JP3761189B2 - Composite oxide sol, method for producing the same, and substrate - Google Patents

Composite oxide sol, method for producing the same, and substrate Download PDF

Info

Publication number
JP3761189B2
JP3761189B2 JP29893793A JP29893793A JP3761189B2 JP 3761189 B2 JP3761189 B2 JP 3761189B2 JP 29893793 A JP29893793 A JP 29893793A JP 29893793 A JP29893793 A JP 29893793A JP 3761189 B2 JP3761189 B2 JP 3761189B2
Authority
JP
Japan
Prior art keywords
group
silica
colloidal particles
sol
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29893793A
Other languages
Japanese (ja)
Other versions
JPH07133105A (en
Inventor
祐二 俵迫
広泰 西田
通郎 小松
博雄 吉留
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP29893793A priority Critical patent/JP3761189B2/en
Publication of JPH07133105A publication Critical patent/JPH07133105A/en
Application granted granted Critical
Publication of JP3761189B2 publication Critical patent/JP3761189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Colloid Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、シリカと他の無機酸化物とからなる複合酸化物コロイド粒子が分散したゾルおよびその製造方法、ならびに、該微粒子を含有する被膜が表面に形成された基材に関するものである。
【0002】
【従来の技術】
従来から、シリカ、アルミナ等のゾル、またはシリカ・アルミナ、シリカ・ジルコニア等の複合酸化物ゾルは公知であり、種々の用途に用いられている。これらのゾル中のコロイド粒子は、いずれも粒子内部に殆ど細孔を持たず無孔質であり、その比表面積も小さいものであった。そこで、本発明者等は先に、比表面積が大きく多孔質の微粒子が分散した複合酸化物ゾルに関する発明を行い(特開平5−132309号)、広範な用途に適用可能な複合酸化物ゾルを開示した。
【0003】
一方、ガラス、プラスチックシート等の基材表面の反射を防止するため、その表面に反射防止膜を形成することが知られており、例えば、蒸着法、CVD法等によって、フッ化マグネシウムのような低屈折率の物質の被膜をガラスやプラスチックの表面に形成することが行われてしている。しかし、これらの方法はコスト的に高価なものとなっている。
【0004】
また、シリカ微粒子を含む塗布液をガラス表面に塗布して、シリカ微粒子による微細で均一な凹凸をもった反射防止被膜を形成する方法も知られている。しかしながら、この方法は、シリカ微粒子により形成された凹凸面において、光の乱反射により正反射が低減されることを利用したり、微粒子間隙に生じる空気層を利用して反射防止を図るものであるが、基材表面への粒子の固定化や単層膜の形成が難しく、表面の反射率を制御することが容易ではない。
【0005】
【発明の目的】
本発明は、前記従来の複合酸化物微粒子とは異なる、新規な低屈折率のコロイド粒子が分散したゾルおよびその製造方法を提供することを目的とするものである。
また、本発明はこの低屈折率の微粒子を塗布膜に利用した低反射用の基材を提供することを目的とするものである。
【0006】
【発明の概要】
本発明の複合酸化物ゾルは、屈折率が1.36〜1.44である、シリカとシリカ以外の無機酸化物とからなる平均粒径が5〜300nmの範囲にある複合酸化物コロイド粒子が、水および/または有機溶媒に分散したことを特徴とするものである。
【0007】
本発明の複合酸化物ゾルの製造方法は、下記第1〜第3工程よりなることを特徴とするものである。
(1)アルカリ金属、アンモニウムまたは有機塩基の珪酸塩と、アルカリ可溶の無機化合物とを、pH10以上のアルカリ水溶液中に同時に添加して、シリカとシリカ以外の無機酸化物とからなるコロイド粒子を生成させる第1工程。
(2)該コロイド粒子中の珪素と酸素以外の元素の一部を除去する第2工程。
(3)該コロイド粒子の表面を被膜で被覆する第3工程。
【0008】
また、本発明の複合酸化物ゾルの別の製造方法は、下記第1〜第3工程よりなることを特徴とするものである。
(1)シード粒子が分散したpH10以上の分散液中に、アルカリ金属、アンモニウムまたは有機塩基の珪酸塩と、アルカリ可溶の無機化合物とを同時に添加し該シード粒子を核とする粒子成長を行わせて、シリカとシリカ以外の無機酸化物とからなる微粒子を生成させる第1工程。
(2)該コロイド粒子中の珪素と酸素以外の元素の一部を除去する第2工程。
(3)該コロイド粒子の表面を被膜で被覆する第3工程。
【0009】
本発明の基材は、屈折率が1.36〜1.44である、シリカとシリカ以外の無機酸化物とからなる平均粒径が5〜300nmの範囲にある複合酸化物微粒子と、被膜形成用マトリックスとからなる被膜が表面に形成されてなることを特徴とするものである。
【0010】
【発明の具体的な説明】
以下、本発明を具体的に詳述するが、始めに複合酸化物ゾルについて説明する。
【0011】
〔複合酸化物ゾル〕
本発明のゾルに分散したコロイド粒子は、シリカとシリカ以外の無機酸化物、具体的には、Al2 3 、B2 3 、TiO2 、ZrO2 、SnO2 、Ce2 3 、P2 5 、Sb2 3 、MoO3 、WO3 等との複合酸化物からなる。また、当該コロイド粒子の表面は、例えば、シリカ等の被膜で薄く被覆されており、このときの被覆処理前のコロイド粒子は多孔性の微粒子である。
【0012】
本発明の複合酸化物ゾルは上記コロイド粒子が、水、有機溶媒または水と有機溶媒との混合溶媒に分散したゾルであるが、本発明で用いられる有機溶媒は1価または多価アルコールを始めとする従来の有機ゾルに用いられる有機溶媒が使用可能である。
【0013】
また、従来のシリカゾル等のコロイド粒子の屈折率が1.45、またはそれ以上と高いのに対して、本発明のコロイド粒子の屈折率は1.44以下である。このコロイド粒子の屈折率は、粒子を構成するシリカと無機酸化物の割合、無機酸化物の種類または粒子内部の細孔の量を変えることにより制御することができる。
【0014】
本発明のゾル中のコロイド粒子の屈折率は、次のようにして測定する。
(1)複合酸化物ゾルをエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をコロイド粒子の屈折率とする。
【0015】
〔複合酸化物ゾルの製造方法〕
次に、複合酸化物ゾルの製造方法を説明する。本発明の製造方法は、次の第1〜第3工程からなる。
【0016】
