JPH0769621A - Magnesium fluoride hydrate sol and production thereof - Google Patents

Magnesium fluoride hydrate sol and production thereof

Info

Publication number
JPH0769621A
JPH0769621A JP21866693A JP21866693A JPH0769621A JP H0769621 A JPH0769621 A JP H0769621A JP 21866693 A JP21866693 A JP 21866693A JP 21866693 A JP21866693 A JP 21866693A JP H0769621 A JPH0769621 A JP H0769621A
Authority
JP
Japan
Prior art keywords
magnesium fluoride
sol
magnesium
fluoride hydrate
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21866693A
Other languages
Japanese (ja)
Other versions
JP3844787B2 (en
Inventor
Yoshitane Watabe
淑胤 渡部
Keitaro Suzuki
啓太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP21866693A priority Critical patent/JP3844787B2/en
Publication of JPH0769621A publication Critical patent/JPH0769621A/en
Application granted granted Critical
Publication of JP3844787B2 publication Critical patent/JP3844787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnesium fluoride hydrate sol and producing method thereof to be used as a coating material for an antireflection film. CONSTITUTION:The sol consists of colloid particles of magnesium fluoride hydrate having MgF2.nH2O (n is 0.25 to 0.5) compsn. and 10-100nm primary particle size. The producing method of a water-base sol of the magnesium fluoride hydrate of this invention consists of processes (a) and (b). (a) An aq. soln. of fluoride is added to an aq. soln. of magnesium salt by the molar ratio of F/Mg=1.9 to 2.0 to produce an aggregation slurry of colloid particles of magnesium fluoride hydrate. (b) Byproduct salts in the slurry are removed. The production of the organosol consists of processes (a), (b) and (c). (c) An org. solvent is substituted for the water in the water-based sol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ及び陰極線管や
液晶表示装置の画像表示面などの反射防止膜用コーティ
ング剤に好適に用いられるフッ化マグネシウム水和物ゾ
ルとその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium fluoride hydrate sol suitable for use as a coating agent for an antireflection film such as lenses and cathode ray tubes and image display surfaces of liquid crystal display devices, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、レンズ及び陰極線管や液晶表示
装置の画像表示面上には太陽光や電灯光などの外光反射
を低減し、かつ光の透過を高めるために反射防止処理が
なされている。反射防止処理は真空蒸着法やコーティン
グ法により行われており、最外層には低屈折率を有する
フッ化マグネシウムやシリカなどが用いられている。特
に反射防止コーティング剤マイクロフィラーとしてフッ
化マグネシウムゾル及び微粉末が有効であることが知ら
れている。しかし、フッ化マグネシウム粒子は分散性が
悪く、一次粒子径を著しく小さくしないと目的とする透
明性が得られない欠点を有している。また、この一次粒
子径を著しく小さくするため、生産性が悪くなる。
2. Description of the Related Art Generally, a lens, a cathode ray tube, and an image display surface of a liquid crystal display device are subjected to an antireflection treatment to reduce reflection of external light such as sunlight and electric light and to enhance light transmission. There is. The antireflection treatment is performed by a vacuum deposition method or a coating method, and magnesium fluoride, silica, or the like having a low refractive index is used for the outermost layer. In particular, magnesium fluoride sol and fine powder are known to be effective as microfillers for antireflection coating agents. However, magnesium fluoride particles have poor dispersibility and have a drawback that the desired transparency cannot be obtained unless the primary particle size is remarkably reduced. Further, since the primary particle size is made extremely small, the productivity is deteriorated.

【0003】フッ化マグネシウムゾル及び微粉末の製造
法については下記のようなものが報告されている。特開
昭63−124332号公報には、酢酸マグネシウムと
ポリビニルアルコールの混合水溶液にフッ化水素酸水溶
液を添加し、酸性のフッ化マグネシウムのコロイド粒子
の分散液を製造する方法が提案されている。この方法で
得られるコロイド粒子の分散液は、pH2で、濃度が5
%以上では調製後直ちにゲル化する欠点を有している。
The following methods have been reported for the production method of magnesium fluoride sol and fine powder. Japanese Unexamined Patent Publication No. 63-124332 proposes a method of producing a dispersion of acidic magnesium fluoride colloidal particles by adding a hydrofluoric acid aqueous solution to a mixed aqueous solution of magnesium acetate and polyvinyl alcohol. The dispersion of colloidal particles obtained by this method has a pH of 2 and a concentration of 5
If it is more than 100%, there is a drawback that gelation occurs immediately after preparation.

【0004】特開昭64−41149号公報には、粒子
径が100〜200オングストロームのフッ化マグネシ
ウムの微粒子から成るゾル液を陰極線管のスクリーンパ
ネルに塗布する方法により反射防止する方法が提案され
ている。しかし、このゾル液の製造方法については記載
されていない。特開平2−26824号公報には、光透
過率が50%以上の水性及びオルガノフッ化マグネシウ
ムゾル、及びこのゾルを基体表面に塗布乾燥してなる被
膜形成体、そして、マグネシウム塩水溶液とフッ化物水
溶液とを同時添加法で反応させてゲル状沈澱物を生成さ
せ、得られた反応液を加熱熟成した後、液中の電解質を
除去する事を特徴とする水性フッ化マグネシウムゾルの
製造法が提案されている。この方法で得られたフッ化マ
グネシウムのコロイド粒子は100〜120オングスト
ロームと著しく小さい粒子径を示している。しかし、塩
化マグネシウム水溶液にフッ化カリウム水溶液を添加す
る方法で得られたゾルは、コロイド粒子が100〜30
0オングストロームで乳白色不透明で透過率も20%以
下であることが報告されている。
Japanese Unexamined Patent Publication (Kokai) No. 64-41149 proposes a method for preventing reflection by applying a sol solution composed of fine particles of magnesium fluoride having a particle size of 100 to 200 angstroms to a screen panel of a cathode ray tube. There is. However, there is no description about a method for producing this sol solution. Japanese Unexamined Patent Publication (Kokai) No. 2-26824 discloses an aqueous or organomagnesium fluoride sol having a light transmittance of 50% or more, a film-forming body obtained by coating and drying the sol on a substrate surface, and an aqueous magnesium salt solution and an aqueous fluoride solution. A method for producing an aqueous magnesium fluoride sol is proposed which comprises reacting and with a simultaneous addition method to form a gel-like precipitate, aging the resulting reaction solution by heating, and then removing the electrolyte in the solution. Has been done. The magnesium fluoride colloidal particles obtained by this method exhibit a remarkably small particle size of 100 to 120 angstroms. However, the sol obtained by adding an aqueous solution of potassium fluoride to an aqueous solution of magnesium chloride has colloidal particles of 100 to 30.
It has been reported that it has a milky white opacity at 0 Å and a transmittance of 20% or less.

【0005】上記方法により得られたフッ化マグネシウ
ムゾル中のフッ化マグネシウムのコロイド粒子は、いず
れもフッ化マグネシウムの無水塩であり、フッ化マグネ
シウムの水和物に関する記載はない。一方、フッ化マグ
ネシウム水和物の存在については、無機化学の古典であ
るMellorの「A Comprehensive
Treatise on Inorganic and
Theoretical Chemistry」や、
「Gmelins Handbuch der Ano
rganishenChemie」にも報告が見られな
い。また、フッ化マグネシウム水和物ゾルについて記載
されている文献もない。
The magnesium fluoride colloidal particles in the magnesium fluoride sol obtained by the above method are all anhydrous magnesium fluoride salts, and there is no description of magnesium fluoride hydrate. On the other hand, regarding the existence of magnesium fluoride hydrate, Mellor's “A Comprehensive”, which is a classic of inorganic chemistry, is used.
Treatise on Inorganic and
"Theoretical Chemistry",
"Gmelins Handbuch der Ano
There is no report on "rganishen Chemie". Further, there is no document describing a magnesium fluoride hydrate sol.

