JPWO2009096520A1 - 対応点探索装置および対応点探索方法 - Google Patents

対応点探索装置および対応点探索方法 Download PDF

Info

Publication number
JPWO2009096520A1
JPWO2009096520A1 JP2009551597A JP2009551597A JPWO2009096520A1 JP WO2009096520 A1 JPWO2009096520 A1 JP WO2009096520A1 JP 2009551597 A JP2009551597 A JP 2009551597A JP 2009551597 A JP2009551597 A JP 2009551597A JP WO2009096520 A1 JPWO2009096520 A1 JP WO2009096520A1
Authority
JP
Japan
Prior art keywords
point
image
search
interest
reference image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009551597A
Other languages
English (en)
Other versions
JP4941565B2 (ja
Inventor
墨友 博則
博則 墨友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009551597A priority Critical patent/JP4941565B2/ja
Publication of JPWO2009096520A1 publication Critical patent/JPWO2009096520A1/ja
Application granted granted Critical
Publication of JP4941565B2 publication Critical patent/JP4941565B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

対応点探索装置は、2以上の画像を取得し、保持する画像取得部と、画像取得部に保持されている画像のうちいずれかの画像上にサブピクセルレベルの注目点を入力する注目点入力部と、注目点を重心位置とする探索用テンプレートを生成する探索用テンプレート生成部と、探索用テンプレートを用いて、画像取得部に保持されている画像のうち、注目点を入力した画像に対応する画像上において、注目点に対応する点を探索する探索部とを備えている。

