JPWO2009107804A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JPWO2009107804A1
JPWO2009107804A1 JP2010500784A JP2010500784A JPWO2009107804A1 JP WO2009107804 A1 JPWO2009107804 A1 JP WO2009107804A1 JP 2010500784 A JP2010500784 A JP 2010500784A JP 2010500784 A JP2010500784 A JP 2010500784A JP WO2009107804 A1 JPWO2009107804 A1 JP WO2009107804A1
Authority
JP
Japan
Prior art keywords
solar cell
resin adhesive
recesses
wiring
wiring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010500784A
Other languages
English (en)
Inventor
三島 孝博
孝博 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2009107804A1 publication Critical patent/JPWO2009107804A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュール100において、配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凹部11aを有する。樹脂接着材12は、複数の凹部11aそれぞれに入り込むことによりアンカー効果を発揮する。

Description

本発明は、配線材により互いに接続された複数の太陽電池を備える太陽電池モジュールに関する。
太陽電池は、クリーンで無尽蔵に供給される太陽光エネルギーを直接電気エネルギーに変換できるため、新しいエネルギー源として期待されている。
一般的に、太陽電池1枚当りの出力は数W程度である。従って、家屋やビルなどの電源として太陽電池を用いる場合には、複数の太陽電池を接続することにより出力を高めた太陽電池モジュールが用いられる。
複数の太陽電池は、配線材によって互いに電気的に接続される。配線材は、太陽電池の主面上に形成される接続用電極に接続される。
ここで、半田の溶融温度より低温で熱硬化する樹脂接着材を配線材と接続用電極との間に介挿させることにより、配線材を接続用電極に接続する手法が提案されている(例えば、実登第3123842号公参照)。このような手法によれば、配線材を接続用電極に半田付けする場合に比べて、温度変化が太陽電池に及ぼす影響を小さくすることができる。
しかしながら、配線材と樹脂接着材との線膨張係数は異なるため、太陽電池モジュールの温度変化に応じて、配線材と樹脂接着材との界面には応力が発生する。このような応力は太陽電池モジュールの使用環境下において繰り返し発生するため、配線材が樹脂接着材から剥離するおそれがあった。
本発明は、上述の状況に鑑みてなされたものであり、配線材と樹脂接着材との良好な接続を維持できる太陽電池モジュールを提供することを目的とする。
本発明の一の特徴に係る太陽電池モジュールは、第1太陽電池及び第2太陽電池と、第1太陽電池と第2太陽電池とを互いに電気的に接続する配線材と、第1太陽電池と配線材との間に配設される樹脂接着材とを備え、樹脂接着材又は配線材のうち一方の部材は、他方の部材と対向する対向面に形成される複数の凹部を有し、他方の部材は、複数の凹部それぞれに入り込むことによりアンカー効果を発揮することを要旨とする。
このような太陽電池モジュールによれば、樹脂接着材がアンカー効果を発揮することによって、配線材と樹脂接着材との接着力が向上されている。従って、太陽電池モジュールの温度変化に応じて、配線材と樹脂接着材との界面に応力が発生しても、配線材が樹脂接着材から剥離することを抑制することができる。
本発明の一の特徴において、一方の部材は、配線材であり、配線材の融点は、樹脂接着材の融点よりも高くてもよい。
本発明の一の特徴において、一方の部材は、樹脂接着材であり、樹脂接着材の融点は、配線材の融点よりも高くてもよい。
本発明の一の特徴において、複数の凹部それぞれは、一方の部材の内部で屈曲していてもよい。
本発明の一の特徴において、複数の凹部に含まれる一の凹部と他の凹部とは、一方の部材の内部で連結されていてもよい。
本発明の一の特徴において、一方の部材は、対向面に形成される凸部を有しており、凸部は、他方の部材に食い込むことによりアンカー効果を発揮していてもよい。
図1は、本発明の実施形態に係る太陽電池モジュール100の側面図である。 図2は、本発明の実施形態に係る太陽電池ストリング1の平面図である。 図3は、本発明の実施形態に係る太陽電池10の平面図である。 図4(a)は、図2のA−A線における断面図である。図4(b)は、図2のB−B線における断面図である。 図5は、本発明の第1実施形態に係る配線材11の構成を示す断面図である。 図6は、本発明の第1実施形態に係る配線材11の構成を示す断面図である。 図7は、本発明の第2実施形態に係る樹脂接着材12の構成を示す断面図である。 図8は、本発明の実施形態に係る太陽電池10の平面図である。 図9は、本発明の実施形態に係る太陽電池10の断面図である。 図10は、本発明の第1実施形態に係る凹部11aを形成するダイスを示す図である。 図11は、本発明の実施形態に係る配線材11の構成を示す断面図である。
次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
[第1実施形態]
(太陽電池モジュールの構成)
本発明の第1実施形態に係る太陽電池モジュール100の概略構成について、図1及び図2を参照しながら説明する。図1は、本実施形態に係る太陽電池モジュール100の側面図である。図2は、太陽電池ストリング1の平面図である。
太陽電池モジュール100は、太陽電池ストリング1、受光面側保護材2、裏面側保護材3及び封止材4を備える。太陽電池モジュール100は、受光面側保護材2と裏面側保護材3との間に、太陽電池ストリング1を封止材4によって封止することにより構成される。
太陽電池ストリング1は、複数の太陽電池10、配線材11及び樹脂接着材12を備える。太陽電池ストリング1は、複数の太陽電池10を配線材11によって互いに接続することにより構成される。
複数の太陽電池10は、配列方向Hに沿って配列される。太陽電池10は、光電変換部20、細線電極30及び接続用電極40を備える。太陽電池10の詳細な構成については後述する。
配線材11は、複数の太陽電池10を互いに電気的に接続する。具体的に、配線材11は、一の太陽電池10の接続用電極40と、一の太陽電池10に隣接する他の太陽電池10の接続用電極とに接続される。配線材11は、樹脂接着材12を介して接続用電極40に接続される。
配線材11としては、薄板状または縒り線状の銅、銀、金、錫、ニッケル、アルミニウム、或いはこれらの合金などの導電性金属やカーボンを用いることができる。また、配線材11には、半田メッキ(錫メッキ)やアルミメッキなどが施されていてもよい。なお、本実施形態に係る配線材11の融点をTh(℃)とする。
樹脂接着材12は、配線材11と接続用電極40との間に配設される。樹脂接着材12の幅は、配線材11の幅と略同等、または、配線材11の幅よりも狭くてもよい。
樹脂接着材12としては、例えば、アクリル樹脂、柔軟性の高いポリウレタン系などの熱硬化性樹脂接着材の他、エポキシ樹脂、アクリル樹脂、あるいはウレタン樹脂に硬化剤を混合させた2液反応系接着材などを用いることができる。また、樹脂接着材12には、複数の導電性粒子が含まれていてもよい。導電性粒子としては、ニッケル、銀、金コート付きニッケル、錫メッキ付き銅などを用いることができる。樹脂接着材12は、半田の融点以下、即ち、約200℃以下の温度で硬化することが好ましい。なお、本実施形態に係る樹脂接着材12の融点をTj(℃)とする。配線材11の融点Th(℃)は、樹脂接着材12の融点Tj(℃)よりも高い。
受光面側保護材2は、封止材4の受光面側に配置され、太陽電池モジュール100の表面を保護する。受光面側保護材2としては、透光性及び遮水性を有するガラス、透光性プラスチック等を用いることができる。
裏面側保護材3は、封止材4の裏面側に配置され、太陽電池モジュール100の背面を保護する。裏面側保護材3としては、PET(Polyethylene Terephthalate)等の樹脂フィルム、Al箔を樹脂フィルムでサンドイッチした構造を有する積層フィルムなどを用いることができる。
封止材4は、受光面側保護材2と裏面側保護材3との間で太陽電池ストリング1を封止する。封止材4としては、EVA、EEA、PVB、シリコン、ウレタン、アクリル、エポキシ等の透光性の樹脂を用いることができる。
なお、以上のような構成を有する太陽電池モジュール100の外周には、Alフレーム(不図示)を取り付けることができる。
(太陽電池の構成)
次に、太陽電池10の構成について、図3を参照しながら説明する。図3は、太陽電池10の平面図である。
太陽電池10は、図3に示すように、光電変換部20、細線電極30及び接続用電極40を備える。
光電変換部20は、受光面と受光面の反対側に形成された裏面とを有する。光電変換部20は、受光面における受光により光生成キャリアを生成する。光生成キャリアとは、太陽光が光電変換部20に吸収されることにより生成される正孔と電子とをいう。光電変換部20は、pn型接合或いはpin接合などの半導体接合を内部に有する。光電変換部20は、単結晶Si、多結晶Si等の結晶系半導体材料、GaAs、InP等の化合物半導体材料等の一般的な半導体材料などを用いて形成することができる。なお、光電変換部20は、単結晶シリコン基板と非晶質シリコン層との間に実質的に真性な非晶質シリコン層が挟まれた、いわゆるHIT構造を有していてもよい。
細線電極30は、光電変換部20からキャリアを収集する収集電極である。細線電極30は、光電変換部20上において、配列方向Hと略直交する直交方向Kに沿って形成される。細線電極30は、例えば、塗布法や印刷法を用いて、樹脂型導電性ペーストや焼結型導電性ペースト(セラミックペースト)などによって形成することができる。
なお、図1に示すように、細線電極30は、光電変換部20の受光面上及び裏面上において同様に形成される。細線電極30の本数は、光電変換部20の大きさなどを考慮して適当な本数に設定することができる。例えば、光電変換部20の寸法が約100mm角である場合には、約30本の細線電極30を形成できる。
接続用電極40は、配線材11を接続するための電極である。接続用電極40は、光電変換部20上において、配列方向Hに沿って形成される。従って、接続用電極40は、複数本の細線電極30と交差する。接続用電極40は、細線電極30と同様に、塗布法や印刷法を用いて、樹脂型導電性ペーストや焼結型導電性ペースト(セラミックペースト)などによって形成することができる。
なお、図1に示すように、接続用電極40は、光電変換部20の受光面上及び裏面上において同様に形成される。接続用電極40の本数は、光電変換部20の大きさなどを考慮して、適当な本数に設定することができる。例えば、光電変換部20の寸法が約100mm角である場合には、約1.5mm幅の接続用電極40を2本形成できる。
(配線材と樹脂接着材との構成)
次に、配線材11と樹脂接着材12との構成について、図4を参照しながら説明する。図4(a)は、図2のA−A線における断面図である。図4(b)は、図2のB−B線における断面図である。
配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凹部11aを有する。図4に示すように、複数の凹部11aそれぞれは、縦穴状に形成される。複数の凹部11aは、等間隔で規則的に配列されていてもよく、また、不規則に配列されてもよい。複数の凹部11aそれぞれは、不定形の構造を有しており、配線材11の内部において屈曲される。
樹脂接着材12は、複数の凹部11aそれぞれに入り込んでいる。これにより、樹脂接着材12は配線材11に対してアンカー効果を発揮する。
(複数の凹部の形成方法)
次に、複数の凹部11aの形成方法の一例について説明する。
まず、約220℃で溶解したSnAgCu系半田に、直径10μm、長さ30〜100μmのガラスファイバー片を約8wt%で混合する。
次に、溶解したSnAgCu系半田に200μm厚の銅箔(芯材)を浸すことにより、銅箔の表面上に半田層(被覆層)を形成する。続いて、半田層を冷却することにより固化させる。
次に、フッ化水素水溶液(10wt%)を用いて、半田層に混合されているガラス粉に対して選択エッチングを施す。これにより、半田層に複数の凹部11aが形成される。
(太陽電池モジュールの製造方法)
次に、本実施形態に係る太陽電池モジュール100の製造方法の一例について説明する。
まず、光電変換部20の受光面上及び裏面上に、スクリーン印刷法等の印刷法を用いて、エポキシ系熱硬化型の銀ペーストを図3に示すパターンで配置する。続いて、銀ペーストを所定条件で加熱することにより硬化させる。これにより、細線電極30と接続用電極40とが形成される。
次に、接続用電極40上に、樹脂接着材12と、複数の凹部11aを有する配線材11とを順次配置する。次に、樹脂接着材12の融点Tj(℃)以上融点Th(℃)未満に昇温されたヒーターブロックを用いて、配線材11を光電変換部20に押し付けながら加熱する。この際、樹脂接着材12は融解し、複数の凹部11a内に流入する。なお、配線材11の融点Th(℃)は樹脂接着材12の融点Tj(℃)よりも高いため、配線材11は融解しない。以上により、太陽電池ストリング1が作製される。
次に、ガラス基板(受光面側保護材2)上に、EVA(封止材4)シート、太陽電池ストリング1、EVA(封止材4)シート及びPETシート(裏面側保護材3)を順次積層して積層体とする。
次に、積層体を加熱することにより、EVAを架橋させる。以上により、太陽電池モジュール100が作製される。
(作用及び効果)
本実施形態に係る太陽電池モジュール100において、配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凹部11aを有する。樹脂接着材12は、複数の凹部11aそれぞれに入り込むことによりアンカー効果を発揮する。
このように、樹脂接着材12が配線材11に対してアンカー効果を発揮することによって、配線材11と樹脂接着材12との接着力が向上される。そのため、太陽電池モジュール100の温度変化に応じて、配線材11と樹脂接着材12との界面に応力が発生しても、配線材11が樹脂接着材12から剥離することを抑制することができる。従って、樹脂接着剤12による太陽電池10と配線材11との電気的接続の信頼性を向上することができる。その結果、高い生産性の確保と太陽電池モジュール100の出力低下の抑制とを両立することができる。
また、本実施形態において、複数の凹部11aそれぞれは、配線材11の内部において屈曲している。従って、樹脂接着材12が発揮するアンカー効果をより増大させることができる。
また、本実施形態において、配線材11の融点Th(℃)は樹脂接着材12の融点Tj(℃)よりも高い。そのため、配線材11に形成された複数の凹部11aに樹脂接着材12をスムースに入り込ませることができる。
[第1実施形態の変形例1]
次に、上記第1実施形態の変形例1について、図5を参照しながら説明する。図5は、本変形例に係る配線材11及び樹脂接着材12の構成を示す断面図である。
配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凹部11bを有する。図5に示すように、複数の凹部11bは、直交方向K及び配列方向Hに配列される。
複数の凹部11bそれぞれは、球状の小孔が連なった構造を有する。また、一の凹部11bは、他の凹部11bと配線材11の内部において連結されている。
樹脂接着材12は、複数の凹部11bそれぞれに入り込んでいる。これにより、樹脂接着材12は配線材11に対してアンカー効果を発揮する。
なお、本変形例においても、配線材11の融点Th(℃)は樹脂接着材12の融点Tj(℃)よりも高い。
(複数の凹部の形成方法)
次に、複数の凹部11bの形成方法の一例について説明する。
まず、アルミ粉に約2wt%の発泡助剤粉(TiH2など)を混合することにより混合粉を作製する。
次に、200μm厚の銅箔(芯材)の表面に、約50μm厚の混合粉を約500℃で熱圧着することによりアルミ層(被覆層)を形成する。
次に、アルミの融点(約660℃)以上で熱処理を行うことにより、発泡助剤粉から水素ガスを発生させる。これによって、複数の空孔が連結されることにより、凹部11bが形成される。アルミ層には、このような凹部11bが複数形成される。
(作用及び効果)
本変形例において、複数の凹部11bに含まれる一の凹部11bと他の凹部11bとは、配線材11の内部で連結される。
このように、凹部11bどうしが連結されることによって、トンネル状に形成されているため、樹脂接着材12が発揮するアンカー効果をより増大させることができる。
また、凹部11bは、球状の小孔が連なった構造を有するため、配線材11と樹脂接着材12との接着面積を拡大することができる。
この結果、配線材11が樹脂接着材12から剥離することをさらに抑制することができる。
[第1実施形態の変形例2]
次に、上記第1実施形態の変形例2について、図6を参照しながら説明する。図6は、本変形例に係る配線材11の構成を示す断面図である。
本変形例に係る配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凸部11cを備える。複数の凸部11cは、直交方向K及び配列方向Hにおいて配列される。複数の凸部11cそれぞれは、樹脂接着材12の内部に食込むことによりアンカー効果を発揮する。
複数の凸部11cは、配線材11の対向面Sに機械的加工を施すことにより、或いは、複数の凸部11cに対応する複数の凹部を有するダイスを用いて配線材11を成形することにより形成できる。
なお、本変形例においても、配線材11の融点Th(℃)は樹脂接着材12の融点Tj(℃)よりも高い。
(作用及び効果)
本変形例において、配線材11は、樹脂接着材12と対向する対向面Sに形成される複数の凸部11cをさらに備える。複数の凸部11cそれぞれは、樹脂接着材12の内部に食込むことによりアンカー効果を発揮する。従って、配線材11が樹脂接着材12から剥離することをさらに抑制することができる。
[第2実施形態]
次に、本発明の第2実施形態について、図7を参照しながら説明する。図7(a)及び(b)は、本実施形態に係る配線材11及び樹脂接着材12の構成を示す断面図である。
本実施形態と上記第1実施形態との相違点は、樹脂接着材12が複数の凹部12aを有する点である。その他の点は、上記第1実施形態と同様であるため、以下、相違点について主に説明する。
樹脂接着材12は、配線材11と対向する対向面Tに形成される複数の凹部12aを有する。図7に示すように、複数の凹部12aは、縦穴状に形成される。複数の凹部12aは、等間隔で規則的に配列されていてもよく、また、不規則に配列されてもよい。
複数の凹部12aそれぞれは、不定形の構造を有しており、樹脂接着材12の内部において屈曲される。このような複数の凹部12aは、樹脂接着材12の対向面Tに機械的加工(プレス加工など)を施すことにより形成することができる。
配線材11は、複数の凹部12aそれぞれに入り込む。これにより、配線材11は樹脂接着材12に対してアンカー効果を発揮する。
ここで、本実施形態に係る樹脂接着材12の融点Tj(℃)は、配線材11の融点Th(℃)よりも高い。そのため、接続用電極40に配線材11を接続する工程では、配線材11の融点Th(℃)以上融点Tj(℃)未満に加熱されたヒーターブロックを用いる。
具体的には、まず、融点Th(℃)以上融点Tj(℃)未満に昇温されたヒーターブロックを用いて、配線材11を光電変換部20に押し付けながら加熱する。これにより配線材11は融解し、複数の凹部12a内に流入する。一方、樹脂接着材12の融点Tj(℃)は配線材11の融点Th(℃)よりも高いため、樹脂接着材12は融解しない。
次に、樹脂接着材12の融点Tj(℃)までヒーターブロックを昇温することにより、樹脂接着材12を融解させる。これにより、配線材11は、樹脂接着材12を介して接続用電極40に接続される。
その他の製造工程は、上記第1実施形態と同様である。
(作用及び効果)
本実施形態に係る太陽電池モジュール100において、樹脂接着材12は、配線材11と対向する対向面Tに形成される複数の凹部12aを有する。配線材11は、複数の凹部12aそれぞれに入り込むことによりアンカー効果を発揮する。
このように、配線材11が樹脂接着材12に対してアンカー効果を発揮することによって、配線材11と樹脂接着材12との接着力が向上する。従って、太陽電池モジュール100の温度変化に応じて、配線材11と樹脂接着材12との界面に応力が発生しても、配線材11が樹脂接着材12から剥離することを抑制することができる。
また、本実施形態において、樹脂接着材12の融点Tj(℃)は配線材11の融点Th(℃)よりも高い。そのため、樹脂接着材12に形成された複数の凹部12aに配線材11をスムースに入り込ませることができる。
(その他の実施形態)
本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
例えば、上記実施形態では、太陽電池10が接続用電極40を備える構成について説明したが、太陽電池10は接続用電極40を備えなくてもよい。具体的には、図8に示すように、光電変換部20の主面上に複数本の細線電極30のみが形成されていてもよい。この場合、図9に示すように、配線材11は、樹脂接着材12を介して太陽電池10上に配置される。なお、配線材11と太陽電池10との電気的接続は、複数本の細線電極30それぞれが配線材11にめり込むことにより図られる。
また、上記実施形態では、配線材11の対向面Sに形成される複数の凹部11aそれぞれが縦穴状に形成される例について説明したが、複数の凹部11aそれぞれの形状はこれに限られるものではない。例えば、図11に示すように、複数の凹部それぞれは、溝状に形成されていてもよい。図11(a)は、配線材11を対向面S側から見た斜視図である。図11(b)は、図11(a)のC−C線における断面図である。
図11(a)に示すように、複数の凹部11cは、配線材11の長手方向(すなわち、配列方向H)に沿って形成されている。具体的には、複数の凹部11cは、図11(b)に示すように、複数の凹部11cは、銅箔などの芯材111の表面上に形成された半田などの被覆層112に形成されている。このような複数の凹部11cは、配線材11の対向面Sを長手方向に沿って紙やすり(例えば、#240程度の粗さ)などで擦ることによって形成することができる。
このような配線材11によれば、複数の凹部11aに樹脂接着材12を入り込ませることができるので、樹脂接着材12の配線材11に対するアンカー効果を得ることができる。なお、複数の凹部11cは、配線材11の長手方向と異なる方向に沿って形成されていてもよく、また、複数の凹部11cの深さは、銅箔(芯材)の内部に達してもよい。
また、上記第1実施形態では、複数の凹部11aそれぞれが配線材11の内部で屈曲することとしたが、複数の凹部11aそれぞれは直線状に形成されていてもよい。このような複数の凹部11aは、例えば、図10に示すダイス50が有する複数の突起部50aを配線材11にめり込ませることによって形成することができる。
また、上記第1実施形態では、複数の凹部11aそれぞれに樹脂接着材12が充填されることとしたが、樹脂接着材12は複数の凹部11aそれぞれの途中まで入り込んでいればよい。
また、上記第2実施形態において、樹脂接着材12は、対向面Tに形成され、配線材11に食込む凸部を有していてもよい。
また、上記実施形態では、光電変換部20の裏面上に細線電極30及び接続用電極40を形成したが、裏面全面を覆うように電極を形成してもよい。本発明は、光電変換部20の裏面に形成される電極の形状を限定するものではない。
また、上記実施形態では、細線電極30を直交方向に沿ってライン状に形成したが、細線電極30の形状はこれに限定されない。例えば、波線状に形成された複数本の細線電極30が格子状に交差していてもよい。
このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
