was prepared.

反射防止用透明被膜付基材(3)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(3)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(3)を作製した。このときの反射防止用透明被膜の膜厚は110nmであった。
この反射防止用透明被膜付基材(3)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Production of base material with antireflection transparent coating (3) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (3) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (3) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 in an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 110 nm.
The table shows the total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (3) with an antireflection transparent coating.

[実施例4]
シリカ系中空微粒子(P-2)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.5質量%の珪酸ナトリウム水溶液25,500gとAl23としての濃度0.17質量%のアルミン酸ナトリウム水溶液25,000gを50時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.3質量%であった。また、平均粒子径は49nmであった。
[Example 4]
Preparation of silica -based hollow fine particles (P-2) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 25,500 g of an aqueous solution of sodium silicate having a concentration of 0.5% by mass as SiO 2 and an aqueous solution of sodium aluminate having a concentration of 0.17% by mass as Al 2 O 3 , 000 g was added in 50 hours to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.3% by mass. The average particle size was 49 nm.

ついで、SiO2として濃度0.5質量%の珪酸ナトリウム水溶液81,000gとAl23としての濃度0.17質量%のアルミン酸ナトリウム水溶液26,500gを50時間で添加して複合酸化物微粒子(2)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.4質量%であった。 Subsequently, 81,000 g of a sodium silicate aqueous solution with a concentration of 0.5% by mass as SiO 2 and 26,500 g of a sodium aluminate aqueous solution with a concentration of 0.17% by mass as Al 2 O 3 were added over 50 hours to form composite oxide fine particles. (2) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.4% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(2) 分散液を得た。このとき、平均粒子径は76nm、CV値=11.0%であった。   Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (2) dispersion. At this time, the average particle diameter was 76 nm, and the CV value = 11.0%.

この複合酸化物微粒子(2)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-2-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (2) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-2-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-2-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-2-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-2-1) dispersion to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -2-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-2)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-2)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-2)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-2)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (P-2) having a solid content concentration of 20% by mass, in which the solvent was replaced with ethanol using an ultrafiltration membrane, was prepared.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-2) having a solid content concentration of 20% by mass. (81.9 mass% component) 3 g was added, heat-treated at 50 ° C., and again the alcohol of silica-based hollow fine particles (P-2) having a solid content concentration of 20 mass%, where the solvent was replaced with ethanol using an ultrafiltration membrane. A dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (P-2) are shown in the table.

反射防止用透明被膜形成用塗料(4)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(P-2)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(4)を調製した。
Production of transparent coating for antireflection coating (4) In the same manner as in Example 1, except that an alcohol dispersion of silica-based hollow fine particles (P-2) having a solid content concentration of 20% by mass was used. A paint (4) was prepared.

反射防止用透明被膜付基材(4)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(4)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(4)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(4)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection transparent coating (4) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (4) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (4) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The total light transmittance, haze, reflectance of 550 nm light, refractive index of the coating, adhesion, pencil hardness, and scratch resistance of this substrate (4) with a transparent coating for antireflection are shown in the table.

[実施例5]
シリカ系中空微粒子(P-3)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.2質量%の珪酸ナトリウム水溶液10,500gとAl23としての濃度0.4質量%のアルミン酸ナトリウム水溶液10,500gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.8質量%であった。また、平均粒子径は51nmであった。
[Example 5]
Preparation of silica -based hollow fine particles (P-3) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 10,500 g of a sodium silicate aqueous solution having a concentration of 1.2% by mass as SiO 2 and a sodium aluminate aqueous solution having a concentration of 0.4% by mass as Al 2 O 3 , 500 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.8% by mass. Moreover, the average particle diameter was 51 nm.

ついで、SiO2として濃度1.2質量%の珪酸ナトリウム水溶液33,560gとAl23としての濃度0.4質量%のアルミン酸ナトリウム水溶液11,190gを25時間で添加して複合酸化物微粒子(3)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.9質量%であった。 Subsequently, 33,560 g of a sodium silicate aqueous solution having a concentration of 1.2% by mass as SiO 2 and 11,190 g of a sodium aluminate aqueous solution having a concentration of 0.4% by mass as Al 2 O 3 were added in 25 hours to form composite oxide fine particles. (3) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.9% by mass.

分散液を、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(3) 分散液を得た。このとき、平均粒子径は78nm、CV値=28.0%であった。   The dispersion was washed with an ultrafiltration membrane to a solid content concentration of 13% by mass, and then filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (3) dispersion. At this time, the average particle size was 78 nm, and the CV value = 28.0%.

この複合酸化物微粒子(3)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-3-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (3) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-3-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-3-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-3-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-3-1) dispersion to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -3-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-3)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-3)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-3)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-3)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (P-3) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-3) having a solid content concentration of 20% by mass. 3 g of component 81.9% by mass), heat-treated at 50 ° C., and again using an ultrafiltration membrane, the solvent was replaced with ethanol. Silica-based hollow fine particles having a solid content concentration of 20% by mass (P-3) An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (P-3) are shown in the table.

反射防止用透明被膜形成用塗料(5)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(P-3)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(5)を調製した。
Production of transparent coating for antireflection coating (5) In Example 1, except for using an alcohol dispersion of silica-based hollow fine particles (P-3) with a solid content concentration of 20% by mass, for transparent coating formation A paint (5) was prepared.

反射防止用透明被膜付基材(5)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(5)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(5)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(5)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection transparent coating (5) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (5) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, the substrate (5) with a transparent coating for antireflection was produced by irradiating and curing an ultraviolet ray of 600 mJ / cm 2 in an N 2 atmosphere. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (5) with a transparent coating for antireflection are shown in the table.

[実施例6]
シリカ系中空微粒子(P-4)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液45,200gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液45,200gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.5質量%であった。また、平均粒子径は70nmであった。
[Example 6]
Preparation of silica -based hollow fine particles (P-4) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While heating to 98 ° C. and maintaining this temperature, 45,200 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and a sodium aluminate aqueous solution 45 having a concentration of 0.25% by mass as Al 2 O 3 , 200 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.5% by mass. Moreover, the average particle diameter was 70 nm.

ついで、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液138,600gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液46,200gを25時間で添加して複合酸化物微粒子(4)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.6質量%であった。 Subsequently, 138,600 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 46,200 g of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added in 25 hours to form composite oxide fine particles. (4) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.6% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(4) 分散液を得た。このとき、平均粒子径は95nm、CV値=11.5%であった。   Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (4) dispersion. At this time, the average particle size was 95 nm, and the CV value was 11.5%.

この複合酸化物微粒子(4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-4-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (4) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-4-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-4-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-4-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-4-1) dispersion to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -4-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-4)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-4)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-4)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-4)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and again using an ultrafiltration membrane to replace the solvent with ethanol. Silica-based hollow fine particles having a solid content concentration of 20% by mass (P-4) An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (P-4) are shown in the table.

反射防止用透明被膜形成用塗料(6)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(P-4)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(6)を調製した。
Production of transparent coating for antireflection coating (6) In Example 1, except that an alcohol dispersion of silica-based hollow fine particles (P-4) having a solid content of 20% by mass was used. A paint (6) was prepared.

反射防止用透明被膜付基材(6)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(6)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(6)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(6)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection transparent coating (6) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (6) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (6) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 in an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (6) with a transparent coating for antireflection are shown in the table.

[実施例7]
シリカ系中空微粒子(P-5)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液13,000gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液13,000gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.5質量%であった。また、平均粒子径は42nmであった。
[Example 7]
Preparation of silica -based hollow fine particles (P-5) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 13,000 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and a sodium aluminate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 , 000 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.5% by mass. The average particle size was 42 nm.

ついで、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液40,000gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液13,000gを25時間で添加して複合酸化物微粒子(5)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.6質量%であった。 Subsequently, 40,000 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 13,000 g of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added in 25 hours to form composite oxide fine particles. (5) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.6% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(5)分散液を得た。このとき、平均粒子径は61nm、CV値=16%であった。   Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (5) dispersion. At this time, the average particle diameter was 61 nm, and the CV value was 16%.