Description

本発明は、画像同士における対応点を探索するための対応点探索装置および対応点探索方法に関する。
3次元形状の認識、あるいは測距や画像の動きの検出などを行う場合には、一般的に、2つの画像間における対応点の探索が行われる。対応点を探索する方法としては、例えば、SAD(Sum of Absolute Difference)法と呼ばれる方法が知られている。この方法は、まず、2つの画像のうち、一方の画像である基準画像上の注目点に対して、この注目点を内包するようなウィンドウを設定するとともに、他方の画像である参照画像上にも同サイズのウィンドウを複数設定する。なお、これら2つの画像は、例えばステレオカメラのように異なる視点から撮影した画像とすればよい。そして、基準画像上のウィンドウと、参照画像上の各ウィンドウとの間で相関値を算出して、最も相関値が高い参照画像上のウィンドウを探索し、そのウィンドウの重心位置を注目点の対応点として求める。
例えば、特許文献1には、異なる時刻に取得されたステレオ画像をもとに、対応点の探索を行うことにより、画像におけるそれぞれの時刻における距離情報および2次元オプティカルフローを生成し、さらに、これらをもとに3次元オプティカルフローを生成する方法が記載されている。この方法では、注目点および対応点はピクセルレベル(画素単位)で与えられる。
また、非特許文献1には、位相限定相関法(POC法)を用いた高精度な対応点探索手法が開示されている。この手法では、基準画像上のピクセルレベルの注目点に対応する参照画像上のピクセルレベルの対応点を算出した後に、注目点に対する対応点のサブピクセルレベルのずれ量を求めることで、より正確な対応点を求めている。
しかし、上述の特許文献1の方法では、対応点の位置がサブピクセルレベルの場合を考慮していない。したがって、対応点が実際にはサブピクセルレベルの位置である場合であっても、そのサブピクセルレベル位置近傍のピクセルレベルの位置に対して対応点探索を行うことになる。そのため、正しい対応点の位置とずれが生じてしまう。したがって、このようにして求められた対応点をもとに、距離情報、2次元オプティカルフローおよび3次元オプティカルフローを求めても正確な値を得ることはできない。仮に、得られた対応点の情報を補間するなどして、より正確な値に近づけたとしても、あくまでも補間によるものであり、高精度とはいえない。
また、非特許文献1の方法では、注目点に対する対応点のサブピクセルレベルのずれ量を求める演算の中間段階において、注目点をサブピクセルレベルに変更しているが、サブピクセルレベルで設定された注目点に対する探索を行っているというわけではない。したがって、特許文献1と同様に、非特許文献1の方法も、正しい対応点の位置を求めているわけではなく、高精度の対応付けがなされているとはいえない。
このように、従来においては、サブピクセルレベルの位置にある注目点から対応点を求めることはなかった。仮に、サブピクセルレベルの位置に注目点がある場合には、ピクセルレベルの位置に補正して対応点を求めていた。したがって、正しい対応点の位置を求めることはできなかった。
特開2001−84383号公報 Kenji TAKITA, Mohammad Abdul MUQUIT, Takafumi AOKI, Tatsuo HIGUCHI, "A Sub-Pixel Correspondence Search Technique for Computer Vision Applications", IEICE Transactions. Fundamentals, Aug. 2004, E87-A, no.8, pp.1913-1923
本発明は、上述の事情に鑑みて為された発明であり、その目的は、注目点がサブピクセルレベルの位置であっても、その位置に対応する点を直接的に求めることで、より正確な対応点探索を行う対応点探索装置および対応点探索方法を提供することである。
本発明の対応点探索装置は、画像上の注目点を重心位置とする探索用テンプレートを用いて、対応する画像上における注目点に対応する点を探索する。これにより、注目点がサブピクセルレベルの位置であっても、その位置に対応する点を直接的に求めることができるので、対応付け精度をより向上させることができる。
本実施形態に係る移動体検出装置の概略構成を示す図である。 本実施形態の移動体検出装置による3次元演算の方法について説明するための図である。 対応点探索方法を説明するための図である。 対応点探索手法であるSAD法を説明するための図である。 POC値を算出する演算装置の構成を示す図である。 POC法で求められたPOC値を示す図である。 本実施形態に係る対応点探索装置の構成を示すブロック図である。 図8Aは注目点の入力について説明する図であって、画素の重心位置に注目点を入力する場合を示す図である。図8Bは注目点の入力について説明する図であって、サブピクセルレベルの位置に注目点を入力する場合を示す図である。 図9Aは探索用テンプレートについて説明するための図であって、注目点がピクセルレベルの位置である場合の基準画像と参照画像とを示す図である。図9Bは探索用テンプレートについて説明するための図であって、注目点がサブピクセルレベルの場合の基準画像と参照画像とを示す図である。 画像補間の方法を説明するための図である。 ずれ量を含む窓関数を示す図である。 ステレオ画像による3次元オプティカルフローの算出方法を説明するための図である。
以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
まず、本発明の実施形態に係る移動体検出装置の構成について説明する。図1は本実施形態に係る移動体検出装置の概略構成を示す図である。この移動体検出装置1は、被写体6の2次元入力画像を得るために、適当な距離だけ離間させて左右に設置されたステレオカメラを構成する第1のカメラ2および第2のカメラ3と、これら第1のカメラ2および第2のカメラ3の出力画像から画像における3次元座標等を演算する演算処理装置4と、その演算処理結果である検出された被写体6の3次元形状を表示する表示装置5とを備えて構成される。
第1のカメラ2および第2のカメラ3は、被写体6を同じタイミングで撮影した左右一対の画像(基準画像と参照画像)を出力する。なお、これら第1のカメラ2および第2のカメラ3の収差は良好に補正されており、かつ、これらは相互に平行に設置されているものとする。
このように、第1のカメラ2および第2のカメラ3を平行に設置することで、平行化された画像が得られる。それにより、対応点の探索領域を1次元に限定できるという効果を奏する。なお、実際には平行化された画像が得られなくても、画像処理によって画像を平行化することは可能である。なお、画像処理によって平行化する場合は、画像にノイズが重畳されるので、平行化された画像で対応点の探索を行うと精度が低下する。そこで、平行化前の画像から直接対応点を求めてから、最後に3次元化することが好ましく、それにより、ノイズの影響を最小限に抑えることができる。
第1のカメラ2および第2のカメラ3により、被写体6を撮影した画像は演算処理装置4に送られる。また、演算処理装置4は対応点探索装置7および画像生成部8を有している。対応点探索装置7は、例えば第1のカメラ2および第2のカメラ3が撮影した画像のうち基準画像に対して任意の注目点を入力し、参照画像において前記注目点に対応する対応点を探索し、それらから距離情報等を算出する。画像生成部8は、対応点探索装置7により算出された距離情報等に基づいて、被写体6の3次元形状を示す画像を生成し、表示装置5に送る。表示装置5は画像生成部8から送信された被写体6の3次元情報を加えた画像を表示する。
次に、移動体検出装置1による3次元演算の具体例として、距離演算について説明する。図2は、本実施形態の移動体検出装置による3次元演算の方法について説明するための図である。第1のカメラ2および第2のカメラ3は、焦点距離f、撮像素子の画素数および1画素の大きさが互いに等しい。なお、撮像素子は、第1のカメラ2の撮像面2bおよび第2のカメラ3の撮像面3bに配置されている。さらに、第1のカメラ2および第2のカメラ3の光軸2aおよび光軸3aは、所定の基線長Bだけ左右に離間させて平行となるように配置されている。被写体6を撮影したとき、撮像面2bおよび撮像面3b上の視差がΔd(=dl+dr)であると、被写体6までの距離Dは以下に示す式1で表される。
D=f・B/Δd ・・・(1)
また、被写体6の各部の3次元位置(X,Y,Z)は、x、yを画素上での位置とすると、以下に示す式2、式3、式4で表される。
X=x・D/f ・・・(2)
Y=y・D/f ・・・(3)
Z=D ・・・(4)
次に、本発明の実施形態に係る対応点探索装置について説明するが、その前に、一般的な対応点探索方法について図3を用いて簡単に説明する。図3は対応点探索方法を説明するための図である。なお、この方法は本実施形態においても用いられている。