第1工程では、予め、シリカ原料とシリカ以外の無機酸化物原料のアルカリ水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に撹拌しながら徐々に添加する。
【0017】
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基の珪酸塩を用いる。
アルカリ金属の珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが用いられる。
有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
【0018】
また、無機酸化物の原料としては、アルカリ可溶の無機化合物を用い、周期表の3A族、3B族、4A族、4B族、5A族、5B族、6A族から選ばれる金属または非金属のオキソ酸の、アルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
【0019】
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、本発明ではこのpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類とその混合割合とによって定まるpH値に落ち着く。
pHを所定の範囲に制御するとき、例えば酸を添加することがあるが、この場合、添加された酸により複合酸化物の原料の金属の塩が生成し、このためゾルの安定性が低下することがある。なお、このときの水溶液の添加速度には格別の制限はない。
【0020】
本発明の複合酸化物ゾルの製造方法では、シード粒子の分散液を出発原料とすることも可能である。当該シード粒子としては、特に制限はないが、SiO2 、Al2 3 、TiO2 またはZrO2 等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。勿論、前記本発明の製造方法によって得られたゾルをシード粒子分散液としてもよい。
【0021】
このpH10以上に調整したシード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に添加する方法と同様にして、撹拌しながら添加する。この場合も、分散液のpH制御は行わず成り行きに任せる。このように、シード粒子を核として複合酸化物粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
【0022】
上記したシリカ原料および無機酸化物原料はアルカリ側で高い溶解度をもっている。しかしながら、この溶解度の大きいpH領域で両者を混合すると、珪酸イオンおよびアルミン酸イオンなどのオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、あるいは、シード粒子上に析出して粒子成長が起こる。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
【0023】
第1工程におけるシリカとシリカ以外の無機酸化物との複合割合は、無機酸化物に対するシリカのモル比が0.5〜20の範囲内にあることが好ましい。この範囲内において、シリカの割合が少なくなる程、コロイド粒子は多孔質になり比表面積が大きくなる。しかしながら、モル比が0.5未満になると、コロイド粒子の比表面積は殆ど増加しなくなる。他方、モル比が20を越えるようになると、細孔容積が少なくなり、比表面積も低下してくる。
【0024】
第2工程では、前記複合酸化物からなるコロイド粒子から、珪素と酸素以外の元素の少なくとも一部を選択的に除去する。具体的な除去方法としては、複合酸化物中の元素を鉱酸や有機酸を用いて溶解除去したり、あるいは、陽イオン交換樹脂と接触させてイオン交換除去する。
【0025】
前記第1工程で得られる複合酸化物のコロイド粒子は、珪素と無機酸化物構成元素が酸素を介して結合した網目構造の粒子である。このような複合酸化物から珪素と酸素以外の元素を除去することにより、一層多孔質で比表面積の大きいコロイド粒子が得られるのであるが、過度に除去するとコロイド粒子の強度が弱くなり、遂にはその形状を保持することができなくなる。従って、最終的な無機酸化物に対するシリカの複合割合(モル比)は、概そ1000以下にすることが望ましい。
【0026】
第3工程では、このゾルに加水分解性の有機ケイ素化合物またはケイ酸液等を加えることにより、コロイド粒子の表面を加水分解性有機ケイ素化合物またはケイ酸液等の重合物で被覆する。
【0027】
加水分解性の有機ケイ素化合物としては、一般式Rn Si(OR′)4-n 〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0028】
添加方法としては、これらのアルコキシシラン、純水、およびアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記ゾルに加え、アルコキシシランを加水分解して生成したケイ酸重合物をコロイド粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時にゾル中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0029】
ゾルの分散媒が水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液による被覆処理も可能である。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
ケイ酸液を用いる場合には、ゾル中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を重合・ゲル化させ、ケイ酸重合物をコロイド粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用して被覆処理を行うことも可能である。
有機ケイ素化合物またはケイ酸液の添加量は、コロイド粒子の表面をそれぞれの重合物が十分に被覆できる程度とする。
【0030】
このようにして得られた複合酸化物ゾルに分散したコロイド粒子の屈折率は、従来の酸化物コロイド粒子の屈折率よりも低く、1.36〜1.44の範囲内となる。本発明では前述したように、まず、多孔性のコロイド粒子が分散した複合酸化物ゾルを調製し、次いで、アルコキシシラン等で該コロイド粒子の表面を被覆することにより、粒子の細孔入口が閉塞され、粒子内部の多孔性が保持される。その結果、コロイド粒子の屈折率は、従来の無孔質の酸化物コロイド粒子に比較して低くなるものと考えられる。
【0031】
本発明のコロイド粒子の表面被覆処理は、上述のような有機ケイ素化合物、ケイ酸液のみでなく、例えば、合成樹脂等、粒子表面を薄く被覆しその細孔入口を閉塞できるものであればよい。
当該コロイド粒子の平均粒径は、調製条件によって任意のものが得られるが、一般的には5〜300nm、好ましくは5〜150nmとなる。
【0032】
上記複合酸化物ゾルは水を分散媒とするゾルであるが、その用途に応じて、エタノール、エチレングリコール等の1価または多価アルコール、あるいはその他の有機溶媒と溶媒置換して有機ゾルとすることも可能である。
【0033】
上記コロイド粒子が分散したゾルを濃縮する場合には、予めゾル中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニウムイオン等の一部を除去した後に濃縮した方が、安定した濃縮ゾルが得られる。除去方法としては、限外濾過等の公知の方法を採用することができる。