この複合酸化物微粒子(5)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-5-1)の水分散液を得た。   1,500 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (5), and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-5-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-5-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-5-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-5-1) dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, it is cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -5-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-5)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-5)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-5)のアルコール分散液を調製した。
このシリカ系中空微粒子(P-5)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Then, an alcohol dispersion of silica-based fine particles (P-5) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-5) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane. An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (P-5) are shown in the table.

反射防止用透明被膜形成用塗料(7)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(P-5)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(7)を調製した。
Preparation of transparent coating for antireflection coating (7) Preparation of transparent coating in the same manner as in Example 1 except that an alcohol dispersion of silica-based hollow fine particles (P-5) having a solid content of 20% by mass was used. A paint (7) was prepared.

反射防止用透明被膜付基材(7)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(7)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(7)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(7)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection transparent coating (7) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (7) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (7) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The table shows the total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (7) with an antireflection transparent coating.

[比較例1]
シリカ系中空微粒子(RP-1)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2 濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0質量%の珪酸ナトリウム水溶液4,200gとAl23としての濃度1.0質量%のアルミン酸ナトリウム水溶液4,200gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は1.9質量%であった。また、平均粒子径は53nmであった。
[Comparative Example 1]
Preparation of silica -based hollow fine particles (RP-1) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle size 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 4,200 g of a sodium silicate aqueous solution having a concentration of 3.0% by mass as SiO 2 and a sodium aluminate aqueous solution having a concentration of 1.0% by mass as Al 2 O 3 , 200 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 1.9% by mass. The average particle size was 53 nm.

ついで、SiO2として濃度3.0質量%の珪酸ナトリウム水溶液13,400gとAl23としての濃度1.0質量%のアルミン酸ナトリウム水溶液4,500gを25時間で添加して複合酸化物微粒子(R1)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は2.3質量%であった。 Next, 13,400 g of a sodium silicate aqueous solution having a concentration of 3.0% by mass as SiO 2 and 4,500 g of a sodium aluminate aqueous solution having a concentration of 1.0% by mass as Al 2 O 3 were added over 25 hours to form composite oxide fine particles. A dispersion of (R1) (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 2.3% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(R1) 分散液を得た。このとき、平均粒子径は77nm、CV値=56%であった。   Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (R1) dispersion. At this time, the average particle size was 77 nm, and the CV value was 56%.

この複合酸化物微粒子(R1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(RP-1-1)の水分散液を得た。   1,500 g of pure water was added to 500 g of the dispersion of composite oxide fine particles (R1), and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (RP-1-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(RP-1-1) 分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(RP-1-2)の水分散液を得た。   Next, aqueous ammonia is added to the dispersion of silica-based fine particles (RP-1-1) to adjust the pH of the dispersion to 10.5, then aging at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. After ion exchange, 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (RP An aqueous dispersion of -1-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(RP-1)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(RP-1)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(RP-1)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-1)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-1) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (RP-1) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane. An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (RP-1) are shown in the table.

反射防止用透明被膜形成用塗料(R1)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(RP-1)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(R1)を調製した。
Production of transparent coating film (R1) for antireflection coating In Example 1, except for using an alcohol dispersion of silica-based hollow fine particles (RP-1) having a solid content concentration of 20% by mass, a transparent coating film is formed. A paint (R1) was prepared.

反射防止用透明被膜付基材(R1)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(R1)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(R1)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(R1)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection transparent coating (R1) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (R1) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (R1) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (R1) with an antireflection transparent coating are shown in the table.

[比較例2]
シリカ系中空微粒子(RP-2)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0質量%の珪酸ナトリウム水溶液11,300gとAl23としての濃度1.0質量%のアルミン酸ナトリウム水溶液11,300gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は1.9質量%であった。また、平均粒子径は78nmであった。
[Comparative Example 2]
Preparation of silica -based hollow fine particles (RP-2) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., 11,300 g of a sodium silicate aqueous solution having a concentration of 3.0% by mass as SiO 2 and a sodium aluminate aqueous solution having a concentration of 1.0% by mass as Al 2 O 3 , 300 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 1.9% by mass. The average particle size was 78 nm.