2つの画像のうち、一方の画像を基準画像21aとし、他方の画像を参照画像21bとする。基準画像21a上の任意の点(注目点)に対する、参照画像21b上の点(対応点)を探索する。まず、基準画像21aにおいて、画素単位で構成された一定の大きさを有する領域であり、注目点が重心位置に設定されたウィンドウ9を設定する。ウィンドウ9は、このように一定の大きさを有する画像上の領域であり、その領域内に含まれる各画素の輝度値等の情報(画像パターン)を含んでいる。そして、参照画像21b上において、このウィンドウ9に対応するウィンドウを探索する。具体的には、参照画像21b上の任意の位置に、基準画像21aのウィンドウ9と同じ大きさを有する領域であるウィンドウ10を設定し、ウィンドウ9とウィンドウ10との類似度(相関値)を求める。つまり、これらウィンドウ9とウィンドウ10との画像パターンの類似度を求める。この類似度より、参照画像21bのウィンドウ10が基準画像21aのウィンドウ9に対応するか否かを判断する。仮に、これらの類似度が低く、対応しないと判断されれば、参照画像21bにおいて、ウィンドウ10は、例えば1画素いずれかの方向にずれた位置に設定し直され、設定し直されたウィンドウ10と基準画像21aのウィンドウ9との類似度を求める。このようにして、基準画像21aのウィンドウ9と類似度の高い参照画像21bのウィンドウ10を求める。それにより、ウィンドウ9に対応するウィンドウ10を求めることができる。こうして求められたウィンドウ10の重心位置が対応点となる。
こうして求めた対応点および注目点の座標から、被写体までの距離である距離情報を算出することができる。具体的には、図2により説明した計算により算出することができる。また、同じステレオカメラにより、時間をずらして被写体を撮影した画像における基準画像および参照画像の注目点および対応点からその時刻の距離情報を算出することができる。また、先の撮影における注目点と後の撮影における注目点との座標により、2次元オプティカルフローを算出することができる。なお、後の撮影における注目点は、先の基準画像上における注目点に対応する後の基準画像上における点である。また後の撮影における対応点は後の基準画像上における注目点に対応する後の参照画像上における点である。以上で算出した距離情報および2次元オプティカルフローにより、3次元オプティカルフローを算出することができる。
上述の方法により、注目点に対応する対応点を求めることができるが、参照画像21b上に設定され得るすべてのウィンドウ10と基準画像21aのウィンドウ9との類似度を求めていては、時間がかかる。そこで、探索時間を短縮するために、種々の方法がある。以下にその具体例を示す。
例えば、2つのカメラが平行に配置されており、基準画像21aと参照画像21bとがほとんど平行に配置されている場合は、参照画像21b上における対応点は基準画像21a上における注目点と同じ高さ位置にあると仮定できる。なお、高さ方向は図3の上下方向である。したがって、この高さ位置を重心とするウィンドウ10のみを設定すればよい。また、基準画像21aと参照画像21bとがほとんど平行に配置されていて、かつ基準画像21aの注目点と参照画像21bの対応点との視差がある程度分かっている場合は、ウィンドウ10の設定範囲はさらに限定することができる。このように、ウィンドウ10の設定範囲を限定することで、類似度を求めるウィンドウの数を抑制できるので、短時間で探索を行うことができる。
また、一旦、それぞれの画像の解像度を低くして、すなわち探索するウィンドウの画素数を減少させて対応点の位置を求めることで、対応点の存在する範囲を絞り込む方法もある。この方法を用いることで、対応点探索にかかる時間を短縮できる。つまり、それぞれの画像の解像度を低くすることで、画像パターンの情報を減少させ、ウィンドウ同士の類似度を短時間で求めることができる。元の解像度における本来の対応点は、低解像度での対応点付近に存在するはずであるから、画像の解像度を元に戻して、低解像度で求めた対応点付近についてウィンドウ10を設定し、ウィンドウ9との類似度を判断すればよい。この方法は、多重解像度戦略による対応点の探索方法とよばれている。低解像度の画像において対応点探索をすることで、元の解像度の画像における対応点が存在する範囲を短時間で確定することができる。そのため、対応点探索にかかる時間を短縮することができる。なお、この方法においては、何段階かに分けた複数の低解像度画像を作成して、徐々に探索位置を絞り込んでいってもよい。
次に、具体的な対応付けの方法について説明する。まず、SAD(Sum of
Absolute Difference)法による相関値演算について説明する。図4は、対応点探索手法であるSAD法を説明するための図である。このSAD法では、基準画像21a上のウィンドウImg1の部分に対応する参照画像21b上のウィンドウを探索する。具体的には、基準画像21a上の注目点を重心とする、縦横方向にそれぞれw画素分の大きさを持つウィンドウImg1を設定し、同様に、参照画像21b上にも同じ大きさを持つウィンドウImg2を設定する。そして、参照画像21b上におけるウィンドウImg2を、基線長方向のある範囲p(0<p<max_disp)においてずらしながら、それぞれの位置でウィンドウImg2とウィンドウImg1との相関演算を行う。このとき、参照画像21b上でのウィンドウImg2の最初の座標位置は、基準画像21a上におけるウィンドウImg1の座標位置と同じ位置である。相関値(COR)は式5で表される。
相関値を求めるためには、まず式6に示すSADを求めなければならない。式6において、Img1(i,j)はウィンドウImg1の輝度値を、Img2(i,j+p)はウィンドウImg2の輝度値を表す。式6に示すように、SADは、それぞれのウィンドウ内における対応画素の明るさの差の絶対値をそれぞれ求め、それをウィンドウ内の全画素に亘って加算した値である。
Figure 2009096520
上述の方法により、基準画像21a上のウィンドウImg1と、最も相関値の高い、参照画像21b上のウィンドウを求め、そのウィンドウの重心位置にある対応点を求める。なお、このような相関値演算には、他にSSD(Sum of Squared Difference)法(2乗残差法)、NCC(Normalize Cross Correlation)法(正規化相互相関法)等がある。
次に、上記SAD法等に比べてロバスト性を有する対応点探索手法について説明する。具体的には、画像パターンの周波数分解信号から、振幅成分を抑制した位相成分のみの信号を用いて類似度演算を行う方法であり、画像の左右カメラの撮影条件の差や、ノイズなどの影響を受けにくく、ロバスト性を有する相関演算が実現可能である。画像パターンの周波数分解信号を計算する手法として、例えば高速フーリエ変換(FFT)、離散フーリエ変換(DFT)、離散コサイン変換(DCT)、離散サイン変換(DST)、ウエーブレット変換、アダマール変換などが知られている。ここでは、このようなロバスト性を有する対応点探索手法のうち位相限定相関法(以下、POC法という)について説明する。
図5はPOC値を算出する演算装置の構成を示す図であり、図6はPOC法で求められたPOC値を示す図である。POC法においても、上記SAD法と同様に、基準画像上に、注目点を重心とするウィンドウを設定し、参照画像上に同じ大きさを持つウィンドウを設定する。そして、参照画像上のウィンドウをずらしながら、ウィンドウ同士の相関値を計算し、それらの類似度から対応するウィンドウを求める。具体的には、相関値であるPOC値を計算する。なお、POC値は画素ごとに離散的に求まるため、ウィンドウ内における画素ごとの相関値を求めることができる。つまり、上述のSAD法等では、ウィンドウごとの相関値を求めるが、POC法を用いることで、ウィンドウ内の画素ごとの相関値も求めることができる。それにより、ウィンドウ内における、類似度の高い範囲を求めることができる。したがって、ウィンドウの設定範囲を絞り込むことが容易であり、対応点を求める処理が高速でできるという効果を奏する。また、上記POC法等のロバスト性を有する相関値演算方法においては、SAD法等のようにウィンドウが1画素ずつずらされることで、相関値の算出が行われる必要はなく、ウィンドウが複数画素分ずらされても、相関値の算出は行われる。
図5に示す構成を有する、POC値を算出する演算装置は、2次元離散フーリエ変換を用い、フーリエ級数の振幅成分を抑制した位相成分のみの相関演算を行う。図5に示すように、基準画像のウィンドウおよび参照画像のウィンドウは、フーリエ変換部31、32においてそれぞれフーリエ変換され、規格化部33、34において規格化された後、合成部35において合成され、逆フーリエ変換部36において逆フーリエ変換される。この流れを数式で表すと以下に示すとおりである。
Figure 2009096520
具体的には、式7および式8で示す基準画像および参照画像における画像信号f(n,n)およびg(n,n)が、フーリエ変換部31、32においてそれぞれフーリエ変換され、式9および式10に表すF(k,k)およびG(k,k)に変換される。さらに、それぞれが規格化部33、34において規格化され、式11で表されるF´(k,k)およびG´(k,k)となる。さらにこれらが合成部35において合成され、式12で表されるR(k,k)となる。さらに、逆フーリエ変換部36において逆フーリエ変換され、式13で表されるr(k,k)が求められる。これをPOC値という。
POC値は、図6に示すように、急峻な類似度ピークを有している。例えば、基準画像のウィンドウに対して、参照画像のウィンドウが移動している場合には、これらのPOC値は、その移動量を示す座標に急峻な類似度ピークを持つことが知られている。また、POC法は、画像マッチングにおけるロバスト性が高い。POC値の高さは、画像パターン類似度を示す。POC値のピーク位置より、画像間の位置ずれ量を推定できる。POC値は離散的に求まるため、ピーク位置をサブピクセルで補間推定することにより、高分解な対応点座標を求めることができる。ピーク位置の補間推定方法としては、放物線などの関数をフィッティングして行うことができる。
POC法以外でも、画像パターンの周波数分解信号から、振幅成分を抑制した位相成分のみの信号を用いて相関演算を行う方法は知られている。例えばDCT符号限定相関法(「画像信号処理と画像パターン認識の融合−DCT符号限定相関とその応用」,貴家仁志,首都大学東京 システムデザイン学部 動的画像処理実利用化ワークショップ2007,2007.3.8−9参照)等があり、これらを用いて対応点探索を行ってもよい。
以上、一般的な対応点探索について説明した。次に、本実施形態に係る対応点探索装置について説明する。本実施形態の対応点探索装置は、注目点がサブピクセルレベルの位置であっても、その注目点に基づいて直接対応点を探索するものである。具体的には、サブピクセルレベルの位置にある注目点を重心位置とする探索用テンプレートと呼ぶウィンドウを設定して、それを用いて対応点を探索する。
図7は本実施形態に係る対応点探索装置の構成を示すブロック図である。図7に示すように、対応点探索装置7は、ステレオカメラからの画像を取得し、保持しておく画像取得部11と、画像取得部11に保持されているステレオ画像のうち、基準画像にサブピクセルレベルで注目点を入力する注目点入力部12と、基準画像に対応する参照画像等における注目点に対応する対応点を探索するために、前記注目点を重心位置とする領域である探索用テンプレートを生成する探索用テンプレート生成部13と、探索用テンプレートおよび参照画像等に設定されたウィンドウの類似度を順次求めていくことで、対応点を探索する探索部14と、これらにより求められた注目点および対応点等から距離情報、2次元オプティカルフローおよび3次元オプティカルフロー等を算出する演算部15とを備えて構成されている。対応点探索装置7は、例えば、各種電子部品や集積回路部品、CPU(Central Processing Unit)、記憶部等から構成されている。
画像取得部11は、ステレオカメラ(図示せず)からの画像をデータとして取得し、保持しておく働きをする。なお、静止画像ではなく移動体画像を検出等するためには、ステレオカメラは時間経過とともに順次撮影を続け、時系列ステレオ画像を得る必要がある。それらの画像は、画像取得部11に順次保持されていくが、距離情報、2次元オプティカルフローおよび3次元オプティカルフロー等を算出するための必要な演算が終了し、不要になった画像については順次削除されていくこととすればよい。
注目点入力部12は、画像取得部11に保持されている画像に注目点を入力する。なお、画像への注目点の入力は、画素の重心位置(ピクセルレベルの位置)に入力しても、サブピクセルレベルの位置に入力してもどちらでもかまわない。注目点の位置を補正等せずに、本来の位置に入力する。図8Aは、注目点の入力について説明する図であって、画素の重心位置に注目点を入力する場合を示す図である。また、図8Bは、注目点の入力について説明する図であって、サブピクセルレベルの位置に注目点を入力する場合を示す図である。図8Aおよび図8Bにおいて、画像21はマス目状に区切られているが、これら複数のマスは画素22を表している。注目点23aが画素22の重心位置(ピクセルレベルの位置)に入力されている場合とは、図8Aに示すような状態である。具体的には、注目点23aが画素22の中心にある状態である。また、注目点23bが画素22のサブピクセルレベルの位置に入力されている場合とは、図8Bに示すような状態である。具体的には、注目点23bが画素22の中心からずれた位置にある場合である。
探索用テンプレート生成部13は、注目点入力部12により画像に入力された注目点を重心位置とする探索用テンプレートを生成する。具体的には、探索用テンプレート生成部13は、探索用テンプレートの位置の設定およびその範囲内の輝度値等の情報である画像パターンの算出を行う。なお、探索用テンプレート生成部13は、注目点の最近傍の画素が重心位置となる領域を設定し、この領域をサブピクセルレベルでずらすことで、注目点を重心位置とする探索用テンプレートを生成することが好ましい。
ここで、探索用テンプレートとは、従来対応点を探索するために用いているウィンドウとほぼ同様の意味である。対応点の探索は、対応する画像同士をそれぞれ一定の範囲の領域で切り出し、その領域同士の相関値をとることで行うが、上述したように、この領域をウィンドウという。従来では、この領域であるウィンドウは画素単位で生成されていて、画素の一部のみがウィンドウに含まれ、それ以外は含まれないということはない。しかし、本願における探索用テンプレートは、重心位置がサブピクセルレベルの位置である注目点であることから、画素単位の領域になるとは限らない。
具体的に、探索用テンプレートについて説明する。図9Aは、探索用テンプレートについて説明するための図であって、注目点がピクセルレベルの位置である場合の基準画像と参照画像とを示す図である。また、図9Bは、探索用テンプレートについて説明するための図であって、注目点がサブピクセルレベルの場合の基準画像と参照画像とを示す図である。図9Aに示すように、複数の画素22を有する基準画像21aにおける注目点がピクセルレベルの位置である場合は、基準画像21a上において、注目点24aを重心位置とする、例えば3×3の探索用テンプレート25aが設定される。また、画素22からなる参照画像21bにおいては3×3のウィンドウが設定され、探索用テンプレート25aの画像パターンと参照画像21bのウィンドウの画像パターンとの類似度を求め、それにより、対応点24bを求める。なお、対応点24bの探索においては補間等を用いることにより、図9Aに示すようにサブピクセルレベルでの位置を求めることができる。
しかし、図9Bに示すように、注目点24cの位置が画素の重心からずれている場合は、画素を構成単位とするウィンドウを設定することはできず、設定するためには、例えば、注目点24cの位置を画素の重心位置となるように補正等しなければならない。しかし、それでは、本来の値からずれた値を求めることになる。そこで、注目点24cを重心位置とし、画素を構成単位とせず、3×3の大きさである探索用テンプレート25bを生成する。そして、参照画像21b上のウィンドウ25cとの類似度を求め、その類似度により探索用テンプレート25bに対応するウィンドウ25cを求め、そのウィンドウ25cの重心位置を対応点24dとして求める。なお、注目点24a、対応点24b、注目点24cおよび対応点24dは、実際には点であるが、見易さを考慮して図9Aおよび図9Bにおいては、画素と同じ大きさに図示している。
ここで、探索用テンプレートの生成方法について説明する。探索用テンプレートはサブピクセルレベルの位置に生成されることから、各画素の配置から、画像パターンを求める必要がある。
探索用テンプレートを生成するための第1の方法として、画像を補間する方法がある。図10は画像補間の方法を説明するための図である。図10において、(i,j)、(i+1,j)、(i,j+1)および(i+1,j+1)は画素の位置を示し、(x,y)がサブピクセルレベル位置の注目点の座標である。この場合に、探索用テンプレートの画像パターンを求めるためには、具体的には(x,y)における輝度値を求める必要がある。そこで、(x,y)の周りに位置する画素の輝度値を用いて補間により、(x,y)の輝度値を求める。具体的には、(x,y)の周りの位置である(i,j)、(i+1,j)、(i,j+1)および(i+1,j+1)の画素の輝度値を用いて補間することで、(x,y)の輝度値を求める。このようにして、ピクセルレベルの位置からずれている、サブピクセルレベルの位置における輝度値を求め、探索用テンプレートの画像パターンを求めることができ、探索用テンプレートを生成することができる。以下に、双一次補間(バイリニア補間)を用いた、(x,y)における輝度値I(x,y)を示す。ここで、I(i,j)、I(i+1,j)、I(i,j+1)およびI(i+1,j+1)は各画素の輝度値を示す。なお、式14は(x,y)の座標位置を示し、式15にその輝度値を示している。ここで、iおよびjは整数であり、δxおよびδyは0よりも大きく、1よりも小さい数である。
(x,y)=(i+δx,j+δy) ・・・(14)
I(x,y)={(1−δx)(1−δy)×I(i,j)}
+{(1−δx)×δy×I(i+1,j)}
+{δx×(1−δy)×I(i,j+1)}
+{δx×δy×I(i+1,j+1)} ・・・(15)
双一次補間について、上述したがこれ以外の補間により、サブピクセルレベルの位置での輝度値を求め、探索用テンプレートを生成してもよい。例えば、双三次補間(バイキュービック補間)等を用いて補間すればよい。それにより、探索用テンプレートを生成することができる。
探索用テンプレートを生成するための第2の方法は、窓関数を適用する方法である。上記対応点探索の方法のうち、例えばPOC法等のように周波数分解を行う方法において、周波数分解を行う際、通常は不連続性の影響などを取り除くために窓関数を適用後、周波数分解を行う。窓関数としては、例えばハニング窓、ハミング窓、カイザー窓等が挙げられる。この窓関数に、サブピクセルレベルの位置にある注目点における、画素の位置からのずれ量を含ませておけば、窓関数を適用することで、サブピクセルレベルの画像パターンを有する探索用テンプレートを生成することができる。以下に、窓関数にずれ量を含ませる方法について説明する。ここでは一例として、ハニング窓を用いて説明する。ハニング窓の式は式16で表される。
Figure 2009096520
式16は1次元のハニング窓を表す。2次元への拡張は容易に行うことができ、2次元のハニング窓を表す式は式17で表される。
Figure 2009096520
式17にサブピクセルレベルの位置にある注目点のずれ量を加味することで求めた、適用させるべき窓関数は式18で表される。
Figure 2009096520
図11は、ずれ量を含む窓関数を示す図である。図11では、1次元(x方向)の場合を示していて、ずれ量を含まない窓関数と、ずれ量δxを0.5とした場合の窓関数とを示した。図11からわかるように、両者は、ずれている。
このようにして、求めたずれ量を含む窓関数を適用後、周波数分解を行い、例えばPOC法を用いて、対応付けを行えばよい。なお、周波数分解を用いる必要のない、SAD法等の対応付け方法においても、画素(i,j)の輝度値であるI(i,j)に、このずれ量を含む窓関数を乗じることで、サブピクセルレベルの位置における注目点の輝度値I(x,y)を求めることができる。具体的には、式19で表される。
I(x,y)=DH(i,j)×I(i,j)・・・(19)
したがって、サブピクセルレベルの位置を重心位置とする探索用テンプレートを生成することができる。
なお、ハニング窓以外の窓関数においても、同様にしてずれ量を含ませることができる。それにより、サブピクセルレベルの位置を重心位置とする探索用テンプレートを生成することができる。
探索用テンプレートの生成方法の第3の方法は、周波数空間で位相成分を回転させる方法である。この方法の詳細は、「“A High-Accuracy Passive 3D Measurement System Using Phase-Based Image Matching”, IEICE Transactions. Fundamentals, March 2006, E89-A, no. 3, pp. 686--697」に示されている。特に本論文の688ページにおける右欄の19行〜32行に記載されている。この方法により、周波数分解を利用する対応点探索手法において、サブピクセルレベルのずれ量を反復演算で算出する場合は、周波数分解を再度行う必要はなく、周波数空間で位相成分を回転することで、探索用テンプレートを生成することができる。それにより、対応点探索を高速に行うことができる。
探索用テンプレート生成部13は、上述の方法等を用いることにより、探索用点テンプレートを生成する。
探索部14は、探索用テンプレート生成部13で生成された探索用テンプレートを用いて、例えば参照画像のウィンドウとの類似度を判断し、対応点を探索する。具体的には、上述したSAD法、POC法等の相関値演算を行えばよい。図9Aにおいては、探索用テンプレート25aはピクセルレベルで位置するので、上述した一般的な対応点探索と同様である。図9Bにおいては、注目点がサブピクセルレベルなので、探索用テンプレート25bの重心位置は画素の位置からずれる。なお、参照画像21b上にウィンドウ25cを設定する際、ピクセルレベルでウィンドウ25cを設定してもよいし、基準画像21aと同じように、参照画像21bにおいてサブピクセルレベルの位置にウィンドウ25cを設定してもよい。
なお、多重解像度戦略による場合は、低解像度における対応点探索において、ピクセル対応付けを行うのであれば、分解能が粗いので、基準側の注目点をサブピクセルではなく、ピクセルレベルで与えるようにすればよい。また、低解像度での精度を高めるために、低解像度でもサブピクセルレベルの対応付けを行うのであれば、基準側の注目点もサブピクセルで与えるようにすることで高精度な対応付けが可能になる。このようにして、低解像度での対応点の位置を求めておき、元の解像度に戻して、低解像度で求めた対応点の付近に絞って、対応点を求めるためのウィンドウを設定すればよい。それにより、対応点探索を高速で行うことができる。
演算部15は、注目点入力部で入力された注目点、探索部14により求められたその注目点に対する参照点等から距離情報、2次元オプティカルフローおよび3次元オプティカルフロー等を算出する。図12はステレオ画像による3次元オプティカルフローの算出方法を説明するための図である。ここで、図12を用いて、距離情報、2次元オプティカルフローおよび3次元オプティカルフローの算出方法について説明する。
図12において、時刻T1に撮影された基準画像B1と参照画像R1とが示されている。また、時刻T1よりも後の時刻である時刻T2に撮影された基準画像B2と参照画像R2とが示されている。まず、時刻T1における基準画像B1における注目点41が入力されているとする。この注目点41に対応する点である、参照画像R1上の対応点42が求められている。また、注目点41に対応する点である、時刻T2での基準画像B2上の注目点43が求められている。なお、この注目点43は注目点41に対しては対応点ではあるが、時刻T2における参照画像R2においては注目点となる。すなわち、注目点43に対応する点である、時刻T2での参照画像R2上の対応点44が求められている。なお、注目点41、対応点42、注目点43および対応点44は実際には点であるが、見易さを考慮して、図12においては画素と同じ大きさで図示している。
注目点41の座標を(p1x,p1y)とし、対応点42の座標を(q1x,q1y)とし、注目点43の座標を(p2x,p2y)とし、対応点44の座標を(q2x,q2y)とする。なお、図面の上下方向が各画像のY方向であり、左右方向が各画像のX方向である。ここで、これらの画像を撮影した2つのカメラで構成されるステレオカメラのカメラ同士は互いに平行に設置されていて、注目点41および対応点42のY座標は同じであり、注目点43および対応点44のY座標も同じであることとする。
まず、注目点41および対応点42の座標より、時刻T1の画像における視差Δd1等の距離情報を求めることができる。具体的には、Δd1は(q1x−p1x)である。
注目点43および対応点44の座標より、時刻T2の画像における視差Δd2等の距離情報を求めることができる。具体的には、Δd2は(q2x−p2x)である。
また、注目点41および注目点43の座標より2次元オプティカルフローを求めることができる。具体的には、2次元オプティカルフローは、
(p2x−p1x,p2y−p1y)で表されるベクトルである。
視差Δd1をもとに、時刻T1における画像より得た画像の奥行きの距離D1が求まる。この奥行きは、具体的には、図12における紙面垂直方向の座標であり、この座標をZ座標とする。ここで、焦点距離をfとし、基線長をBとすると、D1は式20で表される。
D1=fB/Δd1・・・(20)
また、同様に、時刻T2における画像より得た画像の奥行き(Z座標方向)の距離D2は、視差Δd2を用いて、式21で表される。
D2=fB/Δd2・・・(21)
これらより、時刻T1における注目点41の3次元座標(X1,Y1,Z1)は、
(p1x・D1/f,p1y・D1/f,D1)と表すことができ、時刻T2における注目点43の3次元座標(X2,Y2,Z2)は、
(p2x・D2/f,p2y・D2/f,D2)と表すことができる。
これら、3次元座標(X1,Y1,Z1)および(X2,Y2,Z2)から3次元オプティカルフローを求める。具体的には、3次元オプティカルフローは、
(X2−X1,Y2−Y1,Z2−Z1)で表されるベクトルである。
次に、図1および図7を用いて、本実施形態に係る移動体検出装置1の動作について、対応点探索装置7の動作を中心に説明する。
まず、固定された第1カメラ2および第2カメラ3は同時(時刻T1)に被写体6を撮影し、撮影した基準画像および参照画像をデータとして出力する。第1カメラ2および第2カメラ3は同時に、順次時間をずらしながら撮影を続け、時系列ステレオ画像を出力している。第1カメラ2および第2カメラ3から出力された、それらデータである画像は演算処理装置4に入力され、さらに対応点探索装置7に入力される。
対応点探索装置7に入力された画像は、画像取得部11に取り込まれ保持される。画像取得部11は、保持している画像を注目点入力部12に送る。注目点入力部12では画像のうち基準画像において任意の注目点を入力して、探索用テンプレート生成部13へと送る。
探索用テンプレート生成部13では、基準画像において入力された注目点を重心位置とする探索用テンプレートを生成する。具体的には、注目点を重心位置とする任意の領域を設定し、その領域における画像パターンを求める。最初の注目点はピクセルレベルに設定すればいいので、上述したような補間、ずれ量を含む窓関数等は不要である。探索用テンプレートが生成された画像は探索部14に送られる。
探索部14は、探索用テンプレートを生成した基準画像に対応する参照画像にウィンドウを設定し、基準画像の探索用テンプレートと参照画像のウィンドウとの画像パターンの類似度を上述のSAD法、POC法等による相関値演算により求め、対応点を探索する。なお、この対応点は、サブピクセルレベルの位置とすればよい。
また、時刻T1の後に撮影された、時刻T2での基準画像および参照画像が、時刻T1に撮影された画像と対応付けされるよう、探索部14に入力される。探索部14は、時刻T1での基準画像の注目点に対する時刻T2での基準画像の対応点を求める。なお、この対応点は、サブピクセルレベルの位置とすればよい。探索部14で時刻T2での基準画像の対応点が求まると、その位置を注目点として時刻T2での基準画像に入力する指示が、探索部14から注目点入力部12に送られる。注目点入力部12は、画像取得部11からの時刻T2での基準画像に注目点を入力し、探索用テンプレート生成部13へと送る。
探索用テンプレート生成部13では、時刻T2での基準画像において入力された注目点を重心位置とする探索用テンプレートを生成する。この際、注目点はサブピクセルレベルの位置であることから、必要であれば上述したような補間、ずれ量を含む窓関数の適用等を行って、ピクセルレベルに対するずれ量を考慮した探索用テンプレートを生成する。具体的には、サブピクセルレベルの位置を重心位置とする領域の画像パターンを生成する。
探索部14は時刻T2での参照画像にウィンドウを設定し、時刻T2での基準画像の探索用テンプレートと時刻T2での参照画像のウィンドウとの画像パターンの類似度を上述のSAD法、POC法等による相関値演算により求め、対応点を探索する。また、これ以降の時刻に撮影された画像に対しても、上述した動作を繰り返していく。
演算部15は、上記処理により求められた、各時刻における画像の注目点および対応点より、距離情報、2次元オプティカルフローおよび3次元オプティカルフローを求める。具体的には、時刻T1の基準画像および参照画像における注目点および対応点から時刻T1の距離情報を求め、時刻T2の基準画像および参照画像における注目点および対応点から時刻T2の距離情報を求めることができる。また、時刻T1の基準画像および時刻T2の基準画像における注目点同士から2次元オプティカルフローを求めることができる。また、時刻T1の距離情報、時刻T2の距離情報および2次元オプティカルフローをもとに3次元オプティカルフローを求めることができる。演算部15は求めた各データを画像生成部8に送る。
画像生成部8は、演算部15で求めた各データをもとに、表示装置5に表示するための3次元画像を生成し、表示装置5に送る。
表示装置5は、画像生成部8から送られた画像を表示する。
本実施形態ではステレオ画像を用いて対応点探索を行っているが、カメラを1つしか持たない単眼の装置において出力された時系列の画像を取り込み、それらの画像間で対応点を探索する際に用いることもできる。
このように、本実施形態に係る対応点探索装置は、サブピクセルレベルの位置に注目点があった場合でも、その位置に対する対応点を直接求めることができる。これにより、より正確な対応点探索を行うことができるという効果を奏する。
例えば、時系列の画像間で対応点を求める必要があるとき等に、求めた対応点を、注目点としてその点の対応点を求めていくといった動作を繰り返す場合がある。そのような場合でも、サブピクセルレベルの位置にある注目点を、ピクセルレベルの位置に補正等せずに、サブピクセルレベルの位置に対する対応点を直接求めていくことができる。そのため、対応付けの精度が向上するという効果を奏する。さらに、ステレオ画像において求められる距離情報、2次元オプティカルフロー、3次元オプティカルフロー等の精度も向上するという効果を奏する。
本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
本発明に係る一態様に係る対応点探索装置は、2以上の画像を取得し、保持する画像取得部と、前記画像取得部に保持されている画像のうちいずれかの画像上にサブピクセルレベルの注目点を入力する注目点入力部と、前記注目点を重心位置とする探索用テンプレートを生成する探索用テンプレート生成部と、前記探索用テンプレートを用いて、前記画像取得部に保持されている画像のうち、前記注目点を入力した画像に対応する画像上において、前記注目点に対応する点を探索する探索部とを備えている。
これにより、注目点がサブピクセルレベルの位置であっても、その位置に対応する点を直接的に求めることができるので、対応付け精度をより向上させることができる。
また、上述の対応点探索装置において、前記探索用テンプレート生成部は、前記注目点の最近傍の画素が重心位置となる領域を設定し、前記領域をサブピクセルレベルでずらすことで、前記注目点を重心位置とする探索用テンプレートを生成する。
これにより、重心位置をサブピクセルレベルとする探索用テンプレートを生成することができる。
また、上述の対応点探索装置において、前記画像取得部が、取得し、保持する画像はステレオ画像であることが好ましい。
このように、ステレオ画像を用いることで距離情報を得ることができるため、より正確な距離情報を得ることができる。
また、上述の対応点探索装置は、さらに、演算部を備え、前記ステレオ画像は、2つの撮像装置により同時に撮像された画像であり、前記画像取得部は、第1の時刻に撮像された第1ステレオ画像および前記第1の時刻後である第2の時刻に撮像された第2ステレオ画像を取得し、保持していて、前記探索部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点を探索し、前記演算部は、前記第1ステレオ画像の基準画像上における注目点および前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点から、2次元オプティカルフローを算出することが好ましい。なお、ステレオ画像は、2つの撮像装置により同時に撮像された2つの画像より構成されるが、このうちの一方を基準画像とし、他方を参照画像とする。
これにより、より正確な2次元オプティカルフローを求めることができる。
また、上述の対応点探索装置において、前記注目点入力部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点を、前記第2ステレオ画像の基準画像の注目点として入力し、前記探索部は、前記第2ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の参照画像上における対応点を探索し、前記演算部は、前記第2ステレオ画像の基準画像上における注目点および前記第2ステレオ画像の参照画像上における対応点から、前記第2の時刻における距離情報を算出することが好ましい。
これにより、より正確な距離情報を求めることができる。
また、上述の対応点探索装置において、前記探索部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第1ステレオ画像の参照画像上における対応点を探索し、前記演算部は、前記第1ステレオ画像の基準画像上における注目点および前記第1ステレオ画像の参照画像上における対応点から、前記第1の時刻における距離情報を算出し、さらに前記第1の時刻における距離情報、前記第2の時刻における距離情報および前記2次元オプティカルフローから、3次元オプティカルフローを算出することが好ましい。
これにより、より正確な距離情報および3次元オプティカルフローを求めることができる。
また、上述の対応点探索装置において、前記探索部は、周波数分解され、振幅成分が抑制された前記探索用テンプレートの画像パターンを用いて、対応する点を探索することが好ましい。
このように、周波数成分から振幅成分を抑制することで、画像間の輝度差やノイズの影響を受けにくいため、ロバスト性を有する対応点探索が可能である。
また、上述の対応点探索装置において、前記探索用テンプレート生成部は、画像を補間することで探索用テンプレートを生成することが好ましい。
これにより、例えば双一次補間(バイリニア)や双三次補間(バイキュービック)等の、よく知られた画像処理方法を用いることができ、容易に適切な探索用テンプレートを生成することができる。
また、上述の対応点探索装置において、前記探索用テンプレート生成部は、窓関数を用いることで探索用テンプレートを生成することが好ましい。
このように、窓関数を用いることで、擬似的にサブピクセルずれした探索用テンプレートを生成することができる。そのため、周波数分解を用いて対応点探索を行う場合に用いる窓関数により擬似的にサブピクセルずれを生じさせることで、サブピクセルレベルの位置を重心とする探索用テンプレートを生成することができる。したがって、容易に適切な探索用テンプレートを生成することができ、高速に処理することができる。
また、上述の対応点探索装置において、前記探索用テンプレート生成部は、周波数空間で前記画像パターンの位相成分を回転させることで探索用テンプレートを生成することが好ましい。
これにより、周波数分解を利用する対応点探索において、サブピクセルずれ量を反復演算で算出するような場合は、周波数分解を再度行う必要がなく、周波数空間で位相成分を回転することで、サブピクセルレベルの位置を重心とする探索用テンプレートを生成することができる。したがって、高速に処理することができる。
また、上述の対応点探索装置において、前記周波数分解は、FFT、DFT、DCT、DST、ウエーブレット変換およびアダマール変換のいずれかであることが好ましい。
このように、一般的に使用され、すでに確立されている手法により周波数分解を行うので、確実に周波数分解を行うことができる。
また、上述の対応点探索装置において、前記探索部は、位相限定相関法を用いて対応点を探索することが好ましい。
このように、位相限定相関法を用いることで、より高精度な探索が可能となる。
また、本発明の他の一態様に係る対応点探索方法は、それぞれ対応する画像のうち、いずれかの画像上にサブピクセルレベルの注目点を入力する工程と、前記注目点を重心位置とする探索用テンプレートを生成する工程と、前記探索用テンプレートを用いて、前記注目点を入力した画像に対応する画像上において、前記注目点に対応する点を探索する工程とを備えている。
これにより、注目点がサブピクセルレベルの位置であっても、その位置に対応する点を直接的に求めることができるので、精度の高い対応点探索を行うことができる。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、画像同士における対応点を探索するための対応点探索装置および対応点探索方法を提供することができる。

Claims (13)

  1. 2以上の画像を取得し、保持する画像取得部と、
    前記画像取得部に保持されている画像のうちいずれかの画像上にサブピクセルレベルの注目点を入力する注目点入力部と、
    前記注目点を重心位置とする探索用テンプレートを生成する探索用テンプレート生成部と、
    前記探索用テンプレートを用いて、前記画像取得部に保持されている画像のうち、前記注目点を入力した画像に対応する画像上において、前記注目点に対応する点を探索する探索部とを備えた対応点探索装置。
  2. 前記探索用テンプレート生成部は、前記注目点の最近傍の画素が重心位置となる領域を設定し、前記領域をサブピクセルレベルでずらすことで、前記注目点を重心位置とする探索用テンプレートを生成する請求項1に記載の対応点探索装置。
  3. 前記画像取得部が、取得し、保持する画像はステレオ画像である請求項1に記載の対応点探索装置。
  4. さらに、演算部を備え、
    前記ステレオ画像は、2つの撮像装置により同時に撮像された画像であり、
    前記画像取得部は、第1の時刻に撮像された第1ステレオ画像および前記第1の時刻後である第2の時刻に撮像された第2ステレオ画像を取得し、保持していて、
    前記探索部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点を探索し、
    前記演算部は、前記第1ステレオ画像の基準画像上における注目点および前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点から、2次元オプティカルフローを算出する請求項3に記載の対応点探索装置。
  5. 前記注目点入力部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の基準画像上における点を、前記第2ステレオ画像の基準画像の注目点として入力し、
    前記探索部は、前記第2ステレオ画像の基準画像上における注目点に対応する、前記第2ステレオ画像の参照画像上における対応点を探索し、
    前記演算部は、前記第2ステレオ画像の基準画像上における注目点および前記第2ステレオ画像の参照画像上における対応点から、前記第2の時刻における距離情報を算出する請求項4に記載の対応点探索装置。
  6. 前記探索部は、前記第1ステレオ画像の基準画像上における注目点に対応する、前記第1ステレオ画像の参照画像上における対応点を探索し、
    前記演算部は、前記第1ステレオ画像の基準画像上における注目点および前記第1ステレオ画像の参照画像上における対応点から、前記第1の時刻における距離情報を算出し、さらに前記第1の時刻における距離情報、前記第2の時刻における距離情報および前記2次元オプティカルフローから、3次元オプティカルフローを算出する請求項5に記載の対応点探索装置。
  7. 前記探索部は、周波数分解され、振幅成分が抑制された前記探索用テンプレートの画像パターンを用いて、対応する点を探索する請求項1ないし請求項6のいずれかに記載の対応点探索装置。
  8. 前記探索用テンプレート生成部は、画像を補間することで探索用テンプレートを生成する請求項1ないし請求項7のいずれかに記載の対応点探索装置。
  9. 前記探索用テンプレート生成部は、窓関数を用いることで探索用テンプレートを生成する請求項1ないし請求項7のいずれかに記載の対応点探索装置。
  10. 前記探索用テンプレート生成部は、周波数空間で前記画像パターンの位相成分を回転させることで探索用テンプレートを生成する請求項7に記載の対応点探索装置。
  11. 前記周波数分解は、FFT、DFT、DCT、DST、ウエーブレット変換およびアダマール変換のいずれかである請求項7に記載の対応点探索装置。
  12. 前記探索部は、位相限定相関法を用いて対応点を探索する請求項11に記載の対応点探索装置。
  13. それぞれ対応する画像のうち、いずれかの画像上にサブピクセルレベルの注目点を入力する工程と、
    前記注目点を重心位置とする探索用テンプレートを生成する工程と、
    前記探索用テンプレートを用いて、前記注目点を入力した画像に対応する画像上において、前記注目点に対応する点を探索する工程とを備えた対応点探索方法。
JP2009551597A 2008-02-01 2009-01-30 対応点探索装置および対応点探索方法 Active JP4941565B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551597A JP4941565B2 (ja) 2008-02-01 2009-01-30 対応点探索装置および対応点探索方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008023323 2008-02-01
JP2008023323 2008-02-01
JP2009551597A JP4941565B2 (ja) 2008-02-01 2009-01-30 対応点探索装置および対応点探索方法
PCT/JP2009/051577 WO2009096520A1 (ja) 2008-02-01 2009-01-30 対応点探索装置および対応点探索方法

Publications (2)

Publication Number Publication Date
JPWO2009096520A1 true JPWO2009096520A1 (ja) 2011-05-26
JP4941565B2 JP4941565B2 (ja) 2012-05-30

Family

ID=40912863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009551597A Active JP4941565B2 (ja) 2008-02-01 2009-01-30 対応点探索装置および対応点探索方法

Country Status (2)

Country Link
JP (1) JP4941565B2 (ja)
WO (1) WO2009096520A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355377B2 (ja) * 2009-12-24 2013-11-27 浜松ホトニクス株式会社 画像パターン照合装置および方法
JP5491162B2 (ja) * 2009-12-24 2014-05-14 浜松ホトニクス株式会社 画像パターン照合装置および方法
JP2012100129A (ja) * 2010-11-04 2012-05-24 Jvc Kenwood Corp 画像処理方法及び画像処理装置
CN103080973B (zh) * 2010-12-20 2016-06-15 松下知识产权经营株式会社 立体图像处理装置及立体图像处理方法
JP5761989B2 (ja) * 2010-12-21 2015-08-12 キヤノン株式会社 画像認識装置、画像認識方法及びプログラム
JP2017041113A (ja) * 2015-08-20 2017-02-23 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法及びプログラム
CA3087756A1 (en) 2018-01-07 2019-07-11 Ocula Corporation Digital-optical object tracker
WO2020076737A1 (en) * 2018-10-07 2020-04-16 Ocula Corporation Fixed-element digital-optical measuring device
JP7195965B2 (ja) 2019-02-15 2022-12-26 シチズン時計株式会社 時計

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084383A (ja) * 1999-09-09 2001-03-30 Univ Tokyo 移動検出方法
JP2003016427A (ja) * 2001-07-02 2003-01-17 Telecommunication Advancement Organization Of Japan ステレオ画像の視差推定方法
JP2004104425A (ja) * 2002-09-09 2004-04-02 Nippon Hoso Kyokai <Nhk> 視差分布測定方法、視差分布測定装置および視差分布測定プログラム
JP4351090B2 (ja) * 2004-03-08 2009-10-28 独立行政法人産業技術総合研究所 画像処理装置および画像処理方法
JP4809134B2 (ja) * 2006-06-05 2011-11-09 株式会社トプコン 画像処理装置及びその処理方法

Also Published As

Publication number Publication date
WO2009096520A1 (ja) 2009-08-06
JP4941565B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4883223B2 (ja) 動きベクトル生成装置および動きベクトル生成方法
JP4941565B2 (ja) 対応点探索装置および対応点探索方法
US9109891B2 (en) Stereo camera
JP5567179B2 (ja) ステレオ画像処理装置およびステレオ画像処理方法
JP4382797B2 (ja) 対応点探索方法および3次元位置計測方法
JP6052186B2 (ja) 画像処理装置
JP2013005258A (ja) ブレ補正装置、ブレ補正方法及び帳票
US9514528B2 (en) Image processing apparatus, distortion-corrected map creation apparatus, and semiconductor measurement apparatus
JP5098369B2 (ja) 距離画像生成装置、距離画像生成方法及びプログラム
JP2008216127A (ja) 距離画像生成装置、距離画像生成方法及びプログラム
JP5110235B1 (ja) 画像処理装置、画像処理方法、およびプログラム
WO2014132754A1 (ja) 画像処理装置および画像処理方法
JP6040782B2 (ja) 画像処理装置及びプログラム
JP6494402B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム
EP3832600A1 (en) Image processing device and three-dimensional measuring system
JP4985542B2 (ja) 対応点探索装置
JP2009187316A (ja) 対応点探索装置および該方法
JP4524514B2 (ja) 画像処理装置、画像処理方法、および記録媒体
CN109859313B (zh) 3d点云数据获取方法、装置、3d数据生成方法及系统
JP5887974B2 (ja) 類似画像領域探索装置、類似画像領域探索方法、及び類似画像領域探索プログラム
JP2013148467A (ja) 計測装置、方法及びプログラム
JP2009187138A (ja) 対応点探索装置
JP2009282635A (ja) サブピクセル推定装置およびサブピクセル推定方法
JP4985863B2 (ja) 対応点探索装置
JP2013021634A (ja) 視差画像生成装置および視差画像生成プログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350