JP2018123043A - Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film - Google Patents

Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film Download PDF

Info

Publication number
JP2018123043A
JP2018123043A JP2017018820A JP2017018820A JP2018123043A JP 2018123043 A JP2018123043 A JP 2018123043A JP 2017018820 A JP2017018820 A JP 2017018820A JP 2017018820 A JP2017018820 A JP 2017018820A JP 2018123043 A JP2018123043 A JP 2018123043A
Authority
JP
Japan
Prior art keywords
particles
silica
dispersion
composite oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017018820A
Other languages
Japanese (ja)
Other versions
JP6895760B2 (en
Inventor
渉 二神
Wataru Futagami
渉 二神
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
良 村口
Makoto Muraguchi
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2017018820A priority Critical patent/JP6895760B2/en
Publication of JP2018123043A publication Critical patent/JP2018123043A/en
Application granted granted Critical
Publication of JP6895760B2 publication Critical patent/JP6895760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silica-based particle dispersion, which enables production of silica-based hollow particles in a high ratio, having a size such that the average particle diameter is smaller than 50 nm.SOLUTION: Provided is a method for producing a dispersion containing silica-based particles, where the particles have an average particle diameter of 5 to 40 nm and a ratio (hollow ratio) of the number of hollow particles relative to the total number of hollow particles and solid particles is 70% or more. Specifically, the method comprises a first step of preparing a dispersion containing composite oxide particles by simultaneously adding, to a dispersion containing silica nuclear particles having an average particle diameter of 3 to 25 nm and sphericity of 1.0 to 1.5, at least either of an aqueous silicate solution or an acidic silicic acid solution, and an aqueous solution of an inorganic compound.SELECTED DRAWING: Figure 1

Description

本発明は、平均粒子径が5〜40nmのシリカ系中空粒子を含む分散液の製造方法に関する。   The present invention relates to a method for producing a dispersion containing silica-based hollow particles having an average particle diameter of 5 to 40 nm.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の反射を防止するために、その表面に反射防止膜が形成されている。例えば、コート法、蒸着法、CVD法等によって、フッ素樹脂、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの基材表面に形成したり、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成する方法が知られている(例えば、特許文献1など参照)。このとき、反射防止性能を高めるために反射防止被膜の下層に高屈折率の微粒子等を含む高屈折率膜を形成することも知られている。   Conventionally, in order to prevent reflection on the surface of a substrate such as glass, plastic sheet, plastic lens, etc., an antireflection film is formed on the surface. For example, a coating of a low refractive index material such as fluororesin or magnesium fluoride is formed on the surface of a glass or plastic substrate by a coating method, a vapor deposition method, a CVD method or the like, or a low refractive index fine particle such as a silica fine particle There is known a method of forming an antireflection coating by applying a coating solution containing selenium to a substrate surface (see, for example, Patent Document 1). At this time, in order to improve the antireflection performance, it is also known to form a high refractive index film containing fine particles of high refractive index under the antireflection coating.

一方、本願出願人は、内部に空洞を有するシリカ系微粒子の製造方法を提案している(特許文献2参照)。この方法により得られるシリカ系微粒子は屈折率が低く、このシリカ系微粒子を用いて形成された透明被膜は屈折率が低く反射防止性能に優れている。   On the other hand, the present applicant has proposed a method for producing silica-based fine particles having cavities therein (see Patent Document 2). The silica-based fine particles obtained by this method have a low refractive index, and the transparent film formed using the silica-based fine particles has a low refractive index and excellent antireflection performance.

また、本願出願人は、このような透明被膜を表示装置の前面に形成して用いると反射防止性能に優れ表示性能が向上することを開示している(特許文献3参照)。   The applicant of the present application discloses that when such a transparent coating is formed on the front surface of a display device and used, the antireflection performance is excellent and the display performance is improved (see Patent Document 3).

さらに、本願出願人は、平均粒子径(Dn)の2倍以上の粒子径を有する異形シリカ系中空微粒子のシリカ中空微粒子中の個数割合が1%以下で、平均粒子径が50〜120nmの範囲にあり、粒子径変動係数(CV値)が1〜50%以下の低屈折率シリカ系中空微粒子を用いると、白化が抑制され、透明性、ヘーズ、反射防止性、強度、耐擦傷性に優れた透明被膜付基材が得られることを開示している(特許文献4参照)。   Further, the applicant of the present application is that the number ratio of the irregular-shaped silica-based hollow fine particles having a particle diameter of twice or more the average particle diameter (Dn) in the silica hollow fine particles is 1% or less and the average particle diameter is in the range of 50 to 120 nm. When low-refractive-index silica-based hollow microparticles having a particle diameter variation coefficient (CV value) of 1 to 50% or less are used, whitening is suppressed, and transparency, haze, antireflection, strength, and scratch resistance are excellent. It is disclosed that a transparent coated substrate can be obtained (see Patent Document 4).

特開平7-133105号公報JP-A-7-133105 特開2001−233611号公報JP 2001-233611 A 特開2002−079616号公報JP 2002-079616 A 特開2012−30489号公報Japanese Unexamined Patent Publication No. 2012-30489

上記特許文献2〜4に示されるように、従来、平均粒子径が50nmよりも大きいシリカ系中空粒子は得ることは可能であった。ただし、平均粒子径が50nmよりも小さいものを得る場合、再現性が低く、中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が低くなることが問題となっていた。そして、このような粒子を含む塗布液を使用して作製した被膜は、屈折率が十分に下がらない問題があり、実質的に反射防止被膜等に使用できないものであった。
本発明の課題は、平均粒径が50nmよりも小さなサイズのシリカ系中空粒子を、高い割合で製造することを可能にするシリカ系粒子分散液の製造方法を提供することにある。
As shown in Patent Documents 2 to 4, it has been possible to obtain silica-based hollow particles having an average particle diameter larger than 50 nm. However, when obtaining a particle having an average particle size smaller than 50 nm, the reproducibility is low, and the ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow rate) is a problem. It was. And the film produced using the coating liquid containing such particles has a problem that the refractive index is not sufficiently lowered, and it cannot be practically used for an antireflection film or the like.
The subject of this invention is providing the manufacturing method of the silica type particle dispersion liquid which makes it possible to manufacture the silica type hollow particle of an average particle size smaller than 50 nm in a high ratio.

本発明者らは、より粒径の小さなシリカ系中空粒子の製造を目的として研究する中で、シリカの種粒子から調製される核粒子の真球度に着目した。従来の核粒子は、粒子の最長径と最短径の割合として求められる真球度の測定値が高い(球形でない)粒子が用いられていた。   The present inventors paid attention to the sphericity of the core particles prepared from the seed particles of silica during the study for the production of silica-based hollow particles having a smaller particle size. Conventional core particles use particles having a high measured value of sphericity (not spherical) obtained as a ratio between the longest diameter and the shortest diameter of the particles.

しかしながら、このような真球度の測定値が高い核粒子を使用した場合、50nmより小さい中空粒子の製造においては、中空率を低下させる原因になっていることを知見した。   However, it has been found that when such a core particle having a high measured value of sphericity is used, in the production of hollow particles smaller than 50 nm, the hollow ratio is reduced.

したがって、本発明者らは、真球度の測定値が低い核粒子(より球形で真球に近い粒子)を使用することで、中空粒子が70%以上の割合を占める平均粒子径が5〜40nmのシリカ系中空粒子を製造できることを見出し、本発明を完成するに至った。   Therefore, the present inventors use an average particle diameter of 5% or more in which hollow particles occupy a ratio of 70% or more by using nuclear particles having a low measured sphericity (particles that are more spherical and close to true sphere). It has been found that 40 nm silica-based hollow particles can be produced, and the present invention has been completed.

すなわち、本発明は、平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子の分散液を製造する方法に関する。この方法は、以下の第1〜4工程を有することを特徴とする。
(1)平均粒子径が3〜25nm、真球度が1.0〜1.5のシリカの核粒子を含む分散液に、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液とを、同時に添加して複合酸化物粒子を含む分散液を調製する第1工程。
(2)第1工程で得た複合酸化物粒子を含む分散液に、シリカ源を添加して、シリカを含む層で被覆された被覆複合酸化物粒子を含む分散液を調製する第2工程。
(3)第2工程で得た被覆複合酸化物粒子を含む分散液に酸を加えて、被覆複合酸化物粒子に含まれる前記無機化合物に由来する元素を除去する第3工程。
(4)第3工程で得た粒子を含む分散液に、アルカリ条件下で水熱処理を行う第4工程。
That is, the present invention provides a dispersion of silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more. It relates to a method of manufacturing. This method includes the following first to fourth steps.
(1) In a dispersion containing silica core particles having an average particle size of 3 to 25 nm and a sphericity of 1.0 to 1.5, at least one of a silicate aqueous solution and an acidic silicate solution, and an inorganic material containing no silicon A first step of adding a compound aqueous solution at the same time to prepare a dispersion containing composite oxide particles.
(2) Second step of preparing a dispersion containing coated composite oxide particles coated with a layer containing silica by adding a silica source to the dispersion containing composite oxide particles obtained in the first step.
(3) A third step of removing an element derived from the inorganic compound contained in the coated composite oxide particles by adding an acid to the dispersion containing the coated composite oxide particles obtained in the second step.
(4) A fourth step in which the dispersion containing the particles obtained in the third step is hydrothermally treated under alkaline conditions.

また、本発明は、平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子を含むシリカ系粒子の分散液に関する。   Further, the present invention is a silica comprising silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more. The present invention relates to a dispersion of system particles.

また、本発明は、上記シリカ系粒子とマトリックス形成成分と極性溶媒とを含む透明被膜形成用塗布液に関する。
さらに、本発明は、基材と、該基材上に形成された、上記シリカ系粒子及びマトリックス成分を含む透明被膜とを備え、透明被膜中のシリカ系粒子の含有量が20〜80質量%である透明被膜付基材に関する。
Moreover, this invention relates to the coating liquid for transparent film formation containing the said silica type particle | grain, a matrix formation component, and a polar solvent.
Furthermore, the present invention includes a base material and a transparent coating film formed on the base material and containing the silica-based particles and the matrix component, and the content of the silica-based particles in the transparent coating film is 20 to 80% by mass. It is related with the base material with a transparent film which is.

本発明は、平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子の分散液およびその製造方法を提供する。このシリカ系粒子を含む塗布液で作製された透明被膜付基材は、十分な低屈折率を発現するため反射防止能が高く、比較的小粒子から構成されているため透明性が高く、白化現象が抑制され、充分な密着性、耐擦傷性、耐マジック性、耐水性、耐アルカリ性を有している。   The present invention relates to a dispersion of silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more, and A manufacturing method is provided. The substrate with a transparent coating prepared with a coating solution containing silica-based particles exhibits a sufficiently low refractive index and has high antireflection performance, and is composed of relatively small particles, so it has high transparency and is whitened. The phenomenon is suppressed and it has sufficient adhesion, scratch resistance, magic resistance, water resistance, and alkali resistance.

本発明の透明被膜付基材の概念を模式的に示す該略図である。It is this schematic which shows the concept of the base material with a transparent film of this invention typically. 従来の中空粒子を使った透明被膜付基材の概念を模式的に示す該略図である。It is this schematic which shows the concept of the base material with a transparent film using the conventional hollow particle typically.

[シリカ系粒子の分散液の製造方法]
本発明は、平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子の分散液を製造する方法であり、次の工程を少なくとも有することを特徴とする。特に第1工程の核粒子の形状を整えていることに特徴を有する。
(1)平均粒子径が3〜25nm、真球度が1.0〜1.5の核粒子を含む分散液に、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液とを、同時に添加して複合酸化物粒子を含む分散液を調製する第1工程。
(2)第1工程で得た複合酸化物粒子を含む分散液に、シリカ源を添加して、シリカを含む層で被覆された被覆複合酸化物粒子を含む分散液を調製する第2工程。
(3)第2工程で得た被覆複合酸化物粒子を含む分散液に酸を加えて、被覆複合酸化物粒子に含まれる前記無機化合物に由来する元素を除去する第3工程。
(4)第3工程で得た粒子を含む分散液に、アルカリ条件下で水熱処理を行う第4工程。
[Method for producing dispersion of silica-based particles]
The present invention produces a dispersion of silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more. The method includes at least the following steps. It is particularly characterized in that the shape of the core particles in the first step is adjusted.
(1) An inorganic compound aqueous solution not containing silicon and at least one of a silicate aqueous solution and an acidic silicate solution in a dispersion containing core particles having an average particle diameter of 3 to 25 nm and a sphericity of 1.0 to 1.5 Are added simultaneously to prepare a dispersion containing composite oxide particles.
(2) Second step of preparing a dispersion containing coated composite oxide particles coated with a layer containing silica by adding a silica source to the dispersion containing composite oxide particles obtained in the first step.
(3) A third step of removing an element derived from the inorganic compound contained in the coated composite oxide particles by adding an acid to the dispersion containing the coated composite oxide particles obtained in the second step.
(4) A fourth step in which the dispersion containing the particles obtained in the third step is hydrothermally treated under alkaline conditions.

従来は、平均粒子径が50nmより小さい中空粒子の製造は、再現性が低く、中空率が低くなることが問題となっていた。本発明では、平均粒子径が50nmより小さい中空粒子の製造を困難としていた原因が核粒子の真球度にあることを知見し、これを改良することにより、粒子全体における中空粒子の割合が70%以上のシリカ系粒子の製造が可能となった。   Conventionally, the production of hollow particles having an average particle diameter of less than 50 nm has been problematic in that the reproducibility is low and the hollow ratio is low. In the present invention, it has been found that the cause of the difficulty in producing hollow particles having an average particle diameter of less than 50 nm is the sphericity of the core particles, and by improving this, the ratio of the hollow particles in the whole particles is 70. % Or more of silica-based particles can be produced.

〈前工程〉
本発明の所望する範囲の核粒子を得るには、下記(A)及び(B)の少なくとも1つの条件を採用することが好ましい。
(A)平均粒子径が8nm以上の種粒子を用いて、核粒子を調製する。
(B)温度80℃以下及び/又はpH12以下の条件下に種粒子を保持して、核粒子を調製する。
すなわち、(A)比較的サイズの大きな種粒子を用いて、真球度の測定値が1.0に近い核粒子を調製することや、(B)種粒子の粒子安定性が高い条件下で核粒子を調製することが好ましく、(A)及び(B)を満たす条件で核粒子を製造することが特に好ましい。
<pre-process>
In order to obtain core particles in the desired range of the present invention, it is preferable to employ at least one of the following conditions (A) and (B).
(A) Core particles are prepared using seed particles having an average particle diameter of 8 nm or more.
(B) The seed particles are held under a temperature of 80 ° C. or lower and / or a pH of 12 or lower to prepare core particles.
That is, (A) using a relatively large seed particle, preparing a core particle with a measured value of sphericity close to 1.0, or (B) under conditions where the particle stability of the seed particle is high It is preferable to prepare the core particles, and it is particularly preferable to manufacture the core particles under conditions that satisfy (A) and (B).