ついで、SiO2として濃度3.0質量%の珪酸ナトリウム水溶液34,650gとAl23としての濃度1.0質量%のアルミン酸ナトリウム水溶液11,550gを25時間で添加して複合酸化物微粒子(4)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は2.3質量%であった。 Next, 34,650 g of a sodium silicate aqueous solution having a concentration of 3.0% by mass as SiO 2 and 11,550 g of a sodium aluminate aqueous solution having a concentration of 1.0% by mass as Al 2 O 3 were added in 25 hours to form composite oxide fine particles. (4) A dispersion of (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 2.3% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(4) 分散液を得た。このとき、平均粒子径は97nm、CV値=52%であった。   Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (4) dispersion. At this time, the average particle size was 97 nm, and the CV value was 52%.

この複合酸化物微粒子(4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(P-4-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (4) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (P-4-1) having a solid content concentration of 20 mass% by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(P-4-1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(P-4-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based fine particle (P-4-1) dispersion to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. Ion exchange was performed, and 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (P An aqueous dispersion of -4-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P-4)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(P-4)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(P-4)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-2)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (P-4) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and again using an ultrafiltration membrane to replace the solvent with ethanol. Silica-based hollow fine particles having a solid content concentration of 20% by mass (P-4) An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (RP-2) are shown in the table.

反射防止用透明被膜形成用塗料(R2)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(RP-2)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(R2)を調製した。
Production of anti-reflection transparent coating (R2) coating Example 1 In the same manner as in Example 1, except that an alcohol dispersion of silica-based hollow fine particles (RP-2) having a solid content concentration of 20% by mass was used. A paint (R2) was prepared.

反射防止用透明被膜付基材(R2)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(R2)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(R2)を作製した。このときの反射防止用透明被膜の膜厚は110nmであった。
この反射防止用透明被膜付基材(R2)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
[比較例3]
Preparation of base material with antireflection transparent coating (R2) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (R2) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (R2) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 in an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 110 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (R2) with an antireflection transparent coating are shown in the table.
[Comparative Example 3]

シリカ系中空微粒子(RP-3)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液5,200gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液5,200gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.5質量%であった。また、平均粒子径は23nmであった。
Preparation of silica -based hollow fine particles (RP-3) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20% by mass). While maintaining the temperature at 98 ° C., 5,200 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and a sodium aluminate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 200 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.5% by mass. Moreover, the average particle diameter was 23 nm.

ついで、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液11,300gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液3,800gを25時間で添加して複合酸化物微粒子(R3)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.6質量%であった。 Subsequently, 11,300 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 3,800 g of an aqueous solution of sodium aluminate having a concentration of 0.25% by mass as Al 2 O 3 were added over 25 hours to form composite oxide fine particles. A dispersion of (R3) (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.6% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(R3) 分散液を得た。このとき、平均粒子径は34nm、CV値=13%であった。   Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (R3) dispersion. At this time, the average particle size was 34 nm, and the CV value was 13%.

この複合酸化物微粒子(R3)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(RP-3-1)の水分散液を得た。   To 500 g of the composite oxide fine particle (R3) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (RP-3-1) having a solid content concentration of 20% by mass by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(RP-3-1) 分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(RP-3-2)の水分散液を得た。   Next, aqueous ammonia is added to the dispersion of silica-based fine particles (RP-3-1) to adjust the pH of the dispersion to 10.5, then aging at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. After ion exchange, 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (RP An aqueous dispersion of -3-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(RP-3)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(RP-3)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(RP-3)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-3)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol using an ultrafiltration membrane again. Silica-based hollow fine particles (RP-3) having a solid content concentration of 20% by mass An alcohol dispersion was prepared.
The average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (RP-3) are shown in the table.

反射防止用透明被膜形成用塗料(R3)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(RP-3)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(R3)を調製した。
Production of transparent coating film (R3) for antireflection coating In the same manner as in Example 1, except that an alcohol dispersion of silica-based hollow fine particles (RP-3) having a solid content concentration of 20% by mass was used. A paint (R3) was prepared.

反射防止用透明被膜付基材(R3)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(R3)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(R3)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
この反射防止用透明被膜付基材(R3)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Production of base material with antireflection transparent coating (R3) After forming a hard coat film in the same manner as in Example 1, the coating liquid for forming an antireflection transparent coating (R3) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (R3) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate (R3) with an antireflection transparent coating are shown in the table.

