JP2014001294A - Low refractive index resin film, and composite film using the same - Google Patents

Low refractive index resin film, and composite film using the same Download PDF

Info

Publication number
JP2014001294A
JP2014001294A JP2012136798A JP2012136798A JP2014001294A JP 2014001294 A JP2014001294 A JP 2014001294A JP 2012136798 A JP2012136798 A JP 2012136798A JP 2012136798 A JP2012136798 A JP 2012136798A JP 2014001294 A JP2014001294 A JP 2014001294A
Authority
JP
Japan
Prior art keywords
refractive index
low refractive
resin film
resin
hollow silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136798A
Other languages
Japanese (ja)
Inventor
Ikue Mitani
育恵 三谷
Nobuaki Takane
信明 高根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012136798A priority Critical patent/JP2014001294A/en
Publication of JP2014001294A publication Critical patent/JP2014001294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a low refractive index resin film which is excellent in dispersibility of hollow silica particles into a resin and has a uniform film with a low refractive index; and a composite film including the low refractive index resin film formed on a base.SOLUTION: The low refractive index resin film contains: hollow silica particles having C6-C20 hydrocarbon groups on particle surfaces; and a binder resin. The content of the hollow silica particles is preferably 40-99 mass% in the low refractive index resin film. The refractive index is preferably in the range from 1.20 to 1.40. The binder resin is preferably a urethane resin. The composite film includes the low refractive index resin film formed on a base.

Description

本発明は低屈折率樹脂膜とそれを用いた複合フィルムに関するものである。より詳細には、屈折率が1.20〜1.40の範囲内で規定される低屈折率樹脂膜に関するもので、本発明品はディスプレイや照明といった光学用途に適用される。   The present invention relates to a low refractive index resin film and a composite film using the same. More specifically, the present invention relates to a low refractive index resin film having a refractive index within a range of 1.20 to 1.40. The product of the present invention is applied to optical uses such as a display and illumination.

現在、急速に普及している照明用光源としてLEDが挙げられる。LEDは、高輝度と低消費電力という特徴を併せ持つことから、携帯電話や携帯情報末端(PDA:Personal Digital Assisant)、携帯ゲーム機器、携帯オーディオなど様々なモバイル機器では多用されている。これに加えて近年では、液晶ディスプレイのバックライトなど大型機器への用途展開も進んでいる。   Currently, LEDs are mentioned as a light source for illumination that is rapidly spreading. Since LEDs have the characteristics of high brightness and low power consumption, they are widely used in various mobile devices such as mobile phones, personal digital assistants (PDAs), portable game devices, and portable audio devices. In addition, in recent years, applications for large-sized devices such as backlights for liquid crystal displays have been developed.

こうした機器に対しては、更なる低消費電力化や軽量化、薄型化が求められることから、より効率的な照明デバイスの実用が望まれる。このような背景のもと、導波路を用いた照明デバイスに注目が集まっている。   For such devices, further reduction in power consumption, weight reduction, and thickness reduction are required, and thus more practical lighting devices are desired. Against this background, attention has been focused on lighting devices using waveguides.

導波路では屈折率が高い層と低い層を積層し、任意に光の進路を制御する。ポリマー系導光路において、高屈折率層は1.50〜1.65であり、低屈折率層には屈折率がそれよりも低いことが求められる。導光効率を高めるためには、高屈折率層と低屈折率層の屈折率差が大きいことが有効であり、低屈折率層はその屈折率が1.45以下であることが求められる。   In the waveguide, a layer having a high refractive index and a layer having a low refractive index are stacked, and the path of light is arbitrarily controlled. In the polymer light guide, the high refractive index layer is 1.50 to 1.65, and the low refractive index layer is required to have a lower refractive index. In order to increase the light guide efficiency, it is effective that the refractive index difference between the high refractive index layer and the low refractive index layer is large, and the low refractive index layer is required to have a refractive index of 1.45 or less.

高屈折率材では材料の選択幅が広いのに対し、低屈折率材ではシリカ系材料が屈折率1.45程度と低いことが知られているのみである。更なる低屈折率材として、シリカを中空化した中空シリカ粒子が開発されている(特許文献1)。   The high refractive index material has a wide selection range of materials, while the low refractive index material is only known to have a low refractive index of about 1.45. As a further low refractive index material, hollow silica particles obtained by hollowing silica have been developed (Patent Document 1).

特開2001−233611号公報JP 2001-233611 A

しかしながら、特許文献1に記載されている中空シリカ粒子単独では、均一な膜の形成性が劣るという問題点がある。
一方、前記中空シリカ粒子を樹脂中に分散できれば、均一な膜の形成性を向上することが可能である。しかしながら、中空シリカ粒子と樹脂との複合化を試みたが、樹脂への中空シリカ粒子の分散性が低く、均一な膜を得ることは困難であることが、本発明者らの検討で明らかになった。
本発明は、樹脂への中空シリカ粒子の分散性が優れ、低屈折率で均一な膜を有する低屈折率樹脂膜と、それを支持体上に形成した複合フィルムを提供することを課題にした。
However, the hollow silica particles alone described in Patent Document 1 have a problem that the formability of a uniform film is inferior.
On the other hand, if the hollow silica particles can be dispersed in the resin, it is possible to improve the formation of a uniform film. However, the inventors of the present invention have attempted to make a composite of hollow silica particles and a resin. However, it is clear from the study by the present inventors that the dispersibility of the hollow silica particles in the resin is low and it is difficult to obtain a uniform film. became.
An object of the present invention is to provide a low refractive index resin film having excellent dispersibility of hollow silica particles in a resin and having a uniform film with a low refractive index, and a composite film formed on the support. .

本発明者らは前記課題を解決すべく鋭意検討した結果、粒子表面に炭素数が6〜20の炭化水素を有する中空シリカ粒子を用いると、樹脂(以下、バインダー樹脂という)への分散性が向上し、所望の屈折率を達成する低屈折率樹脂膜が得られることを見出した。
本発明は、[1] 粒子表面に炭素数6〜20の炭化水素基を有する中空シリカ粒子、及びバインダ樹脂を含む低屈折率樹脂膜に関する。
また、本発明は、[2] 前記中空シリカ粒子が、低屈折率樹脂膜中、40〜99質量%含まれる上記[1]に記載の低屈折率樹脂膜に関する。
また、本発明は、[3] 屈折率が、1.20〜1.40である上記[1]又は[2]に記載の低屈折率樹脂膜に関する。
また、本発明は、[4] バインダ樹脂が、ウレタン樹脂である上記[1]〜[3]のいずれかに記載の低屈折率樹脂膜に関する。
さらに、本発明は、[5] 上記[1]〜[4]のいずれかに記載の低屈折率樹脂膜を支持体上に形成した複合フィルムに関する。
As a result of intensive studies to solve the above problems, the inventors of the present invention have a dispersibility in a resin (hereinafter referred to as a binder resin) when hollow silica particles having 6 to 20 carbon atoms are used on the particle surface. It has been found that a low refractive index resin film that improves and achieves a desired refractive index can be obtained.
The present invention relates to [1] a hollow silica particle having a hydrocarbon group having 6 to 20 carbon atoms on the particle surface, and a low refractive index resin film containing a binder resin.
The present invention also relates to [2] the low refractive index resin film according to [1], wherein the hollow silica particles are contained in an amount of 40 to 99% by mass in the low refractive index resin film.
Moreover, this invention relates to the low refractive index resin film as described in said [1] or [2] whose [3] refractive index is 1.20-1.40.
Moreover, this invention relates to the low refractive index resin film in any one of said [1]-[3] whose [4] binder resin is urethane resin.
Furthermore, the present invention relates to [5] a composite film in which the low refractive index resin film according to any one of [1] to [4] is formed on a support.

本発明によると、中空シリカ粒子がバインダ樹脂中に良好に分散し、かつ、所望の屈折率を達成した低屈折率樹脂膜を提供することが可能となる。   According to the present invention, it is possible to provide a low refractive index resin film in which hollow silica particles are well dispersed in a binder resin and a desired refractive index is achieved.

本発明において低屈折率樹脂膜は、中空シリカ粒子表面に炭素数が6〜20の炭化水素基を有する中空シリカ粒子とバインダ樹脂から構成される。
なお、本発明で屈折率という場合、温度25℃での値である。
In the present invention, the low refractive index resin film is composed of hollow silica particles having a hydrocarbon group having 6 to 20 carbon atoms on the surface of the hollow silica particles and a binder resin.
In the present invention, the refractive index is a value at a temperature of 25 ° C.

シリカ粒子を中空化した中空シリカ粒子は、樹脂膜の低屈折率化に寄与する。中空化していないシリカ粒子では粒子単独の屈折率は1.45である。一方で、中空化したシリカ粒子では、粒子単独屈折率は1.10〜1.25であり、樹脂膜の低屈折率化には中空シリカ粒子を用いることが好ましい。   Hollow silica particles obtained by hollowing out silica particles contribute to lowering the refractive index of the resin film. For silica particles that are not hollowed, the refractive index of the particles alone is 1.45. On the other hand, the hollow silica particles have a single refractive index of 1.10 to 1.25, and it is preferable to use hollow silica particles for lowering the refractive index of the resin film.

本発明は、中空シリカ粒子は表面に炭素数が6〜20の炭化水素基を有し、疎水化処理していることを特徴とする。未処理の中空シリカ粒子の表面電荷は負であることから、水酸基が存在していると考えられる。よって水への分散性は良好であるが、極性の違いから汎用有機溶剤や樹脂材料への分散は困難である。光学用途向けにシリカ粒子を用いる場合、透明性の観点から粒子径100nm以下のシリカ粒子が好ましい。一次粒子径が100nm以下であっても、有機溶剤や樹脂中に入れた(混合した)場合、沈降や凝集が生じ透明性は大幅に低下する。一次粒子径の下限は、制限するものではないが、凝集や製造上から10nm以上とすることが好ましい。
なお、一次粒子径の測定は、動的光散乱法(Dynamic light scattering)を用いて、液体中に分散したサブミクロン粒子の平均粒子径及び粒子径分布を測定する方法で行うことが好ましい。溶液や懸濁液中でブラウン運動をしている粒子にレーザー光を照射すると、粒子からの散乱光には拡散係数に応じたゆらぎが生じ、大きな粒子は動きが遅いので散乱光強度のゆらぎは緩やかであり、一方、小さな粒子は動きが速いので散乱光強度のゆらぎは急激に変化する。動的光散乱法ではこの拡散係数を反映した散乱光のゆらぎを検出し、ストークス・アインシュタイン式を利用して粒子径を測定する。粒子径の測定は、市販の動的光散乱法を用いて測定することができる。
The present invention is characterized in that the hollow silica particles have a hydrocarbon group having 6 to 20 carbon atoms on the surface and are subjected to a hydrophobic treatment. Since the surface charge of the untreated hollow silica particles is negative, it is considered that a hydroxyl group is present. Therefore, although the dispersibility to water is favorable, the dispersion | distribution to a general purpose organic solvent or resin material is difficult from the difference in polarity. When using silica particles for optical applications, silica particles having a particle diameter of 100 nm or less are preferable from the viewpoint of transparency. Even when the primary particle size is 100 nm or less, when placed in (mixed with) an organic solvent or resin, sedimentation and aggregation occur, and the transparency is greatly reduced. The lower limit of the primary particle size is not limited, but is preferably 10 nm or more from the viewpoint of aggregation and production.
The primary particle size is preferably measured by a method of measuring the average particle size and particle size distribution of the submicron particles dispersed in the liquid using a dynamic light scattering method. When laser light is irradiated to particles that are in Brownian motion in a solution or suspension, fluctuations in the scattered light from the particles occur according to the diffusion coefficient, and large particles move slowly. On the other hand, since the small particles move quickly, the fluctuation of the scattered light intensity changes abruptly. In the dynamic light scattering method, the fluctuation of the scattered light reflecting this diffusion coefficient is detected, and the particle diameter is measured using the Stokes-Einstein equation. The particle diameter can be measured using a commercially available dynamic light scattering method.

そこで本発明では、中空シリカ粒子の表面に炭化水素基を導入し、疎水化することを選択した。有機溶剤や樹脂への分散の観点から、炭化水素基の炭素数は6以上であることが好ましい。一方で、表面処理した中空シリカ粒子中で、炭化水素基が占める割合が増すと樹脂膜の屈折率の低下効果が減るため、炭素数は20以下が好ましい。   Therefore, in the present invention, it was selected to introduce a hydrocarbon group into the surface of the hollow silica particles to make it hydrophobic. From the viewpoint of dispersion in an organic solvent or resin, the hydrocarbon group preferably has 6 or more carbon atoms. On the other hand, since the effect of lowering the refractive index of the resin film decreases when the proportion of the hydrocarbon group in the surface-treated hollow silica particles increases, the number of carbon atoms is preferably 20 or less.

中空シリカ粒子表面への炭化水素基の導入方法としては、中空シリカ粒子表面のOH基と結合を形成する反応であれば特に制限はないが、操作性の観点からシランカップリング剤を用いることが好ましい。シランカップリング剤の具体例としては、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ウンデシルトリメトキシシラン、トリデシルトリメトキシシラン、テトラデシルトリメトキシシラン、ペンタデシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、ヘプタデシルトリメトキシシラン、オクタデシルトリメトキシシラン、ノナデシルトリメトキシシラン、イコシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、ウンデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリエトキシシラン、イコシルトリエトキシシラン等が挙げられる。
炭素数6〜20の炭化水素基は、分岐鎖状でも良く、また、上記シランカップリング剤でモノアルキルトリアルコキシシラン化合物を例示したが、ジアルキルジアルコキシシラン化合物、トリアルキルモノアルコキシシラン化合物でも良く、混合物でも良い。低屈折率化する観点から、炭素数6〜20の炭化水素基は、直鎖状が好ましく、モノアルキルトリアルコキシシラン化合物が好ましい。
The method for introducing a hydrocarbon group to the surface of the hollow silica particle is not particularly limited as long as it is a reaction that forms a bond with the OH group on the surface of the hollow silica particle, but a silane coupling agent may be used from the viewpoint of operability. preferable. Specific examples of the silane coupling agent include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, undecyltrimethoxysilane, tridecyltrimethoxy. Silane, tetradecyltrimethoxysilane, pentadecyltrimethoxysilane, hexadecyltrimethoxysilane, heptadecyltrimethoxysilane, octadecyltrimethoxysilane, nonadecyltrimethoxysilane, icosyltrimethoxysilane, hexyltriethoxysilane, heptyltri Ethoxysilane, Octyltriethoxysilane, Nonyltriethoxysilane, Decyltriethoxysilane, Dodecyltriethoxysilane, Undecyltriethoxy Lan, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, hexadecyltriethoxysilane, heptadecyltriethoxysilane, octadecyltriethoxysilane, nonadecyltriethoxysilane, icosyltriethoxysilane, etc. Can be mentioned.
The hydrocarbon group having 6 to 20 carbon atoms may be branched, and the monoalkyltrialkoxysilane compound is exemplified with the silane coupling agent, but a dialkyldialkoxysilane compound or a trialkylmonoalkoxysilane compound may be used. Or a mixture. From the viewpoint of lowering the refractive index, the hydrocarbon group having 6 to 20 carbon atoms is preferably linear, and a monoalkyltrialkoxysilane compound is preferred.

低屈折率樹脂膜の構成成分全量を100とした場合、組成物中に中空シリカ粒子が占める割合は、40〜99質量%が好ましい。樹脂膜の屈折率は、中空シリカ粒子の含有量に比例し、中空シリカ粒子の含有量を増やすほど樹脂膜の屈折率は低下する。低屈折率樹脂膜を得るには、中空シリカ粒子の含有量が40〜99重量%が好ましく、より好ましくは55〜99質量%である。中空シリカ粒子単独では、粒子同士の凝集が避けられず、均一な膜の形成は困難である。バインダ樹脂を1〜60質量%添加することで、均一な低屈折率樹脂膜を得ることが可能となる。   When the total amount of the constituent components of the low refractive index resin film is 100, the proportion of the hollow silica particles in the composition is preferably 40 to 99% by mass. The refractive index of the resin film is proportional to the content of the hollow silica particles, and the refractive index of the resin film decreases as the content of the hollow silica particles is increased. In order to obtain a low refractive index resin film, the content of the hollow silica particles is preferably 40 to 99% by weight, more preferably 55 to 99% by weight. The hollow silica particles alone cannot avoid the aggregation of the particles, and it is difficult to form a uniform film. By adding 1 to 60% by mass of the binder resin, a uniform low refractive index resin film can be obtained.

本発明による低屈折率樹脂膜の屈折率は、1.20〜1.40の範囲内であると好ましい。前記の好ましいとした中空シリカ粒子の含有量とする組成構成にすると、低屈折率樹脂膜の屈折率は、1.20〜1.40の範囲内となる。   The refractive index of the low refractive index resin film according to the present invention is preferably in the range of 1.20 to 1.40. If it is set as the composition structure set as the content of the said hollow silica particle made into the said preferable, the refractive index of a low refractive index resin film will be in the range of 1.20-1.40.

本発明で用いるバインダ樹脂は、透明な樹脂であれば特に制限はなく、熱可塑樹脂、熱硬化樹脂、紫外線硬化樹脂のいずれでも用いることができる。具体例としてウレタン樹脂、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、スチレン系樹脂(ABS樹脂、AS樹脂、ポリフェニレンオキシドスチレン共重合体等)、ポリオレフィン樹脂等が挙げられる。   The binder resin used in the present invention is not particularly limited as long as it is a transparent resin, and any of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin can be used. Specific examples include urethane resin, silicone resin, acrylic resin, epoxy resin, polycarbonate resin, styrene resin (ABS resin, AS resin, polyphenylene oxide styrene copolymer, etc.), polyolefin resin, and the like.

導波路の作製工程、及び低屈折率樹脂膜を形成する基材への操作性の観点から、バインダ樹脂として熱硬化樹脂を用いることが好ましい。また、低屈折率樹脂膜の架橋性とガスバリア性の観点から、ウレタン樹脂を選択することがより好ましい。   It is preferable to use a thermosetting resin as the binder resin from the viewpoint of the waveguide manufacturing process and the operability to the base material on which the low refractive index resin film is formed. Moreover, it is more preferable to select a urethane resin from the viewpoint of the crosslinkability and gas barrier properties of the low refractive index resin film.

ウレタン樹脂は、ポリオール成分とイソシアネート化合物から構成され、構成比率はウレタン樹脂全量に対しイソシアネート化合物が占める割合は5〜20質量%であることが好ましい。特に、5質量%未満であると、架橋密度が上がらず、また、ポリオール中に未反応OH(水酸基)が多く残るため樹脂膜の吸水性が高くなるので好ましくない。   The urethane resin is composed of a polyol component and an isocyanate compound, and the composition ratio is preferably 5 to 20% by mass with respect to the total amount of the urethane resin. In particular, if it is less than 5% by mass, the crosslinking density does not increase, and a large amount of unreacted OH (hydroxyl group) remains in the polyol.

ポリオール成分の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、メチルペンタンジオール変性ポリテトラメチレングリコール、プロピレングリコール変性ポリテトラメチレングリコール等が挙げられ,これらは単独又は混合して用いることができ、或いは共重合体として用いることも可能である。また、1,6−ヘキサンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、3−メチル−1,5−ペンタンジオール、1,5−ペンタンジオール、1,4−ブタンジオール等を単独又は混合してジメチルカーボネート化合物と脱メタノール反応させてポリカーボネートジオールとして用いても良い。   Specific examples of the polyol component include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, methylpentanediol-modified polytetramethylene glycol, propylene glycol-modified polytetramethylene glycol, and these can be used alone or in combination. It can also be used as a copolymer. 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 1,5-pentanediol, 1,4-butane A diol or the like may be used alone or as a mixture to cause a methanol removal reaction with a dimethyl carbonate compound to be used as a polycarbonate diol.

イソシアネート化合物としては、例えばトリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加されたトリレンジイソシアネート、水素添加されたキシリレンジイソシアネート、水素添加されたジフェニルメタンジイソシアネートなどが挙げられ、これらは単独で又は混合して用いることができる。   Examples of isocyanate compounds include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tetramethylxylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene. Examples include diisocyanate and hydrogenated diphenylmethane diisocyanate, which can be used alone or in combination.

本発明の低屈折率樹脂膜は、適当な有機溶剤を用いて希釈し樹脂組成物ワニスとして使用することができる。ここで用いる有機溶剤としては特に制限はなく、具体的には、トルエン、テトラヒドロフラン、1,4−ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、テルピネオール等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミドなどが挙げられる。   The low refractive index resin film of the present invention can be diluted with an appropriate organic solvent and used as a resin composition varnish. The organic solvent used here is not particularly limited, and specifically, cyclic ethers such as toluene, tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate and γ-butyrolactone; ethylene carbonate, propylene carbonate Carbonates such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene Polyethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, terpineol, etc. Alcohol alkyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Examples include cetates, polyhydric alcohol alkyl ether acetates such as diethylene glycol monomethyl ether acetate and diethylene glycol monoethyl ether acetate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone.

ここで、低屈折率樹脂膜を形成する支持体(基材)が、PMMA(ポリメチルメタアクリレート)やPC(ポリカーボネート)などの耐溶剤性に劣る樹脂基材であった場合は、バインダ樹脂を溶解させる溶剤として、それらを溶解ないし膨潤させない例えば、メタノール、エタノール、イソプロピルアルコール等のアルコールや、テルピネオールなどのアルコールアルキルエーテルから有機溶剤を選択することが好ましい。   Here, when the support (base material) forming the low refractive index resin film is a resin base material having poor solvent resistance such as PMMA (polymethyl methacrylate) or PC (polycarbonate), a binder resin is used. As the solvent to be dissolved, it is preferable to select an organic solvent from alcohols such as methanol, ethanol and isopropyl alcohol, and alcohol alkyl ethers such as terpineol which do not dissolve or swell them.