以下、本発明に係る太陽電池モジュールの実施例について具体的に説明するが、本発明は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができるものである。
(実施例1)
まず、配線材の表面に複数の縦穴状凹部を形成した。具体的には、幅1.5mm、厚み0.2mmの扁平な銅箔の表面上に形成された厚さ30μmの半田層に、複数の突起部(φ18μm、長さ30μm、傾斜角70度、1mmピッチ)を有するダイス(図10参照)を複数回押し付けた。これにより、配線材の表面に30〜50μmピッチで複数の縦穴状凹部を形成した。なお、ダイスを押し付けるたびに、ダイスを配線材に対して回転させることにより、複数の縦穴状凹部それぞれを無作為方向に形成した。
次に、寸法100mm角の光電変換部の受光面上及び裏面上に、スクリーン印刷法を用いて、エポキシ系熱硬化型の銀ペーストを格子状(図3参照)に印刷した。これにより、細線電極と接続用電極とを形成した。
次に、一の太陽電池の受光面上に形成された接続用電極と、隣接する他の太陽電池の裏面上に形成された接続用電極とに、銀粒子を含むエポキシ樹脂系接着材を塗布した。続いて、銀粒子を含むエポキシ樹脂系接着材上に、複数の縦穴状凹部を有する配線材を配置した。その後、ヒーターブロックを用いて配線材を加熱することにより、配線材を接続用電極に接続した。
以上のように作製された太陽電池ストリングを、ガラスとPETフィルムの間でEVAによって封止することにより実施例1に係る太陽電池モジュールを作製した。
(実施例2)
実施例2では、配線材の表面に複数の溝状凹部を形成した。具体的には、幅1.5mm、厚み0.2mmの扁平な銅箔の表面上に形成された厚さ30μmの半田層に、#240の研磨紙を装着したベルトサンダーを用いて、複数の溝状凹部を配線材の長手方向に沿って形成した(図11参照)。
この際、配線材の保持法を工夫することによって、各溝状凹部を均一な形状とした。具体的には、加工テーブルの工作面に形成した溝(幅1.6mm、深さ150μm)に配線材(約200mm長さ)を落とし込んで真空吸引した状態で、配線材の表面にベルトサンダーを押し当てた。これによって、均一な形状の溝状凹部を形成した。
その他の工程は、上記第1実施例と同様とした。
(比較例1,2)
複数の凹部を形成することなく、平板状の配線材を用いて比較例1,2に係る太陽電池モジュールを作製した。その他の工程は、上記第1実施例と同様とした。
(温度サイクル試験)
次に、実施例1,2及び比較例1,2に係る太陽電池モジュールについて、恒温槽を用いて温度サイクル試験を行った。
なお、温度サイクル試験は、JIS C 8917の規定に準拠して行った。具体的には、各サンプルを恒温槽内に保持し、45分かけて25℃から90℃まで上昇させ、この温度で90分間保持し、次いで90分かけて−40℃まで降下させ、この温度で90分間保持し、さらに45分かけて25℃まで上昇させる。これを1サイクル(6時間)として200サイクル行った。
実施例1及び比較例1について、試験前後の太陽電池モジュールの出力を測定した結果を表1に示す。実施例2及び比較例2について、試験前後の太陽電池モジュールの出力を測定した結果を表2に示す。表1及び表2に示す値は、試験前の出力値を基準として規格化されている。
Figure 2009107804
Figure 2009107804
表1及び表2に示すように、温度サイクル試験後において、実施例1及び2では比較例1及び2よりも高い出力を得ることができた。すなわち、実施例1及び2によれば、周期的な温度変化に応じて配線材と樹脂接着材との界面に繰り返し発生する応力に耐えられた。これは、樹脂接着材が複数の凹部それぞれに入り込み、アンカー効果を発揮することによって、配線材と樹脂接着材との接着強度を向上させることができたためである。
一方、比較例1及び2では、配線材が凹部を有さないため、樹脂接着材はアンカー効果を発揮しない。従って、配線材と樹脂接着材との界面に繰り返し発生する応力によって、配線材と樹脂接着材との接着力が低下したため出力が低下した。
本発明によれば、配線材と樹脂接着材との良好な接続を維持できる太陽電池モジュールを提供することができるので、太陽光発電分野において有用である。

Claims (7)

  1. 第1太陽電池及び第2太陽電池と、
    前記第1太陽電池と前記第2太陽電池とを互いに電気的に接続する配線材と、
    前記第1太陽電池と前記配線材との間に配設される樹脂接着材と
    を備え、
    前記樹脂接着材又は前記配線材のうち一方の部材は、他方の部材と対向する対向面に形成される複数の凹部を有し、
    前記他方の部材は、前記複数の凹部それぞれに入り込むことによりアンカー効果を発揮する
    ことを特徴とする太陽電池モジュール。
  2. 前記一方の部材は、前記配線材であり、
    前記配線材の融点は、前記樹脂接着材の融点よりも高い
    ことを特徴とする請求項1に記載の太陽電池モジュール。
  3. 前記一方の部材は、前記配線材であり、
    前記複数の凹部それぞれは、溝状に形成されている
    ことを特徴とする請求項1又は2に記載の太陽電池モジュール。
  4. 前記一方の部材は、前記樹脂接着材であり、
    前記樹脂接着材の融点は、前記配線材の融点よりも高い
    ことを特徴とする請求項1に記載の太陽電池モジュール。
  5. 前記複数の凹部それぞれは、前記一方の部材の内部で屈曲する
    ことを特徴とする請求項1に記載の太陽電池モジュール。
  6. 前記複数の凹部に含まれる一の凹部と他の凹部とは、前記一方の部材の内部で連結される
    ことを特徴とする請求項1に記載の太陽電池モジュール。
  7. 前記一方の部材は、前記対向面に形成される凸部を有しており、
    前記凸部は、前記他方の部材に食い込むことによりアンカー効果を発揮する
    ことを特徴とする請求項1に記載の太陽電池モジュール。
JP2010500784A 2008-02-28 2009-02-27 太陽電池モジュール Pending JPWO2009107804A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008048621 2008-02-28
JP2008048621 2008-02-28
PCT/JP2009/053745 WO2009107804A1 (ja) 2008-02-28 2009-02-27 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JPWO2009107804A1 true JPWO2009107804A1 (ja) 2011-07-07

Family

ID=41016189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500784A Pending JPWO2009107804A1 (ja) 2008-02-28 2009-02-27 太陽電池モジュール

Country Status (6)

Country Link
US (1) US20110048494A1 (ja)
EP (1) EP2249398A1 (ja)
JP (1) JPWO2009107804A1 (ja)
KR (1) KR20100118588A (ja)
CN (1) CN101965646A (ja)
WO (1) WO2009107804A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001765A (ja) * 2011-01-20 2016-01-07 デクセリアルズ株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2012164954A (ja) * 2011-01-20 2012-08-30 Sony Chemical & Information Device Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5838321B2 (ja) * 2011-05-27 2016-01-06 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法
JP5616913B2 (ja) * 2012-01-24 2014-10-29 三菱電機株式会社 太陽電池モジュール及びその製造方法
JP6015973B2 (ja) * 2012-03-23 2016-10-26 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法
CN104733546A (zh) * 2013-12-19 2015-06-24 日立化成株式会社 太阳能电池和太阳能电池模块
TWI634668B (zh) * 2013-12-19 2018-09-01 日商日立化成股份有限公司 太陽電池以及太陽電池模組
WO2015115566A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
WO2017000599A1 (zh) * 2015-07-02 2017-01-05 苏州阿特斯阳光电力科技有限公司 一种太阳能电池组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156693A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 太陽電池素子及び、これを用いた太陽電池モジュール
JP2007207957A (ja) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd 光電変換素子
JP2007214533A (ja) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
JP2008147567A (ja) * 2006-12-13 2008-06-26 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2009081217A (ja) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009158858A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
WO2009104627A1 (ja) * 2008-02-21 2009-08-27 三洋電機株式会社 太陽電池モジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069055A (ja) * 2001-06-13 2003-03-07 Sharp Corp 太陽電池セルとその製造方法
US20070125415A1 (en) * 2005-12-05 2007-06-07 Massachusetts Institute Of Technology Light capture with patterned solar cell bus wires
JP3123842U (ja) 2006-05-18 2006-07-27 京セラケミカル株式会社 太陽電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156693A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 太陽電池素子及び、これを用いた太陽電池モジュール
JP2007214533A (ja) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
JP2007207957A (ja) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd 光電変換素子
JP2008147567A (ja) * 2006-12-13 2008-06-26 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2009081217A (ja) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009158858A (ja) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
WO2009104627A1 (ja) * 2008-02-21 2009-08-27 三洋電機株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
KR20100118588A (ko) 2010-11-05
WO2009107804A1 (ja) 2009-09-03
EP2249398A1 (en) 2010-11-10
CN101965646A (zh) 2011-02-02
US20110048494A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2009107804A1 (ja) 太陽電池モジュール
EP2169725B1 (en) Solar cell module manufacturing method
JP5861044B2 (ja) 太陽電池モジュール
JP5159725B2 (ja) 太陽電池ストリング及びそれを用いた太陽電池モジュール
JP5367588B2 (ja) 太陽電池モジュール
US9059358B2 (en) Solar cell module and method of manufacturing the same
JP5046743B2 (ja) 太陽電池モジュール及びその製造方法
EP2423970A1 (en) Solar cell module
KR20110117656A (ko) 태양 전지 및 태양 전지 모듈
JP5089456B2 (ja) 圧着装置及び太陽電池モジュールの製造方法
JP5100206B2 (ja) 太陽電池モジュール
KR20130036326A (ko) 태양 전지 모듈, 태양 전지 모듈의 제조 방법
US20120073621A1 (en) Solar cell and solar cell module
JP2009081217A (ja) 太陽電池モジュール
JP5938665B2 (ja) 太陽電池モジュールの製造方法
JP5516566B2 (ja) 太陽電池モジュール及びその製造方法
JP5490466B2 (ja) 太陽電池モジュール
JP5934984B2 (ja) 太陽電池の製造方法及び太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402