[比較例4]
シリカ系中空微粒子(RP-4)の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、CV値17%、SiO2濃度20質量%)10gに純水390gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液102,200gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液102,200gを25時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度は0.5質量%であった。また、平均粒子径は115nmであった。
[Comparative Example 4]
Preparation of silica -based hollow fine particles (RP-4) 390 g of pure water was added to 10 g of silica sol (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, average particle diameter 5 nm, CV value 17%, SiO 2 concentration 20 mass%). While maintaining the temperature at 98 ° C., while maintaining this temperature, the sodium silicate aqueous solution 102, 200 g having a concentration of 0.75% by mass as SiO 2 and the sodium aluminate aqueous solution 102 having a concentration of 0.25% by mass as Al 2 O 3 , 200 g was added in 25 hours to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 11.8, and the solid content concentration was 0.5% by mass. The average particle size was 115 nm.

ついで、SiO2として濃度0.75質量%の珪酸ナトリウム水溶液535,700gとAl23としての濃度0.25質量%のアルミン酸ナトリウム水溶液178,560gを25時間で添加して複合酸化物微粒子(R4)(二次粒子)の分散液を得た。このとき、反応液のpHは11.6、固形分濃度は0.6質量%であった。 Subsequently, 535,700 g of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 178,560 g of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 25 hours to form composite oxide fine particles. A dispersion of (R4) (secondary particles) was obtained. At this time, the pH of the reaction solution was 11.6, and the solid content concentration was 0.6% by mass.

ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子(R4) 分散液を得た。このとき、平均粒子径は152nm、CV値=9%であった。   Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle (R4) dispersion. At this time, the average particle size was 152 nm and the CV value was 9%.

この複合酸化物微粒子(R4)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系微粒子(RP-4-1)の水分散液を得た。   1,500 g of pure water was added to 500 g of this dispersion of composite oxide fine particles (R4), and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based fine particles (RP-4-1) having a solid content of 20% by mass by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Got.

つぎに、シリカ系微粒子(RP-3-1) 分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系微粒子(RP-4-2)の水分散液を得た。   Next, aqueous ammonia is added to the dispersion of silica-based fine particles (RP-3-1) to adjust the pH of the dispersion to 10.5, then aging at 200 ° C. for 11 hours, and then cooled to room temperature. Ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) is used for 3 hours, and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) is used for 3 hours. After ion exchange, 200 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica-based fine particles (RP An aqueous dispersion of -4-2) was obtained.

ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(RP-4)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系微粒子(RP-3)のアルコール分散液100gにメタクリルシランカップリング剤(γ-メタクリロキシプロピルトリメトキシシラン)(信越化学(株)製:KBM-503、SiO2成分81.9質量%)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系中空微粒子(RP-3)のアルコール分散液を調製した。
このシリカ系中空微粒子(RP-4)の平均粒子径、CV値、屈折率および異形シリカ系中空微粒子の割合を表1に示す。
Next, an alcohol dispersion of silica-based fine particles (RP-4) having a solid content concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
A methacrylsilane coupling agent (γ-methacryloxypropyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 ) was added to 100 g of an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by mass. Ingredient 81.9% by mass) 3 g was added, heat-treated at 50 ° C., and the solvent was replaced with ethanol using an ultrafiltration membrane again. Silica-based hollow fine particles (RP-3) having a solid content concentration of 20% by mass An alcohol dispersion was prepared.
Table 1 shows the average particle diameter, CV value, refractive index, and proportion of irregular silica-based hollow fine particles of the silica-based hollow fine particles (RP-4).

反射防止用透明被膜形成用塗料(R4)の製造
実施例1において、固形分濃度20質量%のシリカ系中空微粒子(RP-4)のアルコール分散液を用いた以外は同様にして透明被膜形成用塗料(R4)を調製した。
Production of transparent coating film for antireflection coating (R4) In Example 1, except for using an alcohol dispersion of silica-based hollow fine particles (RP-4) with a solid content concentration of 20% by mass, for transparent coating formation A paint (R4) was prepared.

反射防止用透明被膜付基材(R4)の製造
実施例1と同様にしてハードコート膜を形成した後、反射防止用透明被膜形成用塗布液(R3)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止用透明被膜付基材(R3)を作製した。このときの反射防止用透明被膜の膜厚は160nmであった。
この反射防止用透明被膜付基材(R4)の全光線透過率、ヘイズ、550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を表に示す。
Production of substrate with antireflection transparent coating (R4) After forming a hard coat film in the same manner as in Example 1, the coating solution for forming an antireflection transparent coating (R3) was applied by the bar coater method (bar # 4). After coating and drying at 80 ° C. for 120 seconds, a substrate (R3) with a transparent coating for antireflection was prepared by irradiating with an ultraviolet ray of 600 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection transparent coating was 160 nm.
The total light transmittance, haze, 550 nm light reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate (R4) with an antireflection transparent coating are shown in the table.

Figure 0005480743
Figure 0005480743

Claims (5)

基材と、
該基材上に形成された、平均粒子径(Dn)が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.30の範囲にあるシリカ系中空微粒子とマトリックス成分とからなる透明被膜とを含む透明被膜付基材であって、前記シリカ系中空微粒子の平均粒子径(Dn)の2倍以上の粒子径を有する異形シリカ系中空微粒子のシリカ系中空微粒子中の個数割合が1%以下にあり、該シリカ系中空微粒子が、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を調製したのち無機酸化物を除去することからなるシリカ系中空微粒子の調製工程において、複合酸化物微粒子分散液の固形分濃度を0.1〜0.6質量%の範囲に保持して調製されたものであることを特徴とする透明被膜付基材。
A substrate;
The average particle size (Dn) formed on the substrate is in the range of 50 to 120 nm, the particle size variation coefficient (CV value) is in the range of 1 to 50%, and the refractive index is 1.10 to 1. A substrate with a transparent coating comprising a silica-based hollow fine particle in the range of 30 and a transparent coating composed of a matrix component, wherein the particle size is at least twice the average particle size (Dn) of the silica-based hollow fine particle. The number ratio of the deformed silica-based hollow fine particles in the silica-based hollow fine particles is 1% or less, and the silica-based hollow fine particles are prepared by preparing composite oxide fine particles composed of silica and an inorganic oxide other than silica. In the process of preparing silica-based hollow fine particles comprising removing substances, the composite oxide fine particle dispersion is prepared by maintaining the solid content concentration in the range of 0.1 to 0.6% by mass. Base material with coating.
前記透明被膜中のシリカ系中空微粒子の含有量が40〜90質量%の範囲にあることを特徴とする請求項1に記載の透明被膜付基材。 2. The substrate with a transparent coating according to claim 1 , wherein the content of the silica-based hollow fine particles in the transparent coating is in the range of 40 to 90 mass%. 前記透明被膜の屈折率が1.15〜1.40の範囲にあることを特徴とする請求項1または2に記載の透明被膜付基材。 The refractive index of the transparent film is you being in the range of 1.15 to 1.40 according to claim 1 or 2 with a transparent film substrate according to. シリカ系中空微粒子とマトリックス形成成分と極性溶媒とからなる透明被膜形成用塗布液であって、
前記シリカ系中空微粒子は、平均粒子径(Dn)の2倍以上の粒子径を有する異形シリカ系中空微粒子の個数割合が1%以下にあり、かつ平均粒子径(Dn)が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%の範囲にあり、屈折率が1.10〜1.30の範囲にあり、
該シリカ系中空微粒子が、シリカとシリカ以外の無機酸化物とからなる複合酸化物微粒子を調製したのち無機酸化物を除去することからなるシリカ系中空微粒子の調製工程において、複合酸化物微粒子分散液の固形分濃度を0.1〜0.6質量%の範囲に保持して調製されたものであることを特徴とする透明被膜形成用塗布液。
A coating liquid for forming a transparent film comprising silica-based hollow fine particles, a matrix-forming component, and a polar solvent,
The silica-based hollow fine particles have a ratio of the number of irregular-shaped silica-based hollow fine particles having a particle size of twice or more the average particle size (Dn) of 1% or less, and an average particle size (Dn) in the range of 50 to 120 nm. The particle diameter variation coefficient (CV value) is in the range of 1 to 50%, the refractive index is in the range of 1.10 to 1.30 ,
In the preparation step of the silica-based hollow fine particles, in which the silica-based hollow fine particles are prepared by preparing the composite oxide fine particles composed of silica and an inorganic oxide other than silica, and then removing the inorganic oxide. A coating solution for forming a transparent film, characterized in that it is prepared while maintaining a solid content concentration of 0.1 to 0.6 mass% .
塗料中のシリカ系中空微粒子の濃度が固形分として0.4〜54質量%の範囲にあり、マトリックス形成成分の濃度が固形分とし0.1〜36質量%の範囲にあり、全固形分濃度が1〜60質量%の範囲にあることを特徴とする請求項4に記載の透明被膜形成用塗料。 The concentration of the silica-based hollow fine particles in the paint is in the range of 0.4 to 54% by mass as the solid content, the concentration of the matrix forming component is in the range of 0.1 to 36% by mass as the solid content, and the total solid content concentration The paint for forming a transparent film according to claim 4 , wherein is in the range of 1 to 60% by mass.
JP2010172143A 2010-07-30 2010-07-30 Substrate with transparent film and paint for forming transparent film Active JP5480743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172143A JP5480743B2 (en) 2010-07-30 2010-07-30 Substrate with transparent film and paint for forming transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172143A JP5480743B2 (en) 2010-07-30 2010-07-30 Substrate with transparent film and paint for forming transparent film

Publications (2)

Publication Number Publication Date
JP2012030489A JP2012030489A (en) 2012-02-16
JP5480743B2 true JP5480743B2 (en) 2014-04-23

Family

ID=45844513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172143A Active JP5480743B2 (en) 2010-07-30 2010-07-30 Substrate with transparent film and paint for forming transparent film

Country Status (1)

Country Link
JP (1) JP5480743B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001294A (en) * 2012-06-18 2014-01-09 Hitachi Chemical Co Ltd Low refractive index resin film, and composite film using the same
JP6326199B2 (en) * 2013-04-08 2018-05-16 旭化成株式会社 Optical coating film, method for producing optical coating film, and antireflection film
JP6437243B2 (en) * 2014-08-25 2018-12-12 旭化成株式会社 Optical coating film, method for producing optical coating film, and antireflection film
JP6425964B2 (en) * 2014-10-22 2018-11-21 旭化成株式会社 Optical coating film and antireflective film
JP2017032781A (en) * 2015-07-31 2017-02-09 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass, image display device, and method for manufacturing antireflection film
JP6895760B2 (en) * 2017-02-03 2021-06-30 日揮触媒化成株式会社 Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078620B2 (en) * 2005-11-25 2012-11-21 日揮触媒化成株式会社 Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP2009066965A (en) * 2007-09-14 2009-04-02 Jgc Catalysts & Chemicals Ltd Transparent coat applied base material, and transparent coat forming paint
JP2009241387A (en) * 2008-03-31 2009-10-22 Kaneka Corp Substrate with coating containing hollow silicone base particulate by which distribution of particle diameter and porosity was conroled
JP5411477B2 (en) * 2008-09-30 2014-02-12 積水化学工業株式会社 Hollow organic-inorganic hybrid fine particles, antireflection resin composition, coating agent for antireflection film, antireflection laminate and antireflection film
JP5378771B2 (en) * 2008-11-28 2013-12-25 日揮触媒化成株式会社 Base material with antireflection film and coating liquid for forming antireflection film
WO2010095325A1 (en) * 2009-02-17 2010-08-26 コニカミノルタオプト株式会社 Low reflection member, anti-reflection film, polarizing plate, and image display device

Also Published As

Publication number Publication date
JP2012030489A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP5221084B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP2008163205A (en) Coating for forming transparent coating film and substrate with transparent coating film
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5875367B2 (en) Substrate with transparent colored film and coating liquid for forming transparent colored film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP5159265B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP2004204173A (en) Coating for forming infrared light-shading film and substrate having infrared light-shading film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250