【0034】
〔低反射用基材〕
次に、本発明に係る被膜付基材について説明する。この被膜付基材は、ガラス、ポリカーボネート、アクリル、PET、TAC等のプラスチックシート、フィルム等の基材の表面に被膜を形成したものであり、後述する塗布液をディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、焼成して得ることができる。
【0035】
被膜形成用の塗布液は、前記ゾルと被膜形成用マトリックスとを混合して製造する。また、塗布液には必要に応じて有機溶媒を混合してもよい。
本発明において被膜形成用マトリックスとは、基材の表面に被膜を形成し得る成分をいい、例えば、従来から用いられているポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、シリコン樹脂などの塗料用樹脂、または、前記アルコキシシラン等の加水分解性有機ケイ素化合物等が挙げられる。
【0036】
マトリックスとして塗料用樹脂を用いる場合には、例えば、前記ゾルの分散媒としての水を、アルコール等の有機溶媒で置換し、この有機溶媒分散ゾルと塗料用樹脂を適当な有機溶剤で希釈して塗布液とすることができる。
【0037】
一方、マトリックスとして加水分解性有機ケイ素化合物を用いる場合には、例えば、アルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを加えることにより、アルコキシシランの部分加水分解物を得、これに前記ゾルを混合し、必要に応じて有機溶剤で希釈して塗布液とすることができる。
【0038】
塗布液中の複合酸化物微粒子とマトリックスの重量割合は、複合酸化物微粒子:マトリックス=90:1〜1:99の範囲が好ましい。複合酸化物微粒子が90重量部を越えると被膜の強度が不足して実用性に欠ける一方、1重量部未満では当該微粒子の添加効果が現れない。
このようにして得られた被膜付基材は、ガラス、プラスチック等の基材自体より低屈折率の被膜が表面に形成されていることから、反射防止機能が優れている。
【0039】
【実施例】
〔複合酸化物ゾルの製造〕
実施例1
平均粒径5nm、SiO2 濃度20重量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2 として1.5重量%の珪酸ナトリウム水溶液9000gとAl2 3 として0.5重量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、殆ど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20重量%のSiO2 ・Al2 3 複合酸化物前駆体ゾル(A)を得た。(第1工程)
【0040】
この前駆体ゾル(A)500gに純水1,700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2 濃度3.5重量%)3,000gを添加した。このゾルを限外濾過膜で洗浄して固形分濃度13重量%になったゾル500gに純水1,125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。
次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、一部のアルミニウムが除去されたSiO2 ・Al2 3 複合酸化物前駆体ゾル(B)を得た。(第2工程)
【0041】
上記ゾル(B)1500gと、純水500g、エタノール1,750gおよび28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2 28重量%)104gを添加し、複合酸化物コロイド粒子の表面をエチルシリケートの加水分解重縮合物で被覆した。次いで、エバポレーターで固形分濃度5重量%まで濃縮した後、15%アンモニア水を加えてpH10とし、オートクレーブで180℃、2時間加熱処理し、本発明の複合酸化物ゾルを得た。(第3工程)
【0042】
この複合酸化物ゾル中のコロイド粒子(P1)の平均粒径、SiO2 /MOx (モル比)、および屈折率を表1に示す。ここで、平均粒径は動的光散乱法により測定し、屈折率は標準屈折液としてCARGILL 製のSeriesA、AAを用い、前述の方法で測定した。
【0043】
実施例2
実施例1で得られた前駆体ゾル(A)100gに純水1,900gを加えて95℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液(SiO2 として1.5g重量%)27,000gおよびアルミン酸ナトリウム水溶液(Al2 3 として0.5重量%)27,000gを同時に徐々に添加し、前駆体ゾル(A)の微粒子を核として粒子成長を行わせた。添加終了後、室温まで冷却した後、限外濾過膜で洗浄、濃縮して、固形分濃度20重量%の前駆体ゾル(C)を得た。(第1工程)
【0044】
この前駆体ゾル(C)500gを採り、実施例1と同様の方法により、第2工程の脱アルミニウム処理、および、第3工程のエチルシリケートの加水分解物による被覆処理を行い、表1に示すコロイド粒子(P2)が分散した複合酸化物ゾルを得た。
【0045】
実施例3
実施例2で得られた前駆体ゾル(C)100gに純水1,900gを加えて95℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液(SiO2 として1.5g重量%)7,000gおよびアルミン酸ナトリウム水溶液(Al2 3 として0.5重量%)7,000gを同時に徐々に添加し、粒子成長を行わせた。添加終了後、室温まで冷却した後、限外濾過膜で洗浄、濃縮して、固形分濃度20重量%の前駆体ゾル(D)を得た。(第1工程)
この前駆体ゾル(D)500gを採り、実施例1と同様の方法により、表1に示すコロイド粒子(P3)が分散した複合酸化物ゾルを得た。
【0046】
実施例4
実施例1のアルミン酸ナトリウムの代わりに、SnO2 として0.5重量%の錫酸カリウム水溶液9,000gを用いた以外は、実施例1と同様の方法で、固形分濃度20重量%のSiO2 ・SnO2 複合酸化物前駆体ゾルを得、更に実施例1と同様の方法で、脱Sn処理および被覆処理を行い、表1に示すコロイド粒子(P4)が分散した複合酸化物ゾルを得た。
【0047】
実施例5
実施例1の第2工程で得られた脱アルミニウム処理したSiO2 ・Al2 3 複合酸化物前駆体ゾル(B)1,500gをpH11に調整して98℃に加温した後、ケイ酸液(SiO2 として3.5重量%)700gを添加し、コロイド粒子の表面をシリカ重合物で被覆した。
次いで、限外濾過膜で洗浄、濃縮して、固形分濃度13重量%の表1に示すコロイド粒子(P5)が分散した複合酸化物ゾルを得た。
【0048】
実施例6
実施例1の第2工程において、濃塩酸添加による脱アルミニウム処理の条件をpH1.0の代わりにpH3.0で行った以外は、実施例1と同様の方法により表1に示すコロイド粒子(P6)が分散した複合酸化物ゾルを得た。
【0049】
実施例7
実施例1の第2工程において、濃塩酸添加による脱アルミニウム処理の条件をpH1.0の代わりにpH0.5で行った以外は、実施例1と同様の方法により表1に示すコロイド粒子(P7)が分散した複合酸化物ゾルを得た。
【0050】
比較例
実施例1の第2工程において得られたSiO2 ・Al2 3 複合酸化物前駆体ゾル(B)について、そのコロイド粒子(P0)の平均粒径、SiO2 /MOx (モル比)、および屈折率を測定した。
【0051】
【表1】

Figure 0003761189
【0052】
〔低反射フィルムの製造〕
実施例8
実施例1で得られた複合酸化物ゾルを限外濾過膜に通し、分散媒の水をエタノールに置換した。このエタノールゾル(固形分濃度5重量%)50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して塗布液を調製した。
【0053】
これをPETフィルムにバーコーター法で塗布し、80℃、1分間乾燥させて、低反射フィルム(F8)を得た。このフィルム(F8)と、未塗布のPETフィルム(F80 )の全光線透過率、ヘイズ、および波長550nmの光線の反射率を表2に示す。全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。
【0054】
〔低反射ガラスの製造〕
実施例9
エチルシリケート(SiO2 濃度28重量%)20g、エタノール45gおよび純水5.33gの混合溶液に少量の塩酸を添加して、エチルシリケートの部分加水分解物を含有したマトリックスを得た。このマトリックスに、実施例1で得られた複合酸化物ゾルをエタノールと溶媒置換したエタノールゾル(固形分濃度18重量%)16.7gを混合して塗布液を調製した。
【0055】
この塗布液を透明ガラス板の表面に500rpm、10秒の条件でスピナー法により塗布した後、160℃で30分間、加熱処理して低反射ガラス(G9)を得た。このガラス(G9)と、未塗布のガラス(G90 )の全光線透過率、ヘイズ、および波長550nmの光線の反射率を表2に示す。
【0056】
実施例10
実施例9において、複合酸化物ゾルを実施例3の複合酸化物ゾルに代えた以外は実施例9と同様にして、低反射ガラス(G10)を得た。
【0057】
【表2】
Figure 0003761189
【0058】
【発明の効果】
本発明に係る複合酸化物ゾルは、従来のシリカゾル等と比べて低屈折率のコロイド粒子が分散したゾルであり、低反射用基材の表面被膜の構成成分として利用可能である。このような被膜が形成されたガラスは、陰極線管、液晶表示装置などの表示パネルを始め、低反射ガラスとして種々の用途に供し得る。また、この被膜が形成されたPET等のプラスチックシートまたはフィルムは、低反射シートまたはフィルムとして有用である。
【0059】
本発明に係る複合酸化物ゾルの製造方法は、ゾルの製造操作が容易で、しかも製造プロセスが簡易であるという効果を有している。[0001]
[Industrial application fields]
The present invention relates to a sol in which composite oxide colloidal particles composed of silica and another inorganic oxide are dispersed, a method for producing the sol, and a substrate on which a coating containing the fine particles is formed.
[0002]
[Prior art]
Conventionally, sols such as silica and alumina or composite oxide sols such as silica / alumina and silica / zirconia are known and used in various applications. All of the colloidal particles in these sols had no pores inside the particles, were nonporous, and had a small specific surface area. Accordingly, the present inventors first invented a composite oxide sol having a large specific surface area and porous fine particles dispersed therein (Japanese Patent Laid-Open No. 5-132309), and developed a composite oxide sol applicable to a wide range of applications. Disclosed.
[0003]
On the other hand, in order to prevent reflection on the surface of a substrate such as glass or plastic sheet, it is known to form an antireflection film on the surface, such as magnesium fluoride by vapor deposition or CVD. A film of a low refractive index material is formed on the surface of glass or plastic. However, these methods are costly.
[0004]
There is also known a method in which a coating solution containing silica fine particles is applied to a glass surface to form an antireflection coating having fine and uniform irregularities by silica fine particles. However, this method uses the fact that regular reflection is reduced by irregular reflection of light on the uneven surface formed by silica fine particles, or prevents reflection by using an air layer generated in the fine particle gap. In addition, it is difficult to fix particles on the substrate surface and to form a single layer film, and it is not easy to control the reflectance of the surface.
[0005]
OBJECT OF THE INVENTION
An object of the present invention is to provide a novel sol in which colloidal particles having a low refractive index different from the conventional composite oxide fine particles are dispersed and a method for producing the same.
Another object of the present invention is to provide a substrate for low reflection using the low refractive index fine particles as a coating film.
[0006]
SUMMARY OF THE INVENTION
The composite oxide sol of the present invention is a composite oxide colloidal particle having a refractive index of 1.36 to 1.44 and an average particle diameter of 5 to 300 nm made of silica and an inorganic oxide other than silica. , Dispersed in water and / or an organic solvent.
[0007]
The method for producing a composite oxide sol of the present invention is characterized by comprising the following first to third steps.
(1) An alkali metal, ammonium or organic base silicate and an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution having a pH of 10 or more to produce colloidal particles composed of silica and an inorganic oxide other than silica. The 1st process made to produce | generate.
(2) A second step of removing a part of the elements other than silicon and oxygen in the colloidal particles.
(3) A third step of coating the surface of the colloidal particles with a coating.
[0008]
Another method for producing the composite oxide sol of the present invention is characterized by comprising the following first to third steps.
(1) In a dispersion having a pH of 10 or more in which seed particles are dispersed, alkali metal, ammonium or an organic base silicate and an alkali-soluble inorganic compound are simultaneously added to perform particle growth using the seed particles as nuclei. And a first step of generating fine particles comprising silica and an inorganic oxide other than silica.
(2) A second step of removing a part of the elements other than silicon and oxygen in the colloidal particles.
(3) A third step of coating the surface of the colloidal particles with a coating.
[0009]
The base material of the present invention comprises a composite oxide fine particle having a refractive index of 1.36 to 1.44 and an average particle diameter of 5 to 300 nm composed of silica and an inorganic oxide other than silica, and film formation. It is characterized in that a coating film comprising a matrix for use is formed on the surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. First, the composite oxide sol will be described.
[0011]
[Composite oxide sol]
The colloidal particles dispersed in the sol of the present invention are silica and inorganic oxides other than silica, specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P It consists of a complex oxide with 2 O 5 , Sb 2 O 3 , MoO 3 , WO 3 or the like. Further, the surface of the colloidal particles is thinly coated with a coating such as silica, for example, and the colloidal particles before the coating treatment at this time are porous fine particles.
[0012]
The composite oxide sol of the present invention is a sol in which the colloidal particles are dispersed in water, an organic solvent or a mixed solvent of water and an organic solvent. The organic solvent used in the present invention includes monohydric or polyhydric alcohols. The organic solvent used in the conventional organic sol can be used.
[0013]
The refractive index of colloidal particles such as silica sol is as high as 1.45 or higher, whereas the refractive index of colloidal particles of the present invention is 1.44 or lower. The refractive index of the colloidal particles can be controlled by changing the ratio of silica and inorganic oxide constituting the particles, the type of inorganic oxide, or the amount of pores inside the particles.
[0014]
The refractive index of the colloidal particles in the sol of the present invention is measured as follows.
(1) Take the composite oxide sol in an evaporator and evaporate the dispersion medium.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) above is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the colloidal particles.
[0015]
[Production method of composite oxide sol]
Next, a method for producing a complex oxide sol will be described. The production method of the present invention comprises the following first to third steps.
[0016]
In the first step, a silica raw material and an alkaline aqueous solution of an inorganic oxide raw material other than silica are separately prepared in advance, or a mixed aqueous solution is prepared, and this aqueous solution is adjusted to the composite ratio of the target composite oxide. Accordingly, it is gradually added to an alkaline aqueous solution having a pH of 10 or more while stirring.
[0017]
As the silica raw material, alkali metal, ammonium or organic base silicate is used.
Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate.
Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. Ammonium silicate or organic base silicate includes a silicate liquid. Also included are alkaline solutions in which ammonia, quaternary ammonium hydroxides, amine compounds and the like are added.
[0018]
Moreover, as an inorganic oxide raw material, an alkali-soluble inorganic compound is used, and a metal or non-metal selected from 3A group, 3B group, 4A group, 4B group, 5A group, 5B group, and 6A group of the periodic table is used. Mention may be made of alkali metal or alkaline earth metal salts, ammonium salts, quaternary ammonium salts of oxo acids, more specifically sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, Potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate and sodium phosphate are suitable.
[0019]
Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required in the present invention. The aqueous solution finally settles at a pH value determined by the type of inorganic oxide and its mixing ratio.
When the pH is controlled within a predetermined range, for example, an acid may be added. In this case, the added acid generates a metal salt of the raw material of the composite oxide, and this decreases the stability of the sol. Sometimes. In addition, there is no special restriction | limiting in the addition rate of the aqueous solution at this time.
[0020]
In the method for producing a composite oxide sol of the present invention, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do. Of course, the sol obtained by the production method of the present invention may be used as a seed particle dispersion.
[0021]
The aqueous solution of the compound is added to the seed particle dispersion adjusted to pH 10 or higher with stirring in the same manner as in the method of adding the aqueous alkali solution. In this case as well, the pH of the dispersion is not controlled and left to the future. As described above, when the composite oxide particles are grown using the seed particles as nuclei, it is easy to control the particle size of the grown particles, and particles with uniform particle sizes can be obtained.
[0022]
The silica raw material and inorganic oxide raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or on the seed particles. Precipitates into particles and causes particle growth. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
[0023]
The composite ratio of silica and inorganic oxide other than silica in the first step is preferably such that the molar ratio of silica to inorganic oxide is in the range of 0.5 to 20. Within this range, the smaller the silica content, the more porous the colloidal particles and the greater the specific surface area. However, when the molar ratio is less than 0.5, the specific surface area of the colloidal particles hardly increases. On the other hand, when the molar ratio exceeds 20, the pore volume decreases and the specific surface area also decreases.
[0024]
In the second step, at least a part of elements other than silicon and oxygen is selectively removed from the colloidal particles made of the composite oxide. As a specific removal method, an element in the complex oxide is dissolved and removed using a mineral acid or an organic acid, or ion exchange is removed by contacting with an cation exchange resin.
[0025]
The composite oxide colloidal particles obtained in the first step are particles having a network structure in which silicon and inorganic oxide constituent elements are bonded through oxygen. By removing elements other than silicon and oxygen from such a complex oxide, colloidal particles having a higher porosity and a larger specific surface area can be obtained. However, when excessively removed, the strength of the colloidal particles is weakened, and finally The shape cannot be maintained. Therefore, the composite ratio (molar ratio) of silica to the final inorganic oxide is desirably about 1000 or less.
[0026]
In the third step, the surface of the colloidal particles is coated with a polymer such as a hydrolyzable organosilicon compound or a silicate solution by adding a hydrolyzable organosilicon compound or a silicate solution to the sol.
[0027]
The hydrolyzable organosilicon compound of the general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, a hydrocarbon group such as acrylic group, n = 0, 1 2 or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
[0028]
As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilanes, pure water, and alcohol is added to the sol, and hydrolyzed alkoxysilane. Deposit objects on the surface of the colloidal particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the sol. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.
[0029]
When the sol dispersion medium is water alone or the ratio of water to the organic solvent is high, coating treatment with a silicic acid solution is also possible. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the sol, and at the same time an alkali is added to polymerize and gel the silicic acid solution, thereby depositing the silicic acid polymer on the colloidal particle surface. In addition, it is also possible to perform a coating process by using the silicic acid solution and the alkoxysilane together.
The amount of the organosilicon compound or silicic acid solution added is such that the surface of the colloidal particles can be sufficiently covered with each polymer.
[0030]
The refractive index of the colloidal particles dispersed in the composite oxide sol thus obtained is lower than the refractive index of the conventional oxide colloidal particles and is in the range of 1.36 to 1.44. In the present invention, as described above, first, a composite oxide sol in which porous colloidal particles are dispersed is prepared, and then the surface of the colloidal particles is covered with alkoxysilane or the like to block the pore inlets of the particles. And the porosity inside the particles is maintained. As a result, the refractive index of colloidal particles is considered to be lower than that of conventional nonporous oxide colloidal particles.
[0031]
The surface coating treatment of the colloidal particles of the present invention is not limited to the above-described organosilicon compound and silicic acid solution, but may be any material that can coat the particle surface thinly and block the pore inlet, such as a synthetic resin. .
Although the average particle diameter of the colloidal particles can be obtained depending on the preparation conditions, it is generally 5 to 300 nm, preferably 5 to 150 nm.
[0032]
The composite oxide sol is a sol using water as a dispersion medium. Depending on the application, the organic oxide sol is substituted with a monovalent or polyhydric alcohol such as ethanol or ethylene glycol, or another organic solvent. It is also possible.
[0033]
When concentrating the sol in which the colloidal particles are dispersed, it is possible to obtain a stable concentrated sol by concentrating after removing a part of the alkali metal ions, alkaline earth metal ions and ammonium ions in the sol in advance. . As the removal method, a known method such as ultrafiltration can be employed.
[0034]
[Low reflective substrate]
Next, the coated substrate according to the present invention will be described. This coated substrate is formed by forming a coating on the surface of a substrate such as glass, polycarbonate, acrylic, PET, TAC, or other plastic sheet, film, and the like. It can be obtained by applying to a substrate by a known method such as a roll coating method, drying, and firing if necessary.
[0035]
The coating liquid for forming a film is produced by mixing the sol and a matrix for forming a film. Moreover, you may mix an organic solvent with a coating liquid as needed.
In the present invention, the film-forming matrix refers to a component that can form a film on the surface of a substrate. For example, conventionally used polyester resin, acrylic resin, urethane resin, vinyl chloride resin, epoxy resin, melamine resin , A resin for coatings such as fluororesin and silicon resin, or a hydrolyzable organosilicon compound such as alkoxysilane.
[0036]
When a coating resin is used as the matrix, for example, water as a dispersion medium for the sol is replaced with an organic solvent such as alcohol, and the organic solvent-dispersed sol and the coating resin are diluted with a suitable organic solvent. It can be set as a coating liquid.
[0037]
On the other hand, when using a hydrolyzable organosilicon compound as a matrix, for example, by adding water and an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol, a partially hydrolyzed product of alkoxysilane is obtained, The sol can be mixed with this and diluted with an organic solvent as necessary to obtain a coating solution.
[0038]
The weight ratio of the composite oxide fine particles to the matrix in the coating solution is preferably in the range of composite oxide fine particles: matrix = 90: 1 to 1:99. When the composite oxide fine particle exceeds 90 parts by weight, the strength of the coating is insufficient and the practicality is insufficient, whereas when it is less than 1 part by weight, the effect of adding the fine particle does not appear.
The base material with a coating thus obtained has an antireflection function because a coating having a lower refractive index than that of the base material itself such as glass or plastic is formed on the surface.
[0039]
【Example】
[Production of complex oxide sol]
Example 1
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by weight and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 9000 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 9000 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. . Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition, and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to obtain a SiO 2 · Al 2 O 3 composite oxide precursor sol (A) having a solid content concentration of 20% by weight. (First step)
[0040]
Silica obtained by adding 1,700 g of pure water to 500 g of this precursor sol (A) and heating to 98 ° C., and maintaining the temperature while removing the alkali silicate solution with a cation exchange resin. 3,000 g of a liquid (SiO 2 concentration 3.5% by weight) was added. The sol was washed with an ultrafiltration membrane to add 1,125 g of pure water to 500 g of the sol having a solid content of 13 wt%, and concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0. Aluminum treatment was performed.
Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and the SiO 2 · Al 2 O 3 composite oxide precursor sol (B ) (Second step)
[0041]
A mixture of 1500 g of the sol (B), 500 g of pure water, 1,750 g of ethanol and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 wt%) was added. The surface of the oxide colloidal particles was coated with a hydrolyzed polycondensate of ethyl silicate. Subsequently, after concentrating to 5 weight% of solid content with an evaporator, 15% ammonia water was added to adjust to pH 10, and heat treatment was performed at 180 ° C. for 2 hours in an autoclave to obtain the composite oxide sol of the present invention. (Third step)
[0042]
Table 1 shows the average particle size, SiO 2 / MO x (molar ratio), and refractive index of the colloidal particles (P1) in this composite oxide sol. Here, the average particle diameter was measured by a dynamic light scattering method, and the refractive index was measured by the above-described method using Series A and AA made by CARGILL as a standard refractive liquid.
[0043]
Example 2
1,100 g of pure water was added to 100 g of the precursor sol (A) obtained in Example 1 and heated to 95 ° C., and while maintaining this temperature, an aqueous sodium silicate solution (1.5 g% as SiO 2) 27,000 g and 27,000 g of an aqueous solution of sodium aluminate (0.5% by weight as Al 2 O 3 ) were gradually added at the same time, and particle growth was performed using fine particles of the precursor sol (A) as nuclei. After completion of the addition, the mixture was cooled to room temperature, washed with an ultrafiltration membrane, and concentrated to obtain a precursor sol (C) having a solid content concentration of 20% by weight. (First step)
[0044]
500 g of this precursor sol (C) was taken, and the dealumination treatment in the second step and the coating treatment with the hydrolyzate of ethyl silicate in the third step were performed in the same manner as in Example 1, and shown in Table 1. A composite oxide sol in which colloidal particles (P2) were dispersed was obtained.
[0045]
Example 3
1,100 g of pure water was added to 100 g of the precursor sol (C) obtained in Example 2 and heated to 95 ° C., and while maintaining this temperature, an aqueous sodium silicate solution (1.5 g% as SiO 2) ) 7,000 g and sodium aluminate aqueous solution (0.5% by weight as Al 2 O 3 ) 7,000 g were gradually added simultaneously to cause particle growth. After completion of the addition, the mixture was cooled to room temperature, washed with an ultrafiltration membrane, and concentrated to obtain a precursor sol (D) having a solid content concentration of 20% by weight. (First step)
500 g of this precursor sol (D) was taken, and a composite oxide sol in which colloidal particles (P3) shown in Table 1 were dispersed was obtained in the same manner as in Example 1.
[0046]
Example 4
In place of sodium aluminate of Example 1, SnO 2 was used in the same manner as in Example 1 except that 9,000 g of 0.5 wt% potassium stannate aqueous solution was used. 2 · SnO 2 composite oxide precursor sol was obtained, and Sn removal treatment and coating treatment were further performed in the same manner as in Example 1 to obtain composite oxide sol in which colloidal particles (P4) shown in Table 1 were dispersed. It was.
[0047]
Example 5
The dealuminated SiO 2 .Al 2 O 3 composite oxide sol (B) 1,500 g obtained in the second step of Example 1 was adjusted to pH 11 and heated to 98 ° C., and then silicic acid. 700 g of a liquid (3.5% by weight as SiO 2 ) was added, and the surface of the colloidal particles was coated with a silica polymer.
Subsequently, it was washed with an ultrafiltration membrane and concentrated to obtain a composite oxide sol in which colloidal particles (P5) shown in Table 1 having a solid content concentration of 13% by weight were dispersed.
[0048]
Example 6
In the second step of Example 1, colloidal particles (P6) shown in Table 1 were prepared in the same manner as in Example 1 except that the condition of dealumination treatment by adding concentrated hydrochloric acid was changed to pH 3.0 instead of pH 1.0. ) Was obtained.
[0049]
Example 7
In the second step of Example 1, colloidal particles (P7) shown in Table 1 were prepared in the same manner as in Example 1 except that the condition of dealumination treatment by adding concentrated hydrochloric acid was changed to pH 0.5 instead of pH 1.0. ) Was obtained.
[0050]
Comparative Example Regarding the SiO 2 · Al 2 O 3 composite oxide precursor sol (B) obtained in the second step of Example 1, the average particle size of the colloidal particles (P0), SiO 2 / MO x (molar ratio) and refractive index were measured.
[0051]
[Table 1]
Figure 0003761189
[0052]
[Manufacture of low reflection film]
Example 8
The composite oxide sol obtained in Example 1 was passed through an ultrafiltration membrane, and water in the dispersion medium was replaced with ethanol. 50 g of this ethanol sol (solid content concentration 5% by weight), 3 g of acrylic resin (Hitaloid 1007, manufactured by Hitachi Chemical Co., Ltd.), and 47 g of a 1: 1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed. Thus, a coating solution was prepared.
[0053]
This was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a low reflection film (F8). Table 2 shows the total light transmittance, haze, and reflectance of light having a wavelength of 550 nm of this film (F8) and uncoated PET film (F8 0 ). The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55).
[0054]
[Manufacture of low reflection glass]
Example 9
A small amount of hydrochloric acid was added to a mixed solution of 20 g of ethyl silicate (SiO 2 concentration 28 wt%), 45 g of ethanol and 5.33 g of pure water to obtain a matrix containing a partial hydrolyzate of ethyl silicate. To this matrix, 16.7 g of ethanol sol (solid content concentration: 18% by weight) obtained by replacing the composite oxide sol obtained in Example 1 with ethanol and a solvent was mixed to prepare a coating solution.
[0055]
This coating solution was applied to the surface of the transparent glass plate by a spinner method at 500 rpm for 10 seconds, and then heat-treated at 160 ° C. for 30 minutes to obtain low reflection glass (G9). Table 2 shows the total light transmittance, haze, and reflectance of light having a wavelength of 550 nm of this glass (G9) and uncoated glass (G9 0 ).
[0056]
Example 10
In Example 9, a low reflection glass (G10) was obtained in the same manner as in Example 9, except that the complex oxide sol was replaced with the complex oxide sol of Example 3.
[0057]
[Table 2]
Figure 0003761189
[0058]
【The invention's effect】
The composite oxide sol according to the present invention is a sol in which colloidal particles having a low refractive index are dispersed as compared with a conventional silica sol or the like, and can be used as a constituent component of a surface coating of a substrate for low reflection. The glass on which such a film is formed can be used for various applications as a low reflection glass, including display panels such as cathode ray tubes and liquid crystal display devices. Moreover, a plastic sheet or film such as PET on which this film is formed is useful as a low reflection sheet or film.
[0059]
The method for producing a composite oxide sol according to the present invention has an effect that the sol production operation is easy and the production process is simple.

Claims (2)

粒子内部に細孔を有しており粒子表面が被膜で被覆された、屈折率が1.36〜1.44である、シリカとシリカ以外の無機酸化物とからなる平均粒径が5〜300nmの範囲にある複合酸化物コロイド粒子が、水および/または有機溶媒に分散した複合酸化物ゾルの製造方法であって、下記第1〜第3工程よりなることを特徴とする製造方法。
(1)アルカリ金属、アンモニウムまたは有機塩基の珪酸塩と、周期表の3A族、3B族、4A族、4B族、5A族、5B族、6A族から選ばれる金属または非金属元素のアルカリ可溶とを、pH10以上のアルカリ水溶液中に同時に添加して、シリカとシリカ以外の無機酸化物とからなるコロイド粒子を生成させる第1工程。
(2)該コロイド粒子中の珪素と酸素以外の元素の一部を除去する第2工程。
(3)該コロイド粒子の表面を被膜で被覆する第3工程。
An average particle diameter of 5 to 300 nm consisting of silica and an inorganic oxide other than silica having pores inside the particle and having a particle surface coated with a coating film and a refractive index of 1.36 to 1.44. manufacturing process complex oxide colloidal particles, water and / or a method for producing a composite oxide sol dispersed in an organic solvent, characterized by consisting of the following first to third steps in the range of.
(1) Alkali metal, ammonium or organic base silicate and alkali-soluble metals or non-metallic elements selected from 3A group, 3B group, 4A group, 4B group, 5A group, 5B group, 6A group of the periodic table A first step in which a salt is added simultaneously to an aqueous alkali solution having a pH of 10 or more to produce colloidal particles composed of silica and an inorganic oxide other than silica.
(2) A second step of removing a part of the elements other than silicon and oxygen in the colloidal particles.
(3) A third step of coating the surface of the colloidal particles with a coating.
粒子内部に細孔を有しており粒子表面が被膜で被覆された、屈折率が1.36〜1.44である、シリカとシリカ以外の無機酸化物とからなる平均粒径が5〜300nmの範囲にある複合酸化物コロイド粒子が、水および/または有機溶媒に分散した複合酸化物ゾルの製造方法であって、下記第1〜第3工程よりなることを特徴とする製造方法。
(1)シード粒子が分散したpH10以上の分散液中に、アルカリ金属、アンモニウムまたは有機塩基の珪酸塩と、周期表の3A族、3B族、4A族、4B族、5A族、5B族、6A族から選ばれる金属または非金属元素のアルカリ可溶とを同時に添加し該シード粒子を核とする粒子成長を行なわせて、シリカとシリカ以外の無機酸化物とからなるコロイド粒子を生成させる第1工程。
(2)該コロイド粒子中の珪素と酸素以外の元素の一部を除去する第2工程。
(3)該コロイド粒子の表面を被膜で被覆する第3工程。
An average particle diameter of 5 to 300 nm consisting of silica and an inorganic oxide other than silica having pores inside the particle and having a particle surface coated with a coating film and a refractive index of 1.36 to 1.44. manufacturing process complex oxide colloidal particles, water and / or a method for producing a composite oxide sol dispersed in an organic solvent, characterized by consisting of the following first to third steps in the range of.
(1) Alkali metal, ammonium or organic base silicate and 3A group, 3B group, 4A group, 4B group, 5A group, 5B group, 6A in the periodic table in a dispersion of pH 10 or more in which seed particles are dispersed. adding an alkali-soluble salt of a metal or non-metallic element selected from the group simultaneously the seed particles were carried grain growth of the core, first to produce colloidal particles comprising an inorganic oxide other than silica and silica 1 step.
(2) A second step of removing a part of the elements other than silicon and oxygen in the colloidal particles.
(3) A third step of coating the surface of the colloidal particles with a coating.
JP29893793A 1993-11-04 1993-11-04 Composite oxide sol, method for producing the same, and substrate Expired - Lifetime JP3761189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29893793A JP3761189B2 (en) 1993-11-04 1993-11-04 Composite oxide sol, method for producing the same, and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29893793A JP3761189B2 (en) 1993-11-04 1993-11-04 Composite oxide sol, method for producing the same, and substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005344810A Division JP4225999B2 (en) 2005-11-30 2005-11-30 Composite oxide sol and coated substrate

Publications (2)

Publication Number Publication Date
JPH07133105A JPH07133105A (en) 1995-05-23
JP3761189B2 true JP3761189B2 (en) 2006-03-29

Family

ID=17866123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29893793A Expired - Lifetime JP3761189B2 (en) 1993-11-04 1993-11-04 Composite oxide sol, method for producing the same, and substrate

Country Status (1)

Country Link
JP (1) JP3761189B2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188716B1 (en) * 1998-12-21 2013-02-20 JGC Catalysts and Chemicals Ltd. Fine particle, sol having fine particles dispersed, method for preparing said sol and substrate having coating thereon
CN1312233C (en) * 1999-01-11 2007-04-25 昭和电工株式会社 Comsmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these
KR100517673B1 (en) * 1999-01-11 2005-09-28 쇼와 덴코 가부시키가이샤 Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these
EP1294652B1 (en) 2000-06-20 2010-12-15 Asahi Glass Co., Ltd. Transparent film-coated substrate, coating liquid for transparent film formation, and display device
JP4911814B2 (en) * 2000-11-22 2012-04-04 日揮触媒化成株式会社 Spherical porous particles and method for producing the same
JP4918743B2 (en) * 2001-02-16 2012-04-18 凸版印刷株式会社 Antireflection film
JP4959067B2 (en) * 2001-06-27 2012-06-20 日揮触媒化成株式会社 Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP2003103158A (en) * 2001-09-28 2003-04-08 Nippon Paint Co Ltd High concentrated metallic colloid particle solution and its manufacturing method and method for forming metallic film
US6743510B2 (en) 2001-11-13 2004-06-01 Sumitomo Chemical Company, Limited Composition comprising a cationic polymerization compound and coating obtained from the same
TWI301847B (en) 2001-11-13 2008-10-11 Sumitomo Chemical Co Composition comprising a hydrolyzable organosilicon compound and coating obtained from the same
AU2003248263A1 (en) 2002-07-11 2004-02-02 Catalysts And Chmicals Industries Co., Ltd. Cosmetic
JP2004255582A (en) * 2003-02-24 2004-09-16 Sumitomo Chem Co Ltd Transparent base material having cured film formed thereto
JP2004284220A (en) * 2003-03-24 2004-10-14 Sumitomo Chem Co Ltd Transparent base material having cured film
CN100519414C (en) 2003-05-12 2009-07-29 日挥触媒化成株式会社 Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
KR101237822B1 (en) 2003-08-28 2013-02-28 니끼 쇼꾸바이 카세이 가부시키가이샤 Antireflection laminate
JP4592274B2 (en) * 2003-10-17 2010-12-01 日揮触媒化成株式会社 Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles
KR101163539B1 (en) 2003-11-06 2012-07-06 니끼 쇼꾸바이 카세이 가부시키가이샤 Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups
US10040943B2 (en) 2004-07-08 2018-08-07 Jgc Catalysts And Chemicals Ltd. Method of producing silica-based particles
US20070275257A1 (en) * 2004-07-21 2007-11-29 Catalysts & Chemicals Industries Co., Ltd Silica-Based Particles, Method of Producing the Same, Paint for Forming Coating Film and Coated
JP2006058613A (en) * 2004-08-20 2006-03-02 Konica Minolta Opto Inc Antireflection film, its manufacturing method, polarizing plate using the same, and liquid crystal display device
JP2006078847A (en) * 2004-09-10 2006-03-23 Konica Minolta Opto Inc Polarizing sheet and its manufacturing method, and display device using the polarizing sheet
JP4636869B2 (en) 2004-12-21 2011-02-23 日揮触媒化成株式会社 Method for producing porous silica-based particles and porous silica-based particles obtained from the method
BE1016588A3 (en) * 2005-05-13 2007-02-06 Polyvision Nv METHOD FOR MANUFACTURING A VISUAL COMMUNICATION BOARD.
JP4913129B2 (en) * 2005-06-02 2012-04-11 エルジー・ケム・リミテッド Low refractive index film-forming coating composition and film produced therefrom
CN101312909B (en) 2005-11-25 2011-11-16 日挥触媒化成株式会社 Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating
JP5563762B2 (en) 2006-03-02 2014-07-30 株式会社カネカ Method for producing hollow silicone fine particles
JP4905656B2 (en) 2006-04-14 2012-03-28 信越化学工業株式会社 COMPOSITE RESIN, COATING COMPOSITION CONTAINING THE SAME, COATED ARTICLE, AND METHOD FOR PRODUCING COMPOSITE RESIN
JP5116285B2 (en) * 2006-11-07 2013-01-09 日揮触媒化成株式会社 Base material with transparent coating
JP4782054B2 (en) * 2007-03-19 2011-09-28 日揮触媒化成株式会社 Substrate with transparent conductive film and display device
WO2008143162A1 (en) * 2007-05-17 2008-11-27 Kaneka Corporation Coated base having coating film composed of hollow particle and organic polymer-coated hollow silicone fine particle
JP5179115B2 (en) * 2007-08-10 2013-04-10 パナソニック株式会社 Low refractive index coating resin composition, low refractive index coating, antireflection substrate
KR101633530B1 (en) 2008-12-18 2016-06-24 닛키 쇼쿠바이카세이 가부시키가이샤 Chain-shaped Silica-based Hollow Fine Particles and Process for Producing Same, Coating Fluid for Transparent Coating Film Formation Containing the Fine Particles, and Substrate with Transparent Coating Film
JP2010180375A (en) 2009-02-09 2010-08-19 Shin-Etsu Chemical Co Ltd Photocurable coating composition, film forming method, and coated article
KR101138235B1 (en) * 2009-10-30 2012-04-26 주식회사 선진화학 Preparation mathod of silica surface-treated titanium oxide powder
JP5504446B2 (en) * 2010-05-14 2014-05-28 国立大学法人大阪大学 Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
WO2011155536A1 (en) 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same
JP5655467B2 (en) * 2010-09-29 2015-01-21 コニカミノルタ株式会社 Method for producing antiglare antireflection film
EP2848595B1 (en) 2012-05-08 2020-12-16 Konica Minolta, Inc. Laminated glass
JP6079023B2 (en) * 2012-07-19 2017-02-15 Dic株式会社 Active energy ray-curable composition and method for producing film
JP6016548B2 (en) 2012-09-19 2016-10-26 日揮触媒化成株式会社 Coating liquid for forming transparent film and substrate with transparent film
CN105102395A (en) 2013-03-29 2015-11-25 柯尼卡美能达株式会社 Laminated glass
WO2014162864A1 (en) 2013-04-02 2014-10-09 コニカミノルタ株式会社 Heat ray shielding laminated glass and manufacturing method for heat ray shielding laminated glass
JP6470695B2 (en) 2014-02-14 2019-02-13 日揮触媒化成株式会社 Coating liquid for forming transparent film and method for producing substrate with transparent film
JP6357051B2 (en) * 2014-08-21 2018-07-11 学校法人早稲田大学 Mesoporous silica particles coated with nonporous silica and method for producing the same
JP6612563B2 (en) 2014-12-26 2019-11-27 日東電工株式会社 Silicone porous body and method for producing the same
JP6604781B2 (en) 2014-12-26 2019-11-13 日東電工株式会社 Laminated film roll and method for producing the same
JP6599699B2 (en) 2014-12-26 2019-10-30 日東電工株式会社 Void structure film bonded through catalytic action and method for producing the same
JP6713872B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
JP6713871B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Optical laminate, method for producing optical laminate, optical member, image display device, method for producing optical member, and method for producing image display device
JP6892744B2 (en) 2015-08-24 2021-06-23 日東電工株式会社 Laminated optical film, manufacturing method of laminated optical film, optical members, and image display device
JP7152130B2 (en) 2015-09-07 2022-10-12 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
CN109901260B (en) * 2019-04-28 2020-07-14 安徽帝显电子有限公司 Processing method of light guide film

Also Published As

Publication number Publication date
JPH07133105A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP3761189B2 (en) Composite oxide sol, method for producing the same, and substrate
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
KR101186732B1 (en) Silica-based fine particles, method for production thereof, coating for forming coating film and base material having coating film formed thereon
JP4046921B2 (en) Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
US6291535B1 (en) Silica-magnesium fluoride hydrate composite sols and process for their preparation
JP4428923B2 (en) Method for producing silica-based hollow fine particles
KR101102115B1 (en) Process for producing fine silica-based particle, coating composition for coating film formation, and base with coating film
JPH0769621A (en) Magnesium fluoride hydrate sol and production thereof
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
US5667725A (en) Sol and fine powder of sodium magnesium fluoride and processes for their production
JP4225999B2 (en) Composite oxide sol and coated substrate
JP4731137B2 (en) Method for producing silica-based fine particles
JP3955971B2 (en) Base material with antireflection film
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP3228650B2 (en) Antistatic paint and substrate with antistatic coating
TW495485B (en) Fine particle, sol having fine particles dispersed, method for preparing said sol an

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term