低屈折率樹脂膜を形成する支持体(基材)は特に限定はなく、具体例としてはシリコンウエハ、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、アクリル樹脂、TAC(トリアセチルセルロース)、PC(ポリカーボネート)、ポリエチレン・ポリプロピレンなどのポリオレフィンが挙げられる。また、前記基材上に低屈折率樹脂膜を形成する方法としては、低屈折率樹脂膜を任意の有機溶剤で希釈し、スピンコート、バーコート、ダイコートのいずれかの手法にて低屈折率樹脂膜を形成することが可能である。   The support (base material) for forming the low refractive index resin film is not particularly limited, and specific examples include silicon wafer, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), acrylic resin, TAC (triacetyl cellulose), Examples thereof include polyolefins such as PC (polycarbonate) and polyethylene / polypropylene. Further, as a method of forming a low refractive index resin film on the substrate, the low refractive index resin film is diluted with an arbitrary organic solvent, and the low refractive index resin film is formed by any of spin coating, bar coating, and die coating. It is possible to form a resin film.

低屈折率樹脂膜を有機溶剤で希釈し、前記手法のいずれかで支持体(基材)上に低屈折率樹脂膜を形成した場合、乾燥は段階的に行うことが好ましい。段階的に乾燥を行うことで、表面平滑性が良好な低屈折率樹脂膜を得ることができる。特に、低屈折率樹脂膜の希釈に用いた有機溶剤の沸点が120℃以上である場合、段階的な乾燥方法は乾燥ムラによる表面平滑性の低下を抑制するのに効果的である。具体例としては、室温〜70℃の範囲内で5時間以内の一次加熱を実施し乾燥させた後、80〜120℃の範囲内で二次加熱を実施し樹脂膜の硬化を行うことができる。   When the low refractive index resin film is diluted with an organic solvent and the low refractive index resin film is formed on the support (base material) by any of the above methods, the drying is preferably performed stepwise. By performing drying stepwise, a low refractive index resin film having good surface smoothness can be obtained. In particular, when the boiling point of the organic solvent used for diluting the low refractive index resin film is 120 ° C. or higher, the stepwise drying method is effective in suppressing a decrease in surface smoothness due to drying unevenness. As a specific example, after performing primary heating within 5 hours within a range of room temperature to 70 ° C. and drying, secondary heating is performed within a range of 80 to 120 ° C. to cure the resin film. .

以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
[実施例1]
Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples.
[Example 1]

(1)表面処理中空シリカ粒子の調製
500mL三口フラスコに中空シリカ粒子ゾル(日揮触媒化成株式会社製、スルーリア1110、表面未処理の中空シリカ粒子(平均粒子径50nm))35.5g、n−ブタノール180gを加え、350rpm(min−1)で攪拌しながら加熱(120℃)、濃縮し、中空シリカ粒子のn―ブタノール分散ゾル195gを得た。一旦、室温(25℃)まで冷却したゾルに、酢酸を12.5g滴下し350rpm(min−1)で10分間攪拌した。次に、デシルトリメトキシシラン(信越化学工業株式会社製、KBM−3103)1.72gを滴下し350rpm(min−1)で10分間攪拌した。その後、加熱還流を4時間行った。
加熱還流終了後、室温まで冷却しIPA(イソプロピルアルコール)を加えて3倍量に希釈した。続いて、限外ろ過フィルタ(旭化成ケミカルズ株式会社製、ペンシル型モジュールAHP―0013)を用いて精製すると同時に、IPAへと溶媒置換を行い、固形分2.0質量%のデシルシラン処理(炭素数10の炭化水素基を有するシラン化合物)中空シリカ粒子IPA分散ゾル300gを得た。
(1) Preparation of surface-treated hollow silica particles Hollow silica particle sol (manufactured by JGC Catalysts & Chemicals Co., Ltd., Thruria 1110, untreated hollow silica particles (average particle size 50 nm)) 35.5 g, n-butanol in a 500 mL three-necked flask 180 g was added, heated (120 ° C.) while being stirred at 350 rpm (min −1 ), and concentrated to obtain 195 g of n-butanol dispersed sol of hollow silica particles. 12.5 g of acetic acid was added dropwise to the sol once cooled to room temperature (25 ° C.), and the mixture was stirred at 350 rpm (min −1 ) for 10 minutes. Next, 1.72 g of decyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-3103) was added dropwise and stirred at 350 rpm (min −1 ) for 10 minutes. Thereafter, heating under reflux was performed for 4 hours.
After completion of heating and refluxing, the mixture was cooled to room temperature and diluted with IPA (isopropyl alcohol) to a 3-fold volume. Subsequently, purification is performed using an ultrafiltration filter (manufactured by Asahi Kasei Chemicals Co., Ltd., pencil type module AHP-0013) and at the same time, the solvent is replaced with IPA to treat decylsilane having a solid content of 2.0% by mass (carbon number: 10). The silane compound having a hydrocarbon group of) 300 g of hollow silica particle IPA dispersion sol was obtained.