【0006】[0006]

【発明が解決しようとする課題】上記フッ化マグネシウ
ムの無水塩のコロイド粒子は、それ自体結合力が小さい
ため、反射防止コーティング剤として使用する場合に
は、有機または無機のバインダーが必要となる。この場
合一次粒子径が小さいと多量のバインダーが必要とな
り、目的とする屈折率が得られなくなる欠点を有してい
る。
Since the above-mentioned colloidal particles of anhydrous magnesium fluoride have a small binding force by themselves, an organic or inorganic binder is required when used as an antireflection coating agent. In this case, if the primary particle size is small, a large amount of binder is required, and the target refractive index cannot be obtained.

【0007】上記フッ化マグネシウムの無水塩よりも屈
折率の低いフッ化物ゾル、及びそのゾルを容易に製造す
る方法が望まれている。本発明は外光反射を低減した
り、光の透過率を高めるための反射防止膜に用いられる
新規なフッ化マグネシウム水和物ゾル、及びそのゾルを
容易に製造する方法を提供することを目的とする。
There is a demand for a fluoride sol having a refractive index lower than that of the anhydrous magnesium fluoride salt and a method for easily producing the sol. It is an object of the present invention to provide a novel magnesium fluoride hydrate sol used for an antireflection film for reducing external light reflection or increasing light transmittance, and a method for easily producing the sol. And

【0008】[0008]

【課題を解決するための手段】本発明は、MgF2 ・n
2 O(但し、nは0.25〜0.5)の組成を有し、
一次粒子径が10〜100nmであるフッ化マグネシウ
ム水和物のコロイド粒子からなるゾルである。本発明の
フッ化マグネシウム水和物ゾルは、フッ化マグネシウム
水和物のコロイド粒子が、水及び/又は有機溶媒に分散
したゾルである。
SUMMARY OF THE INVENTION The present invention is directed to MgF 2 .n
Has a composition of H 2 O (where n is 0.25 to 0.5),
It is a sol composed of colloidal particles of magnesium fluoride hydrate having a primary particle diameter of 10 to 100 nm. The magnesium fluoride hydrate sol of the present invention is a sol in which magnesium fluoride hydrate colloidal particles are dispersed in water and / or an organic solvent.

【0009】本発明のフッ化マグネシウム水和物水性ゾ
ルの製造方法は、(a);マグネシウム塩水溶液にフッ
化物水溶液を、1.9〜2.0のF/Mgモル比となる
様に添加し、フッ化マグネシウム水和物のコロイド粒子
の凝集体スラリーを生成させる工程、(b);(a)工
程により得られたフッ化マグネシウム水和物のコロイド
粒子の凝集体スラリー中の副生塩類を除去する工程、よ
りなる。
The method for producing a magnesium fluoride hydrate aqueous sol of the present invention comprises (a); adding an aqueous fluoride solution to an aqueous magnesium salt solution so that the F / Mg molar ratio is 1.9 to 2.0. And (b); a by-product salt in the aggregate slurry of magnesium fluoride hydrate colloidal particles obtained by the step (b); And a step of removing.

【0010】本発明に使用されるマグネシウム塩は、水
に可溶の塩であり、例えば、塩化マグネシウム、硝酸マ
グネシウム、硫酸マグネシウム、スルファミン酸マグネ
シウム、酢酸マグネシウム、ギ酸マグネシウム等が挙げ
られ、単独または2種以上混合して使用することができ
る。本発明に使用されるフッ化物は、水に可溶の塩であ
り、例えば、フッ化ナトリウム、フッ化カリウム、フッ
化セシウム、フッ化ルビジウム、フッ化アンモニウム、
フッ化グアニジン、フッ化第4級アンモニウム、酸性フ
ッ化アンモニウム、フッ化水素が挙げられ、単独または
2種以上混合して使用することが出来る。
The magnesium salt used in the present invention is a water-soluble salt, and examples thereof include magnesium chloride, magnesium nitrate, magnesium sulfate, magnesium sulfamate, magnesium acetate, magnesium formate, etc., either alone or in the form of 2 A mixture of two or more species can be used. The fluoride used in the present invention is a water-soluble salt, for example, sodium fluoride, potassium fluoride, cesium fluoride, rubidium fluoride, ammonium fluoride,
Examples thereof include guanidine fluoride, quaternary ammonium fluoride, ammonium acid fluoride and hydrogen fluoride, which may be used alone or in combination of two or more.

【0011】本発明のフッ化マグネシウム水和物ゾルの
製造法において、マグネシウム塩水溶液とフッ化物水溶
液の混合は、マグネシウム塩水溶液にフッ化物水溶液
を、フッ素とマグネシウムの比がF/Mgモル比で1.
9〜2.0になるように添加することが重要である。マ
グネシウム塩水溶液とフッ化物水溶液を、そのマグネシ
ウム塩とフッ化物の量が、フッ化マグネシウムを生成す
る化学量論量を常に維持する様にしながら同時添加する
方法、又は、フッ化物水溶液にマグネシウム塩水溶液を
添加する方法では、目的とするフッ化マグネシウム水和
物ゾルを、効率よく製造することが出来ない。
In the method for producing a magnesium fluoride hydrate sol of the present invention, the magnesium salt aqueous solution and the fluoride aqueous solution are mixed by mixing the magnesium salt aqueous solution with the fluoride aqueous solution at a fluorine / magnesium ratio of F / Mg molar ratio. 1.
It is important to add 9 to 2.0. A method of simultaneously adding an aqueous solution of magnesium salt and an aqueous solution of fluoride while keeping the amounts of the magnesium salt and fluoride to maintain a stoichiometric amount for producing magnesium fluoride, or an aqueous solution of magnesium salt in the aqueous fluoride solution. With the method of adding, the target magnesium fluoride hydrate sol cannot be efficiently produced.

【0012】本発明の(a)工程でのマグネシウム塩水
溶液へのフッ化物水溶液の添加並びに混合は、サタケ式
撹拌機、ファウドラー型撹拌機、ディスパー、ホモジナ
イザー等の装置を用い、0〜100℃の温度で行われ、
撹拌下、この添加に要する時間は0.1〜10時間で行
うことが出来る。(a)工程で生成するフッ化マグネシ
ウム水和物の濃度は、MgF2 として0.1〜10重量
%になるように調製することが好ましい。
The addition and mixing of the fluoride aqueous solution to the magnesium salt aqueous solution in the step (a) of the present invention is carried out at 0 to 100 ° C. by using a device such as a Satake type stirrer, a Faudler type stirrer, a disper, a homogenizer and the like. Done at temperature,
The time required for this addition under stirring can be 0.1 to 10 hours. It is preferable to adjust the concentration of the magnesium fluoride hydrate produced in the step (a) to be 0.1 to 10% by weight as MgF 2 .

【0013】(a)工程により一次粒子径が10〜10
0nmのフッ化マグネシウム水和物のコロイド粒子の凝
集体が生成し、スラリーとなる。このスラリーは静定に
よりフッ化マグネシウム水和物のコロイド粒子の凝集体
が沈降分離する。この凝集体の生成は、(a)工程によ
り副生する塩類、それはマグネシウム塩とフッ化物、即
ち、マグネシウムイオンとフッ素イオンのそれぞれのカ
ウンターイオンにより形成される塩類の濃度が高いこと
に起因している。
According to the step (a), the primary particle size is 10 to 10
Aggregates of colloidal particles of 0 nm magnesium fluoride hydrate are formed to form a slurry. Aggregates of colloidal particles of magnesium fluoride hydrate are settled and separated by static determination in this slurry. The formation of this aggregate is due to the high concentration of the salts by-produced in the step (a), that is, the salts formed by the magnesium salt and the fluoride, that is, the counter ions of magnesium ion and fluorine ion. There is.

【0014】本発明における(b)工程は、(a)工程
により得られたフッ化マグネシウム水和物のコロイド粒
子の凝集体スラリーから副生塩類を除去する工程であ
る。副生塩類を除去する方法としては、限外ろ過膜、逆
浸透膜などによる膜ろ過洗浄法、イオン交換法、静定分
離法などを利用することが出来るが、限外ろ過膜を用い
た膜ろ過洗浄法が最も好ましい。また、必要に応じて膜
ろ過洗浄法と他の方法を併用することが出来る。特にチ
ューブ式限外ろ過膜を用いることにより効果的に副生塩
類を除去することが可能である。限外ろ過は、膜の材質
にもよるが、通常0〜80℃で行われ、充分に塩類を除
去するために連続叉は断続的に注水しながら行う必要が
ある。ろ過時間は特に限定されないが、通常1〜50時
間で行われる。
The step (b) in the present invention is a step of removing by-product salts from the aggregate slurry of the magnesium fluoride hydrate colloidal particles obtained in the step (a). As a method for removing by-product salts, an ultrafiltration membrane, a membrane filtration washing method using a reverse osmosis membrane, an ion exchange method, a static separation method, etc. can be used, but a membrane using an ultrafiltration membrane is used. The filtration washing method is the most preferable. If necessary, the membrane filtration washing method can be used in combination with other methods. In particular, by-product salts can be effectively removed by using a tube type ultrafiltration membrane. Ultrafiltration is usually carried out at 0 to 80 ° C., though it depends on the material of the membrane, and it is necessary to carry out continuous or intermittent water injection in order to sufficiently remove salts. The filtration time is not particularly limited, but is usually 1 to 50 hours.

【0015】限外ろ過により副生塩類を除去することに
より、フッ化マグネシウム水和物のコロイド粒子の凝集
体は小さくなり、フッ化マグネシウム水和物水性ゾルを
得ることが出来る。(b)工程で得られたフッ化マグネ
シウム水和物水性ゾルは、電子顕微鏡による観察で、一
次粒子径が10〜100nmである。限外ろ過の後、さ
らに、陽、陰イオン交換を行うことにより透明性の良好
な水性ゾルを得ることが出来る。本発明の(b)工程で
得られたフッ化マグネシウム水和物水性ゾルは、フッ化
マグネシウム水和物の濃度が2〜20重量%である。本
発明の(b)工程により得られたフッ化マグネシウム水
和物水性ゾルは、MgF2 として5重量%での光透過率
が50以下である。この光透過率は、厚さ1cmの水に
おける波長500nmの光の透過率を100とし、厚さ
1cmのフッ化マグネシウム水和物ゾルにおける同波長
光の透過率の相対値を示したものである。
By removing the by-product salts by ultrafiltration, the agglomerates of colloidal particles of magnesium fluoride hydrate are reduced, and a magnesium fluoride hydrate aqueous sol can be obtained. The magnesium fluoride hydrate aqueous sol obtained in the step (b) has a primary particle diameter of 10 to 100 nm as observed by an electron microscope. After ultrafiltration, cation and anion exchange is further carried out to obtain an aqueous sol having good transparency. The magnesium fluoride hydrate aqueous sol obtained in the step (b) of the present invention has a magnesium fluoride hydrate concentration of 2 to 20% by weight. The magnesium fluoride hydrate aqueous sol obtained by the step (b) of the present invention has a light transmittance of 50 or less at 5% by weight as MgF 2 . The light transmittance is a relative value of the transmittance of light of the same wavelength in a magnesium fluoride hydrate sol having a thickness of 1 cm, where the transmittance of light having a wavelength of 500 nm in water having a thickness of 1 cm is 100. .

【0016】本発明において(c)工程でフッ化マグネ
シウム水和物水性ゾルの水を、常法により、減圧または
常圧で有機溶媒に置換することによりオルガノゾルを得
ることが出来る。本発明において有機溶媒としてはメタ
ノール、エタノール、イソプロパノール、n−プロパノ
ール、DMF、DMAC、エチレングリコール、プロピ
ルセロソルブなどが挙げられ、単独又は2種以上混合し
て使用する事ができる。
In the present invention, an organosol can be obtained by substituting water of the magnesium fluoride hydrate aqueous sol with an organic solvent under reduced pressure or atmospheric pressure by a conventional method in the step (c). In the present invention, examples of the organic solvent include methanol, ethanol, isopropanol, n-propanol, DMF, DMAC, ethylene glycol, and propyl cellosolve, which can be used alone or in combination of two or more.

【0017】(c)工程で得られるフッ化マグネシウム
水和物オルガノゾルは、フッ化マグネシウム水和物の濃
度が2〜20重量%濃度であり、電子顕微鏡による観察
で一次粒子径は、10〜100nmである。また、光透
過率は、上記方法で測定して50以上である。本発明の
方法により得られたフッ化マグネシウム水和物ゾルは、
そのゾルを110℃で乾燥し粉末としてX線回折を行っ
たところ、その測定結果は、ASTM(Index t
o the X−ray Powder Date F
ileInorganic)に記載されているフッ化マ
グネシウムX線回折パターンNo.6−0290とX線
回折ピークが一致せず、メインピークのシフト及び新た
な小さなピークの存在が確認された。
The magnesium fluoride hydrate organosol obtained in the step (c) has a magnesium fluoride hydrate concentration of 2 to 20% by weight and a primary particle diameter of 10 to 100 nm as observed by an electron microscope. Is. The light transmittance is 50 or more as measured by the above method. Magnesium fluoride hydrate sol obtained by the method of the present invention,
When the sol was dried at 110 ° C. and subjected to X-ray diffraction as a powder, the measurement result was ASTM (Index text).
o the X-ray Powder Date F
magnesium Inorganic) magnesium fluoride X-ray diffraction pattern No. The X-ray diffraction peaks did not coincide with those of 6-0290, and the shift of the main peak and the presence of a new small peak were confirmed.

【0018】一方、本発明の方法により得られたフッ化
マグネシウム水和物ゾルは、そのゾルを110℃で乾燥
し粉末として示差熱分析(DTA−TG分析)を行った
ところ、その測定結果は、140〜190℃に吸熱ピー
クが認められ、6.5〜13重量%の重量減が測定され
た。また、カールフィッシャー法により、この重量減は
水であることを確認した。
On the other hand, the magnesium fluoride hydrate sol obtained by the method of the present invention was dried at 110 ° C. and subjected to differential thermal analysis (DTA-TG analysis) as a powder. , An endothermic peak was observed at 140 to 190 ° C., and a weight loss of 6.5 to 13% by weight was measured. Moreover, it was confirmed by Karl Fischer's method that this weight loss was water.

【0019】以上の結果から本発明のフッ化マグネシウ
ム水和物ゾル乾燥物は、明らかに結晶水を有しており、
その組成は、MgF2 ・nH2 Oにおいて、nは0.2
5〜0.5に相当する。この結晶水は(a)工程の反応
温度が高くなるほど減少する傾向を示している。上記示
差熱分析の結果、脱水は400〜500℃で終了する。
500℃焼成物のX線回折の結果は、上記ASTM N
o.6−0290のフッ化マグネシウムのX線回折ピー
クと完全に一致し、他のピークの存在は認められなかっ
た。
From the above results, the dried magnesium fluoride hydrate sol of the present invention clearly has water of crystallization,
Its composition is MgF 2 · nH 2 O, where n is 0.2.
It corresponds to 5 to 0.5. This water of crystallization tends to decrease as the reaction temperature in step (a) increases. As a result of the differential thermal analysis, dehydration ends at 400 to 500 ° C.
The result of X-ray diffraction of the 500 ° C. calcined product is
o. It completely coincided with the X-ray diffraction peak of magnesium fluoride of 6-0290, and the presence of other peaks was not recognized.

【0020】さらに、本発明の方法により得られたフッ
化マグネシウム水和物ゾルは、そのゾルを110℃で乾
燥し粉末として湿式分析(ICP分析及びイオンクロマ
トグラフィー分析)を行ったところ、その測定結果は、
フッ素とマグネシウムの比は、F/Mgのモル比が2.
0であった。以上の結果から、本発明の方法により得ら
れたフッ化マグネシウム水和物は、MgF2 ・nH2
(但し、nは0.25〜0.5)である事が判明した。
Further, the magnesium fluoride hydrate sol obtained by the method of the present invention was dried at 110 ° C. and subjected to wet analysis (ICP analysis and ion chromatography analysis) as a powder. Result is,
Regarding the ratio of fluorine to magnesium, the molar ratio of F / Mg is 2.
It was 0. From the above results, the magnesium fluoride hydrate obtained by the method of the present invention is MgF 2 · nH 2 O
(However, n was 0.25 to 0.5).

【0021】[0021]

【作用】本発明の(a)工程において、マグネシウム塩
水溶液とフッ化物水溶液の反応は、フッ素とマグネシウ
ムの比がF/Mgモル比で1.9〜2.0であり、1.
9未満でもよいが、未反応のMgCl2 が多くなるため
効率的ではなくなる。また、2.0以上では(a)工程
の反応の生成物はゲル状となり、(b)工程での塩類除
去時に、スラリーの粘度が高くなり、生産性が著しく低
下するので好ましくない。この理由は明かではないが、
本発明の方法では、まずMg(OH)x y ・zH2
(x>0、y<2)の塩基性フッ化マグネシウムが生成
し、最終的に限りなくMgF2 ・zH2 Oに近くなるた
めと推定される。
In the step (a) of the present invention, magnesium salt
The reaction between an aqueous solution and an aqueous solution of fluoride is
The F / Mg molar ratio is 1.9 to 2.0.
It may be less than 9, but unreacted MgCl2Because there are many
It becomes less efficient. If it is 2.0 or more, the step (a) is performed.
The product of the reaction of step 2 becomes a gel, and salt removal in step (b)
When leaving, the viscosity of the slurry becomes high and the productivity is extremely low.
It is not preferable because it will be lowered. The reason for this is not clear,
In the method of the present invention, first, Mg (OH)xF y・ ZH2O
(X> 0, y <2) basic magnesium fluoride is generated
And finally MgF2・ ZH2It ’s closer to O
Presumed to be

【0022】(a)工程の温度は0〜100℃で、10
0℃以上では脱水が進むため好ましくない。(a)工程
の時間は0.1〜10時間であり、0.1時間未満でも
良いが混合が不充分になるため好ましくない。また、1
0時間を越えても良いが、製造時間が必要以上に長くな
り好ましくない。
The temperature of the step (a) is 0 to 100 ° C. and is 10
Dehydration proceeds at 0 ° C or higher, which is not preferable. The time of the step (a) is 0.1 to 10 hours and may be less than 0.1 hours, but it is not preferable because the mixing becomes insufficient. Also, 1
It may be longer than 0 hours, but it is not preferable because the production time becomes longer than necessary.

【0023】(a)工程のフッ化マグネシウム水和物の
濃度は、MgF2 として0.1〜10重量%であり、
0.1重量%未満でも良いが効率的ではなく、また、1
0重量%を越える濃度でも良いが液の粘度が高くなり反
応が不均一になるため好ましくない。0.5〜2.0重
量%が最も好ましい。(b)工程の温度は0〜80℃で
あり、温度が高い方がろ過速度が大きくなるので有効で
あるが、ろ過温度が高くなると脱水が進むことから室温
〜60℃がより好ましい。
The concentration of the magnesium fluoride hydrate in step (a) is 0.1 to 10% by weight as MgF 2 ,
It may be less than 0.1% by weight, but it is not efficient, and 1
A concentration of more than 0% by weight is acceptable, but it is not preferable because the viscosity of the liquid increases and the reaction becomes nonuniform. Most preferred is 0.5 to 2.0% by weight. The temperature in the step (b) is 0 to 80 ° C., and the higher the temperature, the more effective is the filtration rate. However, the higher the filtration temperature is, the more preferable the temperature is from room temperature to 60 ° C. because dehydration proceeds.

【0024】(b)工程の時間は1〜50時間で、50
時間以上でも良いが製造時間が必要以上に長くなり好ま
しくない。(c)工程の溶媒置換温度は溶媒の沸点によ
り異なるが、置換時フッ化マグネシウム水和物の脱水が
起こらないように減圧で出来るだけ低温で行うのが好ま
しい。
The time of the step (b) is 1 to 50 hours, and is 50
It may be longer than that, but it is not preferable because the manufacturing time becomes longer than necessary. Although the solvent replacement temperature in the step (c) varies depending on the boiling point of the solvent, it is preferably carried out under reduced pressure as low as possible so that dehydration of the magnesium fluoride hydrate does not occur during the replacement.

【0025】(b)または(c)工程で得られるフッ化
マグネシウム水和物水性ゾルまたはオルガノゾルの濃度
はいずれも2〜20重量%であり、2重量%未満でも良
いが、使用時バインダーと混合使用されることにより更
に薄くなるため好ましくない。また、20重量%以上で
も良いが、この場合にはゾルの粘度が高くなり扱いにく
くなるため好ましくない。
The concentration of the magnesium fluoride hydrate aqueous sol or organosol obtained in step (b) or (c) is 2 to 20% by weight, and may be less than 2% by weight, but it is mixed with the binder at the time of use. It is not preferable because it becomes thinner when used. Further, it may be 20% by weight or more, but in this case, the viscosity of the sol becomes high and it becomes difficult to handle, which is not preferable.

【0026】本発明においてフッ化マグネシウム水和物
のコロイド粒子の一次粒子径は、電子顕微鏡による観察
で10〜100nmであり、また、100nm以上では
反射防止膜として効果的な厚みである100nmを越え
るため好ましくない。また、(a)工程の反応温度が高
いほど、このフッ化マグネシウム水和物のコロイド粒子
の一次粒子径は大きくなる傾向を示す。
In the present invention, the primary particle size of colloidal particles of magnesium fluoride hydrate is 10 to 100 nm as observed by an electron microscope, and when it is 100 nm or more, it exceeds 100 nm which is an effective thickness as an antireflection film. Therefore, it is not preferable. Further, the higher the reaction temperature in step (a), the larger the primary particle size of the colloidal particles of magnesium fluoride hydrate tends to be.

【0027】本発明において、フッ化マグネシウム水和
物は、フッ化マグネシウムの無水塩よりも屈折率が低
く、このフッ化マグネシウム水和物のゾルを用いる事に
より、良好な反射防止効果を発現する事が出来る。
In the present invention, magnesium fluoride hydrate has a lower refractive index than the anhydrous magnesium fluoride salt, and by using this magnesium fluoride hydrate sol, a good antireflection effect is exhibited. I can do things.

【0028】[0028]

【実施例】【Example】

実施例1 (a)工程 塩化マグネシウム(MgCl2 ・6H2 O、試薬特級、
小宗化学製)2436g(MgCl2 として1125
g)を、純水40kgに溶解して塩化マグネシウム水溶
液42.4kgを調製した。この水溶液中のMgCl2
濃度は2.65重量%であった。
Example 1 Step (a) Magnesium chloride (MgCl 2 .6H 2 O, reagent grade,
2436 g (manufactured by Komune Kagaku) (1125 as MgCl 2
g) was dissolved in 40 kg of pure water to prepare 42.4 kg of an aqueous magnesium chloride solution. MgCl 2 in this aqueous solution
The concentration was 2.65% by weight.

【0029】一方、酸性フッ化アンモニウム(NH4
・HF、試薬特級、森田化学製)685gを、純水40
kgに溶解した後、28%アンモニア水(試薬、小宗化
学製)730gを添加し、フッ化アンモニウム水溶液4
1.4kg(NH4 Fとして867g)を調製した。こ
の水溶液中のNH4 F濃度は2.09重量%であった。
On the other hand, acidic ammonium fluoride (NH 4 F
・ HF, reagent special grade, Morita Chemical Co., Ltd.) 685 g, pure water 40
After dissolving in kg, 730 g of 28% ammonia water (reagent, manufactured by Kosou Kagaku) was added, and ammonium fluoride aqueous solution 4 was added.
1.4 kg (867 g as NH 4 F) was prepared. The NH 4 F concentration in this aqueous solution was 2.09% by weight.

【0030】上記の塩化マグネシウム水溶液を、200
リットルの容器に仕込み、ディスパーにて強く撹拌しな
がら、室温で上記フッ化アンモニウム水溶液を30分間
で添加した後、更に1時間撹拌を続行し、フッ化マグネ
シウム水和物のコロイド粒子のスラリーを83.8kg
得た。上記塩化マグネシウムとフッ化アンモニウムのフ
ッ素とマグネシウムの比は、F/Mgモル比で1.98
であった。得られたフッ化マグネシウム水和物のコロイ
ド粒子のスラリーは、ゾルに近いコロイド色を示すが静
定により沈降分離する傾向を示し、このフッ化マグネシ
ウム水和物のコロイド粒子は凝集体を形成している。こ
のスラリーはpH7.07、電導度40ms/cmで、
フッ化マグネシウム水和物の濃度はMgF2 として0.
87重量%であった。副生する塩は塩化アンモニウムで
あり、スラリー中に1.51重量%であった。
The above magnesium chloride aqueous solution was added to 200
In a liter container, the above ammonium fluoride aqueous solution was added for 30 minutes at room temperature while stirring vigorously with a disper, and the stirring was continued for another 1 hour to obtain a slurry of magnesium fluoride hydrate colloidal particles of 83 .8 kg
Obtained. The ratio of fluorine to magnesium in the above-mentioned magnesium chloride and ammonium fluoride is 1.98 in terms of F / Mg molar ratio.
Met. The obtained magnesium fluoride hydrate colloidal particle slurry shows a colloidal color close to that of a sol, but tends to settle and separate by static determination, and the magnesium fluoride hydrate colloidal particles form aggregates. ing. This slurry has a pH of 7.07, an electric conductivity of 40 ms / cm,
The concentration of magnesium fluoride hydrate was 0.1 as MgF 2 .
It was 87% by weight. The by-product salt was ammonium chloride, which was 1.51% by weight in the slurry.

【0031】(b)工程 (a)工程で得られたフッ化マグネシウム水和物のコロ
イド粒子のスラリー83.8kgを、チューブ式限外ろ
過装置〔UF(PS−150)、三菱レイヨンエンジニ
アリング(株)製〕を用いて純水270kgを限外ろ過
速度と同じ速度で添加しながら、ろ過洗浄を行った。液
温は25℃でろ過洗浄時間は18.5時間であった。ろ
過洗浄時の濃度はMgF2 として2.5重量%で、ろ
過、洗浄後限外ろ過装置により濃縮を行い、フッ化マグ
ネシウム水和物水性ゾル(I)12.74kgを得た。
沈降物は認められず、ゾル化率は100%であった。
Step (b) 83.8 kg of a slurry of magnesium fluoride hydrate colloidal particles obtained in the step (a) was added to a tube type ultrafiltration device [UF (PS-150), Mitsubishi Rayon Engineering Co., Ltd.]. )) Was added while 270 kg of pure water was added at the same rate as the ultrafiltration rate. The liquid temperature was 25 ° C., and the filter washing time was 18.5 hours. The concentration at the time of filtration and washing was 2.5% by weight as MgF 2 , and after filtration and washing, concentration was carried out by an ultrafiltration device to obtain 12.74 kg of magnesium fluoride hydrate aqueous sol (I).
No sediment was observed, and the sol formation rate was 100%.

【0032】得られた水性ゾル(I)は比重1.04
2、pH7.10、粘度1.8c.p.、フッ化マグネ
シウム水和物の濃度は5.9重量%、電導度355μs
/cmであり、フッ化マグネシウム水和物の収率は91
%であった。また、この水性ゾル(I)の光透過率(M
gF2 として5重量%)は28.6%であった。電子顕
微鏡観察の結果、フッ化マグネシウム水和物のコロイド
粒子の一次粒子径は20〜40nmで、動的光散乱法に
よる粒子径は336nmであった。動的光散乱法による
粒子径は、市販の米国Coulter社製N4 装置によ
り測定した。
The obtained aqueous sol (I) has a specific gravity of 1.04.
2, pH 7.10, viscosity 1.8 c. p. , Magnesium fluoride hydrate concentration 5.9% by weight, conductivity 355μs
/ Cm, and the yield of magnesium fluoride hydrate is 91.
%Met. In addition, the light transmittance of this aqueous sol (I) (M
5% by weight as gF 2 ) was 28.6%. As a result of electron microscope observation, the primary particle diameter of the colloidal particles of magnesium fluoride hydrate was 20 to 40 nm, and the particle diameter measured by the dynamic light scattering method was 336 nm. The particle size by the dynamic light scattering method was measured by a commercially available N 4 apparatus manufactured by Coulter Co., USA.

【0033】得られた水性ゾル(I)を110℃で乾燥
した粉末と500℃で焼成した粉末のX線回折図を図
1、2に示す。500℃焼成物は、ASTMのNo.6
−0290と完全に一致したが、110℃乾燥物はこれ
と同一ではなかった。得られた水性ゾル(I)を110
℃で乾燥した粉末の示差熱分析の測定結果は、184℃
に吸熱ピークを示し、重量減は11.5重量%であった
(図3)。これよりフッ化マグネシウム水和物の組成
は、MgF2 ・xH2 Oとするとx=0.455とな
り、MgF2 ・1/2H2 Oといえる。
The X-ray diffraction patterns of the powder obtained by drying the obtained aqueous sol (I) at 110 ° C. and the powder calcined at 500 ° C. are shown in FIGS. The 500 ° C. calcined product is ASTM No. 6
Completely consistent with -0290, but the 110 ° C dry matter was not the same. The obtained aqueous sol (I) was added to 110
The measurement result of the differential thermal analysis of the powder dried at ℃ was 184 ℃.
Shows an endothermic peak and the weight loss was 11.5% by weight (FIG. 3). From this, the composition of magnesium hydrate hydrate is x = 0.455 when MgF 2 · xH 2 O is used, and it can be said that the composition is MgF 2 · 1 / 2H 2 O.

【0034】水性ゾル(I)500gに純水150g加
え、MgF2 濃度4重量%に希釈した後、陽イオン交換
樹脂(アンバーライトIR−120B)を充填したカラ
ム、及び、陰イオン交換樹脂(アンバーライトIRA−
410)を充填したカラムに通液して得られた水性ゾル
を、ロータリーエバポレーターで濃縮して水性ゾル(I
I)183gを得た。得られた水性ゾル(II)は比重
1.110、pH8.18、粘度19c.p.、フッ化
マグネシウム水和物の濃度は16.1重量%、電導度4
37μs/cmであった。また、この水性ゾル(II)
の光透過率(MgF2 として5重量%)は33.9%で
あった。電子顕微鏡観察の結果、フッ化マグネシウム水
和物のコロイド粒子の一次粒子径は、10〜20nm
で、動的光散乱粒子径は190nmであった。
After adding 150 g of pure water to 500 g of the aqueous sol (I) and diluting it to a MgF 2 concentration of 4% by weight, a column packed with a cation exchange resin (Amberlite IR-120B) and an anion exchange resin (Amber). Light IRA-
The aqueous sol obtained by passing through the column filled with 410) is concentrated by a rotary evaporator to obtain an aqueous sol (I
I) 183 g was obtained. The obtained aqueous sol (II) has a specific gravity of 1.110, a pH of 8.18 and a viscosity of 19 c. p. , Magnesium fluoride hydrate concentration is 16.1% by weight, conductivity 4
It was 37 μs / cm. Also, this aqueous sol (II)
The light transmittance (5% by weight as MgF 2 ) was 33.9%. As a result of electron microscope observation, the primary particle size of the colloidal particles of magnesium fluoride hydrate is 10 to 20 nm.
The diameter of the dynamic light scattering particles was 190 nm.

【0035】実施例2 (b)工程で得られたフッ化マグネシウム水和物水性ゾ
ル(I)(フッ化マグネシウム水和物の濃度は、5.9
重量%)726gは、(c)工程として、ロータリーエ
バポレーターにて減圧下に液温20〜40℃でイソプロ
ピルアルコール約9リットルを連続的にチャージしなが
ら溶媒置換を行い、フッ化マグネシウム水和物イソプロ
ピルアルコールゾル411gを得た。置換時間は9.5
時間で、置換時のフッ化マグネシウム水和物濃度は10
〜20重量%であった。
Example 2 Magnesium fluoride hydrate aqueous sol (I) obtained in step (b) (concentration of magnesium fluoride hydrate is 5.9)
(Wt%) 726 g was subjected to solvent substitution as a step (c) while continuously charging about 9 liters of isopropyl alcohol at a liquid temperature of 20 to 40 ° C. under reduced pressure with a rotary evaporator to obtain magnesium fluoride hydrate isopropyl. 411 g of alcohol sol was obtained. Replacement time is 9.5
And the concentration of magnesium fluoride hydrate at the time of substitution is 10
Was about 20% by weight.

【0036】得られたフッ化マグネシウム水和物イソプ
ロピルアルコールゾルは比重0.844、水で1+1に
希釈した時のpHは6.83、粘度5.6c.p.、フ
ッ化マグネシウム水和物の濃度は8.9重量%、水分
0.56重量%であった。このオルガノゾルの光透過率
(MgF2 として5重量%)は94.8%であった。電
子顕微鏡観察の結果、フッ化マグネシウム水和物のコロ
イド粒子の一次粒子径は水性ゾル(I)と同じで20〜
40nmで、動的光散乱粒子径は274nmであった。
また、得られたオルガノゾルの110℃で乾燥した粉末
の示差熱分析の測定結果は170℃に吸熱ピークを示
し、重量減は11.5%であり、水性ゾル(I)と同じ
であった。また、このオルガノゾルの110℃で乾燥し
た粉末の屈折率を液浸法により測定した結果、屈折率は
1.385であった。
The obtained magnesium fluoride hydrate isopropyl alcohol sol has a specific gravity of 0.844, a pH of 6.83 when diluted to 1 + 1 with water, and a viscosity of 5.6 c. p. The concentration of magnesium fluoride hydrate was 8.9% by weight, and the water content was 0.56% by weight. The light transmittance of this organosol (5% by weight as MgF 2 ) was 94.8%. As a result of electron microscopic observation, the primary particle size of the colloidal particles of magnesium fluoride hydrate was 20 to 20
At 40 nm, the dynamic light scattering particle size was 274 nm.
Further, the measurement result of the powder of the obtained organosol dried at 110 ° C by differential thermal analysis showed an endothermic peak at 170 ° C, and the weight loss was 11.5%, which was the same as the aqueous sol (I). The refractive index of the powder of this organosol dried at 110 ° C. was measured by the liquid immersion method, and as a result, the refractive index was 1.385.

【0037】得られた水性ゾル(II)及びオルガノゾ
ルはいずれも室温6ヶ月以上放置しても分離、増粘など
の異常は認められず安定であった。水性ゾル(I)は放
置により若干分離する傾向を示した。 実施例3 エチルシリケート28(コルコート社製)208gをイ
ソプロピルアルコール600gに溶解し、この溶液に撹
拌下、室温でイソプロピルアルコール300gとシュウ
酸1gと水90gからなる混合液を30分間で添加した
後、78℃還流下で2時間加熱し、エチルシリケート系
薄膜化剤(SiO2 濃度5重量%)を作成した。
The obtained aqueous sol (II) and organosol were both stable even after standing at room temperature for 6 months or longer without any abnormality such as separation or thickening. The aqueous sol (I) tended to separate slightly when left standing. Example 3 208 g of ethyl silicate 28 (manufactured by Colcoat) was dissolved in 600 g of isopropyl alcohol, and a mixed solution of 300 g of isopropyl alcohol, 1 g of oxalic acid and 90 g of water was added to this solution at room temperature with stirring for 30 minutes. The mixture was heated at 78 ° C. under reflux for 2 hours to prepare an ethyl silicate-based thin film forming agent (SiO 2 concentration 5% by weight).

【0038】このエチルシリケート系薄膜化剤160g
に(c)工程で得られたフッ化マグネシウム水和物イソ
プロピルアルコールゾル(フッ化マグネシウム水和物の
濃度は8.9重量%)254gを撹拌下に添加し、反射
防止コーティング剤414gを得た。このコーティング
剤は固形分7.4%、フッ化マグネシウム水和物とエチ
ルシリケート系薄膜化剤中のSiO2 は、(フッ化マグ
ネシウム水和物)/(SiO2 )の重量比が2.83で
あった。このコーティング剤をイソプロピルアルコール
で約3倍に希釈し、バーコーターにてガラス板(ソーダ
ライム)に塗布し、110℃30分間乾燥を行い、反射
防止コート膜を形成させた。膜厚は約0.1μであっ
た。このガラス板の550nmの波長での透過率を測定
した結果、未処理ガラス板は91.61であったのに対
して、反射防止膜コート処理をしたガラス板は93.9
2であり、反射防止効果が認められた。
160 g of this ethyl silicate thin film forming agent
254 g of magnesium fluoride hydrate isopropyl alcohol sol (concentration of magnesium fluoride hydrate is 8.9% by weight) obtained in step (c) was added to the mixture under stirring to obtain 414 g of antireflection coating agent. . This coating agent has a solid content of 7.4%, and magnesium fluoride hydrate and SiO 2 in the ethyl silicate thin film forming agent have a (magnesium fluoride hydrate) / (SiO 2 ) weight ratio of 2.83. Met. This coating agent was diluted about 3 times with isopropyl alcohol, applied on a glass plate (soda lime) with a bar coater, and dried at 110 ° C. for 30 minutes to form an antireflection coating film. The film thickness was about 0.1μ. As a result of measuring the transmittance of this glass plate at a wavelength of 550 nm, the untreated glass plate was 91.61, while the glass plate coated with the antireflection film was 93.9.
It was 2, and the antireflection effect was recognized.

【0039】実施例4 実施例1及び2で作成したフッ化マグネシウム水和物の
水性ゾル(I)(II)及びイソプロピルアルコールゾ
ルをMgF2 濃度3%に希釈し、バーコーターにてガラ
ス板に塗布し、110℃で乾燥してフッ化マグネシウム
水和物の膜を形成させた。その膜厚は約0.1μであっ
た。このガラス板の550nm波長での透過率はそれぞ
れ93.98、94.05、94.28であり、透明
性、反射防止効果は良好であった。
Example 4 The aqueous sol (I) (II) of magnesium fluoride hydrate and isopropyl alcohol sol prepared in Examples 1 and 2 were diluted to a MgF 2 concentration of 3%, and a glass plate was formed with a bar coater. It was applied and dried at 110 ° C. to form a film of magnesium fluoride hydrate. The film thickness was about 0.1 μ. The transmittance at 550 nm wavelength of this glass plate was 93.98, 94.05, and 94.28, respectively, and the transparency and antireflection effect were good.

【0040】比較例1 実施例1で調製したフッ化アンモニウム水溶液41.4
kgを200リットルの容器に仕込み、ディスパーにて
強く撹拌しながら、室温で、実施例1で調製した塩化マ
グネシウム水溶液42.4kgを30分間で添加した
後、更に1時間撹拌を続行し、フッ化マグネシウムのコ
ロイド粒子のスラリー83.8kgを得た。
Comparative Example 1 Ammonium fluoride aqueous solution 41.4 prepared in Example 1
Into a 200 liter container, while stirring strongly with a disper, at room temperature, 42.4 kg of the magnesium chloride aqueous solution prepared in Example 1 was added over 30 minutes, and then the stirring was continued for another 1 hour, followed by fluorination. 83.8 kg of a slurry of magnesium colloidal particles was obtained.

【0041】上記フッ化アンモニウムと塩化マグネシウ
ムのフッ素とマグネシウムの比は、F/Mgモル比で
1.98であった。得られたフッ化マグネシウムのコロ
イド粒子のスラリーは、白濁していて、フッ化マグネシ
ウムは大きな凝集体を形成した。このフッ化マグネシウ
ムのコロイド粒子のスラリー83.8kgは、チューブ
式限外ろ過装置を用いて、純水270kgを限外ろ過速
度と同じ速度で添加しながら、ろ過洗浄を行った。Mg
2としての濃度は5.0重量%で、電導度が305μ
s/cmになるまで充分に洗浄したが、大部分のフッ化
マグネシウムのコロイド粒子の凝集体はゾル化せず、ゾ
ル化率は15%であった。ゾル化した部分はフッ化マグ
ネシウム水和物であった。
The ratio of fluorine to magnesium in the above ammonium fluoride and magnesium chloride was 1.98 in terms of F / Mg molar ratio. The obtained slurry of magnesium fluoride colloidal particles was cloudy, and magnesium fluoride formed large aggregates. 83.8 kg of this magnesium fluoride colloidal particle slurry was filtered and washed using a tube type ultrafiltration device while adding 270 kg of pure water at the same rate as the ultrafiltration rate. Mg
The concentration as F 2 is 5.0% by weight and the electric conductivity is 305μ.
It was thoroughly washed to s / cm, but most aggregates of magnesium fluoride colloidal particles did not become a sol, and the solization rate was 15%. The solized portion was magnesium fluoride hydrate.

【0042】[0042]

【発明の効果】本発明のフッ化マグネシウム水和物水性
ゾル及びフッ化マグネシウム水和物オルガノゾルは、電
子顕微鏡による観察で一次粒子径が10〜100nmで
あり、良好な分散性を示す。このゾルの乾燥物は、Mg
2 ・nH2 O( 但し、nは0.25〜0.5)の組成
を示し、屈折率は1.385と低い。また、一次粒子径
が比較的大きいにもかかわらず、乾燥被膜は良好な光透
過性を示している。従って、このゾルを単独またはメチ
ルメタアクリルレートなどの有機樹脂の有機溶媒溶解
液、アクリル系やアクリルスチレン系などの有機樹脂エ
マルジョン、ポリビニルアルコールなどの水溶性高分子
水溶液、シランカップリング剤の部分加水分解液、エチ
ルシリケートの部分加水分解液、シリカゾルなどの他の
結合剤と混合使用することにより、ガラスレンズ、プラ
スチックレンズ、ガラス板、透明性プラスチック板、透
明プラスチックフィルム、陰極線管や液晶表示装置の画
像表示面、カラーフィルターなどに塗布することにより
良好な反射防止コート膜を形成することが出来る。
INDUSTRIAL APPLICABILITY The magnesium fluoride hydrate aqueous sol and the magnesium fluoride hydrate organosol of the present invention have a primary particle diameter of 10 to 100 nm as observed by an electron microscope, and exhibit good dispersibility. The dried product of this sol is Mg
It has a composition of F 2 · nH 2 O (where n is 0.25 to 0.5) and has a low refractive index of 1.385. In addition, the dry coating film exhibits good light transmittance even though the primary particle diameter is relatively large. Therefore, this sol is used alone or in an organic solvent solution of an organic resin such as methylmethacrylate, an organic resin emulsion such as an acrylic or acrylic styrene type, a water-soluble polymer aqueous solution such as polyvinyl alcohol, or a partial hydrolysis of a silane coupling agent. Decomposition solution, partial hydrolysis solution of ethyl silicate, by mixing with other binders such as silica sol, glass lens, plastic lens, glass plate, transparent plastic plate, transparent plastic film, cathode ray tube and liquid crystal display device A good antireflection coating film can be formed by applying it to an image display surface, a color filter or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたフッ化マグネシウム水和物
水性ゾルを、110℃で乾燥した粉末のX線回折図。
FIG. 1 is an X-ray diffraction diagram of a powder obtained by drying the magnesium fluoride hydrate aqueous sol obtained in Example 1 at 110 ° C.

【図2】実施例1で得られたフッ化マグネシウム水和物
水性ゾルを、500℃で焼成した粉末のX線回折図。
FIG. 2 is an X-ray diffraction pattern of a powder obtained by firing the magnesium fluoride hydrate aqueous sol obtained in Example 1 at 500 ° C.

【図3】実施例1で得られたフッ化マグネシウム水和物
水性ゾルを、110℃で乾燥した粉末の示差熱分析図。
FIG. 3 is a differential thermal analysis diagram of a powder obtained by drying the magnesium hydrate hydrate aqueous sol obtained in Example 1 at 110 ° C.

【符号の説明】[Explanation of symbols]

1・・・示差熱分析(DTA)の結果を示す曲線 2・・・熱重量分析(TG)の結果を示す曲線 1 ... Curve showing the result of differential thermal analysis (DTA) 2 ... Curve showing the result of thermogravimetric analysis (TG)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MgF2 ・nH2 O(但し、nは0.2
5〜0.5)の組成を有し、一次粒子径が10〜100
nmであるフッ化マグネシウム水和物のコロイド粒子か
らなるゾル。
1. MgF 2 .nH 2 O (where n is 0.2
5 to 0.5) and has a primary particle size of 10 to 100.
Sol consisting of colloidal particles of magnesium fluoride hydrate having a size of nm.
【請求項2】 下記(a)及び(b)工程: (a) マグネシウム塩水溶液にフッ化物水溶液を、
1.9〜2.0のF/Mgモル比となる様に添加し、フ
ッ化マグネシウム水和物のコロイド粒子の凝集体スラリ
ーを生成させる工程、(b) (a)工程により得られ
たフッ化マグネシウム水和物のコロイド粒子の凝集体ス
ラリー中の副生塩類を除去する工程、からなる請求項1
記載のフッ化マグネシウム水和物水性ゾルの製造法。
2. The following steps (a) and (b): (a) An aqueous solution of magnesium salt and an aqueous solution of fluoride,
A step of adding an F / Mg molar ratio of 1.9 to 2.0 to form an aggregate slurry of colloidal particles of magnesium fluoride hydrate; 2. A step of removing by-product salts in a slurry of agglomerates of colloidal particles of magnesium iodide hydrate.
A method for producing an aqueous sol of magnesium fluoride hydrate described.
【請求項3】 請求項2記載の(a)、(b)工程及び
下記(c)工程: (c) (b)工程により得られたフッ化マグネシウム
水和物水性ゾルの水を、溶媒置換法により有機溶媒に置
換する工程、からなる請求項1記載のフッ化マグネシウ
ム水和物オルガノゾルの製造法。
3. The solvent replacement of the water of the magnesium fluoride hydrate aqueous sol obtained by the steps (a) and (b) and the following step (c) according to claim 2: (c) and (b) The method for producing a magnesium fluoride hydrate organosol according to claim 1, comprising the step of substituting an organic solvent by the method.
JP21866693A 1993-09-02 1993-09-02 Magnesium fluoride hydrate sol and its production method Expired - Fee Related JP3844787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21866693A JP3844787B2 (en) 1993-09-02 1993-09-02 Magnesium fluoride hydrate sol and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21866693A JP3844787B2 (en) 1993-09-02 1993-09-02 Magnesium fluoride hydrate sol and its production method

Publications (2)

Publication Number Publication Date
JPH0769621A true JPH0769621A (en) 1995-03-14
JP3844787B2 JP3844787B2 (en) 2006-11-15

Family

ID=16723525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21866693A Expired - Fee Related JP3844787B2 (en) 1993-09-02 1993-09-02 Magnesium fluoride hydrate sol and its production method

Country Status (1)