まず、(A)平均粒子径が8nm以上の種粒子を用いる条件について説明する。
本条件は、種粒子の粒子径が比較的大きな種粒子を用いることを特徴とする。すなわち、従来は、空隙率の高い中空粒子を製造するには、種となる粒子は小さい方が好ましいとの知見から、平均粒子径が5nm程度のものが用いられていたが、本条件においては、あえて粒子径の大きな種粒子を適用することに特徴を有する。種粒子の粒子径が大きいことにより、核粒子を調製する際に種粒子の安定性が保持され、この結果、真球度の測定値が1.0に近い(真球に近い)核粒子を形成することができる。この粒子径の種粒子であれば、核粒子を調製する際の条件は、従来と同様のpH条件、温度条件を適用することも可能である。更に、条件(B)を併用して適用することが好ましい。
種粒子の平均粒子径は、核粒子調製における種粒子の安定性の面から上記のように、8nm以上であることが好ましく、10〜50nmであることがより好ましく、10〜30nmであることがさらに好ましく、10〜20nmであることが特に好ましい。
First, (A) conditions for using seed particles having an average particle diameter of 8 nm or more will be described.
This condition is characterized in that seed particles having a relatively large seed particle diameter are used. That is, in the past, in order to produce hollow particles having a high porosity, particles having an average particle diameter of about 5 nm were used from the knowledge that smaller seed particles are preferable. It is characterized in that seed particles having a large particle diameter are applied. Due to the large particle size of the seed particles, the stability of the seed particles is maintained when preparing the core particles. As a result, the measured sphericity is close to 1.0 (close to the true sphere). Can be formed. If it is a seed particle of this particle diameter, the conditions at the time of preparing a core particle can also apply the pH conditions and temperature conditions similar to the past. Furthermore, it is preferable to apply the condition (B) in combination.
As described above, the average particle diameter of the seed particles is preferably 8 nm or more, more preferably 10 to 50 nm, and more preferably 10 to 30 nm, from the viewpoint of stability of the seed particles in the preparation of the core particles. Further preferred is 10 to 20 nm.

次に、(B)温度80℃以下及び/又はpH12以下の条件下に種粒子を保持する条件について説明する。
本条件は、種粒子が種粒子としての安定性を保った条件で核粒子を生成することを特徴とする。すなわち、従来は、核粒子の粒子成長が速やかに進行するように核粒子の調製において比較的高い温度と高いpH条件が適用されていた。このような条件下で製造された最終製品は、従来の中空粒子としては、なんら不都合はなかったが、平均粒子径が50nmよりも小さい中空粒子を製造する場合、再現性が低く、中空率が低くなる問題があった。このため、本条件(B)は、この温度及び/又はpHの条件を変更したものである。本条件(B)は、従来に比して低い温度と低いpH条件であり、核粒子の粒子成長中の種粒子の粒子安定性が保持されているために真球度の測定値が1.0に近い(真球状に近い)核粒子を形成することができる。この温度、pH条件であれば、従来の平均粒子径が5nm程度のサイズの小さな粒子を用いても所望の核粒子を得ることができる。すなわち、平均粒子径が3nm以上8nm未満の種粒子でも使用することができ、好ましくは5nm以上8nm未満の種粒子でも使用することができる。更に、条件(A)を併用して適用することが好ましい。
Next, (B) conditions for holding the seed particles under conditions of a temperature of 80 ° C. or lower and / or a pH of 12 or lower will be described.
This condition is characterized in that the core particles are generated under the condition that the seed particles maintain the stability as the seed particles. That is, conventionally, relatively high temperature and high pH conditions have been applied in the preparation of the core particles so that the particle growth of the core particles proceeds rapidly. The final product produced under such conditions was not inconvenient as conventional hollow particles, but when producing hollow particles having an average particle diameter of less than 50 nm, the reproducibility is low and the hollowness ratio is low. There was a problem of lowering. For this reason, this condition (B) changes this temperature and / or pH conditions. This condition (B) is a low temperature and low pH condition as compared with the prior art. Since the stability of the seed particles during the growth of the core particles is maintained, the measured sphericity is 1. Nuclear particles close to 0 (nearly spherical) can be formed. Under these temperature and pH conditions, desired core particles can be obtained even when conventional particles having a small average particle diameter of about 5 nm are used. That is, seed particles having an average particle diameter of 3 nm or more and less than 8 nm can be used, and preferably seed particles having a particle diameter of 5 nm or more and less than 8 nm can also be used. Furthermore, it is preferable to apply the condition (A) in combination.

本発明の所望する範囲の核粒子を得る条件としては、上記のように、温度80℃以下及び/又はpH12以下であることが好ましいが、温度としては、70℃以下であることがより好ましく、50〜65℃であることがさらに好ましい。pHとしては、11.5以下であることがより好ましく、9.0〜11.0であることがさらに好ましい。なお、本工程において条件(B)を採用する場合、次工程の第1工程も条件(B)を維持することが好ましい。   As described above, the condition for obtaining the core particles in the desired range of the present invention is preferably a temperature of 80 ° C. or lower and / or pH of 12 or lower, and the temperature is more preferably 70 ° C. or lower, More preferably, it is 50-65 degreeC. As pH, it is more preferable that it is 11.5 or less, and it is further more preferable that it is 9.0-11.0. In addition, when employ | adopting conditions (B) in this process, it is preferable to maintain conditions (B) also in the 1st process of the following process.

種粒子から核粒子を調製する際の分散液の固形分濃度としては、0.1〜20質量%であることが好ましく、0.3〜10質量%であることがより好ましい。種粒子を含む分散液の固形分濃度が0.1質量%未満であると、種粒子1個あたりの溶解度が大きくなり、核粒子の生成が緩やかにできないため、所望の核粒子が得られない場合がある。また、製造する上での効率が低下するので好ましくない。逆に、固形分濃度が20質量%を超えると、分散液の安定性が悪く粒子が凝集するおそれがある。   The solid content concentration of the dispersion when preparing the core particles from the seed particles is preferably 0.1 to 20% by mass, and more preferably 0.3 to 10% by mass. When the solid content concentration of the dispersion containing the seed particles is less than 0.1% by mass, the solubility per seed particle increases and the generation of the core particles cannot be moderated, so that the desired core particles cannot be obtained. There is a case. Moreover, since the efficiency in manufacturing falls, it is not preferable. On the contrary, if the solid content concentration exceeds 20% by mass, the dispersion is not stable and the particles may aggregate.

〈第一工程〉
第一工程では、平均粒子径が3〜25nm、真球度が1.0〜1.5のシリカの核粒子を含む分散液に、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液とを、同時に添加して複合酸化物粒子(一次粒子)を含む分散液を調製する。本工程で用いる核粒子は、上記前工程で種粒子を用いて調製された核粒子である。
<First step>
In the first step, the dispersion containing silica core particles having an average particle diameter of 3 to 25 nm and a sphericity of 1.0 to 1.5 contains at least one of an aqueous silicate solution and an acidic silicate solution, and silicon. A dispersion containing composite oxide particles (primary particles) is prepared by simultaneously adding a nonaqueous inorganic compound aqueous solution. The core particles used in this step are core particles prepared using seed particles in the previous step.

ここで、核粒子の平均粒子径が3nm未満であると、その粒子径の粒子を得ること自体が困難であるし、例え得られたとしても、複合酸化物粒子分散液の調製において、均質な粒子成長ができない場合がある。この結果、中空率が70%以上のシリカ系粒子が得られない場合がある。逆に、核粒子の平均粒子径が25nmを超えると、以降の工程で所望する平均粒子径が5〜40nmの範囲のシリカ系中空粒子が得られない場合がある。核粒子の平均粒子径は、5〜20nmであることが好ましい。
また、核粒子の真球度が1.0〜1.5の範囲外であれば、球形でない粒子が多くなるため、以降の工程で、所望する中空率が70%以上のシリカ系粒子が得られない。
Here, if the average particle diameter of the core particles is less than 3 nm, it is difficult to obtain particles having the particle diameter itself, and even if it is obtained, in the preparation of the composite oxide particle dispersion, it is homogeneous. Particle growth may not be possible. As a result, silica particles having a hollowness of 70% or more may not be obtained. Conversely, if the average particle diameter of the core particles exceeds 25 nm, silica-based hollow particles having a desired average particle diameter in the range of 5 to 40 nm in the subsequent steps may not be obtained. The average particle diameter of the core particles is preferably 5 to 20 nm.
Further, if the sphericity of the core particles is outside the range of 1.0 to 1.5, the number of non-spherical particles increases, so that silica particles having a desired hollowness of 70% or more are obtained in the subsequent steps. I can't.

第1工程での複合酸化物粒子分散液の調製は、固形分濃度が0.1〜0.9質量%、さらには0.2〜0.6質量%の範囲で行うことが好ましい。この分散液の固形分濃度は、核粒子を含む分散液に、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液とを、同時に添加しはじめた時点から、添加を終了した時点まで維持されていることが好ましい。
この濃度が0.1質量%よりも低いと、収率が低下し、生産効率が低下するため好ましくない。
逆に、この濃度が0.9質量%よりも高いと、均質な粒子成長が行われず、この結果、中空率が70%以上のシリカ系粒子が得られない場合がある。
The preparation of the composite oxide particle dispersion in the first step is preferably performed in a range of solid content concentration of 0.1 to 0.9% by mass, and further 0.2 to 0.6% by mass. The solid content concentration of this dispersion is such that at least one of a silicate aqueous solution and an acidic silicate liquid and an inorganic compound aqueous solution not containing silicon are simultaneously added to the dispersion containing the core particles, and the addition is completed. It is preferable that it is maintained up to the time point.
If this concentration is lower than 0.1% by mass, the yield decreases and the production efficiency decreases, which is not preferable.
On the other hand, when the concentration is higher than 0.9% by mass, homogeneous particle growth is not performed, and as a result, silica-based particles having a hollow ratio of 70% or more may not be obtained.

核粒子の調製を行う場合、粒子成長の速度を適した範囲に制御して行うことが好ましい。この時の粒子成長速度は、核粒子の粒子径によっても異なるが、好ましくは0.1〜10nm/時間、より好ましくは0.2〜5nm/時間、さらに好ましくは0.2〜3nm/時間の範囲である。   When preparing the core particles, it is preferable to control the particle growth rate within a suitable range. The particle growth rate at this time varies depending on the particle diameter of the core particle, but is preferably 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, and further preferably 0.2 to 3 nm / hour. It is a range.

粒子成長を上記の範囲で行う手段としては、核粒子が含まれる母液や反応液の濃度を低くすること、添加する希薄珪酸塩水溶液や酸性珪酸液といったシリカ源の濃度や、無機化合物水溶液の濃度を低くすること、これら添加溶液の核粒子分散液への添加速度を制御すること、反応温度(粒子成長時の温度)を低くすること等が例示される。   As means for carrying out particle growth in the above range, the concentration of the mother liquor containing the core particles and the reaction solution is lowered, the concentration of the silica source such as the diluted silicate aqueous solution and the acidic silicate solution added, and the concentration of the inorganic compound aqueous solution. And lowering the reaction temperature (controlling the rate of addition of these added solutions to the core particle dispersion, lowering the reaction temperature (temperature during particle growth), and the like.

本工程で用いる珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましく用いられる。
このアルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが例示される。有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
As the silicate used in this step, one or more silicates selected from alkali metal silicates, ammonium silicates and organic base silicates are preferably used.
Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. Ammonium silicate or organic base silicate includes a silicate liquid. Also included are alkaline solutions in which ammonia, quaternary ammonium hydroxides, amine compounds and the like are added.

本工程で用いる無機化合物は、実質的に珪素以外の元素で構成されており、酸及びアルカリに可溶な化合物である。これを酸化物(MOx)で表すと、MOxはAl、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等の1種または2種以上、また複合酸化物としてはTiO−Al、TiO−ZrO等を例示することができる。本工程で用いる無機化合物は、これら無機酸化物を構成する金属または非金属のオキソ酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四ホウ酸ナトリウム、炭酸ジルコニウムアンモニウム、アンチモン酸カリウム、スズ酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、リン酸ナトリウム等が好適である。 The inorganic compound used in this step is substantially composed of an element other than silicon, and is a compound that is soluble in acid and alkali. When this is expressed by an oxide (MOx), MOx is Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO, One or more of WO 3 and the like, and examples of the composite oxide include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 . Examples of the inorganic compound used in this step include alkali metal salts, alkaline earth metal salts, ammonium salts, and quaternary ammonium salts of metal or non-metal oxo acids that constitute these inorganic oxides. For example, sodium aluminate, sodium tetraborate, ammonium zirconium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate and the like are suitable.

第1工程において、珪酸塩水溶液及び酸性珪酸液の少なくとも一方に由来するシリカをSiOで表し、無機化合物水溶液に由来する無機化合物を酸化物としてMOで表したときのモル比MO/SiOは、0.15〜3.0にあることが好ましい。モル比MO/SiOが0.15〜3.0の範囲にあれば、複合酸化物粒子の構造は主として珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、珪素原子の4つの結合手に酸素原子が結合し、この酸素原子には珪素以外の元素Mが結合した構造が多く生成し、第2工程で、被覆複合酸化物粒子に含まれる無機化合物に由来する元素を除去する際に、元素(M)に随伴させて、珪素原子も珪酸モノマーやオリゴマーとして除去することができるようになる。ここで、MO/SiOが0.15未満では、中空粒子中の空洞容積が十分大きくならず、MO/SiOが3.0を超えると、球状の複合酸化物粒子を得ることが困難となり、この結果、得られる中空粒子中の空隙率(空洞容積)の割合が低下する。
より好ましいモル比MO/SiOは、0.15〜2.0、さらに好ましくは0.2〜1.0である。
In the first step, the silica derived from at least one of the silicate aqueous solution and the acidic silicate solution is represented by SiO 2 , and the molar ratio MO X / SiO when the inorganic compound derived from the inorganic compound aqueous solution is represented by MO X as an oxide. 2 is preferably 0.15 to 3.0. When the molar ratio MO X / SiO 2 is in the range of 0.15 to 3.0, the composite oxide particles have a structure in which silicon and elements other than silicon are mainly bonded alternately with oxygen interposed therebetween. That is, oxygen atoms are bonded to the four bonds of silicon atoms, and a large number of structures in which elements M other than silicon are bonded to these oxygen atoms are produced. In the second step, the inorganic compound contained in the coated composite oxide particles When the element derived from is removed, the silicon atom can be removed as a silicate monomer or oligomer in association with the element (M). Here, when MO X / SiO 2 is less than 0.15, the hollow volume in the hollow particles is not sufficiently large, and when MO X / SiO 2 exceeds 3.0, spherical composite oxide particles can be obtained. As a result, the ratio of the porosity (cavity volume) in the obtained hollow particles decreases.
A more preferable molar ratio MO X / SiO 2 is 0.15 to 2.0, and more preferably 0.2 to 1.0.

第1工程で得られた複合酸化物粒子は、平均粒子径が3〜35nm、真球度が1.0〜1.5であることが好ましい。
ここで、複合酸化物粒子の平均粒子径が3nm未満であると、その粒子径の粒子を得ること自体が困難であるし、例え得られたとしても、この複合酸化物粒子にシリカ含有量の多い被覆層を形成させる際に、均質な粒子成長が行われず、この結果、所望する中空率が70%以上のシリカ系粒子が得られない場合がある。逆に、平均粒子径が35nmを超えると、以降の工程で、所望する平均粒子径が5〜40nmの範囲のシリカ系粒子が得られない場合がある。また、複合酸化物粒子の真球度が1.0〜1.5の範囲外であれば、球形でない粒子が多くなるため、以降の工程で、所望する中空率が70%以上のシリカ系粒子が得られない。
The composite oxide particles obtained in the first step preferably have an average particle diameter of 3 to 35 nm and a sphericity of 1.0 to 1.5.
Here, if the average particle size of the composite oxide particles is less than 3 nm, it is difficult to obtain particles of that particle size, and even if obtained, the composite oxide particles have silica content. When forming many coating layers, homogeneous particle growth is not performed, and as a result, silica-based particles having a desired hollowness of 70% or more may not be obtained. Conversely, if the average particle diameter exceeds 35 nm, silica-based particles having a desired average particle diameter in the range of 5 to 40 nm may not be obtained in the subsequent steps. In addition, if the sphericity of the composite oxide particles is outside the range of 1.0 to 1.5, the number of non-spherical particles increases. Therefore, in the subsequent steps, a silica-based particle having a desired hollowness of 70% or more Cannot be obtained.

〈第2工程〉
第2工程では、前記第1工程で得た複合酸化物粒子を含む分散液に、シリカ源を添加して、シリカを含む層で被覆された被覆複合酸化物粒子を含む分散液を調製する。シリカ源としては、前述の珪酸塩水溶液や酸性珪酸液、およびこれらの加水分解物が挙げられる。
<Second step>
In the second step, a silica source is added to the dispersion containing the composite oxide particles obtained in the first step to prepare a dispersion containing coated composite oxide particles coated with a layer containing silica. As a silica source, the above-mentioned silicate aqueous solution, acidic silicic acid liquid, and these hydrolysates are mentioned.

また、本工程においては、前記シリカ源に加えて、第1工程で用いた珪素を含まない無機化合物を添加することもできる。すなわち、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、無機化合物水溶液とを、上述の第1工程のモル比MO/SiOよりも小さいモル比MO/SiOで添加して、複合酸化物粒子にシリカとシリカ以外の無機化合物を含むシリカ含有量の多い被覆層を形成することも好適である。 In this step, in addition to the silica source, an inorganic compound containing no silicon used in the first step can also be added. That is, at least one of the silicate solution and an acidic silicic acid solution and an inorganic compound aqueous solution was added with a small molar ratio MO X / SiO 2 than the molar ratio MO X / SiO 2 of the first step described above, the composite oxide It is also preferable to form a coating layer containing a large amount of silica containing silica and an inorganic compound other than silica on the product particles.

ここで、第2工程でのモル比MO/SiOが第1工程のモル比MO/SiOよりも小さいモル比であれば、被覆層はシリカの含有量が多くなり、後述する第3工程での酸処理の際に珪素以外の元素Mが除去され、実質的にシリカからなる被覆層が形成される。 Here, if the molar ratio in the second step MO X / SiO 2 is smaller molar ratio than the molar ratio MO X / SiO 2 of the first step, the coating layer increases the amount of silica, the later During the acid treatment in the three steps, the element M other than silicon is removed, and a coating layer substantially made of silica is formed.

特に、第1工程におけるMO/SiOのモル比(A)に対する第2工程におけるMO/SiOのモル比(B)の比(B/A)が0.8以下であることが好ましい。より好適には値(B/A)が0.6以下であり、さらに好適には値(B/A)が0.5以下である。 In particular, the ratio (B / A) of the molar ratio (B) of MO X / SiO 2 in the second step to the molar ratio (A) of MO X / SiO 2 in the first step is preferably 0.8 or less. . The value (B / A) is more preferably 0.6 or less, and the value (B / A) is more preferably 0.5 or less.

この第2工程のシリカを含む被覆層の形成は、複合酸化物粒子を含む分散液の固形分濃度が0.1〜0.9質量%、さらには0.2〜0.6質量%の範囲で行うことが好ましい。
この濃度が0.1質量%よりも低いと、収率が低下し、生産効率が低下するため好ましくない。
逆に、この濃度が0.9質量%よりも高いと、均質な粒子成長が行われず、この結果、中空率が70%以上のシリカ系粒子が得られない場合がある。
In the formation of the coating layer containing silica in the second step, the solid content concentration of the dispersion containing the composite oxide particles is in the range of 0.1 to 0.9% by mass, and further 0.2 to 0.6% by mass. It is preferable to carry out with.
If this concentration is lower than 0.1% by mass, the yield decreases and the production efficiency decreases, which is not preferable.
On the other hand, when the concentration is higher than 0.9% by mass, homogeneous particle growth is not performed, and as a result, silica-based particles having a hollow ratio of 70% or more may not be obtained.

このシリカを含む被覆層を形成する際、被覆層の形成速度を適した範囲に制御して行うことが好ましい。この時の形成速度は、複合酸化物粒子の一次粒子の粒子径によっても異なるが、好ましくは0.1〜10nm/時間、より好ましくは0.2〜5nm/時間、さらに好ましくは0.2〜3nm/時間の範囲である。   When forming the coating layer containing silica, it is preferable to control the formation rate of the coating layer within a suitable range. The formation rate at this time varies depending on the particle size of the primary particles of the composite oxide particles, but is preferably 0.1 to 10 nm / hour, more preferably 0.2 to 5 nm / hour, still more preferably 0.2 to The range is 3 nm / hour.

被覆層の形成速度を上記の範囲で行う手段としては、複合酸化物粒子が含まれる母液や反応液の濃度を低くすること、添加する有機珪素化合物溶液、希薄珪酸塩水溶液や酸性珪酸液といったシリカ源の濃度や、珪素を含まない無機化合物水溶液の濃度を低くすること、これら添加溶液の複合酸化物粒子分散液への添加速度を制御すること、反応温度(被覆層形成時の温度)を低くすること等が例示される。   The means for forming the coating layer within the above range includes reducing the concentration of the mother liquor and reaction solution containing the composite oxide particles, adding an organosilicon compound solution, dilute silicate aqueous solution and acidic silicate solution such as silica. Reduce the concentration of the source and the inorganic compound aqueous solution not containing silicon, control the rate of addition of these additive solutions to the composite oxide particle dispersion, and lower the reaction temperature (temperature at which the coating layer is formed) This is exemplified.

第1工程及び/又は第2工程においては、粒子成長後、及び/又はシリカを含む被覆層形成後に、水熱処理をして、熟成を行うことが好ましい。この時の熟成は、固形分濃度が1〜30質量%、温度が30〜100℃、時間が1〜12時間の範囲で行うことが好ましい。   In the first step and / or the second step, it is preferable to perform aging by hydrothermal treatment after the grain growth and / or after the formation of the coating layer containing silica. The aging at this time is preferably carried out in a range where the solid content concentration is 1 to 30% by mass, the temperature is 30 to 100 ° C., and the time is 1 to 12 hours.

第1工程及び/又は第2工程においては、超音波を照射するなどして凝集を防止して、高分散化することが好ましい。万一、分散が困難な凝集粒子、粗大粒子が存在する場合は、カプセルフィルター、遠心分離等でこれを除去することが好ましい。   In the first step and / or the second step, it is preferable to prevent the aggregation by irradiating ultrasonic waves or the like to achieve high dispersion. If aggregated particles or coarse particles that are difficult to disperse are present, it is preferable to remove them by a capsule filter, centrifugation, or the like.

第2工程で得られた被覆複合酸化物粒子は、平均粒子径が5〜40nm、真球度が1.0〜1.5であることが好ましい。
ここで、被覆複合酸化物粒子の平均粒子径が5nm未満であると、その粒子径の粒子を得ること自体が困難であるし、例え得られたとしても、以降の工程で、所望する平均粒子径が5〜40nmの範囲のシリカ系粒子が得られない場合がある。また、以降の工程で、所望する中空率が70%以上のシリカ系粒子が得られない場合がある。逆に、平均粒子径が40nmを超えても、以降の工程で、所望する平均粒子径が5〜40nmの範囲のシリカ系粒子が得られない場合があるため好ましくない。
また、被覆複合酸化物粒子の真球度が1.0〜1.5の範囲外であれば、球形でない粒子が多くなるため、以降の工程で、所望する中空率が70%以上のシリカ系粒子が得られない。
The coated composite oxide particles obtained in the second step preferably have an average particle diameter of 5 to 40 nm and a sphericity of 1.0 to 1.5.
Here, when the average particle size of the coated composite oxide particles is less than 5 nm, it is difficult to obtain particles having the particle size itself, and even if obtained, the desired average particles in the subsequent steps. Silica-based particles having a diameter in the range of 5 to 40 nm may not be obtained. Further, in the subsequent steps, silica-based particles having a desired hollowness of 70% or more may not be obtained. On the other hand, even if the average particle diameter exceeds 40 nm, it is not preferable because silica particles having a desired average particle diameter in the range of 5 to 40 nm may not be obtained in the subsequent steps.
In addition, if the sphericity of the coated composite oxide particles is outside the range of 1.0 to 1.5, the number of non-spherical particles increases. Particles cannot be obtained.

〈第3工程〉
第3工程では、第2工程で得た被覆複合酸化物粒子を含む分散液に酸を加えて、被覆複合酸化物粒子に含まれる前記無機化合物に由来する元素を除去する。すなわち、第1工程(必要に応じて第2工程)で添加した珪素を含まない無機化合物を構成する金属元素を、被覆複合酸化物粒子より除去することにより、内部に空洞を有する中空粒子を製造する。
<Third step>
In the third step, an acid is added to the dispersion containing the coated composite oxide particles obtained in the second step to remove elements derived from the inorganic compound contained in the coated composite oxide particles. That is, by removing the metal element constituting the inorganic compound not containing silicon added in the first step (second step if necessary) from the coated composite oxide particles, hollow particles having cavities therein are produced. To do.

被覆複合酸化物粒子に含まれる無機化合物に由来する元素を除去する方法としては、鉱酸及び有機酸の少なくとも一方を使用して溶解除去する方法を挙げることができる。また、陽イオン交換樹脂と接触させてイオン交換除去する方法、あるいはこれらを併用する方法が例示できる。   Examples of the method for removing the element derived from the inorganic compound contained in the coated composite oxide particles include a method for dissolving and removing using at least one of a mineral acid and an organic acid. Moreover, the method of making it contact with cation exchange resin and removing ion exchange, or the method of using these together can be illustrated.

このときの被覆複合酸化物粒子分散液中の被覆複合酸化物粒子の濃度は、処理温度によっても異なるが、酸化物に換算して0.1〜50質量%、特に0.5〜25質量%の範囲にあることが好ましい。0.1質量%未満ではシリカ被覆層におけるシリカの溶解が起きる可能性があると同時に、低濃度のために処理効率が悪い。また、被覆複合酸化物粒子の濃度が50質量%を越えると、被覆複合酸化物粒子に含まれる無機化合物に由来する元素の所望量を少ない回数で除去しにくくなる。   The concentration of the coated composite oxide particles in the coated composite oxide particle dispersion at this time varies depending on the treatment temperature, but is 0.1 to 50% by mass, particularly 0.5 to 25% by mass in terms of oxide. It is preferable that it exists in the range. If it is less than 0.1% by mass, silica may be dissolved in the silica coating layer, and at the same time, the treatment efficiency is poor due to the low concentration. On the other hand, when the concentration of the coated composite oxide particles exceeds 50% by mass, it is difficult to remove the desired amount of the element derived from the inorganic compound contained in the coated composite oxide particles with a small number of times.

前述の無機化合物に由来する元素の除去は、得られるシリカ系粒子のモル比MO/SiOが、0.0001〜0.2、特に、0.0001〜0.1となるまで行うことが好ましい。元素を除去した分散液は、限外濾過等の公知の洗浄方法により洗浄することができる。この場合、予め分散液中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニウムイオン等の一部を除去した後に限外濾過すれば、分散安定性の高い粒子が分散したゾルが得られる。なお、必要に応じて有機溶媒で置換することによって有機溶媒分散ゾルを得ることができる。このようにして得られた分散ゾル中に分散したシリカ系粒子は、外殻が多孔質なシリカ層により構成され、内部に空洞を有したものとなる。また、核粒子を完全に除去しない場合には多孔質の物質が空洞内に残留する。従って、得られる中空粒子は低屈折率となり、この中空粒子を用いて形成される被膜が低屈折率となり、反射防止性能に優れた被膜が得られる。 The removal of the element derived from the above-mentioned inorganic compound is performed until the molar ratio MO X / SiO 2 of the silica-based particles obtained is 0.0001 to 0.2, particularly 0.0001 to 0.1. preferable. The dispersion from which the elements have been removed can be washed by a known washing method such as ultrafiltration. In this case, if part of alkali metal ions, alkaline earth metal ions, ammonium ions, etc. in the dispersion is removed in advance and then ultrafiltered, a sol in which particles having high dispersion stability are dispersed is obtained. An organic solvent-dispersed sol can be obtained by substituting with an organic solvent as necessary. The silica-based particles dispersed in the dispersion sol thus obtained have an outer shell composed of a porous silica layer and have cavities inside. If the core particles are not completely removed, a porous substance remains in the cavity. Therefore, the obtained hollow particles have a low refractive index, and a coating formed using the hollow particles has a low refractive index, so that a coating excellent in antireflection performance can be obtained.

〈第4工程〉
第4工程は、第3工程で得た粒子を含む分散液に、アルカリ条件下で水熱処理による熟成を行う。この工程により、分散安定性に優れた中空率が70%以上の中空粒子を製造することができる。
<4th process>
In the fourth step, the dispersion containing the particles obtained in the third step is aged by hydrothermal treatment under alkaline conditions. By this step, hollow particles having a hollow ratio of 70% or more excellent in dispersion stability can be produced.

この水熱処理は、固形分濃度が1〜30質量%、pHが9.0以上、温度が30〜300℃、時間が1〜72時間の範囲で行うことが好ましい。
この水熱処理により熟成されたシリカ系粒子は、有機溶媒に溶媒置換することもできる。有機溶媒の種類としては、シリカ系粒子に悪影響を与えるものでなければ特に限定されるものではない。使用可能な有機溶媒としては、アルコール類、グリコール類、エステル類、ケトン類、窒素化合物類、芳香族類等が例示される。溶媒置換の方法も、溶媒置換されれば特に限定されるものではなく、例えば、限外ろ過膜またはロータリーエバポレーターを使用するといった従来公知の方法で構わない。
This hydrothermal treatment is preferably performed in a range of solid content concentration of 1 to 30% by mass, pH of 9.0 or more, temperature of 30 to 300 ° C., and time of 1 to 72 hours.
Silica-based particles aged by this hydrothermal treatment can be replaced with an organic solvent. The type of organic solvent is not particularly limited as long as it does not adversely affect the silica-based particles. Examples of usable organic solvents include alcohols, glycols, esters, ketones, nitrogen compounds, and aromatics. The method of solvent replacement is not particularly limited as long as the solvent replacement is performed, and for example, a conventionally known method of using an ultrafiltration membrane or a rotary evaporator may be used.

〈第5工程〉
本発明の製造方法においては、上記第1〜4工程を経た中空粒子に対して、下記式(1)で表される有機珪素化合物又はこれらの加水分解物で表面処理を行う第5工程を有することが好ましい。
<5th process>
In the manufacturing method of this invention, it has the 5th process which surface-treats with the organosilicon compound represented by following formula (1), or these hydrolysates with respect to the hollow particle which passed through the said 1st-4th process. It is preferable.

−SiX4−n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、nは0〜3の整数)
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms and may be the same or different. X is an alkoxy group having 1 to 4 carbon atoms or a silanol group. , Halogen, hydrogen, n is an integer of 0 to 3)

このような式(1)で表される有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシメチルトリメトキシシラン、γ−グリシドキシメチルトリエキシシラン、γ−グリシドキシエチルトリメトキシシラン、γ−グリシドキシエチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ−(メタ)アクリロキシメチルトリメトキシシラン、γ−(メタ)アクリロキシメチルトリエキシシラン、γ−(メタ)アクリロキシエチルトリメトキシシラン、γ−(メタ)アクリロキシエチルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3−ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン等が挙げられる。   Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxy. Silane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3, 3, 3 -Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glyci Xymethyltrimethoxysilane, γ-glycidoxymethyltriexylsilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid Xylpropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acryloxymethyltrimethoxysilane, γ- (meth) acryloxymethyltriexylsilane, γ- (meth) Acryloxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxy Propyltriethoxysilane, γ- (meth) acryl Xypropyltriethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, Decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β ( Aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N- Eniru -γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyl trichlorosilane and the like.

シリカ系粒子は、このような有機珪素化合物で表面処理されていると、マトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。   When the silica-based particles are surface-treated with such an organosilicon compound, they can be uniformly dispersed in the matrix and densely packed, and a transparent film excellent in film strength and scratch resistance can be obtained. Can do.

シリカ系粒子の表面処理は、粒子のアルコール分散液に上述の有機珪素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて有機珪素化合物を加水分解する。さらに好ましくは、次いで、これを加熱処理して熟成する。   In the surface treatment of the silica-based particles, a predetermined amount of the above-mentioned organosilicon compound is added to the alcohol dispersion of the particles, water is added thereto, and if necessary, acid or alkali is added as a hydrolysis catalyst to hydrolyze the organosilicon compound. Decompose. More preferably, this is then heat-treated and aged.

この時のシリカ系粒子と有機珪素化合物との質量比(有機珪素化合物の固形分(R−SiX(4−n)/2)としての質量/シリカ系粒子の質量)は、シリカ系粒子の平均粒子径によっても異なるが、0.005〜3.0さらには0.05〜1.0の範囲にあることが好ましい。 The mass ratio of the silica-based particles and an organic silicon compound in this (solid organosilicon compound fraction (mass of R n -SiX (4-n) / 2) as a mass / silica-based particles), silica-based particles Although it varies depending on the average particle size, it is preferably in the range of 0.005 to 3.0, more preferably 0.05 to 1.0.

前述の質量比が0.005よりも小さいと、後述するマトリックス形成成分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となる場合がある。   If the aforementioned mass ratio is less than 0.005, the affinity with the matrix-forming component described later is low, dispersibility in the paint, stability becomes insufficient, and particles may aggregate in the paint, A dense transparent film may not be obtained, and adhesion to the substrate, film strength, scratch resistance, and the like may be insufficient.

逆に、前述の質量比が30.0よりも大きいと、塗料中での分散性がさらに向上することもなく、シリカ系粒子の屈折率が高くなり、所望の低屈折率の透明被膜が得られないことがあり、反射防止性能が不充分となる場合がある。   On the contrary, when the above-mentioned mass ratio is larger than 30.0, the dispersibility in the paint is not further improved, the refractive index of the silica-based particles is increased, and a transparent film having a desired low refractive index is obtained. The antireflection performance may be insufficient.

[シリカ系粒子の分散液]
本発明のシリカ系粒子の分散液は、平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子を含むものである。これは、上記説明した製造方法により製造することができる。従来、平均粒子径が5〜40nmといったサイズの小さなシリカ系中空粒子はその製造が困難であったが、本発明においては、中空率70%以上という高い割合での製造を実現した。
[Dispersion of silica-based particles]
The silica-based particle dispersion of the present invention has an average particle diameter of 5 to 40 nm, and the ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) is 70% or more. It contains system particles. This can be manufactured by the manufacturing method described above. Conventionally, silica-based hollow particles having a small average particle diameter of 5 to 40 nm have been difficult to produce, but in the present invention, production at a high rate of a hollow ratio of 70% or more has been realized.

反射防止膜は、一般に波長依存性があり、波長λに対してλ/4となるように設計されることが多く、通常は人間の視感度の高い550nmの波長で最低反射率となるように設計されるため、その膜厚はおよそ100nm前後という薄膜で使用されることが一般的である。
本発明においては、5〜40nmといった比較的小粒子径のシリカ系中空粒子を製造することができるため、かかる中空粒子を配合した反射防止膜はその薄膜中に中空粒子が十分に埋め込まれることになる。その結果、粒子表面の平滑性も向上し、薄膜の耐マジック性、耐水性、耐アルカリ性を向上させることができる。また、中空率が高いことから、高い反射防止性能を発現できる。更に、粒子の配合量が比較的高い場合にも小粒子径であることから粒子による散乱が抑制され、透明性の高い被膜が形成できる。
The antireflection film is generally wavelength-dependent and is often designed to be λ / 4 with respect to the wavelength λ, and usually has a minimum reflectance at a wavelength of 550 nm, which is highly visible to humans. Since it is designed, it is generally used as a thin film having a thickness of about 100 nm.
In the present invention, silica-based hollow particles having a comparatively small particle diameter of 5 to 40 nm can be produced. Therefore, the antireflection film containing such hollow particles is sufficiently filled with hollow particles in the thin film. Become. As a result, the smoothness of the particle surface is improved and the magic resistance, water resistance, and alkali resistance of the thin film can be improved. Moreover, since the hollow ratio is high, high antireflection performance can be exhibited. Furthermore, since the particle size is small even when the blending amount of the particles is relatively high, scattering by the particles is suppressed, and a highly transparent coating can be formed.

本発明の分散液に係るシリカ系粒子は、平均粒子径が5〜40nmのシリカを主成分とする粒子である。このシリカ系粒子は、シリカ以外に、アルミナ、マグネシアなどの酸化物や、アルカリ金属の酸化物や水酸化物を含んでいてもよい。ただし、透明被膜の用途という点では、実質的にシリカからなることが好ましい。   Silica-based particles according to the dispersion of the present invention are particles mainly composed of silica having an average particle diameter of 5 to 40 nm. In addition to silica, the silica-based particles may contain oxides such as alumina and magnesia, alkali metal oxides and hydroxides. However, in terms of the use of the transparent film, it is preferable that the film is substantially made of silica.

《平均粒子径の測定》
平均粒子径は、電子顕微鏡写真を撮影し、各粒子の最長径と最短径を測定し、その平均値をその粒子の粒子径として、任意の100個の粒子について粒子径を測定し、その平均値として得たものである。
<Measurement of average particle size>
The average particle diameter is obtained by taking an electron micrograph, measuring the longest diameter and the shortest diameter of each particle, and measuring the particle diameter of any 100 particles, using the average value as the particle diameter of the particle, and calculating the average It is obtained as a value.

シリカ系粒子の平均粒子径が5nm未満であると、その粒子径の粒子を得ること自体が困難で、特に、シリカ系中空粒子を得ることは困難である。例え、この粒子径のシリカ系中空粒子が得られたとしても、粒子径自体が小さいため粒子内部の空洞の割合が小さく、すなわち空隙率が小さいために屈折率が高く、十分な反射防止能を有する透明被膜が得られない場合がある。さらに、中空率が70%以上のシリカ系粒子が得られない。
逆に、平均粒子径が40nmを超えると、粒子が大きいために薄膜に配合した際、透明被膜表面に十分に埋め込まれない。その結果、透明被膜表面に粒子が露出し、被膜表面の外部散乱を誘発し透明性を低下させたり、透明被膜表面の平滑性が低下し、耐擦傷性等が不充分となる場合がある。
より好ましい平均粒子径は5〜35nm、さらに好ましくは8〜30nmである。
If the average particle size of the silica-based particles is less than 5 nm, it is difficult to obtain particles of that particle size, and it is particularly difficult to obtain silica-based hollow particles. For example, even if silica-based hollow particles with this particle size are obtained, the particle size itself is small, so the proportion of cavities inside the particles is small, that is, the porosity is small, so the refractive index is high, and sufficient antireflection performance is achieved. In some cases, a transparent film having the above cannot be obtained. Furthermore, silica-based particles having a hollow ratio of 70% or more cannot be obtained.
On the contrary, when the average particle diameter exceeds 40 nm, the particles are large, and therefore, when blended into a thin film, they are not sufficiently embedded in the surface of the transparent coating. As a result, particles are exposed on the surface of the transparent coating, causing external scattering on the surface of the coating to reduce the transparency, and the smoothness of the surface of the transparent coating may be reduced, resulting in insufficient scratch resistance and the like.
A more preferable average particle diameter is 5 to 35 nm, and further preferably 8 to 30 nm.

また、本発明の分散液に係るシリカ系粒子は、中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上である。ここで、中空粒子とは、内部に空洞を有する粒子で、空隙率が3%以上であるものを意味し、中実粒子とは、空隙率が3%未満であるものを指す。   In the silica-based particles according to the dispersion of the present invention, the ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow rate) is 70% or more. Here, the hollow particle means a particle having a cavity inside and having a porosity of 3% or more, and the solid particle means a particle having a porosity of less than 3%.

《個々の粒子の空隙率の測定》
空隙率は、粒子に占める粒子中の空洞部の割合として定義される。具体的には、粒子の透過型電子顕微鏡写真を撮影する。この時、中空粒子の空洞部分は密度が低く、透過型電子顕微鏡写真においてその部分のコントラストが低くなるため、中空粒子の空洞部分は透過型電子顕微鏡写真のコントラスト比で中空粒子の外殻部分と空洞部分を確認することができる。まず、粒子の最長径と最短径を測定し、その平均値をその粒子の粒子径として粒子形状を真球状と仮定した体積(V)を求める。次に、その粒子の空洞部の最長径と最短径を測定し、その平均値をその空洞の径として、空洞部形状を真球状と仮定した体積(V)を求める。空隙率は、体積(V)に対する体積(V)の割合で表される。
<Measurement of porosity of individual particles>
Porosity is defined as the proportion of cavities in the particles in the particles. Specifically, a transmission electron micrograph of the particles is taken. At this time, the hollow portion of the hollow particle has a low density, and the contrast of the portion becomes low in the transmission electron micrograph. Therefore, the hollow portion of the hollow particle is compared with the outer shell portion of the hollow particle at the contrast ratio of the transmission electron micrograph. A hollow part can be confirmed. First, the longest diameter and the shortest diameter of the particles are measured, and the volume (V Q ) on the assumption that the particle shape is a true sphere is obtained by using the average value as the particle diameter of the particles. Next, the longest diameter and the shortest diameter of the cavity portion of the particle are measured, and the volume (V P ) assuming the shape of the cavity portion as a true sphere is obtained with the average value as the diameter of the cavity. The porosity is represented by the ratio of the volume (V P ) to the volume (V Q ).

《中空率の測定》
中空率は、TEM像にて100個の粒子を確認し、中空粒子(空隙率3%以上)と中実粒子(空隙率3%未満)の合計の粒子数に占める中空粒子数の割合を求める。
<< Measurement of hollowness >>
As for the hollow ratio, 100 particles are confirmed by a TEM image, and the ratio of the number of hollow particles to the total number of hollow particles (porosity of 3% or more) and solid particles (porosity of less than 3%) is obtained. .

中空率が70%未満であると、透明被膜中のシリカ系粒子の含有量や粒子サイズ、あるいは真球度にもよるが、透明被膜の屈折率を十分に低下させることができず、十分な反射防止性能が発現しない場合がある。好ましい中空率は75%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは100%である。   If the hollowness is less than 70%, the refractive index of the transparent coating cannot be sufficiently reduced, although it depends on the content, particle size, or sphericity of the silica-based particles in the transparent coating. In some cases, antireflection performance may not be exhibited. The hollow ratio is preferably 75% or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 100%.

本発明の分散液に係るシリカ系粒子全体の空隙率は、3〜50%が好ましく、15〜50%がより好ましく、25〜48%がさらに好ましい。
《シリカ系粒子全体の空隙率》
本発明の分散液中のシリカ系粒子全体の空隙率は、上記のようにして求めた個々の粒子の空隙率を任意の100個の粒子について計算し、その平均値として得たものである。空隙率が高い粒子ほど、屈折率は低くなる。このような空隙率が高い粒子を透明被膜に配合した場合、反射防止性能の高い被膜が得られる。
The porosity of the entire silica-based particles according to the dispersion of the present invention is preferably 3 to 50%, more preferably 15 to 50%, and still more preferably 25 to 48%.
<< The porosity of the entire silica-based particles >>
The porosity of the entire silica-based particles in the dispersion of the present invention is obtained by calculating the porosity of individual particles obtained as described above for 100 arbitrary particles and obtaining the average value thereof. The higher the porosity, the lower the refractive index. When such particles having a high porosity are blended in the transparent film, a film having high antireflection performance can be obtained.

本発明の分散液に係るシリカ系粒子は、真球度が1.0〜1.5であることが好ましい。シリカ系粒子の真球度がこの範囲であれば、粒子形状は真球に近くなる。このため、膜厚の薄い透明被膜中に均質に充填できるようになり、被膜表面平滑性を維持しながら、すなわちシリカ系粒子が被膜表面から外部に露出しない薄膜透明被膜を形成できる。この結果、屈折率が低く、充分な強度を有す被膜を得ることができて好ましい。また、シリカ系粒子が被膜表面から外部に露出しない透明被膜が得られやすいため、白化の発生や耐擦傷性低下は起こりにくい。また、真球度が1.5を超える、いわゆる異形粒子の数割合は、1%以下であることが好ましい。
より好ましい真球度は1.0〜1.4、さらに好ましくは1.0〜1.2である。
The silica particles according to the dispersion of the present invention preferably have a sphericity of 1.0 to 1.5. If the sphericity of the silica-based particles is within this range, the particle shape is close to a sphere. For this reason, it becomes possible to uniformly fill the transparent film having a thin film thickness, and it is possible to form a thin film transparent film in which the silica-based particles are not exposed to the outside while maintaining the film surface smoothness. As a result, a film having a low refractive index and sufficient strength can be obtained, which is preferable. In addition, since a transparent film in which silica-based particles are not exposed to the outside from the film surface is easily obtained, whitening and scratch resistance are unlikely to occur. The number ratio of so-called irregularly shaped particles having a sphericity exceeding 1.5 is preferably 1% or less.
More preferable sphericity is 1.0 to 1.4, and further preferably 1.0 to 1.2.

《真球度の測定》
真球度は、粒子の最長径と最短径の割合として定義される。具体的には、透過型電子顕微鏡写真を撮影し、各粒子の最長径と最短径を測定し、その割合(最長径と最短径の比率)を任意の100個の粒子について求め、その平均値として得たものである。球形の真球状に近づくほど、最長径と最短径の差はなくなり、その比率(すなわち真球度)は1.0に近づく。
<Measurement of sphericity>
The sphericity is defined as the ratio between the longest diameter and the shortest diameter of the particles. Specifically, a transmission electron micrograph is taken, the longest diameter and the shortest diameter of each particle are measured, and the ratio (ratio of the longest diameter to the shortest diameter) is determined for any 100 particles, and the average value is obtained. As obtained. The closer to a spherical sphere, the smaller the difference between the longest diameter and the shortest diameter, and the ratio (ie, sphericity) approaches 1.0.

《異形粒子の数割合の測定》
上述の真球度の測定において、任意の100個の粒子に対する、真球度が1.5を超える粒子の個数の割合を求めたものである。
<Measurement of the number ratio of irregularly shaped particles>
In the above-described measurement of sphericity, the ratio of the number of particles having a sphericity exceeding 1.5 with respect to arbitrary 100 particles is obtained.

また、本発明の分散液に係るシリカ系粒子は、屈折率が1.10〜1.41であることが好ましい。このシリカ系粒子は、中空粒子を含み、中空率が70%以上であるため、通常のシリカ系中実粒子のみで構成されるものに比べて屈折率が低くなる。   Moreover, it is preferable that the refractive index of the silica type particle which concerns on the dispersion liquid of this invention is 1.10-1.41. Since the silica-based particles include hollow particles and have a hollow ratio of 70% or more, the refractive index is lower than those composed only of ordinary silica-based solid particles.

屈折率が1.10未満のものは、得ることが困難である。逆に、屈折率が1.41より高くなれば、このシリカ系粒子を配合した透明被膜の屈折率も高くなるので、反射防止性能が不充分となる場合がある。より好ましい屈折率は1.10〜1.30、さらに好ましくは1.10〜1.25である。   Those having a refractive index of less than 1.10 are difficult to obtain. On the other hand, if the refractive index is higher than 1.41, the refractive index of the transparent coating containing the silica-based particles is also increased, so that the antireflection performance may be insufficient. The refractive index is more preferably 1.10 to 1.30, still more preferably 1.10 to 1.25.

《屈折率の測定》
また、本発明に用いるシリカ系粒子の屈折率は、下記の方法によって測定する。
[1]シリカ系粒子の分散液をエバポレーターに採り、分散媒を蒸発させる。
[2]これを120℃で乾燥し、粉末とする。
[3]屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
[4]上記[3]の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をシリカ系粒子の屈折率とする。
<Measurement of refractive index>
Further, the refractive index of the silica-based particles used in the present invention is measured by the following method.
[1] A dispersion of silica-based particles is taken in an evaporator and the dispersion medium is evaporated.
[2] This is dried at 120 ° C. to obtain a powder.
[3] A standard refraction liquid with a known refractive index is dropped on a glass plate in a few drops, and the above powder is mixed therewith.
[4] The operation of [3] is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is the refractive index of the silica-based particles.

また、本発明のシリカ系粒子はその表面に珪素原子に直接結合した有機基を有することが好ましい。すなわち、本発明の製造方法における第5工程の表面処理を施されたものが好ましい。有機基の種類については、透明被膜形成用組成物を調製する際のバインダー、特に有機樹脂との親和性があるものが好ましい。この透明被膜形成用組成物を基材上で硬化して得られる透明被膜付基材において、透明被膜の白化を招かず、耐擦傷性および密着性を損なわないものであれば制限されるものではない。例えば、炭化水素基または炭素原子、水素原子以外の異原子を含む炭化水素基であっても良い。炭化水素基は、脂肪族であっても、芳香族であってもよく、飽和炭化水素基であっても、不飽和炭化水素基であっても良い。また、二重結合または三重結合を含むものであってもよく、エーテル結合を有するものでも良い。   Moreover, it is preferable that the silica type particle | grains of this invention have the organic group directly couple | bonded with the silicon atom on the surface. That is, the surface-treated one in the fifth step in the production method of the present invention is preferable. About the kind of organic group, what has affinity with the binder at the time of preparing the composition for transparent film formation, especially organic resin is preferable. In the substrate with a transparent coating obtained by curing the composition for forming a transparent coating on the substrate, the transparent coating is not limited as long as it does not cause whitening of the transparent coating and does not impair the scratch resistance and adhesion. Absent. For example, it may be a hydrocarbon group or a hydrocarbon group containing a carbon atom or a different atom other than a hydrogen atom. The hydrocarbon group may be aliphatic or aromatic, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Further, it may contain a double bond or a triple bond, or may have an ether bond.

珪素原子に直接結合した有機基の好適な例としては、飽和または不飽和の炭素数1〜18の炭化水素基、炭素数1〜18のハロゲン化炭化水素基から選ばれる有機基を挙げることができる。具体的には、3−メタクリロキシプロピル基、3−アクリロキシプロピル基、3,3,3−トリフルオロプロピル基、メチル基、フェニル基、イソブチル基、ビニル基、γ−グリシドキシトリプロピル基、γ−メタクリロキシプロピル基、N−β(アミノエチル)γ−アミノプロピル基、N−β(アミノエチル)γ−アミノプロピル基、γ−アミノプロピル基、N−フェニル−γ−アミノプロピル基などを挙げることができるがこれらに限定されるものではない。   Preferable examples of the organic group directly bonded to the silicon atom include organic groups selected from saturated or unsaturated hydrocarbon groups having 1 to 18 carbon atoms and halogenated hydrocarbon groups having 1 to 18 carbon atoms. it can. Specifically, 3-methacryloxypropyl group, 3-acryloxypropyl group, 3,3,3-trifluoropropyl group, methyl group, phenyl group, isobutyl group, vinyl group, γ-glycidoxytripropyl group, γ-methacryloxypropyl group, N-β (aminoethyl) γ-aminopropyl group, N-β (aminoethyl) γ-aminopropyl group, γ-aminopropyl group, N-phenyl-γ-aminopropyl group, etc. It can be mentioned, but is not limited to these.

〈シリカ系粒子と有機基の好適な態様<1>〉
本発明のシリカ系粒子を含有する透明被膜の基材との密着性、被膜の白化防止および耐擦傷性の面から見て、本発明のシリカ系粒子は、下記式(2)または下記式(3)の有機基を有するものであり、熱重量測定(TG)により、200℃〜500℃の温度範囲において1.5質量%以上の重量減少を示すものが好ましい。
−R−OC(=O)CCH=CH ・・・(2)
(ただし、Rは炭素数1〜12の2価の炭化水素基)
−R−OC(=O)CH=CH ・・・(3)
(ただし、Rは炭素数1〜12の2価の炭化水素基)
<Suitable Aspect of Silica-Based Particle and Organic Group <1 >>
From the viewpoint of adhesion of the transparent coating containing the silica-based particles of the present invention to the base material, prevention of whitening of the coating and scratch resistance, the silica-based particles of the present invention have the following formula (2) or the following formula ( Those having an organic group of 3) and showing a weight loss of 1.5% by mass or more in a temperature range of 200 ° C. to 500 ° C. by thermogravimetry (TG) are preferable.
-R-OC (= O) CCH 3 = CH 2 ··· (2)
(Where R is a divalent hydrocarbon group having 1 to 12 carbon atoms)
-R-OC (= O) CH = CH 2 (3)
(Where R is a divalent hydrocarbon group having 1 to 12 carbon atoms)

〈シリカ系中空粒子と有機基の好適な態様<2>〉
また、前記と同様な理由で、本発明のシリカ系粒子が、下記式(4)の有機基を有するものが好ましい。
−R−C ・・・(4)
(ただし、a+b=2n+1、nは1〜3の整数、Rは炭素数1〜12の2価の炭化水素基)
<Preferred embodiment of silica-based hollow particles and organic group <2 >>
For the same reason as described above, the silica-based particles of the present invention preferably have an organic group represented by the following formula (4).
-R-C n F a H b (4)
(Where a + b = 2n + 1, n is an integer of 1 to 3, R is a divalent hydrocarbon group having 1 to 12 carbon atoms)

本発明のシリカ系粒子は、通常、分散媒に分散されたものである。シリカ濃度としては、1〜70質量%であるものが安定性の面からみて好ましく、更に好ましくは3〜40質量%であるものが推奨される。   The silica-based particles of the present invention are usually dispersed in a dispersion medium. The silica concentration is preferably 1 to 70% by mass from the viewpoint of stability, and more preferably 3 to 40% by mass.

[透明被膜形成用塗布液]
本発明に係る透明被膜形成用塗布液は、前述の平均粒子径が5〜40nm、中空率が70%以上のシリカ系粒子と、マトリックス形成成分と、極性溶媒とを含むことを特徴とする。
[Transparent coating solution]
The coating liquid for forming a transparent film according to the present invention includes the above-described silica-based particles having an average particle diameter of 5 to 40 nm and a hollow ratio of 70% or more, a matrix-forming component, and a polar solvent.

〈シリカ系粒子〉
本発明に用いるシリカ系粒子としては、前述したシリカ系粒子が用いられる。
<Silica-based particles>
The silica-based particles described above are used as the silica-based particles used in the present invention.

〈マトリックス形成成分〉
マトリックス形成成分としては、シリコーン系(ゾルゲル系)マトリックス形成成分、有機樹脂系マトリックス形成成分等が用いられる。
<Matrix forming component>
As the matrix forming component, a silicone (sol-gel) matrix forming component, an organic resin matrix forming component, or the like is used.

このシリコーン系マトリックス形成成分としては前述の式(1)と同様の有機珪素化合物の加水分解重縮合物が好適に用いられる。
また、有機樹脂系マトリックス形成成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。
As the silicone-based matrix-forming component, a hydrolyzed polycondensate of an organosilicon compound similar to the aforementioned formula (1) is preferably used.
Examples of the organic resin matrix forming component include known thermosetting resins, thermoplastic resins, electron beam curable resins, and the like as coating resins.

このような樹脂として、例えば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、珪素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらには、これら樹脂の2種以上の共重合体や変性体であってもよい。これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。   Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc., UV curable type An acrylic resin etc. are mentioned. Furthermore, two or more types of copolymers or modified products of these resins may be used. These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.

〈重合開始剤等〉
マトリックス形成成分が前述の有機樹脂である時、樹脂が紫外線硬化型樹脂の場合は、光重合開始剤が含まれていてもよく、熱硬化性樹脂の場合は、硬化触媒が含まれていてもよい。これらは、塗布液の構成物質としては、マトリックス形成成分として扱わない。
<Polymerization initiator, etc.>
When the matrix-forming component is the aforementioned organic resin, a photopolymerization initiator may be included when the resin is an ultraviolet curable resin, and a curing catalyst may be included when the resin is a thermosetting resin. Good. These are not treated as matrix forming components as constituents of the coating solution.

重合開始剤としては、前記マトリックス形成成分を硬化できれば特に制限はなく、従来公知のものを使用することができる。例えば、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)2,4,4−トリメチル−ペンチルフォスフィンオキサイド、2−ヒドロキシ−メチル−2−メチル−フェニル−プロパン−1−ケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチル−1−[4−(メチルチオフェニル]−2−モルフォリノプロパン−1−オン等が挙げられる。   The polymerization initiator is not particularly limited as long as the matrix forming component can be cured, and conventionally known ones can be used. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl- Phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthiophenyl] -2 -Morpholinopropan-1-one and the like.

硬化触媒としては、例えば硝酸、塩酸、硫酸などの無機酸、ギ酸、酢酸、イタコン酸等の有機酸、アンモニア、エチルアミン、エタノールアミン等の塩基性物質等が挙げられる。   Examples of the curing catalyst include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, organic acids such as formic acid, acetic acid and itaconic acid, and basic substances such as ammonia, ethylamine and ethanolamine.

〈極性溶媒〉
本発明に用いる極性溶媒としてはマトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともにシリカ系中空粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
<Polar solvent>
The polar solvent used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component and, if necessary, the polymerization initiator, and uniformly disperse the silica-based hollow particles, and a conventionally known solvent may be used. Can do.

具体的には、水、メタノール、エタノール、プロパノール、2−プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン等が挙げられる。   Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, alcohol Ketones such as preparative acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene, cyclohexanone, isophorone and the like.

なかでも、メタノール、エタノール、プロパノール、2−プロパノール(IPA)等のアルコール類は、表面処理したシリカ系微粒子を均一に分散することができ、カルボニル基を有する溶媒は、表面処理したシリカ系粒子を均一に分散することができるとともに塗料の安定性がよい。このため、均一性、基材との密着性、強度等に優れた透明被膜を再現性よく形成することができるので好適に用いることができる。   Among them, alcohols such as methanol, ethanol, propanol, and 2-propanol (IPA) can uniformly disperse surface-treated silica-based fine particles, and a solvent having a carbonyl group can be obtained by treating surface-treated silica-based particles. The paint can be dispersed uniformly and the paint stability is good. For this reason, since the transparent film excellent in uniformity, adhesiveness with a base material, intensity | strength, etc. can be formed with sufficient reproducibility, it can be used conveniently.

透明被膜形成用塗布液中のシリカ系微粒子の濃度は、固形分として0.4〜54質量%、さらには0.6〜54質量%の範囲にあることが好ましい。透明被膜形成用塗布液中のシリカ系粒子が少ないと、透明被膜中のシリカ系粒子の含有量が少なく屈折率の充分に低い透明被膜が得られない場合がある。逆に、シリカ系粒子が多すぎても、反対にマトリックス形成成分の含有量が少なくなるために透明被膜の強度が不充分となる場合がある。   The concentration of the silica-based fine particles in the coating solution for forming a transparent film is preferably in the range of 0.4 to 54 mass%, more preferably 0.6 to 54 mass% as a solid content. When there are few silica type particles in the coating liquid for transparent film formation, there may be a case where a transparent film having a sufficiently low refractive index cannot be obtained because the content of silica type particles in the transparent film is small. On the contrary, even if there are too many silica-based particles, the strength of the transparent film may be insufficient because the content of the matrix-forming component is decreased.

透明被膜形成用塗布液中のマトリックス形成成分の濃度は、固形分として0.1〜36質量%さらには0.1〜24質量%の範囲にあることが好ましい。
マトリックス形成成分の濃度が低い場合は、得られる透明被膜中のマトリックス成分が少なく、耐擦傷性、基材との密着性等が不充分となる場合がある。マトリックス形成成分の濃度が高すぎると、得られる透明被膜中のシリカ系粒子の含有量が少なくなり、屈折率が不充分となり、反射防止性能が不充分となる場合がある。
It is preferable that the density | concentration of the matrix formation component in the coating liquid for transparent film formation exists in the range of 0.1-36 mass% as a solid content, and also 0.1-24 mass%.
When the concentration of the matrix-forming component is low, there are few matrix components in the obtained transparent film, and the scratch resistance, adhesion to the substrate, and the like may be insufficient. If the concentration of the matrix-forming component is too high, the content of silica-based particles in the resulting transparent coating is reduced, the refractive index is insufficient, and the antireflection performance may be insufficient.

なお、透明被膜形成用塗布中には、マトリックス形成成分を重合や縮合などの反応を行うための触媒が含まれていてもよい。また、その他、公知の透明被膜に用いられる成分が含まれていてもよい。   In addition, the catalyst for performing reaction, such as superposition | polymerization and a condensation, may be contained in the matrix formation component during application | coating for transparent film formation. Moreover, the component used for a well-known transparent film may be contained.

透明被膜形成用塗布液の全固形分濃度は1〜60質量%、さらには3〜50質量%の範囲にあることが好ましい。
全固形分濃度が1質量%よりも低いと、透明被膜の膜厚が薄すぎてしまい、耐擦傷性が不充分になるおそれがあり、また、充分な反射防止性能が得られない場合がある。一方、全固形分濃度が60質量%よりも高いと、塗布液の粘度が高くなり、塗布液の安定性が低下したり塗工性が低下したりする。また、薄い膜を形成することが困難となり、さらに、得られる透明被膜の均一性、基材との密着性、強度等が不充分となるおそれがある。
The total solid content concentration of the coating solution for forming a transparent film is preferably in the range of 1 to 60% by mass, more preferably 3 to 50% by mass.
If the total solid content concentration is lower than 1% by mass, the film thickness of the transparent coating is too thin, and the scratch resistance may be insufficient, and sufficient antireflection performance may not be obtained. . On the other hand, when the total solid content concentration is higher than 60% by mass, the viscosity of the coating solution increases, and the stability of the coating solution decreases or the coating property decreases. Moreover, it is difficult to form a thin film, and the uniformity of the obtained transparent film, adhesion to the substrate, strength, and the like may be insufficient.

本発明に係る透明被膜形成用塗布液を用いて透明被膜を形成する方法として、従来公知の方法を採用することができる。
具体的には、透明被膜形成用塗布液をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。本発明では、ロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。
As a method for forming a transparent film using the coating liquid for forming a transparent film according to the present invention, a conventionally known method can be employed.
Specifically, the coating liquid for forming a transparent film is formed by a known method such as dipping, spraying, spinner, roll coating, bar coating, slit coater printing, gravure printing, or micro gravure printing. A transparent coating film can be formed by applying to a substrate, drying, and curing by an ordinary method such as ultraviolet irradiation or heat treatment. In the present invention, a roll coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method are recommended.

[透明被膜付基材]
本発明に係る透明被膜付基材は、前述の平均粒子径が5〜40nm、中空率が70%以上のシリカ系粒子と、マトリックス成分とを含むことを特徴とする。
[Base material with transparent film]
The substrate with a transparent coating according to the present invention is characterized in that it contains silica particles having an average particle diameter of 5 to 40 nm and a hollow ratio of 70% or more, and a matrix component.

〈基材〉
本発明に用いる基材としては、従来公知のものを特に制限なく使用することが可能である。例えば、ガラス、プラスチック、ポリカーボネート、アクリル系樹脂、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、シクロポリオレフィン、ノルボルネン等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等が挙げられる。
<Base material>
As the substrate used in the present invention, a conventionally known substrate can be used without any particular limitation. Examples include glass, plastic, polycarbonate, acrylic resin, polyethylene terephthalate (PET), triacetyl cellulose (TAC), cyclopolyolefin, norbornene and other plastic sheets, plastic films, and plastic panels.

〈シリカ系粒子〉
本発明に用いるシリカ系粒子としては、前述した所定の平均粒子径、中空率を有するシリカ系中空粒子が用いられる。
<Silica-based particles>
As the silica-based particles used in the present invention, the silica-based hollow particles having the aforementioned predetermined average particle diameter and hollow ratio are used.

〈マトリックス成分〉
マトリックス成分としては、シリコーン系(ゾルゲル系)マトリックス成分、有機樹脂系マトリックス成分等が用いられる。
<Matrix component>
As the matrix component, a silicone (sol-gel) matrix component, an organic resin matrix component, or the like is used.

本発明の透明被膜付基材の概念を図1に模式的に示す。図1に示すように、前述した所定の平均粒子径、中空率を有するシリカ系中空粒子を用いると、均質な透明被膜が得られやすくなり、基材と透明被膜との密着性が高くなる。また、透明被膜の上部表面は凹凸が小さく平滑になるので、表面での外部散乱が抑えられる。さらに粒子径が小さいため、被膜内に分散している粒子に起因する被膜の内部散乱が抑えられる。このため、透明被膜は、白化が抑制され、耐擦傷性、耐マジック性、耐水性、耐アルカリ性に優れ、低屈折率で反射防止性能に優れている。   The concept of the substrate with a transparent coating of the present invention is schematically shown in FIG. As shown in FIG. 1, when silica-based hollow particles having the above-mentioned predetermined average particle diameter and hollow ratio are used, a homogeneous transparent film is easily obtained, and the adhesion between the substrate and the transparent film is increased. In addition, since the upper surface of the transparent film is smooth with small irregularities, external scattering on the surface can be suppressed. Furthermore, since the particle diameter is small, internal scattering of the coating caused by the particles dispersed in the coating can be suppressed. For this reason, the transparent film is suppressed in whitening, has excellent scratch resistance, magic resistance, water resistance, and alkali resistance, and has a low refractive index and excellent antireflection performance.

前述のシリカ系粒子は、中空率が70%以上であるシリカ系粒子であり、この中空粒子は、内部が気体または気体と多孔質物質のみからなるため、透明性や反射防止性能に優れている。このため、例えば表示板や照明機器のように、透明性が要求される基材としても有用である。   The above-mentioned silica-based particles are silica-based particles having a hollow ratio of 70% or more, and the hollow particles are excellent in transparency and antireflection performance because the inside is composed of only gas or gas and a porous material. . For this reason, it is useful also as a base material with which transparency is requested | required like a display board or a lighting device, for example.

これに対し、従来の透明被膜付基材の概念は、図2に模式的に示される。図2に示すように、従来品は、粒子の中空率が低く、粒子径が大きなものが存在している。また、被膜の上部表面の凹凸が本発明よりも大きく、膜表面での凹凸による外部散乱が本発明よりも増加する。さらに、被膜内に配合された粒子の粒子径に起因する光散乱が本発明よりも大きくなるため、透明被膜の内部散乱が増加する。このため、透明被膜が、白化したり、耐擦傷性、耐マジック性、耐水性、耐アルカリ性が低下する場合がある。また、所望する屈折率や反射防止性能が得られない場合がある。   On the other hand, the concept of a conventional substrate with a transparent coating is schematically shown in FIG. As shown in FIG. 2, the conventional product has a low particle hollowness and a large particle size. Moreover, the unevenness | corrugation of the upper surface of a film is larger than this invention, and the external scattering by the unevenness | corrugation in the film | membrane surface increases from this invention. Furthermore, since the light scattering due to the particle diameter of the particles blended in the coating becomes larger than that of the present invention, the internal scattering of the transparent coating increases. For this reason, the transparent film may be whitened, and scratch resistance, magic resistance, water resistance, and alkali resistance may be reduced. In addition, the desired refractive index and antireflection performance may not be obtained.

透明被膜のシリカ系粒子の含有量は、20〜80質量%、さらには30〜70質量%の範囲にあることが好ましい。なお、残りの成分はマトリックス成分となる。透明被膜中のシリカ系粒子の含有量が20質量%よりも少ないと屈折率の充分に低い透明被膜が得られない場合がある。逆に、透明被膜中のシリカ系粒子の含有量が80質量%を超えると、後述するマトリックス成分の含有量が少な過ぎるために透明被膜の強度、耐擦傷性が不充分となる場合がある。   The content of silica-based particles in the transparent coating is preferably in the range of 20 to 80% by mass, more preferably 30 to 70% by mass. The remaining components are matrix components. If the content of the silica particles in the transparent film is less than 20% by mass, a transparent film having a sufficiently low refractive index may not be obtained. On the other hand, when the content of the silica-based particles in the transparent coating exceeds 80% by mass, the content of the matrix component described later is too small, and the strength and scratch resistance of the transparent coating may be insufficient.

透明被膜の膜厚は80〜120nm、さらには90〜110nmの範囲にあることが好ましい。
透明被膜が薄すぎると、膜の強度、耐擦傷性が不充分となるおそれがある。また、膜が薄すぎて十分な反射防止性能が得られない場合がある。透明被膜が厚すぎても、所望の反射防止性能が得られない場合がある。
The film thickness of the transparent coating is preferably in the range of 80 to 120 nm, more preferably 90 to 110 nm.
If the transparent coating is too thin, the strength and scratch resistance of the membrane may be insufficient. In addition, the film may be too thin to obtain sufficient antireflection performance. Even if the transparent film is too thick, the desired antireflection performance may not be obtained.

透明被膜の屈折率は、1.15〜1.40、さらには1.20〜1.35の範囲にあることが好ましい。透明被膜の屈折率が前記範囲よりも低いものは、被膜組成の点で得ることが困難であり、また屈折率が大きくなると、基材の屈折率あるいは必要に応じて形成される透明被膜の下層に形成される他の膜の屈折率によっても異なるが反射防止性能が不充分となるおそれがある。   The refractive index of the transparent coating is preferably in the range of 1.15 to 1.40, more preferably 1.20 to 1.35. If the refractive index of the transparent coating is lower than the above range, it is difficult to obtain from the viewpoint of coating composition, and if the refractive index increases, the refractive index of the substrate or the lower layer of the transparent coating formed as necessary Depending on the refractive index of the other film formed, the antireflection performance may be insufficient.

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

[実施例1]
〈シリカ系粒子(1)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(1)の水分散液を得た。この核粒子(1)の平均粒子径は5nm、真球度は1.1であった。
核粒子(1)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液28.6kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液28.6kgを16時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.1であった。また、平均粒子径は15nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液129.4kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液43.12kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(1)分散液を得た。このとき、平均粒子径は22nmであった。
この被覆複合酸化物粒子(1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20質量%のシリカ系粒子(1−1)の水分散液を得た。
次に、シリカ系粒子(1−1)分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで80℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20質量%のシリカ系粒子(1−2)の水分散液を得た。
ついで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系粒子(1−2)のアルコール分散液を調製した。
固形分濃度20質量%のシリカ系粒子(1−2)のアルコール分散液100gに3−メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製:KBM−503)6gを添加し、50℃で36時間 加熱処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系粒子(1)のアルコール分散液を調製した。
このシリカ系粒子(1)の各調製工程について表1に示す。また、シリカ系粒子(1)の平均粒子径、中空率、真球度、異形粒子の数割合、屈折率および空隙率の各物理性状を表2に示す。各測定は、「発明を実施するための形態」で示す方法で行った。
[Example 1]
<Preparation of silica-based particles (1)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of the core particle (1). The core particles (1) had an average particle size of 5 nm and a sphericity of 1.1.
While maintaining the aqueous dispersion of the core particles (1) at 60 ° C., 28.6 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as an Al 2 O 3 28.6 kg of an aqueous solution was added over 16 hours to obtain a primary particle dispersion of composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.1. Moreover, the average particle diameter was 15 nm.
Next, 129.4 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 43.12 kg of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.0.
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (1) dispersion. At this time, the average particle diameter was 22 nm.
1,500 g of pure water was added to 500 g of the dispersion of the coated composite oxide particles (1), and concentrated hydrochloric acid (concentration 35.5% by mass) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, an aqueous dispersion of silica-based particles (1-1) having a solid content concentration of 20 mass% is obtained by separating and washing the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. It was.
Next, aqueous ammonia is added to the dispersion of silica-based particles (1-1) to adjust the pH of the dispersion to 10.5, and after aging at 80 ° C. for 11 hours, the solution is cooled to room temperature, and cation Ion exchange using 400 g of exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) Further, 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing to obtain silica-based particles (1-2) An aqueous dispersion was obtained.
Next, an alcohol dispersion of silica-based particles (1-2) having a solid content concentration of 20% by mass in which the solvent was replaced with ethanol using an ultrafiltration membrane was prepared.
6 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of an alcohol dispersion of silica-based particles (1-2) having a solid content concentration of 20% by mass, and at 50 ° C. An alcohol dispersion of silica-based particles (1) having a solid content concentration of 20% by mass was prepared by performing a heat treatment for 36 hours and replacing the solvent with ethanol again using an ultrafiltration membrane.
It shows in Table 1 about each preparation process of this silica type particle | grain (1). Table 2 shows the physical properties of the average particle diameter, hollowness, sphericity, number ratio of irregularly shaped particles, refractive index and porosity of the silica-based particles (1). Each measurement was performed by the method shown in “Mode for Carrying Out the Invention”.

〈反射防止用透明被膜形成用塗料(1)の製造〉
シリカ系粒子(1)のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)1.67gおよびイソプロパノールとn−ブタノールの1/1(質量比)混合溶媒52.6gとを充分に混合して透明被膜形成用塗料(1)を調製した。この透明被膜形成用塗料(1)について、表3に示す。
<Manufacture of paint (1) for forming an antireflection transparent coating>
50 g of a dispersion obtained by diluting an alcohol dispersion of silica-based particles (1) with ethanol to a solid content concentration of 5% by mass, 1.67 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and isopropanol and n-butanol A paint (1) for forming a transparent film was prepared by thoroughly mixing 52.6 g of a 1/1 (mass ratio) mixed solvent. This transparent film-forming paint (1) is shown in Table 3.

〈ハードコート膜形成用塗布液の調製〉
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO濃度40.5質量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ−メタアクリロオキシプロピルトリメトキシシラン1.88g(信越化学工業(株)製:KBM−503、SiO濃度81.2質量%)を混合し超純水を3.1g添加し50℃で20時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5質量%)。
その後、ロータリーエバポレーターでプロピレングリコールモノプロピルエーテル(PGME)に溶剤置換した(固形分濃度40.5質量%)。
ついで、この固形分濃度40.5質量%のシリカゾルのプロピレングリコールモノプロピルエーテル分散液51.85gと、ジヘキサエリスリトールトリアセテート(共栄社化学(株)製:DPE−6A)18.90g、と1.6−ヘキサンジオールジアクリレート(共栄社化学(株)製;ライトアクリレートSR−238F)2.10gとシリコーン系レベリング剤(楠本化成(株)製;ディスパロン1610)0.01gと光重合開始剤(チバジャパン(株)製:イルガキュア184、PGMEで固形分濃度10質量%に溶解)12.60gとPGME14.54gを充分に混合して固形分濃度42.0質量%のハードコート膜形成用塗布液を調製した。
<Preparation of coating solution for forming hard coat film>
Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by mass, dispersion medium: isopropanol, particle refractive index 1.46) to 100 g of γ-meta 1.88 g of acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, SiO 2 concentration 81.2 mass%) was mixed, 3.1 g of ultrapure water was added, and the mixture was stirred at 50 ° C. for 20 hours. Thus, a surface-treated 12 nm silica sol dispersion was obtained (solid content concentration 40.5% by mass).
Thereafter, the solvent was replaced with propylene glycol monopropyl ether (PGME) by a rotary evaporator (solid content concentration: 40.5% by mass).
Next, 51.85 g of this silica sol propylene glycol monopropyl ether dispersion having a solid content concentration of 40.5% by mass, 18.90 g of dihexaerythritol triacetate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A), and 1.6 -Hexanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate SR-238F) 2.10 g, silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon 1610) and photopolymerization initiator (Ciba Japan ( Co., Ltd .: Irgacure 184, dissolved to a solid content of 10% by mass with PGME) 12.60 g and 14.54 g of PGME were sufficiently mixed to prepare a coating solution for forming a hard coat film having a solid content of 42.0% by mass. .

〈反射防止用透明被膜付基材(1)の製造〉
ハードコート膜形成用塗布液を、TACフィルム(パナック(株)製:FT−PB80UL−M、厚さ:80μm、屈折率:1.51)にバーコーター法(#18)で塗布し、80℃で120秒間乾燥した後、300mJ/cmの紫外線を照射して硬化させてハードコート膜を形成した。ハードコート膜の膜厚は8μmであった。
ついで、反射防止用透明被膜形成用塗布液(1)をバーコーター法(#4)で塗布し、80℃で120秒間乾燥した後、N雰囲気下で600mJ/cmの紫外線を照射して硬化させて反射防止用透明被膜付基材(1)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。この反射防止用透明被膜付基材(1)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性、白化、耐マジック性、耐水性、耐アルカリ性についての評価結果を表4に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)、反射率は分光光度計(日本分光社、Ubest−55)により各々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。
<Manufacture of substrate (1) with transparent coating for antireflection>
The hard coat film forming coating solution was applied to a TAC film (manufactured by Panac Corporation: FT-PB80UL-M, thickness: 80 μm, refractive index: 1.51) by the bar coater method (# 18), and 80 ° C. And dried for 120 seconds, and then cured by irradiating with 300 mJ / cm 2 of ultraviolet rays to form a hard coat film. The film thickness of the hard coat film was 8 μm.
Next, the coating solution (1) for forming an antireflection transparent coating was applied by the bar coater method (# 4), dried at 80 ° C. for 120 seconds, and then irradiated with 600 mJ / cm 2 of ultraviolet rays in an N 2 atmosphere. Cured to prepare a substrate (1) with a transparent coating for antireflection. At this time, the film thickness of the antireflection transparent coating was 100 nm. Total light transmittance, haze, reflectance of light having a wavelength of 550 nm, coating refractive index, adhesion and pencil hardness, scratch resistance, whitening, magic resistance, water resistance of the substrate (1) with a transparent coating for antireflection Table 4 shows the evaluation results on the properties and alkali resistance. The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Moreover, the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1).

《密着性》
透明被膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
《Adhesion》
When the surface of the substrate (1) with a transparent coating is made with 100 knives by making 11 parallel scratches with a knife at intervals of 1 mm in length and width, cellophane tape is adhered to this, and then the cellophane tape is peeled off The adhesion was evaluated by classifying the number of cells remaining without peeling off the coating into the following three stages. The results are shown in the table.
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △

《鉛筆硬度》
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
"Pencil hardness"
The pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.

《耐擦傷性の測定》
#0000スチールウールを用い、荷重1,000g/cmで50回摺動し、膜の表面を目視観察し、以下の基準で評価し、結果を表に示した。
評価基準:
筋状の傷が認められない :◎
筋状の傷が僅かに認められる:○
筋状の傷が多数認められる :△
面が全体的に削られている :×
<Measurement of scratch resistance>
Using # 0000 steel wool, sliding 50 times with a load of 1,000 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in the table.
Evaluation criteria:
No streak is found: ◎
Slight streak is observed: ○
Many streak wounds are found: △
The surface has been cut entirely: ×

《白化の評価》
塗膜表面を斜め(約20°)から目視し、評価を以下の4段階で評価した。
評価基準:
白化が認められない :◎
若干の白化がある :○
一部白化している :△
全面的に白化している:×
<Evaluation of whitening>
The surface of the coating film was visually observed from an oblique direction (about 20 °), and the evaluation was evaluated in the following four stages.
Evaluation criteria:
No whitening is recognized: ◎
There is some whitening: ○
Partly whitened: △
Fully whitened: ×

《耐マジック性の評価》
塗膜表面に油性マジックで3cmの長さでラインを引き、1分間放置後、拭き取った際の跡を目視で確認。
評価基準:
マジック跡が見えない :◎
ほとんどマジック跡が見えない:○
マジック跡が一部見える :△
全面的にマジック跡が見える :×
<Evaluation of magic resistance>
Draw a line with a length of 3 cm with oily magic on the surface of the paint film, leave it for 1 minute, and visually check the trace when wiped off.
Evaluation criteria:
I can't see the magic mark: ◎
I can hardly see the magic mark: ○
Some of the magic marks are visible: △
The magic mark is visible on the entire surface: ×

《耐水性の評価》
塗膜表面にスポイドで純水を一滴たらし、3時間放置後に水滴を拭取り、水滴が存在していた場所に跡が残るかを目視で確認。
評価基準:
水滴跡が認められない :○
若干の水滴跡が認められる :△
水滴跡がはっきりと確認できる:×
<< Evaluation of water resistance >>
Drop a drop of pure water on the surface of the coating film with a dropper, and after leaving it for 3 hours, wipe off the water droplets and visually check if there are any traces where the water droplets were present.
Evaluation criteria:
No trace of water drops: ○
Some traces of water droplets are observed:
Water traces can be clearly seen: ×

《耐アルカリ性の評価》
塗膜表面にスポイドで1%NaOH水溶液を一滴たらし、1時間放置後に水滴を拭取り、水滴が存在していた場所に跡が残るかを目視で確認。
評価基準:
跡が認められない :○
若干の跡が認められる :△
跡がはっきりと確認できる:×
<< Evaluation of alkali resistance >>
A drop of 1% NaOH aqueous solution is dropped on the surface of the coating film, and after standing for 1 hour, the water droplets are wiped off, and it is visually confirmed whether traces remain where the water droplets were present.
Evaluation criteria:
No trace is recognized: ○
Some traces are recognized:
Marks can be clearly seen: ×

[実施例2]
〈シリカ系粒子(2)の調製〉
SiOとして濃度3.5質量%の珪酸ナトリウム水溶液1000gに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)を300g加え、室温で1時間撹拌し、その後イオン交換樹脂を分離して、珪酸水溶液を得た。次に珪酸水溶液4.2g、純水62.5g、珪酸ナトリウム13.1gを混合し、70℃で1時間熟成し、続いて70℃に保持したまま、珪酸水溶液141.4gを6時間かけて添加して、平均粒子径3nmの種粒子(2)を得た。1.1質量%の種粒子(2)水分散液1.0kgに1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(2)の水分散液を得た。この核粒子(2)の平均粒子径は3nm、真球度は1.2であった。
核粒子(2)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液4.0kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液4.0kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.0であった。また、平均粒子径は5nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液78.4kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液26.1kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(2)分散液を得た。このとき、平均粒子径は12nmであった。
その後、被覆複合酸化物粒子(2)を使用した以外は実施例1と同様にして、シリカ系粒子(2)を得た。
シリカ系粒子(2)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(2)、反射防止用透明被膜付基材(2)を作製した。
[Example 2]
<Preparation of silica-based particles (2)>
300 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was added to 1000 g of an aqueous sodium silicate solution having a concentration of 3.5% by mass as SiO 2 and stirred at room temperature for 1 hour, and then the ion exchange resin was separated. An aqueous silicic acid solution was obtained. Next, 4.2 g of silicic acid aqueous solution, 62.5 g of pure water, and 13.1 g of sodium silicate were mixed, aged at 70 ° C. for 1 hour, and then kept at 70 ° C., 141.4 g of silicic acid aqueous solution was taken over 6 hours. By addition, seed particles (2) having an average particle diameter of 3 nm were obtained. 1.1% by weight of seed particles (2) 1% by weight of sodium hydroxide was added to 1.0 kg of the aqueous dispersion to adjust the pH to 11.0. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of a core particle (2). The average particle diameter of the core particles (2) was 3 nm, and the sphericity was 1.2.
While maintaining the aqueous dispersion of the core particles (2) at 60 ° C., 4.0 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as an Al 2 O 3 4.0 kg of an aqueous solution was added over 18 hours to obtain a primary particle dispersion of a composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.0. Moreover, the average particle diameter was 5 nm.
Subsequently, 78.4 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 26.1 kg of a sodium aluminate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.0.
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (2) dispersion. At this time, the average particle diameter was 12 nm.
Thereafter, silica-based particles (2) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (2) were used.
A transparent film-forming paint (2) and an antireflection transparent film-coated substrate (2) were prepared in the same manner as in Example 1 except that the silica-based particles (2) were used.

[実施例3]
〈シリカ系粒子(3)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−30、SiO濃度30.5質量%)36.1gに純水963.9gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(3)の水分散液を得た。この核粒子(3)の平均粒子径は12nm、真球度は1.0であった。
核粒子(3)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液7.7kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液7.7kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.2であった。また、平均粒子径は24nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液38.3kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液12.8kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(3)分散液を得た。このとき、平均粒子径は12nmであった。
その後、被覆複合酸化物粒子(3)を使用した以外は実施例1と同様にして、シリカ系粒子(3)を得た。
シリカ系粒子(3)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(3)、反射防止用透明被膜付基材(3)を作製した。
[Example 3]
<Preparation of silica-based particles (3)>
After adding 963.9 g of pure water to 36.1 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-30, SiO 2 concentration 30.5 mass%), 1 mass% sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of a core particle (3). The average particle diameter of the core particles (3) was 12 nm, and the sphericity was 1.0.
While maintaining the aqueous dispersion of the core particles (3) at 60 ° C., 7.7 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as an Al 2 O 3 7.7 kg of an aqueous solution was added over 18 hours to obtain a primary particle dispersion of a composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.2. The average particle size was 24 nm.
Subsequently, 38.3 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 12.8 kg of a sodium oxalate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.0.
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (3) dispersion. At this time, the average particle diameter was 12 nm.
Thereafter, silica-based particles (3) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (3) were used.
A transparent film-forming paint (3) and an antireflection transparent film-coated substrate (3) were produced in the same manner as in Example 1 except that the silica-based particles (3) were used.

[実施例4]
〈シリカ系粒子(4)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(4)の水分散液を得た。この核粒子(4)の平均粒子径は5nm、真球度は1.0であった。
核粒子(4)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液28.6kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液28.6kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.2であった。また、平均粒子径は15nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液141.6kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液75.0kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(4)分散液を得た。このとき、平均粒子径は26nmであった。
その後、被覆複合酸化物粒子(4)を使用した以外は実施例1と同様にして、シリカ系粒子(4)を得た。
シリカ系粒子(4)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(4)、反射防止用透明被膜付基材(4)を作製した。
[Example 4]
<Preparation of silica-based particles (4)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of a core particle (4). The core particles (4) had an average particle size of 5 nm and a sphericity of 1.0.
While maintaining the aqueous dispersion of the core particles (4) at 60 ° C., 28.6 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as Al 2 O 3 28.6 kg of an aqueous solution was added over 18 hours to obtain a primary particle dispersion of composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.2. Moreover, the average particle diameter was 15 nm.
Then, 141.6 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 75.0 kg of an aqueous solution of sodium aluminate having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.0.
Subsequently, after washing with an ultrafiltration membrane to a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (4) dispersion. At this time, the average particle diameter was 26 nm.
Thereafter, silica-based particles (4) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (4) were used.
A transparent film-forming paint (4) and a substrate with antireflection transparent film (4) were produced in the same manner as in Example 1 except that the silica-based particles (4) were used.

[実施例5]
〈シリカ系粒子(5)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、80℃に加温して30分程度保持し、核粒子(5)の水分散液を得た。この核粒子(5)の平均粒子径は5nm、真球度は1.4であった。
核粒子(5)を用いた以外は実施例1と同様にして、シリカ系粒子(5)を得た。
シリカ系粒子(5)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(5)、反射防止用透明被膜付基材(4)を作製した。
[Example 5]
<Preparation of silica-based particles (5)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 80 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of a core particle (5). The core particles (5) had an average particle diameter of 5 nm and a sphericity of 1.4.
Silica-based particles (5) were obtained in the same manner as in Example 1 except that the core particles (5) were used.
A transparent film-forming paint (5) and an antireflection transparent-coated substrate (4) were produced in the same manner as in Example 1 except that the silica-based particles (5) were used.

[実施例6]
〈シリカ系粒子(6)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(6)の水分散液を得た。この核粒子(6)の平均粒子径は5nm、真球度は1.0であった。
この核粒子(6)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液5.3kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液5.3kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.2であった。また、平均粒子径は9nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液148.6kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液78.7kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(6)分散液を得た。このとき、平均粒子径は26nmであった。
その後、被覆複合酸化物粒子(6)を使用した以外は実施例1と同様にして、シリカ系粒子(6)を得た。
シリカ系粒子(6)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(6)、反射防止用透明被膜付基材(6)を作製した。
[Example 6]
<Preparation of silica-based particles (6)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion liquid of a core particle (6). The core particles (6) had an average particle size of 5 nm and a sphericity of 1.0.
While maintaining the aqueous dispersion of the core particles (6) at 60 ° C., 5.3 kg of sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of aluminate as Al 2 O 3 5.3 kg of an aqueous sodium solution was added over 18 hours to obtain a primary particle dispersion of a composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.2. Moreover, the average particle diameter was 9 nm.
Next, 148.6 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 78.7 kg of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.0.
Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (6) dispersion. At this time, the average particle diameter was 26 nm.
Thereafter, silica-based particles (6) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (6) were used.
A transparent film-forming paint (6) and an antireflection transparent film-coated substrate (6) were prepared in the same manner as in Example 1 except that the silica-based particles (6) were used.

[実施例7]
〈シリカ系粒子(7)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(7)の水分散液を得た。 この核粒子(7)の平均粒子径は5nm、真球度は1.0であった。
核粒子(7)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液236.5kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液236.5kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.2であった。また、平均粒子径は30nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液369.0kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液195.4kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.4であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(7)分散液を得た。このとき、平均粒子径は40nmであった。
その後、被覆複合酸化物粒子(7)を使用した以外は実施例1と同様にして、シリカ系粒子(7)を得た。
シリカ系粒子(7)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(7)、反射防止用透明被膜付基材(7)を作製した。
[Example 7]
<Preparation of silica-based particles (7)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion liquid of a core particle (7). The core particles (7) had an average particle size of 5 nm and a sphericity of 1.0.
While maintaining an aqueous dispersion of the core particles (7) at 60 ° C., 236.5 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as an Al 2 O 3 236.5 kg of an aqueous solution was added over 18 hours to obtain a primary particle dispersion of composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.2. Moreover, the average particle diameter was 30 nm.
Subsequently, 369.0 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 195.4 kg of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.4.
Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (7) dispersion. At this time, the average particle diameter was 40 nm.
Thereafter, silica-based particles (7) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (7) were used.
A transparent film-forming paint (7) and an antireflection transparent film-coated substrate (7) were produced in the same manner as in Example 1 except that the silica-based particles (7) were used.

[実施例8]
〈シリカ系粒子(8)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−30、SiO濃度30.5質量%)36.1gに純水963.9gを加えた後、1質量%の水酸化ナトリウムを添加してpHを12.5に調整した。その後、95℃に加温して30分程度保持し、核粒子(8)の水分散液を得た。この核粒子(8)の平均粒子径は12nm、真球度は1.3であった。
その後、核粒子(8)を使用した以外は実施例3と同様にして、シリカ系粒子(8)を得た。
シリカ系粒子(8)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(8)、反射防止用透明被膜付基材(8)を作製した。
[Example 8]
<Preparation of silica-based particles (8)>
After adding 963.9 g of pure water to 36.1 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-30, SiO 2 concentration 30.5 mass%), 1 mass% sodium hydroxide was added. The pH was adjusted to 12.5 by adding. Then, it heated at 95 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion liquid of a core particle (8). The average particle diameter of the core particles (8) was 12 nm, and the sphericity was 1.3.
Thereafter, silica-based particles (8) were obtained in the same manner as in Example 3 except that the core particles (8) were used.
A transparent film-forming paint (8) and an antireflection transparent film-coated substrate (8) were prepared in the same manner as in Example 1 except that the silica-based particles (8) were used.

[比較例1]
〈シリカ系粒子(R1)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを12.5に調整した。その後、95℃に加温して30分程度保持し、核粒子(R1)の水分散液を得た。この核粒子(R1)の平均粒子径は5nm、真球度は1.8であった。
核粒子(R1)を用いた以外は実施例1と同様にして、シリカ系粒子(R1)を得た。
シリカ系粒子(R1)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(R1)、反射防止用透明被膜付基材(R1)を作製した。
[Comparative Example 1]
<Preparation of silica-based particles (R1)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 12.5 by adding. Then, it heated at 95 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of a core particle (R1). The average particle diameter of the core particles (R1) was 5 nm, and the sphericity was 1.8.
Silica-based particles (R1) were obtained in the same manner as in Example 1 except that the core particles (R1) were used.
A transparent film-forming paint (R1) and an antireflection transparent-coated substrate (R1) were prepared in the same manner as in Example 1 except that the silica-based particles (R1) were used.

[参考例1]
〈シリカ系粒子(E1)の調製〉
種粒子の水分散液(日揮触媒化成(株)製:SI−550、SiO濃度20.5質量%)53.6gに純水946.4gを加えた後、1質量%の水酸化ナトリウムを添加してpHを11.0に調整した。その後、60℃に加温して30分程度保持し、核粒子(E1)の水分散液を得た。この核粒子(E1)の平均粒子径は5nm、真球度は1.0であった。
核粒子(E1)の水分散液を60℃で保持しながら、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液562.1kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液562.1kgを18時間で添加して、複合酸化物(SiO・Al)の一次粒子分散液を得た。このときの反応液のpHは11.2であった。また、平均粒子径は40nmであった。
ついで、SiOとして濃度0.75質量%の珪酸ナトリウム水溶液1021.0kgとAlとしての濃度0.25質量%のアルミン酸ナトリウム水溶液540.5kgを8時間で添加して被覆複合酸化物粒子の分散液を得た。このとき、反応液のpHは11.5であった。
ついで、限外濾過膜で洗浄して固形分濃度13質量%にした後、目開き1μmのカプセルフィルターで濾過し被覆複合酸化物粒子(E1)分散液を得た。このとき、平均粒子径は40nmであった。
その後、被覆複合酸化物粒子(E1)を使用した以外は実施例1と同様にして、シリカ系粒子(E1)を得た。
シリカ系粒子(E1)を使用した以外は実施例1と同様にして、透明被膜形成用塗料(E1)、反射防止用透明被膜付基材(E1)を作製した。
[Reference Example 1]
<Preparation of silica-based particles (E1)>
After adding 946.4 g of pure water to 53.6 g of an aqueous dispersion of seed particles (manufactured by JGC Catalysts & Chemicals, Inc .: SI-550, SiO 2 concentration 20.5% by mass), 1% by mass of sodium hydroxide was added. The pH was adjusted to 11.0 by addition. Then, it heated at 60 degreeC and hold | maintained for about 30 minutes, and obtained the aqueous dispersion of the core particle (E1). The average particle diameter of the core particles (E1) was 5 nm, and the sphericity was 1.0.
While maintaining an aqueous dispersion of core particles (E1) at 60 ° C., 562.1 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 0.25% by mass of sodium aluminate as an Al 2 O 3 562.1 kg of an aqueous solution was added over 18 hours to obtain a primary particle dispersion of a composite oxide (SiO 2 · Al 2 O 3 ). The pH of the reaction solution at this time was 11.2. Moreover, the average particle diameter was 40 nm.
Subsequently, 1021.0 kg of a sodium silicate aqueous solution having a concentration of 0.75% by mass as SiO 2 and 540.5 kg of a sodium silicate aqueous solution having a concentration of 0.25% by mass as Al 2 O 3 were added over 8 hours to coat the composite oxide. A dispersion of particles was obtained. At this time, the pH of the reaction solution was 11.5.
Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by mass, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a coated composite oxide particle (E1) dispersion. At this time, the average particle diameter was 40 nm.
Thereafter, silica-based particles (E1) were obtained in the same manner as in Example 1 except that the coated composite oxide particles (E1) were used.
A transparent film-forming paint (E1) and an antireflection transparent-coated substrate (E1) were produced in the same manner as in Example 1 except that the silica-based particles (E1) were used.

Claims (13)

平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子の分散液を製造する方法であって、
平均粒子径が3〜25nm、真球度が1.0〜1.5のシリカの核粒子を含む分散液に、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液とを、同時に添加して複合酸化物粒子を含む分散液を調製する第1工程と、
前記第1工程で得た複合酸化物粒子を含む分散液に、シリカ源を添加して、シリカを含む層で被覆された被覆複合酸化物粒子を含む分散液を調製する第2工程と、
前記第2工程で得た被覆複合酸化物粒子を含む分散液に酸を加えて、被覆複合酸化物粒子に含まれる前記無機化合物に由来する元素を除去する第3工程と、
前記第3工程で得た粒子を含む分散液に、アルカリ条件下で水熱処理を行う第4工程と、
を有することを特徴とするシリカ系粒子分散液の製造方法。
This is a method for producing a dispersion of silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more. And
In a dispersion containing silica core particles having an average particle size of 3 to 25 nm and a sphericity of 1.0 to 1.5, at least one of a silicate aqueous solution and an acidic silicate solution, and an inorganic compound aqueous solution not containing silicon Are added simultaneously to prepare a dispersion containing composite oxide particles,
A second step of preparing a dispersion containing coated composite oxide particles coated with a layer containing silica by adding a silica source to the dispersion containing the composite oxide particles obtained in the first step;
A third step of adding an acid to the dispersion containing the coated composite oxide particles obtained in the second step to remove an element derived from the inorganic compound contained in the coated composite oxide particles;
A fourth step of hydrothermally treating the dispersion containing the particles obtained in the third step under alkaline conditions;
A method for producing a silica-based particle dispersion, comprising:
前記第1工程で、複合酸化物粒子を含む分散液の調製を固形分濃度0.1〜0.9質量%で行い、核粒子から複合酸化物粒子への粒子成長速度を0.1〜10nm/時間で行うことを特徴とする請求項1に記載のシリカ系粒子分散液の製造方法。   In the first step, the dispersion containing the composite oxide particles is prepared at a solid content concentration of 0.1 to 0.9% by mass, and the particle growth rate from the core particles to the composite oxide particles is 0.1 to 10 nm. The method for producing a silica-based particle dispersion according to claim 1, wherein the method is performed at a time per hour. 前記複合酸化物粒子は、平均粒子径が3〜35nm、真球度が1.0〜1.5であることを特徴とする請求項1または2に記載のシリカ系粒子分散液の製造方法。   3. The method for producing a silica-based particle dispersion according to claim 1, wherein the composite oxide particles have an average particle diameter of 3 to 35 nm and a sphericity of 1.0 to 1.5. 前記第1工程で、珪酸塩水溶液及び酸性珪酸液に由来するシリカをSiOで表し、無機化合物水溶液に由来する無機化合物を酸化物としてMOで表したときのモル比MO/SiOが0.15〜3.0であることを特徴とする請求項1〜3のいずれかに記載のシリカ系粒子分散液の製造方法。 In the first step, the silica derived from the silicate aqueous solution and the acidic silicate solution is represented by SiO 2 , and the molar ratio MO X / SiO 2 when the inorganic compound derived from the inorganic compound aqueous solution is represented by MO X as an oxide is It is 0.15-3.0, The manufacturing method of the silica type particle dispersion liquid in any one of Claims 1-3 characterized by the above-mentioned. 前記第2工程で、珪酸塩水溶液及び酸性珪酸液の少なくとも一方と、珪素を含まない無機化合物水溶液を添加して、複合酸化物粒子にシリカを含む被覆層を形成することを特徴とする請求項1〜4のいずれかに記載のシリカ系粒子の分散液の製造方法。   The at least one of a silicate aqueous solution and an acidic silicate solution and an inorganic compound aqueous solution not containing silicon are added in the second step to form a coating layer containing silica on the composite oxide particles. The manufacturing method of the dispersion liquid of the silica type particle in any one of 1-4. 前記第2工程で、複合酸化物粒子へのシリカを含む被覆層の形成を固形分濃度0.1〜0.9質量%で行い、複合酸化物粒子への被覆層の形成速度を0.1〜10nm/時間で行うことを特徴とする請求項1〜5のいずれかに記載のシリカ系粒子の分散液の製造方法。   In the second step, the formation of the coating layer containing silica on the composite oxide particles is performed at a solid content concentration of 0.1 to 0.9% by mass, and the formation rate of the coating layer on the composite oxide particles is 0.1. The method for producing a dispersion of silica-based particles according to any one of claims 1 to 5, wherein the method is performed at 10 to 10 nm / hour. 平均粒子径が5〜40nmであり、かつ中空粒子及び中実粒子の合計粒子数に占める中空粒子数の割合(中空率)が70%以上であるシリカ系粒子を含むことを特徴とするシリカ系粒子の分散液。   Silica-based particles containing silica-based particles having an average particle diameter of 5 to 40 nm and a ratio of the number of hollow particles to the total number of hollow particles and solid particles (hollow ratio) of 70% or more Particle dispersion. 前記シリカ系粒子の真球度が1.0〜1.5であることを特徴とする請求項7に記載のシリカ系粒子の分散液。   The dispersion of silica-based particles according to claim 7, wherein the sphericity of the silica-based particles is 1.0 to 1.5. 前記シリカ系粒子の空隙率が3〜50%であることを特徴とする請求項7または8に記載のシリカ系粒子の分散液。   The silica particle dispersion according to claim 7 or 8, wherein the silica particles have a porosity of 3 to 50%. 前記シリカ系粒子が、その表面に珪素原子に直接結合した有機基を有することを特徴とする請求項7〜9のいずれかに記載のシリカ系粒子の分散液。   The silica-based particle dispersion according to claim 7, wherein the silica-based particle has an organic group directly bonded to a silicon atom on a surface thereof. 請求項7〜10のいずれかに記載のシリカ系粒子とマトリックス形成成分と極性溶媒とを含むことを特徴とする透明被膜形成用塗布液。   A coating liquid for forming a transparent film, comprising the silica-based particles according to claim 7, a matrix-forming component, and a polar solvent. 前記シリカ系粒子の濃度が固形分として0.4〜54質量%であり、
前記マトリックス形成成分の濃度が0.1〜36質量%であり、
全固形分濃度が1〜60質量%であることを特徴とする請求項11に記載の透明被膜形成用塗布液。
The concentration of the silica-based particles is 0.4 to 54% by mass as a solid content,
The concentration of the matrix-forming component is 0.1 to 36% by mass;
The coating liquid for forming a transparent film according to claim 11, wherein the total solid content concentration is 1 to 60% by mass.
基材と、該基材上に形成された、請求項7〜10のいずれかに記載のシリカ系粒子及びマトリックス成分を含む透明被膜とを備えた透明被膜付基材であって、
前記透明被膜中のシリカ系粒子の含有量が20〜80質量%であることを特徴とする透明被膜付基材。

A substrate with a transparent coating comprising a substrate and a transparent coating comprising the silica-based particles and the matrix component according to any one of claims 7 to 10 formed on the substrate,
Content of the silica-type particle in the said transparent film is 20-80 mass%, The base material with a transparent film characterized by the above-mentioned.

JP2017018820A 2017-02-03 2017-02-03 Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film Active JP6895760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018820A JP6895760B2 (en) 2017-02-03 2017-02-03 Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018820A JP6895760B2 (en) 2017-02-03 2017-02-03 Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film

Publications (2)

Publication Number Publication Date
JP2018123043A true JP2018123043A (en) 2018-08-09
JP6895760B2 JP6895760B2 (en) 2021-06-30

Family

ID=63110835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018820A Active JP6895760B2 (en) 2017-02-03 2017-02-03 Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film

Country Status (1)

Country Link
JP (1) JP6895760B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015954A (en) * 2016-03-09 2019-01-31 エルジー・ケム・リミテッド Antireflection film
WO2020213159A1 (en) * 2019-04-19 2020-10-22 日本精化株式会社 Optical product with low interference fringe and coating agent therefor
CN112573526A (en) * 2019-09-30 2021-03-30 日挥触媒化成株式会社 Particle having cavity inside shell, method for producing same, coating liquid containing same, and substrate with transparent film containing same
CN115746616A (en) * 2021-09-03 2023-03-07 凯斯科技股份有限公司 Surface-modified hollow silica particles and surface-modified hollow silica dispersion
WO2023189785A1 (en) * 2022-03-31 2023-10-05 日揮触媒化成株式会社 Dispersion of hollow silica particles, and method for producing same
TWI846962B (en) 2019-09-30 2024-07-01 日商日揮觸媒化成股份有限公司 Particles having cavities on the inner side of the shell, method for producing the same, coating liquid containing the same, and substrate with a transparent film containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343065A (en) * 2008-09-04 2009-01-14 复旦大学 Nano-silicon dioxide hollow sphere material and method of preparing the same
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
WO2015152171A1 (en) * 2014-03-31 2015-10-08 日揮触媒化成株式会社 Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343065A (en) * 2008-09-04 2009-01-14 复旦大学 Nano-silicon dioxide hollow sphere material and method of preparing the same
JP2012030489A (en) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd Substrate with transparent film and coating to form transparent film
WO2015152171A1 (en) * 2014-03-31 2015-10-08 日揮触媒化成株式会社 Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983252B2 (en) 2016-03-09 2021-04-20 Lg Chem, Ltd. Anti-reflective film
US10222510B2 (en) 2016-03-09 2019-03-05 Lg Chem, Ltd Anti-reflective film
US10627547B2 (en) 2016-03-09 2020-04-21 Lg Chem, Ltd. Anti-reflective film
US10802178B2 (en) 2016-03-09 2020-10-13 Lg Chem, Ltd. Anti-reflective film
JP2019015954A (en) * 2016-03-09 2019-01-31 エルジー・ケム・リミテッド Antireflection film
US10895667B2 (en) 2016-03-09 2021-01-19 Lg Chem, Ltd. Antireflection film
US11275199B2 (en) 2016-03-09 2022-03-15 Lg Chem, Ltd. Anti-reflective film
US11262481B2 (en) 2016-03-09 2022-03-01 Lg Chem, Ltd. Anti-reflective film
WO2020213159A1 (en) * 2019-04-19 2020-10-22 日本精化株式会社 Optical product with low interference fringe and coating agent therefor
JP2021054685A (en) * 2019-09-30 2021-04-08 日揮触媒化成株式会社 Particles having cavity inside shell including silica and method for producing the same, coating liquid containing the same, and base material with transparent film containing the same
CN112573526A (en) * 2019-09-30 2021-03-30 日挥触媒化成株式会社 Particle having cavity inside shell, method for producing same, coating liquid containing same, and substrate with transparent film containing same
JP7360294B2 (en) 2019-09-30 2023-10-12 日揮触媒化成株式会社 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
CN112573526B (en) * 2019-09-30 2024-03-29 日挥触媒化成株式会社 Particles having voids inside shell, method for producing same, coating liquid containing same, and substrate with transparent coating film containing same
TWI846962B (en) 2019-09-30 2024-07-01 日商日揮觸媒化成股份有限公司 Particles having cavities on the inner side of the shell, method for producing the same, coating liquid containing the same, and substrate with a transparent film containing the same
JP7557354B2 (en) 2020-12-04 2024-09-27 日揮触媒化成株式会社 Modified hollow particles and method for producing same
CN115746616A (en) * 2021-09-03 2023-03-07 凯斯科技股份有限公司 Surface-modified hollow silica particles and surface-modified hollow silica dispersion
JP2023037553A (en) * 2021-09-03 2023-03-15 ケーシーテック カンパニー リミテッド Surface-modified hollow silica and surface-modified hollow silica liquid dispersion
JP7422796B2 (en) 2021-09-03 2024-01-26 ケーシーテック カンパニー リミテッド Surface-modified hollow silica and dispersion of surface-modified hollow silica
WO2023189785A1 (en) * 2022-03-31 2023-10-05 日揮触媒化成株式会社 Dispersion of hollow silica particles, and method for producing same

Also Published As

Publication number Publication date
JP6895760B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5328101B2 (en) Method for producing silica-based fine particles
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP5686604B2 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP2009066965A (en) Transparent coat applied base material, and transparent coat forming paint
JP2009035573A (en) Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP2011137097A (en) Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP5554904B2 (en) Paint for forming transparent film and substrate with transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP2004204173A (en) Coating for forming infrared light-shading film and substrate having infrared light-shading film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
TWI846962B (en) Particles having cavities on the inner side of the shell, method for producing the same, coating liquid containing the same, and substrate with a transparent film containing the same
JP5281241B2 (en) Base material with transparent colored film and coating liquid for forming transparent colored film
JP7557354B2 (en) Modified hollow particles and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6895760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250