(2)低屈折率樹脂組成物ワニスの調製
(1)で調製したデシルシラン処理中空シリカ粒子のIPA分散100gをエバポレータで用いて濃縮し、固形分33質量%とした。50mLスクリュー管に濃縮デシルシラン処理中空シリカ粒子ゾルを6g、テルピネオール12g、ウレタン系(ポリエーテルポリオール)粘着剤(一方社油脂工業株式会社製、バインゾールU−250、固形分60質量%、MEK/トルエン=1/1質量比)0.54g、イソシアネート化合物(日本ポリウレタン工業株式会社製、コロネートL−38ET、固形分37.5質量%)0.10gを加え、ミックスロータにて1時間攪拌し低屈折率樹脂膜希釈ワニスを得た。
(2) Preparation of Low Refractive Index Resin Composition Varnish 100 g of IPA dispersion of decylsilane-treated hollow silica particles prepared in (1) was concentrated using an evaporator to a solid content of 33% by mass. 6 g of concentrated decylsilane-treated hollow silica particle sol in a 50 mL screw tube, 12 g of terpineol, urethane (polyether polyol) pressure-sensitive adhesive (manufactured by Yushi Kogyo Co., Ltd., Vinesol U-250, solid content 60 mass%, MEK / toluene = (1/1 mass ratio) 0.54 g, isocyanate compound (manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L-38ET, solid content 37.5% by mass) 0.10 g was added, and the mixture was stirred for 1 hour with a mix rotor and low refractive index A resin film diluted varnish was obtained.

(3)分散性の検討
(2)で調製した低屈折率樹脂膜希釈ワニスにおける中空シリカ粒子の分散性は、目視にて下記の基準に準じて判断した。
「○」:中空シリカ粒子はワニス中に均一に分散し沈降を生じない。かつ、光にかざすとコロイド散乱が見られる。
「△」:一部中空シリカ粒子の沈降が生じる。或いは、光にかざすとコロイド散乱が見られない。
「×」:中空シリカ粒子がワニス中に分散しない。
(3) Examination of dispersibility The dispersibility of the hollow silica particles in the low refractive index resin film diluted varnish prepared in (2) was judged visually according to the following criteria.
“◯”: The hollow silica particles are uniformly dispersed in the varnish and do not precipitate. In addition, colloidal scattering is seen when held over light.
“Δ”: Precipitation of some hollow silica particles occurs. Alternatively, no colloidal scattering is seen when held over light.
“X”: The hollow silica particles are not dispersed in the varnish.

(4)低屈折率樹脂膜の調製
PC(ポリカーボネート)基材上に、(2)で調製した低屈折率樹脂膜希釈ワニスを滴下し、アプリケーター(テスター産業株式会社製、ベーカ式アプリケーター)と自動塗工機(テスター産業株式会社製、PI−1210)を用いて低屈折率樹脂膜を作製した。40℃で1時間予備乾燥後、100℃で5分間乾燥・硬化を行い、低屈折率樹脂膜を得た。
(4) Preparation of low refractive index resin film The low refractive index resin film diluted varnish prepared in (2) is dropped on a PC (polycarbonate) base material and automatically applied with an applicator (baker type applicator manufactured by Tester Sangyo Co., Ltd.). A low refractive index resin film was prepared using a coating machine (PI-1210, manufactured by Tester Sangyo Co., Ltd.). After preliminary drying at 40 ° C. for 1 hour, drying / curing was performed at 100 ° C. for 5 minutes to obtain a low refractive index resin film.

(5)低屈折率樹脂膜の屈折率測定
(4)で作製した低屈折率樹脂膜の反射スペクトルを反射率分光器(フィルメトリクス株式会社製、シングルポイント膜厚測定システムF20)を用いて測定し、反射スペクトルから550nmにおける屈折率を算出した。
(6)PC基板の溶解性
PC基板の溶解性は、20mm×20mm角に切り出したPC基板をメチルエチルケトン中に10秒間浸漬し、引き上げてから室温で乾燥させた試験片を、目視にて下記の基準に準じて判断し評価した。
「あり」;表面の白濁が発生する
「なし」;表面の白濁が発生しない
(5) Refractive index measurement of low refractive index resin film The reflection spectrum of the low refractive index resin film prepared in (4) is measured using a reflectance spectrometer (manufactured by Filmetrics, single point film thickness measurement system F20). The refractive index at 550 nm was calculated from the reflection spectrum.
(6) Solubility of PC substrate The solubility of the PC substrate was determined by visually observing a test piece obtained by immersing a PC substrate cut into a 20 mm × 20 mm square in methyl ethyl ketone for 10 seconds, and then drying it at room temperature. Judgment and evaluation were made according to the criteria.
“Yes”; surface turbidity occurs “None”; surface turbidity does not occur

[実施例2]
表面処理中空シリカ粒子は実施例1と同様の手順に従って行った。300mL三口フラスコに、得られたデシルシラン処理中空シリカ粒子のIPA分散ゾル30g、MIBK(メチルイソブチルケトン)20gを加え、350rpm(min−1)で攪拌しながら加熱、濃縮し、中空シリカ粒子のMIBK分散ゾル15gを得た。表1に示したようにバインダ樹脂として実施例1のウレタン樹脂(ウレタン系(ポリエーテルポリオール)樹脂)の替わりにアクリル樹脂を用いたこと以外は、低屈折率樹脂希釈ワニスの調製、低屈折率樹脂膜の作製、及び評価は実施例1と同様に行った。
[Example 2]
The surface-treated hollow silica particles were subjected to the same procedure as in Example 1. Into a 300 mL three-necked flask, add 30 g of IPA dispersion sol of the obtained decylsilane-treated hollow silica particles and 20 g of MIBK (methyl isobutyl ketone), and heat and concentrate with stirring at 350 rpm (min −1 ) to disperse the hollow silica particles in MIBK. 15 g of sol was obtained. As shown in Table 1, preparation of low refractive index resin diluted varnish, low refractive index, except that acrylic resin was used instead of urethane resin (urethane (polyether polyol) resin) of Example 1 as binder resin Production and evaluation of the resin film were performed in the same manner as in Example 1.

[実施例3〜4及び比較例1、2]
実施例3〜4及び比較例1、2についても、表1に示したように実施例1と同様の手順に従って低屈折率樹脂膜を調製し評価した。
[Examples 3 to 4 and Comparative Examples 1 and 2]
For Examples 3 to 4 and Comparative Examples 1 and 2, as shown in Table 1, low refractive index resin films were prepared and evaluated according to the same procedure as Example 1.

Figure 2014001294
(表1)の説明
中空シリカ粒子の表面処理剤
炭化水素数1:メチルトリメトキシシラン(信越化学工業株式会社製、KBM−13)
炭化水素数3:プロピルトリメトキシシラン信越化学工業株式会社製、KBM−3033)
炭化水素数6:ヘキシルトリメトキシシラン(信越化学工業株式会社製、KBM−3063)
炭化水素数10:デシルトリメトキシシラン(信越化学工業株式会社製、KBM−3103)
バインダ樹脂
ウレタン樹脂:ウレタン系(ポリエーテルポリオール)樹脂(U−250、一方社油脂工業株式会社製、固形分60質量%)、イソシアネート化合物(コロネートL−38ET、日本ポリウレタン工業株式会社製、固形分37.5質量%)、混合比率ポリオール化合物/イソシアネート化合物=85/15(質量比率)
アクリル樹脂:アクリル共重合体(ヒタロイドHA3204EB−1E、固形分45質量%,日立化成工業株式会社製)
シリコーン樹脂:シリコーン(SD 4570 PSA、固形分60%,東レ・ダウコーニング株式会社製)
Figure 2014001294
Description of Table 1 Surface treatment agent for hollow silica particles Number of hydrocarbons 1: Methyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-13)
Hydrocarbon number 3: propyltrimethoxysilane Shin-Etsu Chemical Co., Ltd., KBM-3033)
Number of hydrocarbons 6: Hexyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-3063)
Number of hydrocarbons 10: Decyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-3103)
Binder resin Urethane resin: Urethane-based (polyether polyol) resin (U-250, manufactured by Yushi Kogyo Co., Ltd., solid content 60% by mass), isocyanate compound (Coronate L-38ET, manufactured by Nippon Polyurethane Industry Co., Ltd., solid content 37.5% by mass), mixing ratio polyol compound / isocyanate compound = 85/15 (mass ratio)
Acrylic resin: acrylic copolymer (Hitaroid HA3204EB-1E, solid content 45% by mass, manufactured by Hitachi Chemical Co., Ltd.)
Silicone resin: Silicone (SD 4570 PSA, solid content 60%, manufactured by Toray Dow Corning Co., Ltd.)

実施例1〜4に示したように、粒子表面に炭素数6〜20の炭化水素基を有する中空シリカ粒子とバインダ樹脂を含む低屈折率樹脂膜では、粒子分散性が良好な低屈折率樹脂を提供することができた。一方、比較例1と2に示したように、粒子表面の炭素数が6未満であると粒子分散性が低く、均一な低屈折率樹脂膜を得ることができなかった。   As shown in Examples 1 to 4, a low refractive index resin film having good particle dispersibility in a low refractive index resin film containing hollow silica particles having a hydrocarbon group having 6 to 20 carbon atoms on the particle surface and a binder resin. Could be provided. On the other hand, as shown in Comparative Examples 1 and 2, when the number of carbon atoms on the particle surface was less than 6, the particle dispersibility was low and a uniform low refractive index resin film could not be obtained.

Claims (5)

粒子表面に炭素数6〜20の炭化水素基を有する中空シリカ粒子、及びバインダ樹脂を含む低屈折率樹脂膜。   A low refractive index resin film comprising hollow silica particles having a hydrocarbon group having 6 to 20 carbon atoms on the particle surface and a binder resin. 前記中空シリカ粒子が、低屈折率樹脂膜中、40〜99質量%含まれる請求項1に記載の低屈折率樹脂膜。   The low refractive index resin film according to claim 1, wherein the hollow silica particles are contained in an amount of 40 to 99 mass% in the low refractive index resin film. 屈折率が、1.20〜1.40である請求項1又は請求項2に記載の低屈折率樹脂膜。   The low refractive index resin film according to claim 1 or 2, wherein the refractive index is 1.20 to 1.40. バインダ樹脂が、ウレタン樹脂である請求項1〜3のいずれかに記載の低屈折率樹脂膜。   The low refractive index resin film according to claim 1, wherein the binder resin is a urethane resin. 請求項1〜4のいずれかに記載の低屈折率樹脂膜を支持体上に形成した複合フィルム。   The composite film which formed the low refractive index resin film in any one of Claims 1-4 on the support body.
JP2012136798A 2012-06-18 2012-06-18 Low refractive index resin film, and composite film using the same Pending JP2014001294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136798A JP2014001294A (en) 2012-06-18 2012-06-18 Low refractive index resin film, and composite film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136798A JP2014001294A (en) 2012-06-18 2012-06-18 Low refractive index resin film, and composite film using the same

Publications (1)

Publication Number Publication Date
JP2014001294A true JP2014001294A (en) 2014-01-09

Family

ID=50034774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136798A Pending JP2014001294A (en) 2012-06-18 2012-06-18 Low refractive index resin film, and composite film using the same

Country Status (1)

Country Link
JP (1) JP2014001294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171819A (en) * 2016-03-25 2017-09-28 日立マクセル株式会社 Adhesive composition, adhesive member, method for producing the same, adhesive sheet, method for producing the same, and electronic apparatus including adhesive member
WO2020066463A1 (en) * 2018-09-27 2020-04-02 大和製罐株式会社 Liquid repellent film or sheet, and packaging material using same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle
JP2006018233A (en) * 2004-05-31 2006-01-19 Fuji Photo Film Co Ltd Optical film, polarizing plate, and image display device using them
JP2006021938A (en) * 2004-07-06 2006-01-26 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle, coating material for film formation, and base material with film
JP2006079068A (en) * 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device using the same
JP2006291077A (en) * 2005-04-12 2006-10-26 Catalysts & Chem Ind Co Ltd Composition for forming low refractive index membrane and substrate having cured membrane of the same
JP2008224750A (en) * 2007-03-08 2008-09-25 Hitachi Maxell Ltd Optical film with near-infrared light blocking function and anti-reflection function, and manufacturing mthod thereof
JP2009066965A (en) * 2007-09-14 2009-04-02 Jgc Catalysts & Chemicals Ltd Transparent coat applied base material, and transparent coat forming paint
JP2010168508A (en) * 2009-01-26 2010-08-05 Toppan Printing Co Ltd Low refractive index composition, antireflection material, and display
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
JP2012096400A (en) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Base material with transparent coating film, and coating film liquid for forming transparent coating film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
JP2004203683A (en) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle and base material with coating film containing the silica-based fine particle
JP2006018233A (en) * 2004-05-31 2006-01-19 Fuji Photo Film Co Ltd Optical film, polarizing plate, and image display device using them
JP2006021938A (en) * 2004-07-06 2006-01-26 Catalysts & Chem Ind Co Ltd Method of manufacturing silica-based fine particle, coating material for film formation, and base material with film
JP2006079068A (en) * 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device using the same
JP2006291077A (en) * 2005-04-12 2006-10-26 Catalysts & Chem Ind Co Ltd Composition for forming low refractive index membrane and substrate having cured membrane of the same
JP2008224750A (en) * 2007-03-08 2008-09-25 Hitachi Maxell Ltd Optical film with near-infrared light blocking function and anti-reflection function, and manufacturing mthod thereof
JP2009066965A (en) * 2007-09-14 2009-04-02 Jgc Catalysts & Chemicals Ltd Transparent coat applied base material, and transparent coat forming paint
JP2010168508A (en) * 2009-01-26 2010-08-05 Toppan Printing Co Ltd Low refractive index composition, antireflection material, and display
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
JP2012096400A (en) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Base material with transparent coating film, and coating film liquid for forming transparent coating film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171819A (en) * 2016-03-25 2017-09-28 日立マクセル株式会社 Adhesive composition, adhesive member, method for producing the same, adhesive sheet, method for producing the same, and electronic apparatus including adhesive member
WO2020066463A1 (en) * 2018-09-27 2020-04-02 大和製罐株式会社 Liquid repellent film or sheet, and packaging material using same
JP2020049823A (en) * 2018-09-27 2020-04-02 大和製罐株式会社 Liquid-repellent film or sheet and packaging material using the same
US11591148B2 (en) 2018-09-27 2023-02-28 Daiwa Can Company Liquid repellent film or sheet, and packaging matertal, using same

Similar Documents

Publication Publication Date Title
CN103080778B (en) Optical laminate, polaroid and image display device
CN102472842B (en) Optical laminate, polarizing plate and image display device
CN103299217B (en) The manufacture method of antireflection film, antireflection film, polaroid and image display device
JP6648360B2 (en) Inorganic particle dispersion, composition containing inorganic particles, coating film, plastic substrate with coating film, display device
CN103460079A (en) Antireflection film, polarizing plate, and image display device
JP2008032763A (en) Hard coat film, polarizing plate using the same and image display device
CN103797385B (en) Antiglare sheet for image display device, manufacturing method thereof, method of improving black tint and image sharpness of an image display device using said antiglare sheet and suited for use with both moving images and still images
JP5049574B2 (en) Optical film, polarizing plate, image display device, and optical film manufacturing method
CN106886065B (en) Optical laminate, polarizing film and image display device
JP2009280786A (en) Composition for forming transparent film and layered transparent film
TWI662088B (en) Anti-glare film having low haze
TW200941034A (en) Antireflection material and electronic image display apparatus having the antireflection material
CN106147357A (en) A kind of light absorptive anti-glare hard coating film and its preparation method and application
WO2020204148A1 (en) Light diffusion film, light diffusion film production method, optical member, display panel for image display device, and image display device
WO2019003905A1 (en) Reflection-preventing film, polarization plate, and image display device
TWI738382B (en) Anti-glare film and polarizer with the same
JP2009018231A (en) Photocatalytic laminated film
JP2010196014A (en) Anti-reflection film, and coating liquid of ultraviolet light-curable resin material composition
TW201510585A (en) High brightness polarizing plate and liquid crystal display device including the same
JP2014224250A (en) Adhesive and optical member using the same
JPWO2019240154A1 (en) Inorganic oxide fine particle dispersion
JP2014001294A (en) Low refractive index resin film, and composite film using the same
TWI774005B (en) Anti-glare film and polarizer with the same
JP2005144849A (en) Transparent conductive film and reflection preventing transparent conductive film
JP2012128064A (en) Antireflection film, polarizer and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161124