Country Link
JP (1) JP3844787B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008555A1 (en) * 1998-12-09 2000-06-14 Nissan Chemical Industries, Limited Silica-magnesium fluoride hydrate composite sols and process for their preparation
US6713170B1 (en) * 1998-12-09 2004-03-30 Nippon Kayaku Kabushiki Kaisha Hard coating material and film comprising the same
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
JP2006160585A (en) * 2004-12-10 2006-06-22 Toyo Ink Mfg Co Ltd Organosol of magnesium fluoride particle, method for producing the same, and coating material using the organosol
JP2007088108A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Magnet, magnetic material for magnet, coat film formation process liquid, and rotating machine
JP2007161509A (en) * 2005-12-12 2007-06-28 Stella Chemifa Corp Dispersion liquid of fluoride particulate and method for producing the same
JP2008081380A (en) * 2006-09-29 2008-04-10 Hitachi Chem Co Ltd Processing liquid and method for forming fluoride-coated film
WO2008047787A1 (en) 2006-10-20 2008-04-24 Nissan Chemical Industries, Ltd. Organosol of fluoride colloid particle and method for production thereof
WO2009107665A1 (en) 2008-02-25 2009-09-03 セントラル硝子株式会社 Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process
JP2010095411A (en) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd Dispersion of rare-earth fluoride fine particle, method for producing the same and rare-earth magnet using the same
JP2011028185A (en) * 2008-08-04 2011-02-10 Central Glass Co Ltd Hydrophilic low reflection member
US8119260B2 (en) 2004-07-28 2012-02-21 Hitachi, Ltd. Rare-earth magnet
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2013180062A1 (en) * 2012-05-29 2013-12-05 ステラケミファ株式会社 Magnesium fluoride particle, method for producing magnesium fluoride particle, magnesium fluoride particle dispersion, method for producing magnesium fluoride particle dispersion, composition for forming layer having low refractive index, method for producing composition for forming layer having low refractive index, substrate with layer having low refractive index, and method for producing substrate with layer having low refractive index
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291535B1 (en) 1998-12-09 2001-09-18 Nissan Chemical Industries, Ltd. Silica-magnesium fluoride hydrate composite sols and process for their preparation
US6713170B1 (en) * 1998-12-09 2004-03-30 Nippon Kayaku Kabushiki Kaisha Hard coating material and film comprising the same
EP1008555A1 (en) * 1998-12-09 2000-06-14 Nissan Chemical Industries, Limited Silica-magnesium fluoride hydrate composite sols and process for their preparation
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8119260B2 (en) 2004-07-28 2012-02-21 Hitachi, Ltd. Rare-earth magnet
US9915761B2 (en) 2004-09-16 2018-03-13 Nikon Corporation Optical system having optical thin film including amorphous silicon oxide-based binder
TWI459022B (en) * 2004-09-16 2014-11-01 尼康股份有限公司 MgF with amorphous silicon oxide binder 2 An optical film and an optical element provided with the thin film, and the MgF 2 Manufacturing method of optical film
JPWO2006030848A1 (en) * 2004-09-16 2008-05-15 株式会社ニコン MgF2 optical thin film having amorphous silicon oxide binder, optical element including the same, and method for producing MgF2 optical thin film
JP4858170B2 (en) * 2004-09-16 2012-01-18 株式会社ニコン Method for producing MgF2 optical thin film having amorphous silicon oxide binder
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
JP2006160585A (en) * 2004-12-10 2006-06-22 Toyo Ink Mfg Co Ltd Organosol of magnesium fluoride particle, method for producing the same, and coating material using the organosol
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4710507B2 (en) * 2005-09-21 2011-06-29 株式会社日立製作所 Magnets, magnetic materials for magnets, coating film forming solution and rotating machine
JP2007088108A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Magnet, magnetic material for magnet, coat film formation process liquid, and rotating machine
JP2007161509A (en) * 2005-12-12 2007-06-28 Stella Chemifa Corp Dispersion liquid of fluoride particulate and method for producing the same
JP2008081380A (en) * 2006-09-29 2008-04-10 Hitachi Chem Co Ltd Processing liquid and method for forming fluoride-coated film
US7862654B2 (en) 2006-09-29 2011-01-04 Hitachi Chemical Company, Ltd. Treating agent for forming a fluoride coating film and method for forming a fluoride coating film
US7815726B2 (en) 2006-09-29 2010-10-19 Hitachi Chemical Company, Ltd. Treating agent for forming a fluoride coating film and method for forming a fluoride coating film
JP4508175B2 (en) * 2006-09-29 2010-07-21 日立化成工業株式会社 Fluoride coat film forming treatment liquid and fluoride coat film forming method
WO2008047787A1 (en) 2006-10-20 2008-04-24 Nissan Chemical Industries, Ltd. Organosol of fluoride colloid particle and method for production thereof
US8193253B2 (en) 2006-10-20 2012-06-05 Nissan Chemical Industries, Ltd. Organosol of fluoride colloid particle and method for producing the same
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US20110003143A1 (en) * 2008-02-25 2011-01-06 Central Glass Company, Limited Organosol Containing Magnesium Fluoride Hydroxide, and Manufacturing Method Therefor
WO2009107665A1 (en) 2008-02-25 2009-09-03 セントラル硝子株式会社 Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process
JP2011028185A (en) * 2008-08-04 2011-02-10 Central Glass Co Ltd Hydrophilic low reflection member
JP2010095411A (en) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd Dispersion of rare-earth fluoride fine particle, method for producing the same and rare-earth magnet using the same
CN104271509A (en) * 2012-05-29 2015-01-07 斯泰拉化工公司 Magnesium fluoride particle, method for producing magnesium fluoride particle, magnesium fluoride particle dispersion, method for producing magnesium fluoride particle dispersion, composition for forming layer having low refractive index, method for producing composition for forming layer having low refractive index, substrate with layer having low refractive index, and method for producing substrate with layer having low refractive index
JP2013245154A (en) * 2012-05-29 2013-12-09 Stella Chemifa Corp Magnesium fluoride particle, method for producing magnesium fluoride particle, magnesium fluoride particle dispersion liquid, method for producing magnesium fluoride particle dispersion liquid, composition for forming low refractive index layer, method for producing composition for forming low refractive index layer, substrate with low refractive index layer, and method for producing substrate with low refractive index layer
WO2013180062A1 (en) * 2012-05-29 2013-12-05 ステラケミファ株式会社 Magnesium fluoride particle, method for producing magnesium fluoride particle, magnesium fluoride particle dispersion, method for producing magnesium fluoride particle dispersion, composition for forming layer having low refractive index, method for producing composition for forming layer having low refractive index, substrate with layer having low refractive index, and method for producing substrate with layer having low refractive index

Also Published As

Publication number Publication date
JP3844787B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JPH0769621A (en) Magnesium fluoride hydrate sol and production thereof
JP4126788B2 (en) Silica-magnesium fluoride hydrate composite sol and process for producing the same
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP3761189B2 (en) Composite oxide sol, method for producing the same, and substrate
JP4171850B2 (en) Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same
US5667725A (en) Sol and fine powder of sodium magnesium fluoride and processes for their production
JP4730487B2 (en) Modified metal oxide sol and method for producing the same
JPS6041536A (en) Preparation of antimony pentoxide sol
JP5253095B2 (en) Method for producing zirconia sol
JP3250259B2 (en) Modified stannic oxide-zirconium oxide composite sol and method for producing the same
JP3198494B2 (en) Conductive oxide particles and method for producing the same
JP5146683B2 (en) Method for producing modified zirconium oxide-stannic oxide composite sol
JP3235097B2 (en) Modified metal oxide sol and method for producing the same
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JP4561955B2 (en) Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol and method for producing the same
JPH10245224A (en) Production of titanium oxide-tin oxide composite sol
JPH0980203A (en) Modified metal oxide sol and its production
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP3738401B2 (en) Alkaline alumina hydrate sol and process for producing the same
US20060116429A1 (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
KR20090003140A (en) Process for preparing zirconia sol
JP4088727B2 (en) Method for producing tungsten oxide-tin oxide-silicon dioxide composite sol
JPH04214022A (en) Production of flat silica sol
JPH0725549B2 (en) Silica antimony oxide composite sol, method for producing the same and flame retardant comprising the same
JPH08208213A (en) Production of aqueous dispersion of flocculated large-sized silica particle

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100825

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100825

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees