JPWO2009054377A1 - エマルジョン燃料及びその製造法並びにその製造装置 - Google Patents

エマルジョン燃料及びその製造法並びにその製造装置 Download PDF

Info

Publication number
JPWO2009054377A1
JPWO2009054377A1 JP2009538215A JP2009538215A JPWO2009054377A1 JP WO2009054377 A1 JPWO2009054377 A1 JP WO2009054377A1 JP 2009538215 A JP2009538215 A JP 2009538215A JP 2009538215 A JP2009538215 A JP 2009538215A JP WO2009054377 A1 JPWO2009054377 A1 JP WO2009054377A1
Authority
JP
Japan
Prior art keywords
water
mixed
fuel
fuel oil
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009538215A
Other languages
English (en)
Other versions
JP4533969B2 (ja
Inventor
賢一 最上
賢一 最上
英博 熊沢
英博 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Grow Up Corp
Malufuku Suisan Co Ltd
Original Assignee
MG Grow Up Corp
Malufuku Suisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MG Grow Up Corp, Malufuku Suisan Co Ltd filed Critical MG Grow Up Corp
Application granted granted Critical
Publication of JP4533969B2 publication Critical patent/JP4533969B2/ja
Publication of JPWO2009054377A1 publication Critical patent/JPWO2009054377A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • F23K5/10Mixing with other fluids
    • F23K5/12Preparing emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates

Abstract

適正な燃焼条件下で内燃機関を燃焼させる燃料として使用することができるエマルジョン燃料を提供する。連続相としての燃料油と分散相としての水との混合液に、微量の空気を付加して混合してなるものである。このようにして、浮力が減少した微細な気泡は、疎水性であるため、水滴の表面には付着せずに、燃料油中に分散して、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。その結果、本エマルジョン燃料では水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。

Description

本発明は、エマルジョン燃料と、同エマルジョン燃料を連続的に製造する製造法と、同エマルジョン燃料を連続的に製造する製造装置に関する。
エマルジョン燃料製造法の一形態として、燃料油と水をミキサーにより撹拌・混合することによりエマルジョン燃料を製造する方法がある。(例えば、特許文献1参照)。
かかるエマルジョン燃料製造法は、基本的に、乳化剤を用いることなく、燃料油中に微細な水滴を均一に分散させたエマルジョン燃料の製造を図っているものである。
特開平5−157221号公報
しかしながら、上記したエマルジョン燃料製造法は、一つのミキサーにより燃料油と水を撹拌・混合するだけであるために、得られたエマルジョン燃料では未だ水滴同士が凝集して水滴径の分散が不均一となり、かかるエマルジョン燃料を燃焼装置で燃焼させると燃焼効率が悪化してすすや黒煙を発生するという不具合がある。
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料を提供するものである。
(1)本発明は、連続相としての燃料油と分散相としての水との混合液に、微量の空気を付加して混合してなる微細な気泡混じりのエマルジョン燃料である。
(2)本発明は、連続相としての燃料油と分散相としての微細な気泡混じりの水とを混合してなる微細な気泡混じりのエマルジョン燃料である。
(3)本発明は、連続相としての微細な気泡混じりの燃料油と分散相としての水とを混合してなる微細な気泡混じりのエマルジョン燃料である。
(4)本発明は、連続相としての微細な気泡混じりの水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料である。
(5)本発明は、連続相としての水と分散相としての微細な気泡混じりの燃料油との混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料である。
(6)本発明は、連続相としての水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合してなるエマルジョン燃料である。
(7)本発明は、分散相として改質処理した水と連続相としての燃料油とを混合してなるエマルジョン燃料である。
(8)本発明は、連続相としての燃料油と分散相としての水とを前段で微細化して混合し、後段で超微細化して混合してなるエマルジョン燃料である。
ここで、微量の空気の直径をナノレベルないしはサブミクロンレベルの超微細な気泡となした場合には、直径がナノレベルないしはサブミクロンレベルの超微細な気泡混じりのエマルジョン燃料となすことができる。この場合、超微細な気泡によるより一層の気−液界面の面積(燃焼表面積)増加、及び、静電分極による表面活性(界面活性剤のような機能)の増大を図ることができて、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中でより一層安定化させることができる。その結果、良好な燃焼効率をより一層向上させることができる。なお、ナノレベルとは、1μm未満のレベルをいう。サブミクロンレベルとは、0.1μm〜1μmのレベルをいう。
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料の製造法を提供するものである。
(9)本発明は、燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となし、続いて、この混合液に微量の空気を付加してさらに混合処理することにより、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(10)本発明は、水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(11)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を混合処理することにより、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(12)本発明は、水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を混合処理することにより、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(13)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を混合処理することにより、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(14)本発明は、水と燃料油を混合処理することにより、連続相としての水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(15)本発明は、あらかじめ分散相としての水を改質処理し、その後に改質処理した分散相としての水と連続相としての燃料油を混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
(16)本発明は、連続相としての燃料油と分散相としての水とを前段で微細化混合処理して混合液となし、その後に、後段でこの混合液を超微細化混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料の製造装置を提供するものである。
(17)本発明は、燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となす一次混合処理部と、この混合液に微量の空気を付加してさらに混合処理する二次混合処理部とを具備して、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(18)本発明は、水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(19)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理する二次混合処理部とを具備して、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(20)本発明は、水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理して、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(21)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理して、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(22)本発明は、水と燃料油を混合処理して、連続相としての水と分散相としての微細な油滴からなる混合液となす一次混合処理部と、この混合液と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(23)本発明は、分散相としての水を改質処理して改質処理水となす改質処理部と、この改質処理水を分散相とし燃料油を連続相として混合処理する混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(24)本発明は、連続相としての燃料油と分散相としての水とを微細化混合処理して混合液となす前段の一次混合処理部と、この混合液を超微細化混合処理する後段の二次混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置である。
(1)本発明では、連続相としての燃料油と、分散相としての水と、微量の空気とを微細化して混合することにより、浮力が減少した微細な気泡混じりのエマルジョン燃料を製造することができる。
ここで、浮力が減少した微細な気泡は、疎水性であるため、水滴の表面には付着せずに、燃料油中に分散して、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。
その結果、かかるエマルジョン燃料では水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。
なお、上記した微細な気泡混じりのエマルジョン燃料は、燃料油と水の混合比を調整することにより、適正な燃焼条件下で内燃機関を燃焼させる燃料としても使用することができる。また、燃料油としては、ガソリン、航空タービン用燃料油(ジェット機燃料油)、灯油、軽油、ガスタービン用燃料油、重油などがあるが、本発明は、特に重油の改質に有効なものであり、廃油であっても改質して、有効利用可能な改質廃油となすことができる。さらに、難燃性の廃油を燃料油として用いた場合でも、本発明に係るW/O型のエマルジョン燃料とすることで安定的に燃焼させることができる。
(2)本発明では、燃料油を連続相とすると共に、微細な気泡混じりの水を分散相として混合することにより、微細な気泡混じりのエマルジョン燃料を製造することができる。
ここで、分散相としての水中には、浮力が減少した微細な気泡が存在するが、かかる気泡は疎水性であるため、水滴の表面には付着せずに、燃料油と混合した際に燃料油中に分散する。
そのため、この場合も、水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。
(3)本発明では、微細な気泡混じりの燃料油を連続相とすると共に、水を分散相として混合することにより、微細な気泡混じりのエマルジョン燃料を製造することができる。
ここで、連続相としての燃料油には、空気を微細化して混合しているため、燃料油中に空気中の酸素を効率良く溶解させることができて、燃料油中の溶存酸素量を増大させることができる。
そのため、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、より良好な燃焼効率を確保することができる。
(4)本発明では、連続相としての微細な気泡混じりの水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合することにより、燃料油/微細な気泡混じりの水/燃料油(O/W/O)型のエマルジョン燃料を製造することができる。
かかるエマルジョン燃料では、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進される。
そのため、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、より一層燃焼効率を高めることができる。
(5)本発明では、連続相としての水と分散相としての微細な気泡混じりの燃料油との混合液を分散相として、連続相としての燃料油と混合することにより、微細な気泡混じりの燃料油/水/燃料油(O/W/O)型のエマルジョン燃料を製造することができる。
この場合も、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進されて、より一層燃焼効率を高めることができる。
(6)本発明では、連続相としての水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合することにより、燃料油/水/燃料油(O/W/O)型のエマルジョン燃料を製造することができる。
この場合も、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進されて、良好な燃焼効率を確保することができる。
(7)本発明では、分散相として改質処理した水と連続相としての燃料油とを混合することにより、エマルジョン燃料を製造することができる。
ここで、液体の水は、水分子が1分子の状態で存在するのではなく、水分子間の水素結合によって多くの水分子が互いに結合したクラスター(会合体で(H2O)nの状態)を形成している。
そこで、本発明では、任意の水分子の周辺にある隣接水分子の数をできるだけ小さくするように改質処理することにより、微細化した水の粒子の均一化を図ることができて、均一化された水の粒子を燃料油が包み込む状態に均一に微細化して混合したエマルジョン燃料となすことができる。従って、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、この場合も良好な燃焼効率を確保することができる。
(8)本発明では、連続相としての燃料油と分散相としての水とを前段で微細化して混合し、後段で超微細化して混合することにより、エマルジョン燃料を製造することができる。
ここで、水滴とそれを包み込む状態にある燃料油中の微量夾雑物は、あらかじめ微細化(ミクロンレベル)かつ均一化されて混合され、後段で超微細化(ナノレベルないしはサブミクロンレベル)されて混合される。
そのため、水滴と燃料油中の微量夾雑物を超微細化かつ均一化して燃料油中に安定化させることができて、燃料効率の良いエマルジョン燃料を安価に得ることができる。
本発明に係る第1実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第2実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第3実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第4実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第5実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第6実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第7実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 本発明に係る第8実施形態としてのエマルジョン燃料製造装置の構成を示す概念説明図である。 回転式撹拌混合器の撹拌混合器本体の側面図である。 撹拌混合器本体の上方の撹拌体の底面図である。 撹拌混合器本体の下方の撹拌体の平面図である。 上・下方の撹拌体にそれぞれ形成した流路形成用凹部同士の連通状態を示す平面説明図である。 図12のI-I線断面説明図である。 下方の撹拌体の底面図である。 第1実施形態の流体混合器を示す正断面図である。 第1実施形態の流体混合器の混合ユニットを示す分解正断面図である。 (a)は、第1実施形態の混合ユニットの第1混合エレメントを示す右側面図であり、(b)は、左側面図である。 (a)は、第1実施形態の混合ユニットの第2混合エレメントを示す左側面図であり、(b)は、右側面図である。 第1実施形態の混合ユニットを示す斜視図である。 第1実施形態の混合ユニットの組み付け状態を示す分解斜視図である。 第1実施形態の各混合エレメントに形成された凹部の当接状態を示す説明図である。 第2実施形態の流体混合器を示す正断面図である。 第2実施形態の流体混合器の混合ユニットを示す分解正断面図である。 (a)は、第2実施形態の混合ユニットの集合流路形成エレメントを示す右側面図であり、(b)は、左側面図である。 第2実施形態の混合ユニットの組み付け状態を示す分解斜視図である。 第2実施形態の混合ユニットの組み付け状態を示す集合流路形成エレメントの右側面説明図である。 (a)は、第2実施形態についての改変した第2混合エレメントを示す左側面図であり、(b)は、正面図を横に倒した状態のものであり、(c)は、右側面図である。 第3実施形態の流体混合器を示す正断面図である。 第3実施形態の流体混合器の混合ユニットを示す分解正断面図である。 第3実施形態の混合ユニットの組み付け状態を示す分解斜視図である。 (a)は、第3実施形態の混合ユニットの導出側エレメントを示す左側面図であり、(b)は、右側面図である。 第4実施形態の流体混合器を示す正断面図である。 第4実施形態の流体混合器の混合ユニットを示す分解正断面図である。 第4実施形態の混合ユニットの組み付け状態を示す分解斜視図である。 (a)は、集合流路形成エレメントの変容例を示す混合ユニットの組み付け状態の右側面説明図であり、(b)は、(a)のII-II線断面図であり、(c)は、(a)のIII-III線断面図である。 第1実施形態の流体混合器の改変例を示す断面側面説明図である。 第1実施形態の流体混合器の別の改変例を示す断面側面説明図である。 17O―NMRにより測定した改質水のグラフである。 17O―NMRにより測定した精製水のグラフである。 17O―NMRにより測定した水道水のグラフである。 一次混合処理液の粒度分布図である。 エマルジョン燃料の粒度分布図である。 粒度分布の試料間比較である。 各エマルジョン燃料の燃焼温度棒グラフである。
符号の説明
A1〜A8 エマルジョン燃料製造装置
1 連通パイプ
2 圧送ポンプ
3 吸気管
4 給油部
5 給水部
11〜11E 流体混合器
24 混合ユニット
24a 隙間状の開口(流出口)
25 混合流路
26 集合流路
30 第1混合エレメント
31 流入口
40 第2混合エレメント
35a,41a 角部(分流部、合流部)
52 ガイド体
60 導出側エレメント
63 放出口
80 回転式撹拌混合器
100 スペーサー
102 錯流生起体
以下に、本発明の実施の形態を、図面を参照しながら説明する。
[第1実施形態としてのエマルジョン燃料製造装置の説明]
図1は、本発明に係る第1実施形態としてのエマルジョン燃料製造装置(以下、「第1装置」と称する。)A1の概念図である。第1装置A1は、図1に示すように、予備的に燃料油と水を均一に撹拌・混合する一次混合処理部としての回転式撹拌混合器80と、同回転式撹拌混合器80にて撹拌・混合された混合液をさらに撹拌・混合する二次混合処理部としての静止型流体混合器11とを具備している。そして、両混合器80,11は、連通部としての連通パイプ1を介して連通連結して、同連通パイプ1の中途部に設けた圧送ポンプ2により回転式流体混合器80から静止型流体混合器11に所定量の一次処理液を圧送するようにしている。この圧送ポンプ2の吸入口側(直上流側)に位置する連通パイプ1の中途部に、微量の空気を取り入れる微量空気取り入れ部(微量空気供給部)としての吸気管3の基端部を連通連結して、同吸気管3の先端部に開口量調整弁(図示せず)を開口量調整自在に取り付けて、同先端部を適宜開口量だけ大気に開口させることができるようにしている。なお、逆止弁や開閉弁等の弁部は連通パイプ1の適宜箇所に配設することができる。また、圧送ポンプ2はその他にも連通パイプ1の適宜箇所に配設することができる。
そして、図1中、4は回転式撹拌混合器80に所定量の燃料油を給油ポンプ等により供給する給油部、5は回転式撹拌混合器80に所定量の水を給水ポンプ等により供給する給水部である。12は第1三方弁、13は第2三方弁、14は両第1・第2三方弁12,13間に介設した戻り管であり、必要に応じて、両第1・第2三方弁12,13を切替操作することにより、同戻り管14を通して混合液を循環的に静止型流体混合器11に送り込んで、混合処理を所定回数(例えば10回)ないしは所定時間(例えば20分間)だけ繰り返すことができるようにしている。なお、混合液は、回転式撹拌混合器80の上流側に戻して、循環的に回転式撹拌混合器80と静止型流体混合器11に送り込んで、混合処理を所定回数ないしは所定時間だけ繰り返すこともできる。また、回転式撹拌混合器80と静止型流体混合器11の詳細な説明は後述する。
ここで、圧送ポンプ2としては、気液混合移送が可能なポンプ、すなわち、気液混合流体であるエマルジョン燃料を圧送する際にも、安定した吐出圧力及び吐出流量を確保することができるポンプ(例えば、株式会社ニクニ製の「気液移送ポンプ」)を使用することができる。
また、吸気管3から連通パイプ1には、エジェクタ効果(連通パイプ1中の圧力と吸気管3中の圧力との圧力差を利用した吸引効果)により空気(外気)を取り入れ可能としている。
そして、燃料油への微量空気取り入れ量(微量空気供給量)は、前記開口量調整弁(図示せず)等の調節部を介した吸気管3から連通パイプ1への取り入れ量や、圧送ポンプ2の吸引量により適宜設定調節することができるようにしている。例えば、吸入する微量の空気(外気)の体積(流入量)は、圧送ポンプ2から圧送される燃料油と水の混合液の体積(所定流量)の1%前後(0.7%〜1.2%)に設定して、エジェクタ効果により吸気管3から連通パイプ1に取り入れ可能とすることができる。
最終的に燃料装置6に供給されるエマルジョン燃料の微量空気取り入れ量(微量空気供給量)としては、燃料油と水の混合液の体積の0%〜3%が好ましい(ここで、微量空気取り入れ量が0%は、前記開口量調整弁を閉弁して吸気管3の先端部を閉塞することにより、同吸気管3から空気を取り入れない場合である)。より好ましくは、1%前後〜2%前後で、最も好ましいのは2%である。なお、エジェクタ効果により一度に所望の空気量を吸入することができない場合には、前記したように戻り管14を介して混合処理液を循環させて、複数回にわたって空気を取り込むことで、所望の最終処理液であるエマルジョン燃料となすことができる。なお、微量空気取り入れ部(微量空気供給部)としては、少なくとも二次混合処理部の上流側(流体導入口側)において、一次混合処理液中に数%の微量空気を供給することができる構造であればよく、上記したように吸気管3から微量空気を吸入する構造に限らず、微量空気を圧入等して供給する構造でもよい。
ここで、エマルジョン燃料を製造するに際して、撹拌・混合される燃料油と水の体積比は、燃料油:水=6〜9:4〜1である。燃料油としてA重油を用いる場合は、好ましくは、燃料油:水=8:2、燃料油としてC重油を用いる場合は、好ましくは、燃料油:水=8.5:1.5、燃料油として廃油を用いる場合は、好ましくは、廃油:水=9:1の体積比で撹拌・混合することにより、エマルジョン燃料を製造することができる。
次に、上記した第1装置A1によりエマルジョン燃料を製造する方法(エマルジョン燃料製造法)について説明する。すなわち、本発明に係るエマルジョン燃料製造法は、燃料油と水の混合液を遠心力によりせん断状の分流と圧縮状の合流を繰り返しながら蛇行状態に流動させて混合・撹拌する後述の回転式流体混合器80による一次混合処理行程と、同一次混合処理行程で一次混合処理された混合液を圧送力によりせん断状の分流と圧縮状の合流を繰り返しながら蛇行状態に流動させて二次混合処理する後述の静止型流体混合器11による二次混合処理行程とを有しており、二次混合処理行程の前には、必要に応じて微量の空気を供給する微量空気供給行程を設けている。
そして、一次混合処理行程において、回転式撹拌混合器80により燃料油と水とを均一に撹拌・混合させて混合液となし、微量空気供給行程において回転式撹拌混合器80から連通パイプ1を通して静止型流体混合器11に供給される途中の混合液中に、エジェクタ効果により、吸気管3を通して取り入れた微量の空気を流入させて、二次混合処理行程において、静止型流体混合器11により混合液と空気とを気-液混合することにより、微細な気泡混じりのエマルジョン燃料を連続的に製造する。続いて、かかる微細な気泡混じりのエマルジョン燃料は、燃料装置(バーナー)6等に(必要に応じて後述する貯留部を介して適宜)供給する。
このようにして製造したエマルジョン燃料において、浮力が減少した微細な気泡は、疎水性であるため、水滴の表面には付着せずに、燃料油中に分散して、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。
その結果、かかるエマルジョン燃料では水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。なお、上記した微細な気泡混じりのエマルジョン燃料は、燃料油と水の混合比を調整することにより、適正な燃焼条件下で内燃機関を燃焼させる燃料としても使用することができる。
特に、分散相である水滴は、一次処理として回転式撹拌混合器80により微細化(2〜5μm)されて、連続相である燃料油中に撹拌・混合さらには均一に分散された混合液となり、二次処理として静止型流体混合器11では、微細化された水滴はもとより、供給された微量の空気を直径がナノレベル(1μm未満)の超微細な気泡となして混合液と混合し、直径がナノレベルの超微細な水滴と気泡混じりのエマルジョン燃料となすことにより、超微細な気泡によるより一層の気−液界面の面積(燃焼表面積)増加、及び、静電分極による表面活性(界面活性剤のような機能)の増大を図ることができて、超微細化した水滴の合一を防止し、同水滴をエマルジョン燃料中でより一層安定化させることができる。
また、上記した一次処理と二次処理とにより、燃料油自体が改質処理される。すなわち、燃料油中の微粒夾雑物は、取り入れられた微量の空気とともに、一次混合処理部としての回転式流体混合器80により微細化(2〜5μm)されて、燃料油はこれらが均一に分散された一次改質液となり、二次混合処理部としての静止型流体混合器11では、供給された一次混合液中の微粒夾雑物と微細気泡をナノレベル(1μm未満)に超微細化して、これらを均一に混合・分散させた二次改質液となすことができる。本実施形態では、微粒夾雑物と微細気泡のふるい下体積75%以下の粒径(平均粒径)が少なくとも4μm以下(好ましくは2μm以下、より好ましくは0.95μm〜1.5μm)で、1μm〜4μmにおけるモード径が2μmの気泡や夾雑物粒子となるようにしている。また、これら微粒夾雑物や気泡を所望の平均粒径にするために、必要であれば、前記したように改質処理液を循環的に回転式流体混合器80と静止型流体混合器11に送り込んで改質処理を所定回数(例えば10回)ないしは所定時間(例えば20分間)だけ繰り返す循環行程を採用することができる。
ここで、微粒夾雑物は、直径が1μm〜200μm程度の大きさで、主として蒸留装置、流動接触分解装置、タンク、配管などで発生する錆や腐食物質であり、酸化鉄、硫化鉄、塩化鉄などが含まれている。また、石油精製プラントで用いた各種触媒が微粒化したものもある。本実施形態では、燃料油に含まれている含有物を微粒夾雑物と称している。かかる微粒夾雑物は、目開きの小さい燃料油フィルターに燃料油を通して濾過することもできるが、濾過効率が良くないという不具合がある。そこで、大きめの微粒夾雑物(例えば、100μm以上)だけを濾過して、それよりも小さめの微粒夾雑物は、上記のように燃料油を改質処理することでエマルジョン燃料の燃焼効率を向上させることができる。
その結果、本実施形態に係るエマルジョン燃料は、燃焼装置により超微細水滴を含有した油滴に分散され、同油滴中では微粒夾雑物や気泡が超微細化されているため、完全燃焼する。そのため、CO2を削減することができて、地球温暖化防止を図ることができる。
〔実験結果〕
また、本発明に係る第1装置A1(静止型流体混合器としては後述する第3実施形態の静止型流体混合器11Bを使用)により燃料油としてのA重油:水=7:3の体積比のエマルジョン燃料を製造して、同エマルジョン燃料を燃焼装置としてのバーナーに供給して燃焼させたところ、燃焼開始5分後には、燃焼温度が800℃に達し、燃焼開始30分後には1000℃に達し、燃焼開始後2時間30分後に1150℃に達した。この際、黒煙は見られなかった。これより、本発明に係る第1装置A1により製造したエマルジョン燃料が、1100℃以上の高温度で完全燃焼していることが分かった。
[第2実施形態としてのエマルジョン燃料製造装置の説明]
図2は、本発明に係る第2実施形態としてのエマルジョン燃料製造装置(以下、「第2装置」と称する。)A2の概念図である。第2装置A2は、図2に示すように、一次混合処理部としての静止型流体混合器11に連通パイプ1を介して給水部5を連通連結し、同連通パイプ1の中途部に吸気管3の基端部を連通連結して、同吸気管3の先端部を大気に開口させている。そして、上記静止型流体混合器11には連通パイプ1を介して二次混合処理部としての静止型流体混合器11を連通連結し、同連通パイプ1の中途部に圧送ポンプ2を設けて、同圧送ポンプ2の下流側に位置する連通パイプ1の部分に給油部4を連通連結している。また、吸気管3の基端部よりも上流側に位置する連通パイプ1の部分と、一次混合処理部としての静止型流体混合器11よりも下流側に位置する連通パイプ1の部分との間に、第1・第2三方弁12,13を介して戻り管14を介設して、同戻り管14を通して静止型流体混合器11中に気泡混じりの水を循環させることができるようにしている。
このようにして、第2装置A2では、一次混合処理行程において、一次混合処理部としての静止型流体混合器11により、水と空気を混合処理して微細な気泡混じりの水となし、続いて、二次混合処理行程において、二次混合処理部としての静止型流体混合器11により、この微細な気泡混じりの水と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することができる。ここで、エマルジョン燃料の最終的な燃料油と水と空気の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水と空気の体積比と同様であり、例えば、燃料油:水=8:2の体積比で、空気の体積比は、これらの混合液の体積(所定流量)の2%となるように設定することができる。
このように、一次混合処理行程において、あらかじめ水と空気を混合処理して微細な気泡混じりの水となすことにより、付加する微量の空気の微細化を堅実に行うことができる。この際、気泡混じりの水は、静止型流体混合器11中を所要時間だけ循環せることにより、気泡の所要の微細化と気泡量の増量を図ることができる。
そして、その後の二次混合処理行程において、二次混合処理部としての静止型流体混合器11により、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる混合液となすことができるため、ワンパス工程にて簡単かつ確実に微細な気泡混じりのエマルジョン燃料を安価に製造することができる。
この場合、分散相としての水中には、浮力が減少した微細な気泡が存在するが、かかる気泡は疎水性であるため、水滴の表面には付着せずに、燃料油と混合した際に燃料油中に分散する。その結果、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。そのため、第2装置A2により製造されたエマルジョン燃料でも水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置6で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。
[第3実施形態としてのエマルジョン燃料製造装置の説明]
図3は、本発明に係る第2実施形態としてのエマルジョン燃料製造装置(以下、「第3装置」と称する。)A3の概念図である。第3装置A3は、図3に示すように、一次混合処理部としての静止型流体混合器11に連通パイプ1を介して給油部4を連通連結し、同連通パイプ1の中途部に吸気管3の基端部を連通連結して、同吸気管3の先端部を大気に開口させている。そして、上記静止型流体混合器11には連通パイプ1を介して二次混合処理部としての静止型流体混合器11を連通連結し、同連通パイプ1の中途部に圧送ポンプ2を設けて、同圧送ポンプ2の下流側に位置する連通パイプ1の部分に給水部5を連通連結している。また、吸気管3の基端部よりも上流側に位置する連通パイプ1の部分と、一次混合処理部としての静止型流体混合器11よりも下流側に位置する連通パイプ1の部分との間に、第1・第2三方弁12,13を介して戻り管14を介設して、同戻り管14を通して静止型流体混合器11中に気泡混じりの燃料油を循環させることができるようにしている。
このようにして、第3装置A3では、一次混合処理行程において、一次混合処理部としての静止型流体混合器11により、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、二次混合処理行程において、二次混合処理部としての静止型流体混合器11により、この微細な気泡混じりの燃料油と水を混合処理することにより、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することができる。ここで、エマルジョン燃料の最終的な燃料油と水と空気の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水と空気の体積比と同様であり、例えば、燃料油:水=8:2の体積比で、空気の体積比は、これらの混合液の体積(所定流量)の例えば2%となるように設定することができる。
このように、一次混合処理行程において、あらかじめ燃料油と微量の空気を混合処理して微細な気泡混じりの燃料油となすことにより、付加する微量の空気の微細化を堅実に行うことができると共に、微細な気泡を燃料油中に均一に分散させることができる。この際、気泡混じりの燃料油は、静止型流体混合器11中を所要時間だけ循環せることにより、気泡の所要の微細化と気泡量の増量を図ることができる。
そして、その後の二次混合処理行程において、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる混合液となすことができる。その結果、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。従って、この場合も、ワンパス工程にて簡単かつ確実に微細な気泡混じりのエマルジョン燃料を安価に製造することができる。
この場合、浮力が減少した微細な気泡は疎水性であるため、燃料油中に分散したまま水滴の表面には付着しない。その結果、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。そのため、第3装置A3により製造されたエマルジョン燃料でも水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置6で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。
[第4実施形態としてのエマルジョン燃料製造装置の説明]
図4は、本発明に係る第4実施形態としてのエマルジョン燃料製造装置(以下、「第4装置」と称する。)A4の概念図である。第4装置A4は、図4に示すように、前記した第2装置A2の二次混合処理部としての静止型流体混合器11に、連通パイプ1を介して三次混合処理部としての回転式撹拌混合器80を連通連結し、同連通パイプ1の中途部に圧送ポンプ2を設けて、同圧送ポンプ2の下流側に位置する連通パイプ1の部分に給油部4を連通連結して構成している。
このようにして、第4装置A4では、一次混合処理行程において、一次混合処理部としての静止型流体混合器11により、水と空気を混合処理して微細な気泡混じりの水となし、続いて、二次混合処理行程において、二次混合処理部としての静止型流体混合器11により、この微細な気泡混じりの水と燃料油(例えば、体積比で水:燃料油=7:3)を混合処理して、連続相としての水と分散相としての微細な油滴からなる混合液となし、さらに続いて、三次混合処理行程において、三次混合処理部として回転式撹拌混合器80により、この混合液と燃料油(例えば、燃料油と水の最終的な体積比が燃料油:水=8:2で、空気の体積比が、これらの混合液の体積(所定流量)の例えば2%を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することができる。ここで、エマルジョン燃料の最終的な燃料油と水と空気の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水と空気の体積比と同様となるように設定することができる。
このように、水と空気を混合処理した微細な気泡混じりの水→この微細な気泡混じりの水を連続相とすると共に燃料油を分散相とした混合液→この混合液を分散相とすると共に燃料油を連続相とした燃料油/微細な気泡混じりの水/燃料油(O/W/O)型のエマルジョン燃料を、ワンパス工程にて簡単かつ確実に微細な気泡混じりのエマルジョン燃料として安価に製造することができる。
この場合、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進される。この際、疎水性である気泡は、水滴の表面には付着しないため、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。そのため、第4装置A4により製造されたエマルジョン燃料を例えば燃焼装置6で燃焼させると、より一層燃焼効率を高めることができて、すすや黒煙が発生するという不具合を堅実に解消することができる。
[第5実施形態としてのエマルジョン燃料製造装置の説明]
図5は、本発明に係る第5実施形態としてのエマルジョン燃料製造装置(以下、「第5装置」と称する。)A5の概念図である。第5装置A5は、図5に示すように、前記した第3装置A3の二次混合処理部としての静止型流体混合器11に、連通パイプ1を介して三次混合処理部としての回転式撹拌混合器80を連通連結し、同連通パイプ1の中途部に圧送ポンプ2を設けて、同圧送ポンプ2の下流側に位置する連通パイプ1の部分に給油部4を連通連結して構成している。
このようにして、第5装置A5では、一次混合処理行程において、一次混合処理部としての静止型流体混合器11により、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、二次混合処理行程において、二次混合処理部としての静止型流体混合器11により、この微細な気泡混じりの燃料油と水(例えば、体積比で燃料油:水=3:7)を混合処理して、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となし、さらに続いて、三次混合処理行程において、三次混合処理部として回転式撹拌混合器80により、この混合液と燃料油(例えば、燃料油と水の最終的な体積比が燃料油:水=8:2で、空気の体積比が、これらの混合液の体積(所定流量)の2%となるように設定)を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することができる。ここで、エマルジョン燃料の最終的な燃料油と水と空気の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水と空気の体積比と同様となるように設定することができる。
このように、燃料油と空気を混合処理して微細な気泡混じりの燃料油→この微細な気泡混じりの燃料油を分散相とすると共に水を連続相とした混合液→この混合液を分散相とすると共に燃料油を連続相とした微細な気泡混じりの燃料油/水/燃料油(O/W/O)型のエマルジョン燃料を、ワンパス工程にて簡単かつ確実に微細な気泡混じりのエマルジョン燃料として安価に製造することができる。
この場合も、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進される。この際、疎水性である気泡は、燃料油中に分散したまま水滴の表面には付着しないため、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。そのため、第5装置A5により製造されたエマルジョン燃料を例えば燃焼装置6で燃焼させると、より一層燃焼効率を高めることができて、すすや黒煙が発生するという不具合を堅実に解消することができる。
[第6実施形態としてのエマルジョン燃料製造装置の説明]
図6は、本発明に係る第6実施形態としてのエマルジョン燃料製造装置(以下、「第6装置」と称する。)A6の概念図である。第6装置A6は、図6に示すように、所定量の燃料油を給油ポンプ等により供給する給油部4と、所定量の水を給水ポンプ等により供給する給水部5と、これら給油部4及び給水部5から供給される燃料油と水を予備的に均一に撹拌・混合する一次混合処理部として静止型流体混合器11と、同静止型流体混合器11にて撹拌・混合された混合液をさらに撹拌・混合する二次混合処理部としての回転式撹拌混合器80と、両混合器11,80間に介設した連通部としての連通パイプ1とを具備し、同連通パイプ1の中途部には、静止型流体混合器11から回転式撹拌混合器80に所定量の混合液を圧送するための圧送ポンプ2を設けており、同圧送ポンプ2の下流側に位置する連通パイプ1の中途部に、所定量の燃料油を給油ポンプ等により供給する給油部4を連通連結している。
このようにして、第6装置A6では、一次混合処理行程において、一次混合処理部としての静止型流体混合器11により、水と燃料油(例えば、体積比で水:燃料油=7:3)を混合処理して、連続相としての水と分散相としての微細な油滴からなる混合液となし、続いて、二次混合処理行程において、二次混合処理部としての回転式撹拌混合器80により、この混合液と燃料油(例えば、燃料油と水の最終的な体積比が燃料油:水=8:2となるように設定)を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することができる。ここで、エマルジョン燃料の最終的な燃料油と水の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水の体積比と同様となるように設定することができる。
このように、水を連続相とすると共に燃料油を分散相とした混合液→この混合液を分散相とすると共に燃料油を連続相とした燃料油/水/燃料油(O/W/O)型のエマルジョン燃料を、ワンパス工程にて簡単かつ確実にそして安価に製造することができる。
この場合も、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進される。そのため、第6装置A6により製造されたエマルジョン燃料を例えば燃焼装置6で燃焼させると、良好な燃焼効率を確保することができる。
[第7実施形態としてのエマルジョン燃料製造装置の説明]
図7は、本発明に係る第7実施形態としてのエマルジョン燃料製造装置(以下、「第7装置」と称する。)A7の概念図である。第7装置A7は、図7に示すように、所定量の水を給水ポンプ等により供給する給水部5と、同給水部5から供給される水を改質処理して改質処理水(以下「改質水」ともいう。)となす改質処理部としての静止型流体混合器11と、所定量の燃料油を給油ポンプ等により供給する給油部4と、これら給油部4及び改質処理部としての静止型流体混合器11から供給される燃料油と改質水を予備的に均一に撹拌・混合する一次混合処理部として回転式撹拌混合器80と、同回転式撹拌混合器80にて撹拌・混合された混合液をさらに撹拌・混合する二次混合処理部としての静止型流体混合器11と、両混合器11,80間に介設した連通部としての連通パイプ1とを具備し、同連通パイプ1の中途部には、静止型流体混合器11や回転式撹拌混合器80に所定量の混合液を圧送するための圧送ポンプ2を設けている。ここで、改質処理部としての静止型流体混合器11は、二次混合処理部としての静止型流体混合器11よりも小型サイズのものを適宜使用することができる。
そして、改質処理部としての静止型流体混合器11よりも上流側に位置する連通パイプ1の部分と、同改質処理部としての静止型流体混合器11よりも下流側に位置する連通パイプ1の部分との間に、第1・第2三方弁12,13を介して戻り管14を介設して、同戻り管14を通して改質水を適宜循環させることができるようにしている。すなわち、必要に応じて、両第1・第2三方弁12,13を切替操作することにより、改質水を循環的に静止型流体混合器11に送り込んで改質処理を所定回数(例えば10回)ないしは所定時間(例えば15分間)だけ繰り返すことにより、改質度合いを高めることができるようにしている。ここで、改質度合いとは、水分子間の水素結合によって多くの水分子が互いに結合して形成しているクラスター(会合体で(H2O)nの状態)を小さくする、つまり、任意の水分子の周辺にある隣接水分子の数をできるだけ小さくするように改質処理する度合いをいう。
このようにして、第7装置A7では、改質処理工程において、あらかじめ分散相としての水を、改質処理部としての静止型流体混合器11により改質処理することにより、任意の水分子の周辺にある隣接水分子の数が小さくかつ微細化された水の粒子が均一化された改質水となす。そして、一次混合処理において、かかる改質水と燃料油を、例えば、体積比で改質水:燃料油=2:8の割合で一次混合処理部としての回転式撹拌混合器80により混合処理して、均一化された改質水の粒子を燃料油の粒子が包み込む状態に均一に微細化(数μm〜数10μmのミクロンレベル)して混合する。続いて、二次混合処理において、二次混合処理部としての静止型流体混合器11により、この混合液をさらに混合処理することにより、均一化された改質水の粒子を燃料油の粒子が包み込む状態に均一に超微細化(ナノレベルないしはサブミクロンレベル)して混合する。ここで、エマルジョン燃料の最終的な改質水と燃料油の体積比は、改質水:燃料油=1〜3:9〜7となるように設定することができる。
このように、あらかじめ静止型流体混合器11により微細化かつ均一化した改質水を分散相とし、燃料油を連続相として回転式撹拌混合器80により一次混合処理し、さらに、静止型流体混合器11により二次混合処理することにより、エマルジョン燃料をワンパス工程にて簡単かつ確実にそして安価に製造することができる。
この場合も、エマルジョン燃料の特徴である水滴の急激な蒸発による膨張(微爆)が、水滴中の超微細(ナノレベルないしはサブミクロンレベル)な油滴の燃焼熱のためにさらに促進される。そのため、第7装置A7により製造されたエマルジョン燃料を例えば燃焼装置6で燃焼させると、良好な燃焼効率を確保することができる。
〔第1実験結果〕
次に、改質処理部としての静止型流体混合器による改質処理実験と、その結果について説明する。静止型流体混合器としては、後述する第3実施形態の静止型流体混合器11Bを使用し、同静止型流体混合器11B中に精製水(精製された不純物のない水)を15分間繰り返し循環させて精製水の改質処理を行った。そして、改質処理した改質水について、測定核を17O(酸素核)として核磁気共鳴法(NMR、"Nuclear Magnetic Resonance"、以下「17O―NMR」という。)により半値幅を測定した。ここで、使用装置:日本電子JNM-A500、温度:26.2℃(チャートCTEMPの数値)、測定条件:4096回積算(チャートTIMESの数値)、繰り返し時間:0.1sec(チャートPDの数値)、90ーパルス(チャートPW1=12.50usec)、no lock測定である。
図38に示すグラフG1は、17O―NMRによる上記改質水の測定結果としてのグラフである。このグラフG1から改質水の半値幅を測定した結果、半値幅=43.910Hzであった。
図39に示すグラフG2は、17O―NMRによる比較対象としての精製水(未改質)の測定結果としてのグラフである。このグラフG2から精製水の半値幅を測定した結果、半値幅=50.497Hzであった。
図40に示すグラフG3は、17O―NMRによる比較対象としての水道水(未改質)の測定結果としてのグラフである。このグラフG3から水道水の半値幅を測定した結果、半値幅=96.602Hzであった。
これより、改質水の半値幅は、精製水(未改質)の約80%、水道水(未改質)の約45%で、狭くなっていることが分かった。半値幅が狭いことは、水分子の水素と酸素間で共鳴し分子運動が活発化したことを現している。従って、改質水のクラスターは、精製水(未改質)や水道水(未改質)のクラスターよりも小さく改質されているものと思われる。
次に、上記した改質水と燃料油としてのA重油を、第7装置A7(二次混合処理部としての静止型流体混合器としては、後述する第3実施形態の静止型流体混合器11Bを使用)により混合処理してエマルジョン燃料を製造した。この際、改質水とA重油の混合割合は、体積比で改質水:A重油を、1:9(第1パターン)、1.5:8.5(第2パターン)、2:8(第3パターン)、2.5:7.5(第4パターン)、3:7(第5パターン)とした。また、A重油のみを第6パターン(A重油専焼)とした。
そして、上記第1〜第6パターンの燃料油をそれぞれ燃焼装置6としてのバーナー(コロナ(株)製メカニカルガンバーナMGHA−91)に供給して、同バーナーで炉内を燃焼させ、同炉内温度が900℃に達するのに要する時間(所要時間)をそれぞれ測定した。そして、炉内温度軸を縦軸とし、時間軸を横軸として、経時的な炉内温度変化をグラフにした。
その結果、パターン毎の経時的な炉内温度変化が曲線グラフで得られた。全てのパターンを重ね合わせてみると、第1〜第3パターンのエマルジョン燃料では、所要時間まで第6パターン(A重油専焼)の場合とほぼ同じ曲線グラフが得られたが、第4,第5パターンでは600℃あたりから温度勾配が鈍くなり、所要時間は第6パターン(A重油専焼)の場合の約1.4培〜約1.8培となった。従って、900℃域での燃料消費率の観点から、改質水:燃料油=2:8(第3パターン)が好ましいことが分かった。また、900℃に達するまでの立ち上がりに難のある第5パターンでも、例えば、立ち上がり(所要時間)は第6パターンのA重油専焼とし、その後は第5パターンに切り替えて継続的に同第5パターンを使用すれば、燃料消費率の観点から非常に有効であることが分かった。
〔第2実験結果〕
次に、上記した第7装置A7(改質処理部として後述する第3実施形態の静止型流体混合器11Bを使用し、一次混合処理部として後述する回転式流体混合器80を使用し、二次混合処理部として後述する静止型流体混合器11Bを使用した。)によりエマルジョン燃料を製造した。具体的には、まず、静止型流体混合器11B中に精製水(精製された不純物のない水)を15分間繰り返し循環させて精製水の改質処理を行い、それを改質水として使用した。次に、C重油と改質水を8.5:1.5の体積比で回転式流体混合器80に供給して、同回転式流体混合器80により5分間一次混合処理した。その後、一次混合処理液を静止型流体混合器11B中に5回だけ繰り返し循環させて、二次混合処理液(最終処理液)としてのエマルジョン燃料を製造した。
そして、上記した一次混合処理液と二次混合処理液であるエマルジョン燃料をそれぞれ試料として、各試料中の水滴や微量夾雑物の粒度分布測定を行った。この際、各試料は、トルエン(分散媒)で希釈して測定した。
図41は、測定結果としての一次混合処理液の粒度分布図である。表1は測定結果の要約データ表である。
Figure 2009054377
一次混合処理液中の水滴や微量夾雑物を粒子は、図41の粒度分布図から1μm前〜10μm後の範囲に分布し、表1からふるい下50%の粒径が3.347μmであることが分かった。これより一次混合処理液中の水滴や微量夾雑物は、微細化(マイクロレベル)かつ均一化されていることが分かった。
図42は、測定結果としてのエマルジョン燃料の粒度分布図である。
エマルジョン燃料中の水滴や微量夾雑物を粒子は、図42の粒度分布図から0.4μm前〜9μm前の範囲に分布し、表1からふるい下50%の粒径が1.542μmであることが分かった。これよりエマルジョン燃料中の水滴や微量夾雑物は、超微細化(ナノレベルないしはサブマイクロレベル)かつ均一化されていることが分かった。
図43は、粒度分布の試料間比較である。これより回転式流体混合器80による水滴や微量夾雑物の微細化(マイクロレベル)かつ均一化状況と、静止型流体混合器11Bによる水滴や微量夾雑物の超微細化(ナノレベルないしはサブマイクロレベル)かつ均一化状況の差異を、明確に認識することができた。
[第8実施形態としてのエマルジョン燃料製造装置の説明]
図8は、本発明に係る第8実施形態としてのエマルジョン燃料製造装置(以下、「第8装置」と称する。)A8の概念図である。第8装置A8は、図8に示すように、前記した第1装置A1と基本的構成を同じくしているが、微量空気取り入れ部としての吸気管3を設けていない点において異なる。すなわち、第8装置A8は、予備的に燃料油と水を均一に撹拌・混合する一次混合処理部として回転式撹拌混合器80と、同回転式撹拌混合器80にて撹拌・混合された混合液をさらに撹拌・混合する二次混合処理部としての静止型流体混合器11とを具備している。そして、両混合器80,11は、連通部としての連通パイプ1を介して連通連結して、同連通パイプ1の中途部に設けた圧送ポンプ2により回転式流体混合器80から静止型流体混合器11に所定量の一次処理液を圧送するようにしている。
そして、図1中、4は回転式撹拌混合器80に所定量の燃料油を給油ポンプ等により供給する給油部、5は回転式撹拌混合器80に所定量の水を給水ポンプ等により供給する給水部である。12は第1三方弁、13は第2三方弁、14は両第1・第2三方弁12,13間に介設した戻り管であり、必要に応じて、両第1・第2三方弁12,13を切替操作することにより、戻り管14を通して混合液を循環的に静止型流体混合器11に送り込んで混合処理を所要時間だけ繰り返すことができるようにしている。
このようにして、第8装置A8では、一次混合処理行程において、連続相としての燃料油と分散相としての水(例えば、体積比で燃料油:水=8:2)とを、前段の一次混合処理部としての回転式撹拌混合器80により微細にかつ均一に撹拌・混合処理して混合液となし、その後に、二次混合処理行程において、同回転式撹拌混合器80から連通パイプ1を通して後段の二次混合処理部としての静止型流体混合器11に供給して、同静止型流体混合器11によりこの混合液を超微細にかつ均一に混合処理してエマルジョン燃料を連続的に製造するようにしている。そして、かかるエマルジョン燃料は、燃料装置(バーナー)6等に(必要に応じて後述する貯留部を介して適宜)供給するようにしている。ここで、エマルジョン燃料の最終的な燃料油と水の体積比は、前記した第1実施形態としてのエマルジョン燃料の最終的な燃料油と水の体積比と同様となるように設定することができる。
この際、前段の微細化混合処理を行うことにより、水の粒子とそれを包み込む状態にある燃料油の粒子は、あらかじめ微細化かつ均一化して混合される。そして、後段の超微細化混合処理を行うことにより、水の微粒子を包み込む状態にある燃料油の微粒子は、段階的に微細化(ミクロンレベル)から超微細化(ナノレベルないしはサブミクロンレベル)して混合する超微細化かつ均一化した水と燃料油の粒子からなる安定したエマルジョン燃料として安価に製造される。
その結果、得られたエマルジョン燃料では水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。なお、上記した微細な気泡混じりのエマルジョン燃料は、燃料油と水の混合比を調整することにより、適正な燃焼条件下で内燃機関を燃焼させる燃料としても使用することができる。
特に、分散相である水滴は、一次処理として回転式撹拌混合器80により微細化(2〜5μm)されて、連続相である燃料油中に撹拌・混合さらには均一に分散された混合液となり、二次処理として静止型流体混合器11では、微細化された水滴の直径がナノレベルの超微細な水滴混じりのエマルジョン燃料となすことができる。その結果、エマルジョン燃料は、燃焼装置により超微細水滴を含有した油滴に分散されて、完全燃焼する。そのため、CO2を削減することができて、地球温暖化防止を図ることができる。
また、前記した第1装置A1に設けた開口量調整弁(図示せず)を閉口調整して、空気の取り込みを停止させることによっても、第8装置A8により製造されるエマルジョン燃料と同様のエマルジョン燃料を製造することができる。
〔総合的実験結果〕
次に、前記した第1装置A1と第7装置A7と第8装置A8とをそれぞれ使用して、空気取り入れ量が燃料油+水の体積の1%,2%,3%のエマルジョン燃料と、改質水使用のエマルジョン燃料と、空気取り入れ量が0%のエマルジョン燃料を製造して、各エマルジョン燃料の燃焼温度と燃料消費量の削減率を比較した。
ここで、各装置A1,A7,A8において、改質処理部として後述する静止型流体混合器11Bを使用し、一次混合処理部として後述する回転式流体混合器80を使用し、二次混合処理部として後述する静止型流体混合器11Bを使用した。改質水を使用していないエマルジョン燃料では水道水を使用した。そして、改質水を使用したエマルジョン燃料は、燃料油としてのA重油:改質水=8:2の混合割合とした。それ以外のエマルジョン燃料は、燃料油としてのA重油:水(水道水)=9:1,8:2,7:3の混合割合とした。比較例としてA重油を専焼させた。
そして、改質水は、静止型流体混合器11B中に水道水を20分間繰り返し循環させて、同水道水を改質処理することにより製造した。エマルジョン燃料は、回転式流体混合器80と静止型流体混合器11B中にA重油と水道水を所定の割合で供給して、これらを20分間繰り返し循環させて混合処理することにより製造した。この際、混合処理液には所定の空気量を圧入して供給した。
上記のようにして製造したエマルジョン燃料と比較例としてのA重油を、それぞれ燃料装置(コロナ株式会社製のメカニカルガンバーナMGHA−161を使用した。)に供給して、同燃焼装置の燃焼効率を実験した。
表2は、燃焼をスタートさせてから30分〜45分までの温度変化の平均値を、実験結果の燃焼温度として算出した。図44は、表2に示す各エマルジョン燃料の燃焼温度を棒グラフ表示したものである。ここで、改質水を使用したエマルジョン燃料の燃焼温度は、932℃であった。A重油専焼の燃焼温度は、872℃であった。エマルジョン燃料は、A重油と比較して、略同等の燃焼温度に達するまでに消費される量が少なかった。そこで、表3に、A重油専焼に対するエマルジョン燃料の燃料消費量の削減率(燃料削減率)を示した。
Figure 2009054377
Figure 2009054377
これより、最も燃料削減率が良いのは、A重油:水(水道水)=8:2の混合割合で、空気量が2%のエマルジョン燃料であり、その次が改質水を使用したエマルジョン燃料であることが分かった。そして、A重油:水(水道水)=8:2の混合割合であれば、空気量が1%,2%も有効であることが分かった。また、A重油:水(水道水)=7:3の混合割合のエマルジョン燃料は、実験時に900℃以上の温度帯での燃焼安定性が良くないことが視認できた。
[エマルジョン燃料製造装置全体に共通する説明]
第1装置A1〜第8装置A8は、それぞれ水や燃料油を混合処理中に改質することができるが、あらかじめ水ないしは燃料油を単独で改質することもできる。
すなわち、第7装置A7が具備する改質処理部、すなわち、給水部5から供給される水を単独で改質処理して改質処理水となす改質処理部は、必要に応じて第1〜第6装置A1〜A6及び第8装置A8の各給水部5の直下流側に設けることができる。その場合には、上記した改質処理水と燃料油を混合処理した際の効果を同様に得ることができる。そして、各装置が独自に奏する効果との相乗効果も得ることができる。
また、各装置A1〜A8の各給油部4の直下流側に、給油部4から供給される燃料油を単独で改質処理して改質処理油(以下「改質油」ともいう。)とする改質処理部を設けることもできる。かかる改質処理部では、燃料油中の微粒夾雑物や気泡が超微細化されると共に均一化された改質油となすことができる。従って、未改質水と改質水と未改質油と改質油とを適宜組み合わせて混合処理することで、エマルジョン燃料を多種多様に製造することができて、各装置A1〜A8が独自に奏する効果との相乗効果も得ることができる。その結果、エマルジョン燃料としての選択自由度ないしは採択自由度を増大させることができる。
なお、上記した第1〜第8装置A1〜A8において、燃料装置6に供給した際の余剰の改質燃料油は、連通パイプ1から分流させて貯留部(図示せず)に貯留し、同貯留部から適宜連通パイプ1に環流させて燃焼装置6に供給することができるようにしている。この際、改質燃料油は、貯留部から静止型流体混合器11及び/又は回転式撹拌混合器80で再度改質処理した後に燃焼装置6に供給することもできる。また、上記した第1〜第8装置A1〜A8は、コンピュータにより各機能部を自動制御して、エマルジョン燃料を連続的にかつ自動的に製造することもできる。
上記のように構成した第1〜第8装置A1〜A8により製造されるエマルジョン燃料は、水(ないしは改質水)と燃料油(ないしは改質油)を高圧超微細化(1μm程度)状態で混合し、燃料油の粒子が水の粒子を包み込む状態に微細混合されているものである。換言すると、高圧超微細化され平均的に微細混合された水と燃料油がその状態のまま燃料となるので、乳化剤等は一切必要がない。そして、かかるエマルジョン燃料には、分子動力学の加速度、キャビテーション(気泡と気化の作用)、潜熱等の作用が生じていると考えられる。すなわち、分子動力学では水分子は気化に向かい、加速度的に体積を増加(H2O密度は減少)させ、キャビテーションは燃料油の燃焼により水粒子が瞬時に気化するため、圧力増加と振動を生じさせる。加速度的に広がる水分子をキャビテーションによる圧力の増加で押さえ込むと同時に振動により衝撃を与え、潜熱を発生させて熱伝導を起こしていると考えられる。また、燃焼装置6の炉内燃焼時の熱量に減衰が見られないが、これは水の水素結合という特殊な性質から考慮しても、水の蒸発熱は40.8KJ/mol、0℃〜100℃迄の加熱熱容量は7.53KJ/molという数値で、前述のような状態が生じ、連鎖した熱エネルギーの伝動が行われていると考えられる。従って、第1〜第8装置A1〜A8により製造されるエマルジョン燃料の熱量については、単にその物質が持っている燃焼時の熱量比較では説明し得ない熱量の交換・伝達等の働きが、1μm程度という異なる物質の微粒子の燃焼の中で行われているということができる。
以下に、一次〜三次混合処理部として適宜採用する回転式撹拌混合器80と静止型流体混合器11〜11Eの構造をそれぞれ具体的に説明する。
[回転式撹拌混合器の説明]
図9は、回転式撹拌混合器80の主要部である撹拌混合器本体81の側面図である。基本的に、回転式撹拌混合器80は、撹拌・混合する被処理流体(本発明では燃料油と水)を収容する収容槽(図示せず)と、同収容槽内に配置して被撹拌混合物を撹拌・混合して混合液となす上記撹拌混合器本体81と、同撹拌混合器本体81を回転駆動させる駆動源としての電動モータ(図示せず)を具備している。なお、収容槽の上部には、前記給油部4及び/又は給水部5の各先端部を連通連結すると共に、同収容槽の下部には、前記連通パイプ1の基端部を連通連結している。
撹拌混合器本体81は、図9に示すように、前記電動モータの駆動軸に回転軸82の上端部を着脱自在に連動連結し、同回転軸82の下端部に一対の撹拌体83,84を上下対向状態にして同軸的に配置すると共に、一体的に連設している。
そして、上方の撹拌体83は、図10に示すように、一定肉厚の円板状に形成した撹拌本体85の下面において、中央部86と一定幅の外周部87を除いて、半径方向及び円周方向に底面視六角形の流路形成用凹部88を整然と密に形成してハニカム形状となしている。ここで、撹拌本体85の中央部86は、流路形成用凹部88の下面と面一となす一方、外周部87は、流路形成用凹部88の上面と面一となしており、撹拌本体85の上面中心位置に回転軸挿通孔85aを形成すると共に、同撹拌本体85の上面に筒状連結部85bを上記回転軸挿通孔85aと連通させて一体に連設している。
一方、図11に示すように、下方の撹拌体84は、上記した撹拌本体85と略同形、すなわち、略同一肉厚、略同一外径に形成した撹拌本体89の中央部に流入部としての流入口90を上下方向に貫通させて開口し、同撹拌本体89の上面において、一定幅の外周部91を除いて、半径方向及び円周方向に底面視六角形の流路形成用凹部92を整然と密に形成してハニカム形状となしている。ここで、撹拌本体89の中心位置、すなわち、流入口90の中心位置には、回転軸挿通孔89aを有するボス部89bを配置し、同流入口90を形成する撹拌本体89の内周縁部に連結片89cを介してボス部89bを連結している。
そして、図12に示すように、両撹拌体83,84を対向させて、両回転軸挿通孔85a、89aを上下方向に符合させて重合状態に連結している。82cは回転軸82の下端部に形成した雄ねじ部、82d,82eは雌ねじ部、82f,82gはワッシャである。なお、図9〜図11に示す、96は上方のビス孔、97は下方のビス孔、98はビスである。
しかも、両回転体83,84に形成した流路形成用凹部88,92同士は、位置ずれさせた状態で対面させている。すなわち、図7に示すように、隣接する三つの流路形成用凹部88の中心部を、対面する一つの流路形成用凹部92の中心部に位置させると共に、隣接する三つの流路形成用凹部92の中心部を、対面する一つの流路形成用凹部88の中心部に位置させて、両流路形成用凹部88,92間にて、被処理流体が、一つの流路形成用凹部88(92)から対面する二つの流路形成用凹部92(88)にせん断されながら(せん断状に)分流し、また、二つの流路形成用凹部88(92)から対面する一つの流路形成用凹部92(88)に圧縮して(圧縮状に)合流するように、蛇行しながら放射線方向に流動する撹拌混合流路93を形成している。そして、上方の回転体83の外周部87と、下方の回転体84の外周部91との間に、流出部として外周縁にわたって開口する流出口94を形成している。
このようにして、図13に示すように、上下一対の撹拌体83,84を電動モータにより回転させると、下方の撹拌体84の中央部に形成した流入口90から被処理流体R(図13に矢印で示す)が流入し、撹拌混合流路93において、一つの流路形成用凹部88(92)から対面する二つの流路形成用凹部92(88)に分流し、ないしは、二つの流路形成用凹部88(92)から対面する一つの流路形成用凹部92(88)に合流するというように、分流と合流とを繰り返しながら、しかも、蛇行しながら放射線方向に流動して、流出口94から流出するようにしている。
続いて、上記流出口94から流出した被処理流体Rは、収容槽の周壁の内面に沿って上方から下方へ→収容槽の底面から上方へ向けて円滑に流動し、再度、流入口90に流入する(環流される)ようにしている。
このように、流入口90から流入された被処理流体Rが、撹拌混合流路93を流動して、流出口94から流出され、再度、流入口90から流入されて、流入口90→撹拌混合流路93→流出口94→流入口90という被処理流体Rの循環流路が形成されるようにしている。その結果、効率よく被処理流体Rを循環させながら微粒夾雑物(や場合によっては気泡)を微細化して、被処理流体Rである燃料油を改質することができる。
しかも、図9、図13及び図14に示すように、下方の撹拌体84の下面には、円周方向に一定の間隔を開けて複数(本実施の形態では3個)の流入促進用羽根99を突設しており、同流入促進用羽根99は、撹拌体84の中心から放射線方向に伸延し、かつ漸次下方へ突出する幅を大きく形成した直各三角形状の作用面99aを有している。99bは流入促進用羽根99のテーパー状背面、99cは流入促進用羽根99の端面である。
このようにして、流入促進用羽根99が撹拌体84と一体的に回転して、被処理流体Rに流入促進用羽根99の作用面99aが作用することにより、流入孔90の外周近傍位置に、流入孔90側に被処理流体Rを吸入する流れが生起されて、同流入孔90への被処理流体Rの流入が促進される。そのため、粘度の高い流体、例えば、燃料油であるC重油と水とを撹拌・混合する場合でも、流入孔90に円滑に流入させることができて、環流に基づく被処理流体Rの撹拌・混合を効率よく行うことができる。
[静止型流体混合器の説明]
以下に、気体と液体(気−液),液体と液体(液−液)等の被処理流体(以下、単に流体と称することがある)を混合する静止型流体混合器(以下、「流体混合器」と称する。)としての第1実施形態〜第4実施形態の流体混合器11〜11Eについて説明する。
〔第1実施形態としての流体混合器11〕
第1実施形態の流体混合器11について図15〜図21を参照しながら説明する。すなわち、流体混合器11は、図15に示されるように、両端が開口している円筒形状のケーシング本体21を有する。ケーシング本体21の両端の各開口部にはフランジ21a,21bが形成されており、各フランジ21a,21bにケーシング本体21の蓋体22,23が着脱自在に取り付けられている。各蓋体22,23には、流体混合器11の流体Rの出入口である開口22a,23aが形成されている。本実施形態では、図15において左側に位置する蓋体22の開口を流体導入口22aとして用いる一方、右側に位置する蓋体23の開口を流体導出口23aとして用いている。
そして、ケーシング本体21内には、流体に混合処理を施す混合ユニット24が複数組(本実施形態では5組)収容されていると共に、同ケーシング本体21の内周面と各混合ユニット24の外周面とは、隙間のない密着状態となっている。
図16に示されるように、各混合ユニット24は、いずれも同様の構造であり、対向配置された2枚の盤状(略円盤形状)の部材、より具体的には円盤形状の第1・第2混合エレメント30,40を備えている。2枚の第1・第2混合エレメント30,40のうち、流体導入口側(上流側)に配置される第1混合エレメント30は、円盤状のエレメント本体31の中央部に、流体R(図15等において矢印で示す)の流入口32が貫通状態で形成されている。
そして、エレメント本体31の外周縁部には、全周に亘って肉厚の周壁部33が下流側に突出状に形成されて、エレメント本体31と周壁部33とにより、下流側に向けて円形の開口を有する凹み部34が形成されている。なお、符号「31a」は、エレメント本体31の流体導入口22a側に向けられる上流側面であり、符号「31b」は、エレメント本体31の流体導出口23a側に向けられる下流側面(第2混合エレメント40と対向する側の面)である。
図17に示されるように、エレメント本体31の下流側面31bには、開口形状が正六角形の凹部35が隙間のない状態で複数形成されている。いわゆるハニカム状に多数の凹部35が形成されている。なお、符号「36」は、第1混合エレメント30に第2混合エレメント40をねじ留めにより固定する際に用いられるねじ用の挿通孔である。
図16及び図18に示されるように、2枚の混合エレメントのうち、流体導出口側(下流側)に配置される第2混合エレメント40は、第1混合エレメント30よりも小径である。そして、第2混合エレメント40の直径は、第1混合エレメント30の凹み部34の直径よりも小径であり、凹み部34に第2混合エレメント40が嵌入されるようになっている。
また、第2混合エレメント40の、第1混合エレメント30との対向面、すなわち流体導入口22a側に向けられる上流側面(第1混合エレメントと対向する面)40aには、第1混合エレメント30のエレメント本体31と同様に、開口形状が正六角形の凹部41が隙間のない状態で複数形成されている。そして、上流側面とは反対の下流側面40bの面には、3つの突起42が形成されている。なお、符号「43」は、第1混合エレメント30に第2混合エレメント40をねじ留めにより固定する際に用いられる雌ねじが形成されたねじ穴である。
そして、両混合エレメント30,40は、図19及び図20に示されるような配置で組み付けられる。具体的に説明すると、第1混合エレメント30の凹み部34内に、第2混合エレメント40を位置させる。このとき、第1混合エレメント30の下流側面31bのハニカム状の多数の凹部35の開口面と、第2混合エレメント40の上流側面40aのハニカム状の多数の凹部41の開口面とが対面状態に当接するように、第2混合エレメント40の向きを定める(図20参照)。第2混合エレメント40をこの向きに向けると、突起42が形成された面が外から見える状態になる(図19参照)。この状態で、第1混合エレメント30の挿通孔36と、第2混合エレメント40のねじ穴43の位置を整合させてねじ44でねじ止めして組み付ける。
図19に示されるように、第2混合エレメント40の直径は、第1混合エレメント30の凹み部34の直径よりも小径になっている。ただし直径の違いは僅かである。
従って、両混合エレメント30,40を組み付けると、第1混合エレメントの周壁部33の内周面33aと第2混合エレメント40の外周端面40cとの間に、第2混合エレメント40の外周端面に沿って全周に亘りリング状の間隙が流出路24aとして形成され、同流出路24aの下流側に位置する終端開口部が流体の流出口であり、下流側に向けてリング状に開口されている。
そして、第1混合エレメント30の流入口32に供給された流体は、後述する混合流路25(図15参照)を通過した後、この流出口から放出される。流出路24aの流出幅tは、全周にわたって略均等幅に形成されており、例えば、第2混合エレメント40の半径の20分の1前後(もっと具体的には2mm前後)の幅で形成される(図21参照)。
このように、第2混合エレメント40の外周に全周に亘る流出路24aの流出口を略均等幅に形成すると、全周に亘って流体を略均等に流出させることができるため、流体圧力のばらつきが発生しにくくなり、混合ユニット24の外周部の位置によって流体の流出量に偏りが生ずるような不具合が防止される。流出量の偏りが防止されれば、流路抵抗が低下し、また局所的に流体の圧力が高圧になる場所が生ずることが防止される。
また、本実施形態では、図21に示すように、流出路24aの大きさ、すなわち間隙の幅tが全周に亘って略均等になっている。これにより、より確実に流路抵抗を低下させることができて、局所的高圧領域の発生、特に流出路24a近傍における局所的高圧領域の発生を防止できる。
ここで、各混合エレメント30,40の当接側の面に形成されるハニカム状の多数の凹部35,41の相互関係について説明する。
図21に示されるように、両混合エレメント30,40の当接面は、第1混合エレメントの凹部35の中心位置に、第2混合エレメント40の凹部41の角部41aが位置する状態で当接している。
このような状態で当接させると、第1混合エレメント30の凹部35と第2混合エレメント40の凹部41との間で流体を流すことができる。また、角部41aは3つの凹部41の角部41aが集まっている位置である。
従って、例えば、第1混合エレメント30の凹部35側から第2混合エレメント40の凹部41側に流体が流れる場合を考えると、流体は、3つの流路に分流されることになる。
つまり、第1混合エレメント30の凹部35の中央位置に位置された第2混合エレメント40の角部41aは、流体を2方に分流する分流部として機能する。逆に、第2混合エレメント40側から第1混合エレメント30側に流体が流れる場合を考えると、2方から流れてきた流体が1つの凹部35に流れ込むことで合流することになる。この場合、第2混合エレメント40の中央位置に位置された角部41aは、合流部として機能する。
また、第2混合エレメント40の凹部41の中心位置にも、第1混合エレメント30の凹部35の角部35aが位置する。この場合は、第1混合エレメント30の角部35aが上述した分流部や合流部として機能する。
このように、相互に対向配置された両混合エレメント30,40の間には、中央の流入口32から両混合エレメント30,40(ケーシング本体21)の軸線方向に供給された流体が、放射線方向(半径方向)に、せん断されながらの(せん断状に)分流と、圧縮されながらの(圧縮状に)合流とを繰り返しながら両混合エレメント30,40の放射線方向(半径方向)に流れる混合流路25(図15参照)が形成されている。
この混合流路25を流れる過程で、流体に混合処理が施される。そして、混合流路25を通過した流体は、その後、混合ユニット24の背面側外周部に下流側に向けてリング状に開口した流出路24aの流出口から混合ユニット24の外部に流出される。
図15に示されるように、本実施形態の流体混合器11では、ケーシング本体21内に5つの混合ユニット24が設置されている。複数の混合ユニット24を設置すると、上流側に位置する混合ユニット24の第2混合エレメント40の突起42が下流側に設置された混合ユニット24の第1混合エレメント30の(エレメント本体31の)上流側面31aに当接する。
これにより、隣接して配置される混合ユニット24,24とケーシング本体21とにより形成される円盤状空間が確保され、流出路24aの流出口から流出した流体を、円盤状空間を通して下流側の混合ユニット24の流入口32に流す集合流路26が確保される。
なお、最も下流側に配置された混合ユニット24の第2混合エレメント40の突起42は、ケーシング本体21の下流側の蓋体23に当接する。
これにより、混合ユニット24と蓋体23とケーシング本体21とにより形成される円盤状空間が確保され、最下流側の混合ユニット24の流出路24aから流出した流体を、円盤状空間を通してケーシングの流体導出口23aに流す集合流路26が確保される。
次に、上記のように構成した流体混合器11を用いて流体に混合処理を施す場合について説明する。ここでは、流体混合器11により水と空気の気液混合流体に混合処理を施す場合を例に説明する。
まず、流体混合器11の流体導入口22aと流体導出口23aに連通パイプ1を連結した状態にて、圧送ポンプ2を作動させることにより、前記一次混合処理部にて一次混合処理された処理液に、気体である空気を所定量だけ取り込んだ気液流体にして、流体混合器11の流体導出口23aに供給する。
すると、図15に示されるように、流体混合器11に供給された気液混合流体は、ケーシング内の最も上流側に配置された第1混合ユニット24の第1混合エレメント30の流入口32に流入され、第1混合ユニット24の混合流路25に送られる。
混合流路25に送られた気液混合流体は、ここで分流と合流を繰り返しつつ、混合ユニット24の外周側に形成された流出路24aに流れる。つまり、分流と合流を繰り返す過程で蛇行しながら流動するので、概略的には、円盤形状の混合ユニット24の中心から外周側に放射状に広がる方向に流動しつつ、分流と合流を繰り返し、その過程で気液混合流体に混合処理が施される。すなわち、気液混合流体内では微粒夾雑物と気泡が超微細化(ナノレベルから数μmレベルまで)されている。特に気泡は均一化されている。
第1混合ユニット24の流出路24aから流出した流体は、第1混合ユニット24と、その下流に配置された第2混合ユニット24との間の集合流路26を流れて、第2混合ユニット24の流入口32に送られる。なお、各混合ユニット24における流体の流れは、いずれも、第1混合ユニット24における流体の流れと同様であるので、その説明については省略するが、混合ユニット24を複数設置して、せん断されながらの分流と圧縮されながらの合流が繰り返されるようにすることで、より確実に気泡や微量夾雑物を超微細化かつ均一化する流体混合処理が施される。
また、次のようにしてもよい。図1において、流体混合器11の流体導出口23aから導出された流体が戻り管14に流れ込むように、第1三方弁12を切替操作すると共に、戻り管14の流体が連通パイプ1に流れ込むように第2三方弁13を切替操作する。
そして、戻り管14を通して流体を循環的に流体混合器11に送り込むようにする。このようにすると、さらに確実に流体混合処理が施され、さらに微細で均一な大きさの気泡を流体内に生成することができる。
さらに、必要に応じた時間、循環させた後、第1・第2三方弁12,13を切替操作して、処理流体を導出させる。
このようにすることで、より確実な流体混合処理を施すことができ、より微細かつ均一な大きさの所望の気泡を流体中に生成できる。
ここで、分流総数は、各混合エレメント30,40に形成した凹部35,41の数と、流体混合器11のケーシング本体21内に設置された混合ユニット24の数と、流体混合器11に何回循環させるかという繰り返し回数とによって決定される。
例えば、凹部35,41が平面視六角形状の開口を有するものであれば、凹部の室数が12室、18室、18室(計48室)の3列状の第1混合エレメント30と、室数が15室、15室(計30室)の2列状の第2混合エレメント40とを重合させた場合では、合計した分流総数は千五百回〜千六百回にも達することになる。なお、ここでいう分流総数とは、第1混合エレメント30と第2混合エレメント40の間に形成された混合流路25の分流部において分流される数のことである。
〔第2実施形態の流体混合器11A〕
次に、第2実施形態の流体混合器11Aについて、図22〜図27を参照しながら説明する。すなわち、流体混合器11Aは、第1実施形態の混合ユニット24と異なり、混合ユニット24Aの流出路24aから流出した流体が流れる集合流路26にガイド体52を備えている(図24参照)。なお、上記第1実施形態の流体混合器11と同一の構成については同一の符号を付し、その説明を省略する。
図22に示されるように、この実施形態の流体混合器11Aの混合ユニット24Aは、第1混合エレメント30と、第2混合エレメント40に加えて、集合流路26の流路断面積を安定させる部材であるガイド体52を具備する集合流路形成エレメント50を備えている。
これらのうち、第2混合エレメント40は、第1実施形態のものとは異なり、突起42を備えていない。つまり、第2混合エレメント40の流体導出口側に向けられる下流側面40bは平面になっている。これ以外の点は、第1実施形態の第2混合エレメント40と同じである。図23において、符号「45」は、第1混合エレメント30に第2混合エレメント40をねじ留めにより固定する際に用いられるねじ用の挿通孔である。
図24及び図26に示されるように、集合流路形成エレメント50は、第2混合エレメント40と同径で薄肉円盤形状に形成したエレメント本体51の片面である下流側面51bの周縁部にガイド体52を設けている。
そして、ケーシング本体21内に設置する状態で第2混合エレメント40側に向けられて面接触する上流側面51aは平面になっている。また、流体導出口23a側に向けられる下流側面51bの周縁部に、複数の突起状のガイド体52が一体的に形成されている。
ガイド体52は、第2混合エレメント40の外周縁と同一曲率の円弧面に形成した外周円弧面52aと、同外周円弧面52aの両端からエレメント本体51の中心側へ伸延させて接続した一対の側面52b,52bと、エレメント本体51と平行する平面となした当接面52cとから略扇型形状に形成した平板部材であり、一対の側面52b,52bがなす角(頂角)は45度、側面52bの伸延幅はエレメント本体51の半径の略3分の1に設定している。
本実施形態のエレメント本体51の円周部には、都合8つのガイド体52が円周方向に同一間隔を開けて配置されている。そして、ガイド体52は、外周円弧面52aが集合流路形成エレメント50の外周端面及び第2混合エレメント40の外周端面と面一で、かつ、隣接するガイド体52の相対向する側面52b,52b同士が円周方向で相互に平行になるように形成されている。
従って、隣接するガイド体52,52の側面52b,52bと下流側面51bとで形成される溝部55は、その溝部幅Wが集合流路形成エレメント50の円周側から中心側に向けて一定の同一幅になっている。なお、符号「53」は、第1混合エレメント30及び第2混合エレメント40に集合流路形成エレメント50を、一体的にねじ留めによって固定する際に用いられる雌ねじが形成されたねじ穴である。
このような集合流路形成エレメント50を備える混合ユニット24Aは、図22に示されるように組み付けられる。
まず、第1実施形態と同様に、第1混合エレメント30に第2混合エレメント40を組み込み、第2混合エレメント40に重ね合わせるように、集合流路形成エレメント50を配置する(図23及び図25参照)。
このとき、外側に向けられた第2混合エレメント40の平面状の下流側面40bと、集合流路形成エレメント50の平面状の上流側面51aとを面接触させる。
すると、集合流路形成エレメント50のガイド体52が形成された面が下流側に向けられる。
この状態で、各混合エレメント30,40の挿通孔36,45と、集合流路形成エレメント50のねじ穴53の位置を整合させてねじ54止めして組み付ける。
また、図22に示されるように、第2実施形態の流体混合器11Aでは、ケーシング本体21内に5つの混合ユニット24Aが設置されている。複数の混合ユニット24Aを設置すると、上流側に位置する混合ユニット24Aの集合流路形成エレメント50に設けたガイド体52の当接面52cが、下流側に位置する混合ユニット24Aの第1混合エレメント30の上流側面31aに当接する。
これにより、隣接して配置される混合ユニット24Aとの間に、ガイド体52の肉厚分の空間が保持され、流出路24aの流出口から流出した流体を下流側の混合ユニット24Aの流入口32に流す集合流路26が確保される。
しかも、図22及び図24に示されるように、集合流路形成エレメント50において、相互に隣接するガイド体52,52の間に形成されている溝部55は、上述したように、その幅寸法が一定になっている。
従って、ガイド体52の当接面52cを下流側の第1混合エレメント30の上流側面31aに当接させたときに、溝部55と第1混合エレメント30の上流側面31aとの間に形成される集合流路26は、円周方向に細長四角形状の流路断面で、その流路断面積が集合流れの方向である外周側から中心側に向けて、溝部55が形成されている区間については一定になっている。また、ガイド体52は、流体の流れを整流するものでもある。ガイド体52を設けることで流体がスムーズに流れる。
このようなガイド体52がなければ、集合流路26は、外周側ほど流路断面積が大きく、放出口につながる中心に近づくに連れて急激に流路断面積が狭くなる。流路断面積が急激に増減する構造は、流路抵抗の原因になったり、局所的に流体が高圧になる部分を生じさせる原因になったりする。流路抵抗が大きくなると、流体の圧力がより高圧になると共に流量が低下したりする。また、局所的に高圧の場所が生ずるとそこから流体の漏れが生じたりする。
この点、本実施形態の流体混合器11Aでは、8個のガイド体52がエレメント本体51の周縁部に円周方向に一定の間隔を開けて設けられて、集合流路26をなす8本の溝部55が放射状に形成され、集合流れの方向である外周側から中心部の放出口近傍まで集合流路26における流路断面積が安定している。
従って、リング状の流出路24aの流出口から流出した流体は、エレメント本体51の外周縁部から、円周方向に均等配置された最寄りの集合流路26の上流側に流入することになるが、この集合流路26の流路断面積が下流側である放出口近傍まで安定していると、流路抵抗が低下し、あるいは局所的に流体の圧力が高圧になる場所が生ずるようなことが防止される。
また、ここまで説明した第2実施形態では、第2混合エレメント40とは別体の集合流路形成エレメント50にガイド体52を形成しているが、図27に示されるように、第2混合エレメント40にガイド体52を一体に形成するようにしてもよい。
この場合、エレメント本体51が不要になり、流体混合器11の小型化を図ることができる。そして、部品点数が減少するので、組み付け作業が容易になる。本実施形態の流体混合器11Aのように流路が比較的狭い装置では、メンテナンスを行なう機会が少なくなく、分解・組立て作業など、メンテナンスが容易であることは重要である。
また、第2混合エレメント40に備えたガイド体52は、第1実施形態の突起42としても用いることができる。従って、ガイド体52とは別に突起を設ける必要がないという利点もある。
なお、第2実施形態の流体混合器11Aを用いて気泡を生成する方法自体は、第1実施形態の流体混合器11を用いて気泡を生成する場合と同様であるので、ここではその説明を省略する。次に説明する第3実施形態についても同様である。
〔第3実施形態の流体混合器11B〕
次に、第3実施形態の流体混合器11Bについて図28〜図31を参照しながら説明する。なお、上記第2実施形態の流体混合器11Aと同一の構成については同一の符号を付し、その説明を省略する。
第3実施形態の流体混合器11Bは、第2実施形態の流体混合器11Aと異なり、ケーシング本体21内に設置された混合ユニットの構成部材として、集合流路形成エレメント50に対向配置される導出側エレメント60を備えている。
具体的に説明すると、図29に示されるように、第3実施形態の流体混合器11Bの混合ユニット24Bは、第2実施形態の第1混合エレメント30と、第2混合エレメント40と、集合流路形成エレメント50に加えて、導出側エレメント60を備えている。
なお、第1及び第2混合エレメント30,40は、第2実施形態のものと同一である。また、図29に示されるように、本実施形態の集合流路形成エレメント50は、第2実施形態のねじ穴53に替えて、ねじ留めに用いられる挿通孔56を備えている。この点以外は、第2実施形態の集合流路形成エレメント50と同様である。
図29に示されるように、導出側エレメント60は、円盤状のエレメント本体61の中央部に、流体R(図28等において矢印で示す)の流体放出口62が貫通状態で形成されている。
そして、エレメント本体61の外周縁部には、全周に亘って肉厚の周壁部63が上流側に突出状に形成されて、エレメント本体61と周壁部63とにより、上流側に向けて円形の開口を有する凹み部64が形成されている。なお、符号「61a」は、エレメント本体61の上流側面(集合流路形成エレメント50と対向する側の面)である。
図31に示されるように、エレメント本体61の上流側面61aには、開口形状が正六角形の凹部65が隙間のない状態で複数形成されている。いわゆるハニカム状に多数の凹部65が形成されている。なお、符号「66」は、第1混合エレメント30等に導出側エレメント60をねじ留めにより固定する際に用いられるねじ穴を示すものである。
図29及び図30に示されるように、導出側エレメント60は、エレメント本体61も周壁部63も、第1混合エレメント30のエレメント本体31と周壁部33と略同径に形成すると共に、パッキン67を介して周壁部63,33の端面同士を対面させている。
すなわち、導出側エレメント60は、集合流路形成エレメント50よりも大径である。そして、エレメント本体61の直径は、エレメント本体51の直径よりも大径であり、凹み部64に集合流路形成エレメント50が嵌入状態に収容されるようになっている。ただし直径の違いは僅かである。
従って、両エレメント50,60を組み付けると、集合流路形成エレメント50の外周端面51cと導出側エレメント60の周壁部63の内周面63aとの間に、集合流路形成エレメント50の外周端面に沿って全周に亘りリング状の間隙が流入路24bとして形成され、同流入路24bの上流側に位置する始端開口部が流体の流入口であり、上流側に向けてリング状に開口されている。
流入路24bの流入幅は、全周にわたって略均等幅に形成されており、例えば、集合流路形成エレメント50の半径の20分の1前後(もっと具体的には2mm前後)の幅で形成される。
ここで、かかる流入路24bは、集合流路形成エレメント50と第2混合エレメント40の直径を略同径となしている本実施形態では、第1・第2混合エレメント30,40間に形成される流出路24aと略同径・略同幅に形成されて対面配置されることになる。
そして、流出路24aの流出口と流入路24bの流入口とが接続されて、リング状の連通連結路68が形成されることになる。
しかも、連通連結路68は、全周にわたって下流側に向けてリング状に開口する流出路24aの流出口と、全周にわたって上流側に向けてリング状に開口する流入路24bの流入口とが、整合状態にて近接・対面して形成されるため、流出路24a→流入路24b→集合流路26へと流動する流体の圧力損失を大幅に低下させることができて、単位時間当たりの処理量を大きくすることができ、シール部であるパッキン67からの流体漏れも確実に回避することができる。
混合ユニット24Bは、図28から図30に示されるような配置で組み付けられる。具体的に説明すると、第1混合エレメント30の凹み部34内に、第2混合エレメント40を配置する一方、導出側エレメント60の凹み部64内に、集合流路形成エレメント50を配置する。
このとき、第1混合エレメント30の下流側面31bのハニカム状の多数の凹部35の開口面と、第2混合エレメント40の上流側面40aのハニカム状の多数の凹部41の開口面とが対面状態に当接するように、第2混合エレメント40の向きを定めると共に、導出側エレメント60の上流側面61aのハニカム状の多数の凹部65の開口面と、集合流路形成エレメント50のガイド体52の当接面52cとが対面状態に当接するように、各エレメント30,40,50,60の向きを定める(図29参照)。
この状態で、第1混合エレメント30の挿通孔36と、第2混合エレメント40のねじ孔45と、集合流路形成エレメント50の挿通孔56と、導出側エレメント60のねじ穴66の位置を整合させてねじ54でねじ止めして組み付ける。
この際、導出側エレメント60の周壁部63と第1混合エレメント30の周壁部33の端面同士がパッキン67を介して対面状態に密着されると共に、両周壁部33,63(混合ユニット24B)の内方にリング状に形成される流出口としての間隙24aと流入口としての間隙24bとが対向状態に連通される。
その結果、流出路24aから流出した流体は、流入路24bから集合流路形成エレメント50と導出側エレメント60の間に形成されている集合流路26に流れ込む。
このように、第2混合エレメント40の外周に全周に亘る流出路24aを形成するとともに、集合流路形成エレメント50の外周に全周に亘る流入路24bを形成すると、全周に亘って流体を流出・流入させることができるので、混合ユニット24Bの外周部の位置によって流体の流出量に偏りが生ずるような不具合が防止される。
流出量の偏りが防止されれば、流路抵抗が低下し、また局所的に流体の圧力が高圧になる場所が生ずることが防止される。また、本実施形態では、流出路・流入路24a,24bの大きさ、すなわち間隙の幅が全周に亘って略均等になっている。
これにより、より確実に流路抵抗を低下させることができて、局所的高圧領域の発生、特に流出口・流入口24a,24b近傍における局所的高圧領域の発生を防止できる。
また、このような構造にすると、流体の流路の途中に、流体が滞留しやすいいわゆるデッドスペースが無くなる。デッドスペースがあると、そのスペースに流体が滞留してしまい、流体混合処理品質(例えば、生成する気泡の大きさなどの品質)にばらつきが生じやすくなる。
この点、本実施形態では、デッドスペースが最小限になっているので、このような不具合の発生が最小限に抑制され、流体により均一な混合処理を施すことができ、より均一な大きさの気泡を生成できる。
先に説明したように、集合流路形成エレメント50と導出側エレメント60の間には、集合流路26(図28参照)が形成されており、流体は、流入路24bから集合流路26に流れ込むようになっている。
流体は、集合流路26を通って流体放出口63(図29参照)へと流れ、次の混合ユニット24Bの流入口32に流れ込んだり、ケーシングの蓋体23の流体導出口23aから導出されたりする。
集合流路26では、流体は、集合流路形成エレメント50の外周側から中心側に向けて流れる。集合流路形成エレメント50の外周側には、ガイド体52が形成されており、隣接するガイド体52の間には溝部55が形成されている。溝部55の幅寸法は一定になっており、溝部55と導出側エレメント60の上流側面61aとに囲まれた流路断面積は一定になっている。
このように、流路断面積が安定していると、流路抵抗や圧力が安定し、流体の流通が安定する。
ところで、図31に示されるように、導出側エレメント60の凹み部64の底面である上流側面61aには、いわゆるハニカム形状の凹部65が多数形成されている。集合流路形成エレメント50のガイド体52の当接面52cは平面であるので、導出側エレメント60側の当接面にハニカム形状の凹部(凹凸形状)があっても、流体が分流されたり、合流されたりすることはない。
ところが、導出側エレメント60の凹み部64の底面に凹部65があると、集合流路26内であって凹部65の開口の近傍を流れる流体に対して、せん断力による混合効果や、機械的なキャビテーション等による混合効果を与えることができる。
例えば、集合流路26に面する表面に複数の凹部65を備える導出側エレメント60を用いると、集合流路26内であって凹部65の開口の近傍を流れる流体中に、局所的高圧部分や局所的低圧部分を生じさせることができる。
そして、このような流体中で、局所的低圧部分(例えば真空部分などの負圧部分)が生じるときに、いわゆる発泡現象が生じて液体中に気体が生じたり、微小な気泡が膨張(破裂)したり、生じた気体(気泡)が崩壊(消滅)したりする、いわゆるキャビテーションと称される現象が生ずる。
このようなキャビテーションが起こるときに生ずる力によって、混合対象物の微細化が行われ、流体混合が促進される。
ただし、上記のように、集合流路26に面する表面に凹部65を備える導出側エレメント60を用いれば、導出側エレメント60の凹部65の開口が面するところでのみ、流体中に局所的高圧部分や局所的低圧部分を生じさせることができる。
そして、その他の部分、例えば流出路24aやこれに対向配置された流入路24b(図28参照)の近傍など流体の漏れが生じやすい領域では、流路断面積が安定化されており、局所的高圧部分の発生が防止される状態が維持される。従って、流体の漏れが生じやすくなることは防止されている。
なお、導出側エレメント60としては、凹み部64の底面に凹部が複数形成された本実施形態に限られるものではなく、種々の形態のものを用いることができる。例えば、凹み部64の底面に凹部に代えて凸部が複数形成されるもの、凹み部64の底面に凹部と凸部の両方が複数形成されるもの、さらには、凹み部64の底面が平面であるものでもよい。
〔第4実施形態の流体混合器11C〕
次に、第4実施形態の流体混合器11Cについて図32〜図34を参照しながら説明する。なお、上記第3実施形態の流体混合器11Bと同一の構成については同一の符号を付し、その説明を省略する。
第4実施形態の流体混合器11Cは、第3実施形態の流体混合器11Bと異なり、ケーシング本体21内に設置された混合ユニットの構成部材として、集合流路形成エレメント50を設けていない。
具体的に説明すると、図33に示されるように、第4実施形態の流体混合器11Cの混合ユニット24Cは、第3実施形態の第1混合エレメント30と、第2混合エレメント40と、集合流路形成エレメント50に代えて設けた一対のスペーサー100,100と、導出側エレメント60を備えている。
ここで、スペーサー100は、両端に開口端を有する筒状に形成して、同スペーサー100の筒長の大きさにより、第2混合エレメント40と導出側エレメント60との間隔、すなわち、両エレメント40,60間に形成される円盤状空間である集合流路26の流路深度Z(図32参照)を適宜設定することができるようにしており、かかる集合流路26の流路深度Zの変更は、適切な筒長を有するスペーサー100に付け替えることにより簡単に行うことができる。
そして、混合ユニット24Cは、図32〜図34に示される状態に組み付けられる。
すなわち、第1混合エレメント30と、第2混合エレメント40と、導出側エレメント60との組み付け状態は、前記第3実施形態と同様であり、第1混合エレメント30の挿通孔36,36と、第2混合エレメント40のねじ穴43,43と、一対のスペーサー100,100の開口端と、導出側エレメント60のねじ穴66,66の位置を符合させて、ねじ54,54でねじ止めして組み付ける。
なお、上記のように第2混合エレメント40と導出側エレメント60の間にスペーサー100,100を介在させて組み付けると、両エレメント40,60間の外周に、全周に亘るリング状の間隙である流入路24b(図32参照)が形成される。この流入路24bの始端開口部は、第2混合エレメント40と導出側エレメント60の間に形成される集合流路26への流入口である。
また、図32に示されるように、リング状の開口である集合流路26への流入路24bは、流出路24aに対向する位置に配置される。つまり、第2混合エレメント40の外周縁に形成された流出路24aから流出した流体は、直接、リング状の流入路24bから第2混合エレメント40と導出側エレメント60の間に形成される集合流路26に流れ込む。
このような構造にすると、流体の流路の途中に、流体が滞留しやすいいわゆるデッドスペースが無くなる。デッドスペースがあると、そのスペースに流体が滞留してしまい、流体混合処理品質(例えば、生成する気泡の大きさなどの品質)にばらつきが生じやすくなる。
この点、本実施形態では、デッドスペースが最小限になっているので、このような不具合の発生が最小限に抑制され、流体により均一な混合処理を施すことができ、より均一な大きさの気泡を生成できる。しかも、かかる流体混合器11Cでは、前記した第3実施形態に比べて構造の簡易化と低コスト化を図ることができる。
先に説明したように、第2混合エレメント40と導出側エレメント60の間には、集合流路26(図32参照)が形成されており、流体は、流入路24bから集合流路26に流れ込むようになっている。
集合流路26では、流体は、第2混合エレメント40の背面に沿って、その外周側から中心側に向けて流れ、流体放出口63(図32参照)へと流れ、次の混合ユニット24Cの流入口32に流れ込んだり、ケーシングの蓋体23の流体導出口23aから導出されたりする。
この際、集合流路26に面する表面に複数の凹部65を備える導出側エレメント60を用いるため、集合流路26内であって凹部65の開口の近傍を流れる流体中に、局所的高圧部分や局所的低圧部分を生じさせることができる。
そして、このような流体中で、局所的低圧部分(例えば真空部分などの負圧部分)が生じるときに、いわゆる発泡現象が生じて液体中に気体が生じたり、微小な気泡が膨張(破裂)したり、生じた気体(気泡)が崩壊(消滅)したりする、いわゆるキャビテーションと称される現象が生ずる。
このようなキャビテーションが起こるときに生ずる力によって、混合対象物の微細化が行われ、流体混合が促進される。
〔集合流路形成エレメント50の変用例〕
図35は、集合流路形成エレメント50の変用例であり、エレメント本体51の下流側面51bに、多数の錯流生起手段としての錯流生起体102を一体成形して突設し、隣接する錯流生起体102間に集合流路26を形成している。
そして、錯流生起体102は、本変容例では、図35(a)〜(c)に示すように、略円柱状に形成すると共に、流体との接触面となる周面を凸状面103ないしは凹状面104となして、流体との接触面を大きく形成し、エレメント本体51の周縁部に円周方向に間隔を開けて複数(本実施形態では8個)の凸状面103を有する錯流生起体102を配置すると共に、隣接する錯流生起体102,102間の中央部より位置に複数(本実施形態では4個)の凹状面104を有する錯流生起体102を配置している。105は当接面である。
このようにして、流出路24aから集合流路26内に流入する混合流体が、これら凸状面103ないしは凹状面104に沿って流れて錯流・脈流を繰り返し形成し、乱流となって下流側に隣接する混合ユニットの流入口32ないしは流体放出口63へと流れ込むようにしている。
ここで、錯流とは、流体が物体の面を擦りながら流動する流れであり、錯流生起手段は、錯流を生起する面を有する突状物である。また、脈流は、流路断面積が断続的に変化する流れである。
従って、集合流路26内に錯流生起体102を配置することにより、集合流路26内を流体が通過するとき、錯流生起体102の存在によって流体が錯流・脈流を繰り返し形成して、流体中に、局所的高圧部分や局所的低圧部分が生じる。
そして、このような流体中では、局所的に低圧部分(例えば真空部分などの負圧部分)が生じるときに、いわゆる発泡現象が生じて液体中に気体が生じたり、微小な気泡が膨張(破裂)したり、生じた気体(気泡)が崩壊(消滅)したりするといったいわゆるキャビテーションと称される現象が生ずる。
このようなキャビテーションが起こるときに生ずる力によって、混合対象物の微細化が行われ、流体混合が促進される。
なお、先に説明したように、流体の漏れが生じやすい位置またはその近傍で局所的に流体高圧部分が生ずると、流体の漏れが生じやすくなるので、その意味では局所的高圧部分が生ずることは好ましくない。
ただし、上記のように、集合流路26内に錯流生起体102を配置すれば、流出口から放出口までの流路のうち、錯流生起体102が配置された個所でのみ、流体中に局所的高圧部分や局所的低圧部分を生じさせることができて、流体混合が促進される。
また、本実施形態では、凸状面103を有する錯流生起体102と凹状面104を有する錯流生起体102の両方をエレメント本体51に設けているが、いずれか一方の錯流生起体102だけをエレメント本体51に設けることもできる。錯流生起手段の形状は、錯流を形成する形状であればよく、本実施形態の略円柱状に限られるものではない。
ここまで、流体混合器について、いくつかの実施形態を説明したが、上記形態に限られず、種々の改変をすることができる。
例えば、上記各実施形態の流体混合器では、凹部35,41の開口の形状は、正六角形の開口であったが、これに限られるものではなく、例えば、正三角形などの三角形や、正四角形などの四角形や、正八角形などの八角形などの形状でもよい。
また、上記実施形態で用いられている流体混合器のうち、シール用のパッキンを備えているのは、第3実施形態や第4実施形態の流体混合器11B,11Cであるが、第1実施形態や第2実施形態の流体混合器11,11Aにシール部材を設置してもよい。シール部材を設置すると、よりシール性が向上し、流体漏れなどの発生がより確実に防止される。
また、上記実施形態のうち、いわゆるデッドスペースを最小限にしているのは、図28に示した第3実施形態や図32に示した第4実施形態の流体混合器11B,11Cであるが、第1実施形態や第2実施形態の流体混合器11,11Aにおいても、できるだけデッドスペースをなくす構造にしてもよい。
例えば、第1混合エレメントの周壁部33の厚さ(軸線方向の厚さ)をさらに厚くするなどして、当該周壁部33の下流側面(流体導出口側の面)である端面を、下流側に配置される別の混合ユニット24の第1混合エレメントの上流側面(流体導入口側の面)に当接させるような構造を挙げることができる。
〔第1実施形態の改変例としての流体混合器11D〕
図36に示されるように、流体混合器11Dは、第1実施形態の混合ユニット24を構成するエレメントのうち、処理流体に接する部分の角部に、丸みをつけて滑らかな面にした改変例である。例えば、図36の部分拡大図に示すように、第1混合エレメント30の凹み部34に形成した凹部35の開口端の角部に丸みをつけて滑らかにしている。
また、処理流体に接する部分の隅部を、丸みをつけた滑らかな面にしてもよい。例えば、図36の部分拡大図に示すように、第1混合エレメント30の凹み部34に形成した凹部35の底面の隅部に丸みをつけた滑らかにしてもよい。
このように丸みをつけて滑らかにすると、流路抵抗が減少し、単位時間当たりの処理量を増大させることができる。
また、隅部に丸みをつけることで、デッドスペースが減少し、流体をより均一に混合することができ、流体混合処理性能を向上させることができる。例えば、より均一の大きさの気泡を生成できるようになるなど、生成される気泡の大きさなどについてのばらつきをより小さくすることができる。
なお、図36の流体混合器11Dは、第1実施形態の流体混合器11を改変したものであるが、第2実施形態や第3実施形態や第4実施形態の流体混合器11A,11B,11Cを同様に改変しても良い。
〔第1実施形態の別の改変例としての流体混合器11E〕
図37に示されるように、流体混合器11Eは、流体混合器11に温度制御ユニット70を設置して構成している。温度制御ユニット70は、流体混合器11Eのケーシング本体21の外周を覆うジャケット部71と、当該ジャケット部71内に温度制御用の流体(ここでは水)を供給する図示しない給水ポンプに接続された給水管72と、ジャケット部71から水を導出するための排水管73とを備えている。
ジャケット部71は、半円筒形状の分割ジャケット体71a,71aを組み整合させてなるものであり、着脱自在にケーシング本体21に取り付けられるようになっている。そして、ジャケット部71のケーシング本体21との接触部にはパッキン74が取り付けられており、温度制御用の水が漏れないようになっている。
このような温度制御ユニット70が設置されていれば、流体混合処理対象の流体(例えば気泡生成処理対象である気液混合流体)の温度上昇を防止したいときには、ジャケットに冷却水を供給することで、簡単に処理流体の温度上昇を防止できる。なお、図28の流体混合器10Eは、第1実施形態の流体混合器11を改変したものであるが、他の実施形態の流体混合器11A,11B,11C,11Dを同様に改変しても良い。
また、図37に示される温度制御ユニット70は、冷却水などの冷媒を用いて冷却等の温度制御を行なうものであるが、このような方法に限られず、例えば、ケーシングに放熱用のフィンを設ける方法など、種々の方法を挙げることができる。
〔流体混合器の基本構成に係る効果〕
上記のように構成した流体混合器の基本的構成に係る効果は、以下の通りである。
すなわち、流体混合器では、流出口として、第2混合エレメントの外周縁と第1混合エレメントとの間に形成される隙間状の開口を形成している。つまり、第2混合エレメントの外周縁に沿って、第2混合エレメントの外周全周に亘る流出口が形成されている。そして、第2混合エレメントの対向面の大きさを第1混合エレメントの対向する側の面の大きさよりも小さく形成し、当該開口を第1混合エレメントの外周縁よりも内側に位置させている。つまり、流出口である開口は、両混合エレメントからなる混合ユニットの下流側の面すなわち前記流入口が形成されている面とは反対側の面に形成されている。このような構成にすると、両混合エレメント間の混合流路は、流出口を介して両混合エレメントの下流側の流路に直接連通することになり、また全周に流出口が存在するので流体圧力のばらつきが発生しにくくなり、結果として、流路抵抗が低下する。流路抵抗が低下すると、供給する流体の圧力を高圧にしなくても処理量を増大させることができ、シール部における流体漏れを防止しつつ、処理量を増大させることができる。
特に、流体混合器によれば、平均粒径が500nm以下の気泡を被処理流体中に生成でき、そして平均粒径が50nm以下の気泡を被処理流体中に生成できる。この際、被処理流体を改質することができる。たとえば、水は、通常、単一の分子で存在しているのではなく、多数の分子からなるクラスターを形成しているところ、流体混合器で水が処理されると、クラスターの大きさがより小さい改質水を得ることができる。クラスターの大きさがより小さい改質水は、直径がナノレベル(1μm未満)の超微細な気泡を介して燃料油と均一に混合されやすくなり、界面活性剤等を用いることなくエマルジョン燃料を製造することができる。
また、次のような効果も得られる。(1)流体混合器では、圧力損失が低下する。圧力損失が低下すると、同じ量の処理流体を供給する際、ポンプなどの処理流体供給手段の出力を小さくすることができる。(2)同じ出力を維持するのであれば、処理能力が増大する。(3)圧力損失の低下も一因であると考えられるが、流体混合処理に伴い発生する騒音が小さくなり、静粛性が向上していると共に、振動が小さくなる。(4)流体混合処理時の騒音や振動が小さくなれば、例えば病院など、静粛性等が要求されるような場所への設置が可能になる。(5)圧力損失が小さくなったので、低圧で流体混合処理を行なうことができるようになり、パッキンなどのシール部材を使用する必要がなくなった。これにより、シール部材の交換などの作業が不要になり、メンテナンスが容易になる。
バーナー等の燃焼装置に本発明に係るエマルジョン燃料製造装置を連通連結して、同燃焼装置にエマルジョン燃料を供給することにより、同燃焼装置の燃焼効率を向上させることができる。
【0001】
[0001]
本発明は、エマルジョン燃料と、同エマルジョン燃料を連続的に製造する製造法と、同エマルジョン燃料を連続的に製造する製造装置に関する。
背景技術
[0002]
エマルジョン燃料製造法の一形態として、燃料油と水をミキサーにより撹拌・混合することによりエマルジョン燃料を製造する方法がある。(例えば、特許文献1参照)。
[0003]
かかるエマルジョン燃料製造法は、基本的に、乳化剤を用いることなく、燃料油中に微細な水滴を均一に分散させたエマルジョン燃料の製造を図っているものである。
特許文献1:特開平5−157221号公報
発明の開示
発明が解決しようとする課題
[0004]
しかしながら、上記したエマルジョン燃料製造法は、一つのミキサーにより燃料油と水を撹拌・混合するだけであるために、得られたエマルジョン燃料では未だ水滴同士が凝集して水滴径の分散が不均一となり、かかるエマルジョン燃料を燃焼装置で燃焼させると燃焼効率が悪化してすすや黒煙を発生するという不具合がある。
課題を解決するための手段
[0005]
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料を提供するものである。
[0006]
(1)本発明は、連続相としての燃料油と分散相としての水との混合液に、微量の空気を付加して流体混合器により混合してなる微細な気泡混じりのエマルジョン燃料であって、前記流体混合器は、中央部に流体の流入口を形成した円板状の第1混合エレメントに、円板状の第2混合エレメントを対向させて配置すると共に、両混合エレメントの間に上記流入口から流入した流体を放射線方向に流動させて混合する混合流路を形成した混合ユニットを構成し、上記混合ユニットを円筒状に形成したケーシング本体内にその軸線方向に間隔を開けて複数配置して、隣接する混合ユニットとケーシング本体とで流路成形用空間を形成し、同流路形成用空間内には、円板状の集合流路形成エレメントを配置して、前記混合流路を通過した流体が、リング状に開口する流出口の全周から略均等に流出して、ケーシング本体の軸芯側に流動して集合する集合流路が形成されるようにして、前記集合流路形成エレメントにはエレメント本体の一側面に流路断面積を安定させる膨出状のガイド体を形成すると共に、同ガイド体は、エレメント本体の外周縁と同一曲率の円弧面に形成した外周円弧面と、同外周円弧面の両端からエレメント本体の中心側へ伸延させて接続した一対の側面と、エレメント本体と平行する平面となした当接面とから略扇型平板形状に形成し、しかも、前記ガイド体は、エレメント本体の円周部にその円周方向に同一間隔を開けて複数配置して、各ガイド体の外周円弧面が集合流路形成エレメントの外周端面及び第2混合エレメントの外周端面と面一で、かつ、隣接するガイド体の相対向する側面同士が円周方向で相互に平行になるように形成して、隣接するガイド体の側面とエレメント本体の背面とで形成される溝部の溝部幅を、集合流路形成エレメントの円周側から中心側に向けて略同一幅となしていることを特徴とするエマルジョン燃料である。
[0007]
(2)本発明は、連続相としての燃料油と分散相としての微細な気泡混じりの水とを前記(1)の流体混合器により混合してなる微細な気泡混じりのエマルジョン燃料である。
[0008]
(3)本発明は、連続相としての微細な気泡混じりの燃料油と分散相としての水とを前記(1)の流体混合器により混合してなる微細な気泡混じりのエマルジョン燃料である。
[0009]
(4)本発明は、連続相としての微細な気泡混じりの水と分散相としての燃料油とを前記(1)の流体混合器により混合した
【0002】
混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料である。
[0010]
(5)本発明は、連続相としての水と分散相としての微細な気泡混じりの燃料油とを前記(1)の流体混合器により混合した混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料である。
[0011]
(6)本発明は、連続相としての水と分散相としての燃料油とを前記(1)の流体混合器により混合した混合液を分散相として、連続相としての燃料油と混合してなるエマルジョン燃料である。
[0012]
(7)本発明は、分散相として改質処理した水と連続相としての燃料油とを前記(1)の流体混合器により混合してなるエマルジョン燃料である。
[0013]
(8)本発明は、連続相としての燃料油と分散相としての水とを前段で微細化して混合し、後段で前記(1)の流体混合器により超微細化して混合してなるエマルジョン燃料である。
[0014]
ここで、微量の空気の直径をナノレベルないしはサブミクロンレベルの超微細な気泡となした場合には、直径がナノレベルないしはサブミクロンレベルの超微細な気泡混じりのエマルジョン燃料となすことができる。この場合、超微細な気泡によるより一層の気−液界面の面積(燃焼表面積)増加、及び、静電分極による表面活性(界面活性剤のような機能)の増大を図ることができて、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中でより一層安定化させることができる。その結果、良好な燃焼効率をより一層向上させることができる。なお、ナノレベルとは、1μm未満のレベルをいう。サブミクロンレベルとは、0.1μm〜1μmのレベルをいう。
[0015]
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料の製造法を提供するものである。
[0016]
(9)本発明は、燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となし、続いて、この混合液に微量の空気を付加してさらに前記(1)の流体混合器により混合処理することにより、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0017]
(10)本発明は、水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を前記(1)の流体混合器により混合処理することにより、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョ
【0003】
ン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0018]
(11)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を前記(1)の流体混合器により混合処理することにより、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0019]
(12)本発明は、水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を前記(1)の流体混合器により混合処理することにより、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0020]
(13)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を前記(1)の流体混合器により混合処理することにより、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0021]
(14)本発明は、水と燃料油を前記(1)の流体混合器により混合処理することにより、連続相としての水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0022]
(15)本発明は、あらかじめ分散相としての水を改質処理し、その後に改質処理した分散相としての水と連続相としての燃料油を前記(1)の流体混合器により混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
[0023]
(16)本発明は、連続相としての燃料油と分散相としての水とを前段で微細化混合処理して混合液となし、その後に、後段でこの混合液を前記(1)の流体混合器で超微細化混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法である。
【0004】
[0024]
前記課題を解決するため、本発明では、以下のようなエマルジョン燃料の製造装置を提供するものである。
[0025]
(17)本発明は、燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となす一次混合処理部と、この混合液に微量の空気を付加してさらに混合処理する二次混合処理部とを具備して、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0026]
(18)本発明は、水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0027]
(19)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理する二次混合処理部とを具備して、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0028]
(20)本発明は、水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理して、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0029]
(21)本発明は、燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理して、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からな
【0005】
る微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0030]
(22)本発明は、水と燃料油を混合処理して、連続相としての水と分散相としての微細な油滴からなる混合液となす一次混合処理部と、この混合液と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記一次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0031]
(23)本発明は、分散相としての水を改質処理して改質処理水となす改質処理部と、この改質処理水を分散相とし燃料油を連続相として混合処理する混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
[0032]
(24)本発明は、連続相としての燃料油と分散相としての水とを微細化混合処理して混合液となす前段の一次混合処理部と、この混合液を超微細化混合処理する後段の二次混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置であって、前記二次混合処理部は前記(1)の流体混合器であることを特徴とするエマルジョン燃料製造装置である。
発明の効果
[0033]
(1)本発明では、連続相としての燃料油と、分散相としての水と、微量の空気とを微細化して混合することにより、浮力が減少した微細な気泡混じりのエマルジョン燃料を製造することができる。
ここで、浮力が減少した微細な気泡は、疎水性であるため、水滴の表面には付着せずに、燃料油中に分散して、気−液界面の面積(燃焼表面積)を増加させると共に静電分極により表面活性(界面活性剤のような機能)を発揮して、微細化した水滴の合一を防止して、同水滴をエマルジョン燃料中で安定化させることができる。
その結果、かかるエマルジョン燃料では水滴径の分散が均一化して、かかるエマルジョン燃料を例えば燃焼装置で燃焼させると、良好な燃焼効率を確保することができて、すすや黒煙が発生するという不具合を解消することができる。
なお、上記した微細な気泡混じりのエマルジョン燃料は、燃料油と水の混合比を調整することにより、適正な燃焼条件下で内燃機関を燃焼させる燃料としても使用する

Claims (24)

  1. 連続相としての燃料油と分散相としての水との混合液に、微量の空気を付加して混合してなる微細な気泡混じりのエマルジョン燃料。
  2. 連続相としての燃料油と分散相としての微細な気泡混じりの水とを混合してなる微細な気泡混じりのエマルジョン燃料。
  3. 連続相としての微細な気泡混じりの燃料油と分散相としての水とを混合してなる微細な気泡混じりのエマルジョン燃料。
  4. 連続相としての微細な気泡混じりの水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料。
  5. 連続相としての水と分散相としての微細な気泡混じりの燃料油との混合液を分散相として、連続相としての燃料油と混合してなる微細な気泡混じりのエマルジョン燃料。
  6. 連続相としての水と分散相としての燃料油との混合液を分散相として、連続相としての燃料油と混合してなるエマルジョン燃料。
  7. 分散相として改質処理した水と連続相としての燃料油とを混合してなるエマルジョン燃料。
  8. 連続相としての燃料油と分散相としての水とを前段で微細化して混合し、後段で超微細化して混合してなるエマルジョン燃料。
  9. 燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となし、続いて、この混合液に微量の空気を付加してさらに混合処理することにより、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  10. 水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  11. 燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を混合処理することにより、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  12. 水と空気を混合処理して微細な気泡混じりの水となし、続いて、この微細な気泡混じりの水と燃料油を混合処理することにより、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  13. 燃料油と空気を混合処理して微細な気泡混じりの燃料油となし、続いて、この微細な気泡混じりの燃料油と水を混合処理することにより、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  14. 水と燃料油を混合処理することにより、連続相としての水と分散相としての微細な油滴からなる混合液となし、続いて、この混合液と燃料油を混合処理することにより、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  15. あらかじめ分散相としての水を改質処理し、その後に改質処理した分散相としての水と連続相としての燃料油を混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  16. 連続相としての燃料油と分散相としての水とを前段で微細化混合処理して混合液となし、その後に、後段でこの混合液を超微細化混合処理することにより、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造法。
  17. 燃料油と水を混合処理して、連続相としての燃料油と分散相としての微細な水滴からなる混合液となす一次混合処理部と、この混合液に微量の空気を付加してさらに混合処理する二次混合処理部とを具備して、微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  18. 水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な水滴及び微細な気泡からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  19. 燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理する二次混合処理部とを具備して、連続相としての微細な気泡混じりの燃料油と分散相としての微細な水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  20. 水と空気を混合処理して微細な気泡混じりの水となす一次混合処理部と、この微細な気泡混じりの水と燃料油を混合処理して、連続相としての微細な気泡混じりの水と分散相としての微細な油滴からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  21. 燃料油と空気を混合処理して微細な気泡混じりの燃料油となす一次混合処理部と、この微細な気泡混じりの燃料油と水を混合処理して、連続相としての水と分散相としての微細な油滴及び微細な気泡からなる混合液となす二次混合処理部と、この混合液と燃料油を混合処理する三次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴及び微細な気泡を含有する水滴からなる微細な気泡混じりのエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  22. 水と燃料油を混合処理して、連続相としての水と分散相としての微細な油滴からなる混合液となす一次混合処理部と、この混合液と燃料油を混合処理する二次混合処理部とを具備して、連続相としての燃料油と分散相としての微細な油滴を含有する水滴からなるエマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  23. 分散相としての水を改質処理して改質処理水となす改質処理部と、この改質処理水を分散相とし燃料油を連続相として混合処理する混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
  24. 連続相としての燃料油と分散相としての水とを微細化混合処理して混合液となす前段の一次混合処理部と、この混合液を超微細化混合処理する後段の二次混合処理部とを具備して、エマルジョン燃料を製造することを特徴とするエマルジョン燃料製造装置。
JP2009538215A 2007-10-22 2008-10-21 エマルジョン燃料及びその製造法並びにその製造装置 Expired - Fee Related JP4533969B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2007274367 2007-10-22
JP2007274367 2007-10-22
JP2008096250 2008-04-02
JP2008096250 2008-04-02
JP2008152140 2008-06-10
JP2008152140 2008-06-10
PCT/JP2008/069045 WO2009054377A1 (ja) 2007-10-22 2008-10-21 エマルジョン燃料及びその製造法並びにその製造装置

Publications (2)

Publication Number Publication Date
JP4533969B2 JP4533969B2 (ja) 2010-09-01
JPWO2009054377A1 true JPWO2009054377A1 (ja) 2011-03-03

Family

ID=40579482

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009538216A Expired - Fee Related JP4589449B2 (ja) 2007-10-22 2008-10-21 改質燃料油及びその製造法並びにその製造装置
JP2009538215A Expired - Fee Related JP4533969B2 (ja) 2007-10-22 2008-10-21 エマルジョン燃料及びその製造法並びにその製造装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009538216A Expired - Fee Related JP4589449B2 (ja) 2007-10-22 2008-10-21 改質燃料油及びその製造法並びにその製造装置

Country Status (4)

Country Link
US (2) US20100236134A1 (ja)
JP (2) JP4589449B2 (ja)
CN (2) CN101932880B (ja)
WO (2) WO2009054378A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265370A1 (en) * 2005-11-14 2011-11-03 German Avila Three phase emulsified fuel and method of preparation and use
US8740450B2 (en) * 2008-01-10 2014-06-03 Mg Grow Up Corp. Static fluid mixer capable of ultrafinely mixing fluids
KR101227123B1 (ko) * 2010-09-03 2013-01-29 이호국 이멀션 연료 제조장치
CN102166491B (zh) * 2011-03-04 2013-06-12 江苏大学 一种连续自动化乳化系统及乳化方法
US9719681B2 (en) 2011-06-06 2017-08-01 General Electric Company System and method for supplying fuel
US8973366B2 (en) * 2011-10-24 2015-03-10 General Electric Company Integrated fuel and water mixing assembly for use in conjunction with a combustor
US20150064632A1 (en) * 2012-03-29 2015-03-05 Pureteq A/S Fluid fuel burning device
US9126176B2 (en) * 2012-05-11 2015-09-08 Caisson Technology Group LLC Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
JP2014124541A (ja) * 2012-12-25 2014-07-07 Mg Grow Up:Kk 静止型流体混合装置
CN103082391B (zh) * 2013-01-30 2015-04-01 湖北中烟工业有限责任公司 一种用于卷烟的超声乳化加料装置及加料方法
KR102225584B1 (ko) * 2013-03-15 2021-03-09 사우디 아라비안 오일 컴퍼니 중질유 잔사를 처리하기 위한 시스템 및 공정
CN105307760B (zh) * 2013-04-17 2017-05-10 株式会社爱蔻普拉纳 碳基燃料的制造装置以及碳基燃料的制造方法
KR101864517B1 (ko) * 2013-08-29 2018-06-04 내셔널 리서치 앤드 디벨롭먼트 에이전시, 재팬 피셔리즈 리서치 앤드 에듀케이션 에이전시 물 혼합 연료 생성 장치
RU2566306C1 (ru) * 2014-07-31 2015-10-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ переработки жидких нефтесодержащих отходов с получением водоэмульсионного топлива
JP6585644B2 (ja) * 2017-02-10 2019-10-02 テラテック株式会社 エマルジョン燃料の製造装置、その製造方法及びその供給方法
CN110681309A (zh) * 2019-09-30 2020-01-14 浙江工业大学 一种气体驱动乳化制备乳液的方法
KR102276604B1 (ko) * 2020-01-28 2021-07-14 (주)로우카본 항만용 연료유의 탈황제 혼합 시스템
KR102276599B1 (ko) * 2020-01-28 2021-07-14 (주)로우카본 황산화물 저감을 위한 연료유 및 탈황제의 에멀전화 방법
KR102406095B1 (ko) * 2020-04-21 2022-06-13 주식회사 성광이엔에프 미세기포를 이용한 에멀젼 제조 시스템
CN112696695B (zh) * 2020-12-22 2023-12-12 昆明理工大学 一种基于微乳液体系的废弃卤代烃有机溶剂燃烧处理方法及装置
DE102021128006A1 (de) * 2021-10-27 2023-04-27 Eric Keogh Brennstoffaufbereitungseinrichtung und System mit einer Brennstoffaufbereitungseinrichtung und einer Verbrennungseinheit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968768U (ja) * 1972-09-26 1974-06-14
JPS57172245U (ja) * 1981-04-24 1982-10-29
JPS5913828U (ja) * 1982-07-09 1984-01-27 株式会社アイ・ビ−・シ− 液体燃料連続燃焼装置における撹拌装置
WO2004020080A1 (ja) * 2002-08-28 2004-03-11 Naito, Syouko 物質の微粒化装置及びその使用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323936Y2 (ja) * 1972-06-05 1978-06-20
US4401606A (en) * 1980-09-11 1983-08-30 Takeshi Arakawa Apparatus and method for reforming high-molecular weight oils
JPS59215511A (ja) * 1983-05-23 1984-12-05 Nippon Plant Service Center:Kk 液体燃料の燃焼方法
JPS628535U (ja) * 1985-06-25 1987-01-19
JPH0656258B2 (ja) * 1987-12-29 1994-07-27 義明 柴田 気水混合燃料油の製造方法とその製造装置
JPH0323698U (ja) * 1989-07-18 1991-03-12
AU639562B2 (en) * 1990-06-07 1993-07-29 Dyno Nobel, Inc Emulsion that is compatible with reactive sulfide/pyrite ores
WO1991019944A1 (en) * 1990-06-14 1991-12-26 Kiichi Hirata Device for making emulsion and combustion system thereof
BR9201543A (pt) * 1992-04-16 1993-10-19 Lopes Homero & Ass Ltda Processo de queima de emulsao hidro-oleosa
JP3023698U (ja) * 1995-10-12 1996-04-23 英明 牧田 ボイラの有害排ガス低減装置
CA2207339A1 (en) * 1996-06-12 1997-12-12 Goro Ishida Emulsion fuel production method and apparatus, emulsion fuel combustion apparatus, and emulsion fuel production supply apparatus
JP3732280B2 (ja) * 1996-08-07 2006-01-05 阪神内燃機工業株式会社 燃料油処理装置
JP3776188B2 (ja) * 1996-12-12 2006-05-17 誠 南舘 濃縮エマルジョン燃料材及びエマルジョン燃料
FR2786780B1 (fr) * 1998-12-08 2001-03-02 Elf Antar France Procede de preparation d'un combustible emulsionne et son dispositif de mise en oeuvre
JP4208349B2 (ja) * 1999-06-29 2009-01-14 ナブテスコ株式会社 エマルジョン燃料給油装置
CN1379208A (zh) * 2001-04-12 2002-11-13 任晓白 流体燃料促燃方法及装置
KR20030017889A (ko) * 2001-08-25 2003-03-04 이엔이테크(주) 에멀젼 연료유의 제조방법
JP2003105343A (ja) * 2001-09-27 2003-04-09 Toshiba Eng Co Ltd 高分子化合物の改質方法および装置
JP3724438B2 (ja) * 2002-03-08 2005-12-07 株式会社日立製作所 超臨界水による重質油の処理方法と処理装置及び重質油処理装置を備えた発電システム
US20050150155A1 (en) * 2004-01-09 2005-07-14 Clean Fuels Technology, Inc., A Nevada Corporation. Mixing apparatus and method for manufacturing an emulsified fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968768U (ja) * 1972-09-26 1974-06-14
JPS57172245U (ja) * 1981-04-24 1982-10-29
JPS5913828U (ja) * 1982-07-09 1984-01-27 株式会社アイ・ビ−・シ− 液体燃料連続燃焼装置における撹拌装置
WO2004020080A1 (ja) * 2002-08-28 2004-03-11 Naito, Syouko 物質の微粒化装置及びその使用方法

Also Published As

Publication number Publication date
CN101828075B (zh) 2013-01-02
JP4589449B2 (ja) 2010-12-01
CN101932880B (zh) 2013-01-02
US20100252481A1 (en) 2010-10-07
JP4533969B2 (ja) 2010-09-01
US20100236134A1 (en) 2010-09-23
CN101932880A (zh) 2010-12-29
WO2009054377A1 (ja) 2009-04-30
CN101828075A (zh) 2010-09-08
WO2009054378A1 (ja) 2009-04-30
JPWO2009054378A1 (ja) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4533969B2 (ja) エマルジョン燃料及びその製造法並びにその製造装置
JP4589451B2 (ja) 静止型流体混合装置
US20120279118A1 (en) Fuel emulsification system
KR101809526B1 (ko) 에멀션 연료 제조장치
JP5944491B2 (ja) 汚水槽の中へガスを注入するための機器
JP4733711B2 (ja) 混合燃料供給装置および混合燃料の供給方法
JP5431573B2 (ja) ミキサー装置および気液供給装置
JP2020037104A (ja) 微粒子化装置
JP5143942B2 (ja) 微細化混合装置
JP2020186360A (ja) 植物油を用いたバイオエマルジョン燃料製造装置及び製造方法
KR101071505B1 (ko) 마이크로 버블 발생장치
CN102300630B (zh) 具有气体注入装置和/或导流板的降流式混合器
JP2006016495A (ja) 乳化燃料の供給方法及び装置
JP2012172606A (ja) 混合燃料生成方法,混合燃料生成装置,及び燃料供給装置
JP2006008852A (ja) エマルション燃料の製造方法
JP2015020146A (ja) 物質処理装置
JP4901923B2 (ja) 微細化混合装置
JP6585644B2 (ja) エマルジョン燃料の製造装置、その製造方法及びその供給方法
JP3100373B1 (ja) 合成燃料油生成装置
JPS6349237A (ja) エマルジヨン装置
WO2010029856A1 (ja) 燃料供給装置用混合器
JP2013150968A (ja) 静止型流体混合装置
WO2016068136A1 (ja) 水混合燃料及び水混合燃料生成装置
CN212017437U (zh) 一种液体燃料乳化装置
JP2013111556A (ja) 静止型流体混合装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4533969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees