JPWO2009050930A1 - 新規構造の蛍光放電灯管及びlcd表示装置 - Google Patents

新規構造の蛍光放電灯管及びlcd表示装置 Download PDF

Info

Publication number
JPWO2009050930A1
JPWO2009050930A1 JP2009537975A JP2009537975A JPWO2009050930A1 JP WO2009050930 A1 JPWO2009050930 A1 JP WO2009050930A1 JP 2009537975 A JP2009537975 A JP 2009537975A JP 2009537975 A JP2009537975 A JP 2009537975A JP WO2009050930 A1 JPWO2009050930 A1 JP WO2009050930A1
Authority
JP
Japan
Prior art keywords
discharge lamp
phosphor
fluorescent
electrons
lamp tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009537975A
Other languages
English (en)
Other versions
JP4923110B2 (ja
Inventor
小澤 隆二
隆二 小澤
加藤 正利
正利 加藤
将弘 原田
将弘 原田
稔美 三吉
稔美 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tianyang Putai Investment And Consulting CoLtd
Original Assignee
Beijing Tianyang Putai Investment And Consulting CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/070431 external-priority patent/WO2009050818A1/ja
Application filed by Beijing Tianyang Putai Investment And Consulting CoLtd filed Critical Beijing Tianyang Putai Investment And Consulting CoLtd
Priority to JP2009537975A priority Critical patent/JP4923110B2/ja
Publication of JPWO2009050930A1 publication Critical patent/JPWO2009050930A1/ja
Application granted granted Critical
Publication of JP4923110B2 publication Critical patent/JP4923110B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

この発明の蛍光放電灯管は、内部に放電物質が封入されたガラス管(9)と、当該ガラス管の両端に封止された一対の金属電極(2、3)と、前記ガラス管の内面に塗布された蛍光膜(10)とを備える。前記金属電極は、絶縁体粒子(4)で被覆されている。前記蛍光膜は、電子線の照射により発光する蛍光体の粒子と、紫外線の照射により発光する蛍光体の粒子との混合物で形成される。この蛍光放電灯管は、放電空間に金属電極が露出していないから、寿命が長い。また、高周波の印加により10ミリ秒以内に点灯する。

Description

本発明は、電子の非弾性衝突によりアルゴン (Ar) と水銀 (Hg) 蒸気の混合ガスを発光させ、その内のHgが発光する強い254 nm不可視紫外線を蛍光放電灯管内壁面に塗布した蛍光膜により可視光に変換する蛍光放電灯管に関係し、更に詳細には、蛍光放電灯管の基本構造を変えることにより、放電灯管の点灯に必要な電力が、従来の蛍光放電灯管に比し低消費電力の点灯であるにも関わらず、従来の蛍光放電灯管の輝度の倍以上の高輝度で発光する新規蛍光放電灯管及びそれを利用したLCD表示装置に関係する。
[従来放電灯と本発明の概説]
従来の蛍光放電灯管の放電は、放電に必要な電子を冷陰極電極 (CCFL)か、熱陰極電極 (HCFL) から取り出していた。これ等の電極に共通する事項は、電極から取り出した電子が高エネルギーを持ち、ガス空間に強引に突入させる方式であるから、電子がガス放電に必要なエネルギー値に減少するまでの間に複雑な現象が介入し、大きな陰極電圧降下を引き起こしていたことである。この陰極電圧降下は発光に全く関与しないので完全なエネルギー損失となる。前記ガス放電に必要なエネルギー値は管全体の点灯に要するエネルギーの約40%である。本発明では、ガス放電に必要な電子を金属電極から取り出すのでなく、ガス放電管の両端に電子雲とイオン雲をそれぞれ形成し、ガス放電は電子雲から取り出された電子が放電管中を移動する過程で起こり、イオン雲に至った電子がイオンと再結合してガスに戻る。このガス帰還により、放電管内で電子雲とイオン雲を駆動源とした回路は閉じる。電子雲から取り出された電子のエネルギーはゼロに近く、前記陰極電圧降下はなくなる。その結果、同じ管径の放電灯と比較した時、本発明になる蛍光放電灯管は40%以下の電力で点灯する。
電極構造を変えたことにより、本発明では、蛍光放電灯の管端で陰極電圧降下による弱い蛍光膜の発光は消える。その結果、本発明になる蛍光放電灯管は、放電灯の管端から全面に亘って均一強度で発光する。従来の蛍光放電灯管では陰極電圧降下の範囲で発光により無駄な熱を発生していたが、本発明になる蛍光放電灯管では熱発生が無くなり、管端周辺の温度上昇はない。また、ガスに露出した金属電極が無くなるので、本発明になる蛍光放電灯管の寿命は非常に長くなる。
従来の蛍光放電灯管のガス放電には、長い間未解決な一大問題があった。即ち、ガス放電の点灯に関与する機構が不明であったため、種々の細工が経験則だけに頼り蛍光放電灯管の点灯に適用されてきたに過ぎない。本発明者は、ガス放電の点灯に関与する機構を初めて解明した。ガス放電の点灯に関与する重要因子は、蛍光膜上を移動する表面電導電子の制御である。ガス放電の点灯の問題は、蛍光放電灯管内に塗布する蛍光体の選択と、選択した蛍光体粒子の配列で解決する。その結果、本発明になる蛍光放電灯管は1ミリ秒前後で瞬時に点灯する特徴を有する。
蛍光放電灯管には、入力電力を増加させても蛍光膜の輝度が飽和する現象があり、この飽和現象の問題は未解決のまま50年余放置されていた。この飽和現象が蛍光放電灯管の輝度を制限し、必要な部屋の照度を得るのに多数の蛍光放電灯を配列する必要があった。本発明はこの問題も解決する。蛍光膜の最上層に配列する蛍光体粒子の持つ負電荷のクーロン反発力により、陽光柱の電子は蛍光膜に接近できず、陽光柱は蛍光膜の負電荷(SBE)の鞘に収まる。蛍光膜からSBE鞘を取り去れば、陽光柱は蛍光膜まで広がり、蛍光膜からの光出力は入力電力に比例するようになる。輝度の増加により、部屋の照明に使用する蛍光放電灯数を減少でき、省電効果は大きく、二酸化炭素ガスの節減で大いに環境保護に貢献する。
[発明の背景]
人類の生活は暗闇を照らす光源の開発により急激に進歩してきた。光源の歴史は焚き火の燃え差しから始まった松明、植物油、石油、蝋燭、石炭ガス等の燃焼と進み照度の向上を果たしてきた。光源の照度変革の歴史を大きく変えたのは、近代科学の基礎となる電子の発見であった。電子の発見後は、電子の動きを利用したタングステン電球と蛍光放電灯が開発され世界中で広く実用に供されている。最近では同じく電子の挙動を利用する発光ダイオード(LED)、無機電界発光(EL)、有機電界発光(OLED)が提案され、その実用評価が進められている。電子の挙動を利用した各種光源は科学的に以下のように評価できる。
タングステン電球は、電子の動きの抵抗から発生するジュール熱によりタングステン金属を高温度(3,000 oC 付近まで)に加熱して得られる光を利用する。入力電力に対する可視光へのエネルギー変換効率は0.8%と低いが、変換効率を金属の軟化点である高温度まで保持できるので入力電力の増減により広範囲の光度が得られる。この理由で現在でも屋内外の照明光源として広範囲で利用されている。最も大きな使用者は一般家庭である。タングステン電球は最も安価に製造できる光源で、世界の多くの家庭で手軽な照明光源として使用されている。短所は短寿命 (500時間)である。加熱した金属は蒸発するので、点灯時間が経過するとタングステンフィラメント線が細くなり、電気抵抗の増加により断線する。
蛍光放電灯は、Hgガスの不可視紫外線発光を、ガラス管内壁面に塗布した蛍光膜により可視光に変換した光源で、エネルギー変換効率は約20%である。問題はタングステン電球とは異なり、蛍光膜の発光強度が入力に対し飽和し、1蛍光放電灯当たりから取り出す光量に限界がある。飽和輝度の水準が低いので、高輝度の照明を必要とする部屋では、多数の蛍光放電灯を配列する。タングステン電球よりも高価であるが、エネルギー変換効率が高く、熱の発生が少ないので、工業化社会の大きなビル内の事務室の主照明に使われる。工業化が進んでいる国では、省電照明光源として一般家庭の部屋に普及している。蛍光放電灯の寿命は主に電子を放射する電極の陽イオンによるスッパターに原因する。その他に蛍光膜表面が蛍光放電管内の有機残留ガスを吸着し、紫外線が蛍光膜に届く前に吸着ガス層が紫外線を吸収する。有機残留ガスは蛍光放電灯管の製造工程の脱ガス工程の程度と、HgアマルガムとBaゲッターの活性化初期に大量の有機ガスが発生すので、活性化時の排気条件で大きく変わり、無視出来る水準まで減少できる。現在の蛍光放電灯の寿命はタングステン電球よりも長く約2,000時間前後である。
LEDは近代電子産業技術の1応用例として開発された。LEDは無機元素の薄膜を多層に重ね合わせた素子で作られる。LEDを発光させるにはLEDの薄膜層に電子を注入し、発光中心(不純物)で注入電子と正孔が再結合したときに発光する。LEDの問題は注入電子の約半数が発光に寄与するが、残り半数の電子は発光中心で発光できず、熱に変換する。発光強度は注入する電子数に比例するが、LEDの温度も比例して高温度になる。LEDを70 oC前後に加熱しても発光強度の経時変化は無視できる。LEDを100 oC以上に加熱すると薄膜中の発光中心(不純物)が熱により薄膜内から薄膜外に拡散するので発光中心数が時間の経過と共に減少する。発光強度は温度と時間の経過により急激に減少する。実用LED輝度の操作条件では、LEDは200 oC前後になる。眼が輝度を視認する時に現れる残像効果を利用し、パルス発光で温度上昇を防ぐが、本質的な解決策でない。発熱の問題を基本から変えることはできない。明るいLEDは寿命に問題が残る。
ELも無機材料素子の薄膜の積層で作られ、動作原理はLEDと同じで注入電子と正孔が発光中心で再結合して発光する。各薄膜層の厚みはLEDよりも遥かに厚いので、ELを発光させるには高電圧の印加が必要である。発光強度は入力電圧に比例して増減する。ELの主課題は、高輝度を得ようとすると薄膜層が放電破壊する。放電破壊がELの最大輝度を規制する。寿命の問題は発光中心の拡散による輝度劣化である。ELの研究開発は50年余も続けられ、その間、実用化製品が何回も新聞発表されたが、上記した問題は本質的に改善されず、製品は市場に出ること無く消えた。この繰り返しがアジアの国々の大企業から発生しているが、欧米の大企業からは無い。OLEDはELと同種の問題を持ち、明るいOLEDの連続点灯では寿命が問題となる。OLEDを低照度で使用するとき問題が低減されるので、使用範囲が限定される。
上記したように開発提案されている照明光源のどれもが実用化には主要な問題が解決されていない。現実に残る照明光源は、蛍光放電灯である。蛍光放電灯の開発研究は50年余と長く、更に蛍光放電灯の基本となる放電の科学的研究は100年以上と長い。この事実から蛍光放電灯の技術は開発済みと一般投資家と企業経営者は考える。本発明者は、現在までに確立した放電理論を最も基礎から再検討し、検証を試みた。その結果、蛍光放電灯の技術は開発済みとするコメントは誤りであり、蛍光放電灯の基本構造から改良が出来ることが分かった。
放電現象を述べる前に、私たちが必要とする光源照度について考える。闇を明るく照明しても、夜行性でない人類の主活動は500万年の間、昼間の活動であり、現在の私達の眼も昼間の明るさに順応している。だが、眼は晴天の昼間の風景には順応せず、昼間の薄曇りの明るさに順応している。光は波動を持った光子であり、光子のエネルギーは波長により異なる。平均値は、2.3 eVのエネルギーを持った緑色の光である。昼間の風景は薄曇りの日中の照度で決められ、その照度は単位面積当たり単位時間に1020個前後の光子の照射に相当する。1eVのエネルギーは 3.7 x 10-19 Wであるので、80 W/cm2 秒のエネルギーとなる。照明光源は上記した光子数を放射する光源が最も眼に順応する。開発された光源の必要入力は、エネルギー変換効率を80 W/cm2 秒に積算すれば計算できる。そのような光源として,種々の光源が開発されて来た。それらの中で蛍光放電灯は最も適合した光源として選択され、過去60年余の間大衆に受け入れられてきた。しかし蛍光放電灯管一本当たりの照度は要求照度より低く、実用では複数の蛍光放電管を配列し、最適照度の照明を作っている。蛍光放電灯管一本当たりの照度を向上できれば、照明に使用する蛍光放電灯管数が減少し、それに従って消費電力も減少する。また消費電力の節減を目的に、不要時の蛍光放電灯管を頻繁に点滅するようになったので、電極の損傷が速い。これ等の問題解決に対し多くの努力が払われて来たが、満足度からはかなり遠く、蛍光放電灯管の画期的な改良が待たれている。
現在使用されている蛍光放電灯管の構造は非常に簡単である。真空封止したガラス管内には適量のArガスとHgが含まれ、金属電極がガラス管の両端に内蔵され、ガラス管の内壁には紫外線を可視光に変換する蛍光膜が塗布されている。金属電極は金属棒の電導体を介して外部電源と接続する。放電は金属電極にサイン波の交流高電位を印加し、金属電極から電子を真空中に取り出し、取り出した電子を加速し、放電管の両端にある電極間の空間に介在するArとHgガスに衝突させ、放電を引き起こす。放電では励起Hgガスが放射する不可視の254 nm紫外線(UV)の発生が大切な働きを持つ。放射した不可視UV 光は放電灯管の内壁面に塗布した蛍光膜上に照射する。蛍光膜が不可視UV 光を可視光に変換し、蛍光放電灯管が作られる。構造が簡単なことから各部品の最適化が蛍光放電灯管の技術者により進められた。蛍光放電灯管の市販から60年余が経過し、年間の生産量も膨大であるので、蛍光放電灯管に関与する技術は開発済みと一般に考えるのも無理がない。だが前記最適化は確立された構造を前提とする範囲内の最適化であり、蛍光放電灯管の基本構造の検討はされていない。
前記蛍光放電灯管の駆動は、固体素子や液体中の電導からの類推により蛍光放電灯管内への電子の注入が本質的に必要と考えられた。真空中に電子を放射する材料は近代科学が始まる1800年代から見出され、仕事関数が小さい金属が探索された。1884年にはT. A. Edison により金属を加熱すると熱電子が真空中に放射されることが発見された。熱電子放射を改善する大発見は、800 oC に加熱したタングステンフィラメントを超酸化物 (Ca-, Sr-, Ba- or Cs-酸化物)で覆うと熱電子が容易に放射される発見である。特にBa-酸化物が最も良く熱電子を放射する。蛍光放電灯管の陰極にBa-酸化物で覆われたタングステンフィラメントが採用された。フィラメントの大きさから管径が25 mm以上の蛍光放電灯管が開発され、熱陰極放電管(HCFL)として普及した。1928年には、金属と真空の間にFlower-Nordheimトンネル効果が発見され、金属電極の形状として金属板、金属棒、釣鐘型、表面の凹凸等で検討された。その結果、釣鐘型の金属電極が採用された。金属電極は小さく加工できるので、金属電極の管径が15 mm以下にまで小さくなり、特に液晶ディスプレイ(LCD)のバックライト用として内径が2mm以下の冷陰極蛍光放電灯管(CCFL)が普及している。
上記した金属陰極を使用した蛍光放電灯管の電極では、HCFLとCCFLに関係なく、金属陰極素材が蒸発する問題が存在する。陰極電極の蒸発は次のように説明される。ガス中から質量の大きな陽イオンが陰極に衝突する。陽イオンの衝突により、金属電極の極小部分では金属が蒸発する高温度にまで瞬時に加熱される。蒸発した金属元素は温度が低い電極周辺のガラス管内壁に塗布した蛍光膜上に堆積する。この現象をスパッタリングと呼ぶ。金属元素のスパッタリングで出来た薄膜内には、放電管内にあるArガスとHg蒸気が吸着され、蛍光放電灯管内のガス量の減少が点灯時間の経過により進み、蛍光放電灯管の寿命を短くする。スパッタリング現象により蛍光放電灯管の寿命は平均2,000時間である。金属陰極電極のスパッタリング現象を低減する方法として、電極金属材料と封入ガス圧が経験的に検討されて来たが、それでは問題を基本から解決するに至らない。
HCFLとCCFLは共通した多くの未解決問題を抱えている。大きな問題の1つは、金属電極を使用した蛍光放電灯管の陰極と陽極の直前の狭い距離で印加電圧が大きく変化する現象である。印加電圧が急激に変化する範囲では、発光と無発光の縞が8個観測される。発光縞は最初の観測者の名前が付けられている。それらは、Aston dark, Cathode glow, Crooke’s dark, Negative Glow, Faraday dark, Positive Column, Anode Glow, Anode Darkである。これ等の縞の説明は一応与えられているが、それは観測現象の説明の域を出ず、発光縞が発生する科学的根拠は解明されていない。これ等の不規則発光が発生するのは陰極側で顕著である。この陰極周辺の印加電圧の急激な変化を総称して陰極電圧降下と呼ぶ。陰極電圧降下で失われるエネルギーは、蛍光放電灯管の全点灯エネルギーの40 %前後になり、陰極電圧降下の解消が省電蛍光放電灯管の開発の点で重要課題となっているが、原因が未解明であるので解決の目途はたっていない。上記したスパッタリング現象と陰極電圧降下の解消が蛍光放電灯管の改良の重要研究課題であるが、出版専門書を読んでもこれらの現象が発生する科学根拠は明確でなく、観測した現象の説明で終わる。発生原因が理解できないので未解決課題である。蛍光放電灯管の技術は、基本の所で開発が出来ていない。本発明者はガス放電に現れる陰極電圧降下とスパッタリングの課題を科学的に追及した。
[本発明者による解明と思想]
図8に、従来放電灯管においてSBEが金属陰極表面に形成される理由が図解されている。今までのガス放電に関する出版物書籍で欠落していたのは、金属陰極から放射された電子eと、電子を放射した後に金属中に残る正孔(電子の抜け穴)hの働きがガス放電に果たす作用である。現在の固体物理が教える事実は、金属陰極30から電子eを真空中に取り出すと、金属には正孔hが必ず残る。金属は電気導体であるので、正孔は電源から供給される電子で直ちに満たされると仮定している。此処に従来の思考の誤りがあった。電源から金属電極30に供給される電子は、金属の電気抵抗により妨げられ(オームの法則)、瞬時に金属電極の正孔に到達しない。電源からの電子供給と金属陰極30から真空中への電子放射の間に時間差がある。統計的に処理すると電子eを放出する陰極金属表面には、正孔存在量が陰極金属材料の電気抵抗値により変わるが、無視できない量の正孔hが定常的に存在する。その結果、金属表面層にある正孔hと真空中に放射された電子eが静電気力で強く引き合い、真空中の電子が再結合する。
金属表面層にある正孔hの正電界は真空中に及ぶ。放射された真空中の電子eは金属表面層の正孔hの正電界に引き寄せられるが、金属中に再突入するエネルギーを持たず、金属表面から僅かに離れた位置(約5μm)の真空中で金属電極中の正孔hと結合する。これが表面結合電子 (SBE, surface-bound-electrons)である。蛍光放電灯管中の金属陰極表面はSBEで覆わる。SBEを真空側から見ると、SBEは陰極表面に存在する空間電子雲として、真空管研究の初期 (1900s) に検出されていた。
最近出版されたCathodoluminescence and Photoluminescence; Theories and Practical Applications, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, pp30-37と69-76, 2007(非特許文献 1)によれば、陰極表面に形成されるSBEの負電位は、陰極線発光の蛍光膜で蛍光膜に照射される電子線エネルギーと発光強度の関係の測定から推測できる。SBEの大きさは 10 eV/cmである。陰極表面から電子を取り出すにはSBEの負電位よりも大きな正電位を電子に印加しなければ取り出せない。高エネルギーで取り出された電子は、高速に加速されている。教科書に書かれている放電現象の研究は,高エネルギーを持った電子をガス空間に突入させた時の現象であり、観測結果の全てが必要以上の高速電子の挙動で隠蔽されている。
ガス空間には、中性原子のガスが相互作用を持たない距離(原子の波動関数の重なりが無視できる距離)で充填されている。個々のガス原子は、原子核を取り巻く多数の電子殻を充填した電子の総負電荷と核の陽電荷が均衡し、個々のガス原子は電気的に中性である。しかし、ガス空間は原子の最外殻電子の負電界 ( 5 x 105 eV ) が広がっており、ガス空間は強い負電界で充満している。ガス空間の負電界(5 x 105eV)以上の高エネルギー(106eV)を持ってガス空間に突入した電子は、電子殻を満たした電子で遮蔽されたガス原子の中に突入できず、ガス原子と多数回の非弾性衝突を繰り返し、最外殻にある電子を真空中に弾き出す。ガス原子のイオン化には熱を伴うので、多数のガス原子を熱の発散を伴いながらイオン化する。蛍光放電灯の陰極周辺の温度が高くなる理由である。イオン化して出来た電子とイオンの電荷量(1.6 x 10-19 クーロン)は同じであるが、質量に大きな差がある。電子の質量は 9.1 x 10-29グラム、イオンの質量は原子の種類により多少変わるが、1.7 x 10-24グラム前後で電子の約1,000倍である。電子はガスに印加された電場で容易に移動するが、イオンの移動は遅く少ない。電子とイオンの移動距離の差が、ここでは詳細な理由に触れないが、前記した陰極前面の発光縞を作る。
ここで指摘しておかなければならないのは、ガス放電の研究初期にガス放電は不可視のガスからの光の放出(discharge)と定義されたことである。この理由により、ガス放電の研究は放電管からの光の強弱を測定し、その結果で放電が論じられて来た。光の測定だけでは放電の科学的解明は困難である。上記してきたようにガスの放電は、ガス媒体中に入った電子とガス原子の相乗作用で決まる電子の挙動で解析されなければならない。この新しい視点で蛍光放電灯管の特性を解析すると、今まで解決不能とされてきた問題が解決できることが分かった。現在の蛍光放電灯管の製造技術は未完成である。
蛍光放電灯管の特性はガス中の電子の挙動で決まると述べた。電子の挙動を決めるもう1つの大切な因子が、蛍光放電灯管の従来の特性検討で脱落していた。蛍光放電管中の内壁面に塗布される蛍光膜中の個々の蛍光体粒子の物性である。従来蛍光膜はガスが発光した不可視のUV光を可視光に変化する働きだけが考慮されてきた。本発明者の研究によれば、個々の蛍光体粒子の物性は、発光現象だけに関係するものではない。個々の蛍光体粒子は、結晶化した粒子であり、それも非対称な結晶構造を持った結晶であり、放電管内に置かれると、結晶としての物性が現れ、ガス放電中の電子の挙動に顕著な影響を与える。実用されている蛍光体粒子が非対称な結晶構造を持つ理由としては、非対称な結晶格子点を占有した発光中心は、対称場に置かれた発光中心で許容されない電子遷移が許容になり、許容になった電子遷移確率が異常に高いことである。これが市販されている蛍光体の発光特性が異常に高い理由である。だが、固体物理を研究している研究者の多くは、蛍光体粒子は単結晶でなく、結晶軸を多数含んだ多結晶体であり、結晶欠陥が多数含まれた結晶粒子であると考えている。即ち、結晶欠陥が多数含まれた結晶には固体物理の知識は適用されないと判断する。この判断は誤りである。Chemical Review, Volume 103, No. 10, pp 3835-3855, 2003に発表された論文(非特許文献 2)によれば、発光中心の電子遷移を決める結晶場の大きさは、非常に狭い範囲(半径500 Å)の結晶場の完成度であり、粒子全体の結晶性とは無関係である。市販されている蛍光体粒子形状が不規則であっても、蛍光体粒子が同じ効率で発光する理由である。蛍光体粒子は多結晶体であり、多結晶体で粒子径の最適化が塗布条件から決められている。
外部紫外線光源を使用し、実在する蛍光体を実験室で調べると、市販蛍光体で最も効率よく発光する蛍光体は、市販電子線発光(CL)蛍光体である。しかし、蛍光放電灯管の管壁に市販CL蛍光体を塗布しても、明るい蛍光放電灯管は得られない。従って、明るく発光する蛍光放電灯管の蛍光膜用蛍光体は、経験的に見つけ出された蛍光体である。経験則で得た結果の理論的解析が欠如している。それ故、選択した多くの蛍光体はUV光で発光中心を直接励起する蛍光体(PL蛍光体)である。何故PL蛍光体を使用するかの理論回答は、例えばオーム社発行の蛍光体ハンドブックを調べても見つからない。
市販PL蛍光体を蛍光放電灯管の内壁に塗布した蛍光放電灯には、次の問題が未解決である。金属陰極から取り出した高エネルギーの電子を使用しても、蛍光放電灯管内のガスは容易に放電をしない。ガス放電を容易にする工夫が蛍光放電灯管の点灯器具に加えられてきたが、瞬時放電する蛍光放電灯は開発されていない。ガス中を一方向に進む電子の速度は2 x 105 cm/secと計算され、非常に速い。何故、陰極と陽極の一方向を高速で進む電子で蛍光放電灯が瞬時に放電しないのかの科学解析が完全に欠如し、理論回答が得られていない。経験則だけが先行する技術者と技能者の段階に留まっている。
未解決の問題は更にある。放電した蛍光放電灯管の入力を増加させた時、光出力は容易に飽和する。蛍光膜粒子層に入射するUV光は、蛍光体粒子の高い光屈折率(n ? 2)により、蛍光膜の最上位に配列した蛍光体粒子表面で先ず反射し、反射UV光が蛍光膜の下部に配列した蛍光体粒子にも到達する。蛍光膜で発光に関与する実効蛍光体粒子数は実験的に求められる。実効蛍光体粒子数に含まれる発光中心数を計算することができる。計算された発光中心数は、蛍光膜上に照射されるUV光の光子数の約10倍である。蛍光放電灯管内で蛍光膜の発光中心の励起数は飽和していない。輝度が飽和するのは、蛍光膜上に到達するUVの光強度である。それなのに蛍光放電灯管の技術者達は蛍光膜の輝度上昇を蛍光体の発光効率の向上(2から3 %)に期待する。この思考は誤りである。蛍光膜に照射されるUV光が飽和しない対策が必要であるが、UV光の飽和現象を定量的に論じた論文は見当たらない。
本発明者の研究によれば、放電管中の電子挙動は蛍光膜の最上層に配列した蛍光体粒子の電気特性に大いに影響を受ける。放電管中の電子挙動を制御するもう1つの重要因子は、適切な蛍光体の選択と、蛍光体粒子を適切に配列した蛍光膜である。これ等の解決には前出の参考文献 1に記されている蛍光体の物性知識が必要である。
上記したように、蛍光放電灯管は基本構造から改良できる。本発明になる蛍光放電灯管は、従来解決不能とされた蛍光放電灯管の全問題を科学的に解決するものである。その結果、蛍光放電灯管の輝度が著しく向上し、部屋の適切照明に必要な蛍光放電灯管数を減少できる。その上で蛍光放電灯管の点灯時間はその桁数を増加できる水準で長く出来るので、蛍光放電灯管の生産単価は他のどの照明光源よりも安価になる。蛍光放電灯管の構造を簡単化できるので製造工程は短縮する。これ等を総合すると、本発明になる蛍光放電灯は省電に大いに寄与でき、社会要求の高いCO2ガス放出を低減でき、環境保護に貢献する影響は大きい。非特許文献3〜非特許文献6については後述する。
Cathodoluminescence and Photoluminescence; Theories and Practical Applications, CRC Press, Taylor and Francis Group, Boca Raton, London, NewYork, pp30-37 and 69-76, 2007 Chemical Review, Volume 103, No. 10, pp 3835-3855, 2003 Cathodoluminescence, Kodansha, 1990, p104-120 Applied Physics Letters, 43, pp1073-4, 1983 Physical Review Letters, Vol. 27, 1971, P1345 Journal Physics D Applied Physics, 32, (1999), pp 513-517
以上詳述したように、従来の蛍光放電灯管には次のような課題が山積している。第1に、陰極周辺における急激な陰極電圧効果であり、このエネルギー損失は蛍光放電灯管の全点灯エネルギーの40%前後にも達する。第2に、前記陰極電圧降下により、電極近傍における発光と無発光の縞状模様が生じて暗くなり、全体的に照度が低下していた。第3に、放電ガスの陽イオンが陰極に衝突して金属陰極が蒸発し、蒸発膜が蛍光膜上に形成されて放電ガスを吸着し、放電寿命及び蛍光放電灯管の寿命を低減させる原因となっている。第4に、蛍光放電灯管一本当たりの照度は要求照度よりかなり低く、実用では多数の蛍光放電管を配列する必要が生じ、省エネルギー化が困難になり、コスト低減の限界となっている。第5に、電源をオンした後、放電が開始して点灯するまでにかなりの時間を要し、急速点灯の障害となっている。
従って、本発明の目的は、蛍光放電灯管の作動原理を根底から再検討して、陰極電圧降下を無くして省エネルギーに貢献でき、同時に電極近傍の明暗の縞状模様を無くして照度の向上を図ることである。また、本発明の更なる目的は、金属陰極の損耗が無く、蛍光放電灯管一本当たりの照度を格段に向上させ、急速点灯を可能とする蛍光放電灯管を提供し、またこの蛍光放電灯管を利用したバックライト装置を有するLCD表示装置(液晶表示装置)を提供することである。
本発明は上記課題を解決するためになされたものであり、本発明の第1の形態は、蛍光放電灯のガラス管内壁面に蛍光膜を塗布した蛍光放電灯管において、前記ガラス管内の放電ガスの点灯が、電子の流れで独立している内部回路と、電源に接続された外部回路により生起される蛍光放電灯管である。
本発明の第2の形態は、前記内部回路が、前記蛍光放電灯管内部の両端にそれぞれ個別に形成された電子源とイオン源から成り、前記蛍光放電灯管内のガス放電は、前記電子源から取り出された電子が前記イオン源に向かってガス空間を移動する過程で起こり、移動する前記電子がイオン源に到達したとき、前記電子がイオンと再結合して前記内部回路が閉じる蛍光放電灯管である。
本発明の第3の形態は、前記蛍光放電灯管内の一端に電気絶縁体粒子を層状に被覆した金属電極を配置して前記電子源形成用電極とし、前記蛍光放電灯管内の他端に電気絶縁体粒子を層状に被覆した金属電極を配置して前記イオン源形成用電極とした蛍光放電灯管である。
本発明の第4の形態は、前記電子源形成用電極の前記金属電極に正極性の電位を印加して、前記金属電極の電気絶縁体粒子を誘電分極し、電極周辺のガスのイオン化により発生した自由電子が誘電分極した前記電気絶縁体粒子の正電荷に引き寄せられ、前記自由電子が前記電気絶縁体粒子直前のガス空間で前記電気絶縁体粒子内の正電荷と結合してできた空間電子雲を前記電子源とし、前記イオン源形成用電極の前記金属電極に負極性の電位を印加して、前記金属電極の電気絶縁体粒子を誘電分極し、電極周辺のガスのイオン化により発生したイオンが誘電分極した前記電気絶縁体粒子の負電荷に引き寄せられ、前記イオンが前記電気絶縁体粒子の分極負電荷と結合してできたイオン集団を前記イオン源とする蛍光放電灯管である。
本発明の第5の形態は、前記電子源から電子を蛍光膜表面に取り出し、蛍光膜の表面伝導により電子を加速し、加速電子をガス放電の点火の引き金とし、前記加速電子の軌道を負電荷を持った蛍光体粒子によりガス空間に曲げ、蛍光放電灯管のガスを瞬時に点灯放電させることにより、陰極電圧降下の無いガス放電を生起させる蛍光放電灯管である。
本発明の第6の形態は、前記蛍光膜の表面に負電荷を持たない蛍光体粒子と負電荷を持った蛍光体粒子を交互に配置させて、前記蛍光膜表面の複数箇所で前記加速電子を前記負電荷を有した蛍光体粒子によりガス空間側に曲げる蛍光放電灯管である。
本発明の第7の形態は、前記蛍光放電灯管のガラス管内壁面に塗布される前記蛍光膜が、電子線発光蛍光体粉と光発光蛍光体粉の混合粉体からなる蛍光放電灯管である。
本発明の第8の形態は、前記光発光蛍光体粉が個別に三色に発光する三種類の希土類光発光蛍光体粉からなり、前記電子線発光蛍光体粉が低電圧電子線発光蛍光体粉からなる蛍光放電灯管である。
本発明の第9の形態は、前記希土類光発光蛍光体粉の内、緑色に発光する蛍光体粉がCL発光珪酸亜鉛蛍光体粉で置換される蛍光放電灯管である。
本発明の第10の形態は、前記希土類光発光蛍光体粉の内、緑色に発光する蛍光体粉がCL発光珪酸亜鉛蛍光体粉とPL発光珪酸亜鉛蛍光体粉の混合粉体で置換される蛍光放電灯管である。
本発明の第11の形態は、前記蛍光膜で、前記低電圧電子線発光蛍光体の粒子を、前記蛍光膜の表面に不連続に散布するように配置した蛍光放電灯管である。
本発明の第12の形態は、前記蛍光膜が、単独で白色に発光する光発光蛍光体粉と低電圧電子線発光蛍光体粉の混合粉体からなる蛍光放電灯管である。
本発明の第13の形態は、前記蛍光膜が、白色に光発光する前記光発光蛍光体がハロ燐酸カルシウム蛍光体からなる蛍光放電灯管である。
本発明の第14の形態は、前記蛍光膜に、赤色発光を補強する電子線発光酸化イットリウム蛍光体が追加的に添加された蛍光放電灯管である。
本発明の第15の形態は、第1形態〜第14形態のいずれかの蛍光放電灯管の単独又は複数個を平面に配列し、LCD表示装置のバックライトに使用するLCD表示装置である。
本発明の第16の形態は、前記蛍光放電灯管の複数個を垂直方向又は水平方向に配置し、それぞれの蛍光放電灯管を単独で、又は複数個の蛍光放電灯管を集団で、線順次に走査する方式で順次に点灯し、線順次の映像をLCD表示装置のスクリーン全体に映すLCD表示装置である。
本発明の第1の形態によれば、ガラス管内の放電ガスの点灯が、電子の流れで独立している内部回路と、電源に接続された外部回路により生起され、放電を生起させる電子の供給源は放電ガス自体のイオン化であり、外部回路からの放電用の電子供給がない蛍光放電灯管を提供できる。従って、放電過程を通して、放電灯管内部の放電ガスは外部回路と遮断され、放電ガス自体がイオン化と再結合を連続的に反復するため、放電ガスの消耗が無く、放電灯管の長寿命化を実現できる。しかも、外部電源からの電子供給が無いから陰極電圧降下が無く、外部電源の消費電力は小さくでき、商用電源は言うに及ばず、バッテリー電源であってもバッテリーの消耗が小さく、放電灯管及びその周辺回路の長寿命化を達成できる。換言すれば、商用電源が無いためにバッテリー電源を必要とする過疎部・山間部などでもバッテリー駆動による放電灯管の使用が可能になる画期的な放電灯管を提供できる。しかも、前記陰極電圧降下がないから、電極近傍の明暗の縞状模様が無くなり、電極近傍も全体的に明るく発光して照度の向上を図ることができる。
本発明の第2の形態によれば、前記内部回路が放電ガスのイオン化により生成された電子源とイオン源から成り、この内部回路は前記外部回路から電子的に完全に遮断され、前記電子源から前記イオン源への電子の移動過程で放電現象が生起する。この放電現象は、同じ移動電子が繰り返しガス原子と非弾性衝突し、発生した紫外線による蛍光膜の発光が持続し、前記電子がイオンと再結合して前記内部回路が閉じる。前記放電現象の繰り返しにより定常的に蛍光膜の発光が持続する蛍光放電灯管が提供される。前述したように、持続する電子のガス原子との非弾性衝突と再結合が放電ガス内だけで生起し、外部回路は全く遮断されているため、外部回路のエネルギー損耗が殆んど無い。しかも、外部回路による内部回路への電子供給が無いから、陰極電圧降下が無く、外部電源の駆動電流を極力低減でき、低電流駆動が可能な蛍光放電灯管が提供される。
本発明の第3の形態によれば、電気絶縁体粒子を層状に被覆した金属電極により前記電子源形成用電極及び前記イオン源形成用電極を構成するから、電気絶縁体粒子層により金属電極からの電子放出や金属蒸発が遮断され、前記内部回路と前記外部回路が完全に分離する。前記金属電極からの電子放出や金属蒸発が遮断されるから、金属電極の消耗が無く、電極消耗によるスパッタリング現象が消失し、蛍光放電灯管の長寿命化を達成できる。しかも、金属電極からの電子放出が無いが、外部回路を流れる外部電流は金属電極の上に塗布された絶縁体粒子の誘電分極の誘導電流だけであるので、蛍光放電灯管の低電流駆動が実現でき、その結果、省エネルギー効果を達成できる。
前記電気絶縁体粒子が層状に被覆されるべき金属電極としては任意形状の金属電極が利用でき、冷陰極蛍光放電灯管(CCFL)や熱陰極蛍光放電灯管(HCFL)に使用されていた金属電極も利用できる。具体的形状としては、カップ状金属電極、平板状金属電極、棒状金属電極、フィラメント状金属電極などがある。これらの金属電極に前記電気絶縁体粒子を層状に被覆して電位を印加するだけで、前記電気絶縁体粒子を誘電分極できる。従来、HCFLではフィラメント電極に電流を通電して加熱し、熱電子放出させていたが、前記フィラメント電極に通電しない状態で、フィラメント電極に電位を印加するだけで本発明の金属電極に転換できる。前記フィラメント電極の両端を結線して通電不能にして電位印加端子としてもよいし、前記フィラメント電極の一端を電位印加端子とし他端を浮かせた状態でも構わない。どちらの形態でも通電しない状態でフィラメント電極全体を同電位に電位印加することができる。また、前記フィラメント電極が断線して通電不能になった状態でも、フィラメント電極の両端を結線すれば、フィラメント電極全体を同電位に保持できる。また、断線したフィラメント電極の一端に電位印加して他端を浮かせておけば、前記一端に導通したフィラメント電極部分には電位印加することでき、前記他端に導通したフィラメント電極部分は電気的に浮いた状態に保持される。このように、断線したフィラメント電極に電位を印加すれば本発明の金属電極として再生できる。
前記金属電極が電気絶縁体粒子により被覆されておれば、本発明の電極作用を奏することができる。即ち、前記金属電極に電位を印加して、電気絶縁体粒子を誘電分極し、その結果、放電ガスの電離により生成された電子源と陽イオン源を電気絶縁体粒子近傍に形成することができる。電気絶縁体粒子としては、一般の電気絶縁物質でもよいし、蛍光放電灯管のガラス管内面に塗着される蛍光体物質でもよい。誘電分極する物質であれば、本発明の電気絶縁体粒子として使用することができる。
本発明の第4の形態によれば、外部電源により前記電子源形成用電極の前記金属電極に正電位を印加し、その正電位により電気絶縁体層を誘電分極させ、分極電荷の分極電界により、放電ガスのイオン化により生成された電子を吸引して、前記金属電極周辺に集合した空間電子雲が電子源として形成される。この電子源を構成する電子は全て放電ガスのイオン化による電子であり、外部回路からの電子供給は全く無いから、内部回路の電圧降下は全く無く、外部回路の消費電力は著しく低減できる。同様に、放電灯管内部の他端に位置する前記イオン源形成用電極の金属電極には負電位が印加され、その負電位により電気絶縁体層を誘電分極させ、分極電荷の分極電界により、放電ガスのイオン化により生成された陽イオンを吸引して、前記金属電極周辺に集合した陽イオン群がイオン源として形成される。このイオン源は電気絶縁体層により負金属電極とは完全に絶縁されている。前記電子源の電子はこのイオン源に向かってガス放電を生起しながら移動し、電子とイオンの再結合により中性ガスに帰還する。このミクロ過程の連続動作により、放電により発生する紫外線により蛍光体が可視光発光し、低電流駆動の省エネルギー型の放電灯管を実現することができる。内部回路への外部回路からの電子供給が無いから、陰極電圧降下が無く、電極損耗の無い放電灯管が実現でき、放電灯管のランニングコストの超低減化と超長寿命化を達成することができる。
前記絶縁体粒子層は少なくとも電極間に形成される放電空間に接する対向面(表面)に形成されれば、金属蒸発が阻止でき外部回路からの電子供給を遮断できる。この遮断性を増強させるために、金属電極の全面(対向面と裏面と側面)に形成してもよいが、対向面と側面、対向面と裏面に形成してもよい。ここで、裏面とは外部回路との接合面を意味する。
本発明の第5の形態によれば、前記電子源から取り出された電子を蛍光膜表面の表面伝導により加速してガス放電を点火し、前記加速電子の軌道を蛍光膜上の負電荷を持った蛍光体粒子によりガス空間に曲げ、蛍光放電灯管のガスを瞬時に点灯放電させる蛍光放電灯管が実現できる。これにより、陰極電圧降下が無く、発光強度(照度)の向上を実現し、低電流駆動により省エネルギー設計された蛍光放電灯管を提供することができる。一般に、負電荷を持った蛍光体粒子には、光発光蛍光体(PL蛍光体)が含まれる。光発光蛍光体の粒子内部に存在する不純物には電子がトラップされており、このトラップされた電子に起因して内部持続分極 (PIP)が形成され、内部持続分極の電子が蛍光膜表面に出現して前記負電荷を構成し、前記加速電子を放電空間に曲げる作用をする。従って、加速電子を曲げたい位置に光発光蛍光体を配置しておけば、その位置の光発光蛍光体の負電荷が、前記加速電子に対し曲げ作用を行う。蛍光体の選択により、前記負電荷の大小を可変調整でき、これにより蛍光膜上の表面伝導電子と放電ガスとの衝突を加速して、放電空間内の急速点灯を実現でき、蛍光放電灯管に従来から存在した遅延点灯を無くすことができる。
本発明の第6の形態によれば、前記蛍光膜の表面に負電荷を持たない蛍光体粒子と負電荷を持った蛍光体粒子を交互に配置させて、前記蛍光膜表面の複数箇所で前記加速電子を前記負電荷を有した蛍光体粒子により、電子をガス空間側に曲げる急速点灯と全面発光する高効率な蛍光放電灯管が提供される。前記負電荷を持たない蛍光体粒子には、一般的に電子線発光蛍光体(CL蛍光体)が含まれる。特に、低電圧電子線発光蛍光体は表面汚染が少なく、負電荷に帯電しない性質を有し、チャージアップしない特性を有する。高電圧電子線発光蛍光体になると表面汚染を有するものが出現し、負電荷にチャージアップする場合もある。本形態では、負電荷を持たない蛍光体領域ではクーロン反発力が発生しないから、蛍光膜を表面伝導する電子は加速される。他方、負電荷を持つ蛍光体領域では、加速電子はクーロン反発力により放電空間に曲げられ、放電ガスを強制的に放電させ、放電灯管は急速点灯する。しかも、本形態では、多数の負電荷領域が電子の表面伝導方向に点在するから、放電灯管の多数領域で放電が生起し、放電灯管の全体が明るく発光することができる。換言すると、前記負電荷性蛍光体粒子を蛍光膜上に加速電子の進行方向に沿って多数点在させると、加速電子と負電荷とのクーロン反発力により、多数の負電荷位置にて加速電子が放電空間中に強制的に曲げられ、加速電子と放電ガスとの多領域における全空間衝突により放電空間全領域での放電が生起し、急速点灯と全空間点灯が同時達成できる放電灯管を実現できる。
本発明の第7の形態によれば、前記蛍光放電灯管のガラス管内壁面に塗布される前記蛍光膜が、電子線発光蛍光体粉と光発光蛍光体粉の混合粉体からなる蛍光放電灯管が提供できる。前述したように、電子線発光蛍光体粉は負電荷を持たず、光発光蛍光体粉は負電荷を有するから、両蛍光体粉を混合して放電灯管内に塗布しておけば、負電荷領域と中性領域が粉体の直径サイズで交互に配置され、表面伝導電子の加速領域と曲げ領域が交互に無数に配置されることになる。従って、放電灯管の全領域における放電発光が生起し、急速点灯と全面点灯が瞬時に実現され、低電力で高照度の放電灯管を提供できる。
本発明の第8の形態によれば、前記光発光蛍光体粉が個別に三色に発光する三種類の希土類光発光蛍光体粉からなり、前記電子線発光蛍光体粉が低電圧電子線発光蛍光体粉からなる蛍光放電灯管が提供される。三色として、赤光、緑光、青光を選択すれば、合成色は白色になり、白色蛍光放電灯管を提供できる。しかも、三種類の希土類光発光蛍光体粉が負電荷蛍光体になり、低電圧電子線発光蛍光体粉が負電荷を持たない蛍光体になり、急速点灯と全面点灯を実現する。
本発明の第9の形態によれば、前記希土類光発光蛍光体粉の内、緑色に発光する光発光蛍光体粉をCL発光珪酸亜鉛蛍光体粉で置換した蛍光放電灯管が提供される。第8形態における緑光の光発光蛍光体粉を電子線発光(CL発光)の珪酸亜鉛蛍光体粉で置換すると、希少元素である希土類が含まれないために材料的に安価になり、しかも発光が明るく綺麗になる特性を有する。
本発明の第10の形態によれば、前記希土類光発光蛍光体粉の内、緑色に発光する光発光蛍光体粉をCL発光珪酸亜鉛蛍光体粉とPL発光珪酸亜鉛蛍光体粉の混合粉体で置換した蛍光放電灯管が提供される。希少元素である希土類が含まれないために材料的に安価になり、CL発光珪酸亜鉛蛍光体粉とPL発光珪酸亜鉛蛍光体粉の混合比を調整することにより、発光の明るさとNTSC(米国TVシステム委員会)で決められた緑色で鮮明さと綺麗さを最適調整することができる。
本発明の第11の形態によれば、前記蛍光膜で、前記低電圧電子線発光蛍光体の粒子を、前記蛍光膜の表面に不連続に散布するように配置した蛍光放電灯管が提供される。前述した様に、低電圧電子線発光蛍光体は負電荷を持たない蛍光体であり、この蛍光体を不連続に散布配置する事は、負電荷を有さない領域(無電荷領域ともいう)が不連続に存在することを意味し、換言すれば負電荷領域と無電荷領域を交互に配置したパターンになる。従って、負電荷領域で曲げ点灯が生じ、無電荷領域で表面伝導電子の加速が行われ、急速点灯と全面点灯を確実に実現することができる。
本発明の第12の形態によれば、前記蛍光膜が、単独で白色に発光する光発光蛍光体粉と低電圧電子線発光蛍光体粉の混合粉体からなる蛍光放電灯管が提供できる。単独で白色に発光する光発光蛍光体粉が負電荷蛍光体であり、低電圧電子線発光蛍光体粉が無電荷蛍光体になり、両粉体の混合により急速点灯と全面点灯を実現できる。光の三原色に対応した三種類の光発光蛍光体を使用せず、単独で白色に発光する光発光蛍光体粉を使用すると、蛍光体コストの低減を実現できる。この発明になる蛍光放電灯管は輝度飽和現象が消え、蛍光膜の輝度が管径に依存しない。家庭の照明に使われる管径25 mm以上の蛍光放電灯管で約30 % の輝度上昇が起こり、LCDのバックライトに使用する管径が5 mm以下の蛍光放電灯管は、希土類蛍光体を使用したと同等又はそれ以上の発光が得られる。蛍光放電灯を数回も曲折した電球状の省電型蛍光ランプにも使用でき、省電型蛍光ランプの製造コストの大きな低減と、1万時間以上の長寿命となり、需要者の利益に大いに貢献する。
本発明の第13の形態によれば、前記蛍光膜が、単独で白色に光発光する前記光発光蛍光体がハロ燐酸カルシウム蛍光体からなる蛍光放電灯管が提供できる。ハロ燐酸カルシウム蛍光体はクラーク数が低い希少な希土類元素を用いないから、蛍光体コスト低減できる効果を有する。
本発明の第14の形態によれば、第13形態の蛍光膜に、赤色発光を補強する電子線発光酸化イットリウム蛍光体が追加的に添加された蛍光放電灯管が提供できる。ハロ燐酸カルシウム蛍光体は単独で白色光を発光するが、色分解すると赤色光が含まれていないから、電子線発光酸化イットリウム蛍光体を添加することにより、色分解により三原色光から構成されることになる。特に、後述するLCD表示装置のバックライト光源に使用する場合には、三原色光が必要になり、本第14形態の赤色電子線発光酸化イットリウム蛍光体を添加することにより、それを可能にする。
本発明の第15の形態によれば、第1形態〜第14形態のいずれかの蛍光放電灯管の単独又は複数個を平面に配列し、LCD表示装置のバックライトに使用するLCD表示装置が提供できる。一般に、LCD表示装置のバックライト光源には冷陰極管 (CCFL) が使用されているが、輝度が低く、寿命に限界があった。本発明の蛍光放電灯管は高輝度、長寿命であり、バックライト光源として最適である。即ち、本発明の蛍光放電灯管は液晶表示装置(LCD表示装置)のバックライト光源に利用でき、低消費電力・高照度・安価・長寿命であるから、良質且つ安定なバックライト光源になる。
本発明の第16の形態によれば、前記第15形態の蛍光放電灯管の複数個を垂直方向又は水平方向に配置し、それぞれの蛍光放電灯管を単独で、又は複数個の蛍光放電灯管を集団で、線順次に走査する方式で順次に点灯し、線順次の映像をLCD表示装置のスクリーン全体に映すLCD表示装置が実現できる。本発明の蛍光放電灯管は急速点灯と全面点灯が可能であるから、多数本の蛍光放電灯管を配列して線順次走査しても走査速度より高速に急速瞬時点灯するから、走査点灯方式に好適な蛍光放電灯管を提供でき、高性能の走査型LCD表示装置を実現できる。従来のLCD表示装置に使用する CCFLの点灯速度は最速で秒単位であり、線順次走査は不可能であった。
[本発明の更なる詳細説明]
本発明者は蛍光放電管の最適動作条件を探索すべく、放電現象の最も基礎から応用までを検討した。ガス放電の基本は、ガスを放電させる電子の放電管内への供給である。現在使用している金属電極を使用した場合、陰極表面に不可避に形成されるSBE(106eV/cm)の影響を受けるので、電子は106eV/cm以上の高エネルギーを持って陰極表面から取り出される。観察された放電現象には、この高エネルギー電子の影響が介入しており、その影響を解析から取り去ることはできない。ガス放電の基本を調べるに、SBEが形成されない電極を必要とする。本発明者は絶縁体粒子表面に形成されるSBEを利用し、初速ゼロに近い電子をガス空間(放電空間)に供給する新しい電子供給源を開発した。この電子供給源からの電子を使用すると、今まで解明できなかった蛍光放電管中のガス放電の詳細が調べられ、未解決な全事項を解明することができた。新しく解明された事項を最適化すると、放電特性を驚異的に改良した蛍光放電灯管が開発できる。
新規電子供給源は次のようにして得られた。金属電極の上に電気絶縁体粒子層を置く。金属電極に電位を印加すると絶縁体粒子は誘電分極する。絶縁体粒子に誘電分極した電荷の極性は、金属電極の極性と反対になるが、電荷量Qは、電極に印加される電位Vの一次関数で増減し、比例常数は絶縁体粒子の誘電率εを用いてQ=εVで表される。絶縁体粒子に誘起された分極の電位Vは、絶縁体粒子の電気容量(誘電容量)をCとするとV= Q/C =εV/Cで表され、Cは常数であるので、εV倍になる。多くの絶縁体粒子のε値は3〜50であるので、分極電荷の電位Vは金属電極電位Vよりもε倍高くなる。この高い分極電荷に現れる電位を利用する。
絶縁体粒子で覆われた金属電極をガス空間に置き、金属電極に波高値が1〜5kVで周波数が1〜70 kHzにある高周波電界を印加すると、電極周辺のガス原子は高周波電界でイオン化し、自由電子と自由イオンが電極周辺にできる。この自由電子と自由イオンは、金属電極電位Vの電場に引き寄せられるよりも、電位の高い絶縁体粒子の高電位Vの電場に引き寄せられる。自由電子と自由イオンは極性を異にする誘電分極に引き寄せられるが、絶縁体結晶内部に突入するエネルギーを持たないので、分極した絶縁体粒子表面上の真空中にそれぞれ累積する。分極した絶縁体粒子表面上に個別に累積した電子とイオンを使い、蛍光放電管内のガスを放電させる。この放電方式の原理を模式化し、図1に示す。電極2と3の上に置かれた絶縁体粒子4は、電極2と3に電源電圧を印加すると図に示したように誘電分極する。ガス空間側の誘電分極の極性は電極の極性とは一致する。電極2、3の極性は高周波電圧により変化するが、図1ではその一瞬状態を表示している。イオン化により生成された自由電子は絶縁体粒子に誘起した分極の正極性に引き寄せられ、絶縁体粒子4の直前の真空中に留まり、絶縁体粒子4の正極性と結合する。この絶縁体粒子4に表面結合した電子をガス放電の新しい電子源7とする。イオン化したArは絶縁体粒子の誘電分極に誘起した分極の負極性に引き寄せられ、絶縁体粒子4の直前の真空中に留まり、絶縁体粒子4の負極性と結合し、イオン源(累積イオン)8となる。放電5は電子源7から取り出された電子が累積イオン8までの移動で起こる。放電に関与する電子は、放電管中のガスから供給され、絶縁体粒子からの電子の供給はない。放電に関与した電子は、放電管中でイオンと結合してガス原子に戻る。放電に関与する電子とイオンは、放電管の外部から供給されない。
ここで疑問になるのは、絶縁体粒子表面に累積した電子は、粒子内の対の誘電電荷と強く結合し、SBEを形成しているので、容易に取り出せないのではないかの疑問である。電極周辺の電界は高周波で変化しており、絶縁体粒子の誘起電荷の極性は急速に変わる。その結果、電子供給源7の電子は短時間の間真空中に浮遊する。絶縁体粒子に誘電分極した電荷の真空中に浮遊する電子に対する拘束力は弱く、電子は弱い高周波電界で容易に移動する。絶縁体粒子表面近傍の真空中に浮遊する電子を取り出すので、電子の初速度はゼロに近い。本発明に係る電子源は高周波電界の存在下だけで得られ、高周波の波数が小さいとき、および直流電圧の印加では発生しない。
絶縁体粒子に誘起する分極電荷量Qは絶縁体の誘電率εの値で変わる。一般の絶縁体粒子を使用できるが、同じ大きさの絶縁体粒子を使用した場合、より大きな誘起電圧を絶縁体粒子に誘起した方がガス放電に有利であることを見出した。大きな誘起電圧を得るには大きな誘電率εを持った絶縁体の方が有利である。そのような絶縁体粒子として、実用化されている電子線発光蛍光体(CL蛍光体)粒子が最適であった。効率よく発光するCL蛍光体の結晶は格子点に非対称を持った結晶であり、発光中心は非対称な格子点を占める。非対称な格子点を占有した発光中心は、対称性結晶の格子点を占有した発光中心で許容されない電子遷移が可能となり、その電子遷移確率が異常に大きい。実用蛍光体粒子の全ては非対称性を持った結晶である理由である。非対称性を持った結晶は圧電特性を持ち、大きな誘電率εを持つ。この理由で、蛍光体粒子は金属電極を覆う絶縁体粒子に適す。
絶縁体に誘起する電荷量Qは絶縁体の表面積に比例して変わる。絶縁体は薄膜であるよりも、粒子の表面積の方が大きい。平面に一層に緻密に配列した粒子の表面積はπφ2で与えられる。ここにφは粒子直径である。Cathodo luminescence, Kodansha, 1990, p104-120(非特許文献 3)の記述によれば、決められた面上に配列する粒子の総表面積は、粒子径に無関係に配列した粒子層数で与えられる。付着する最適な粒子総数は3層前後である。この理由により、現実に金属電極表面に付着させる絶縁体粒子は一個ではなく、3層前後の粒子を均一に金属電極の表面に付着させる。金属電極表面に付ける絶縁体粒子の大きさは、粒子の金属表面への付着力で規制される。多数の粒子を使用する。多数の粒子の粒子径は均一径でなく、対数正規分布で分散する。分布している粒子は、平均値または分布の中央値で代表して取り扱う。絶縁体粒子は金属電極表面にファンデルワールス力で付着する。粒子と金属表面の付着に接着剤を採用することも出来るが、接着剤を使用しない方が良い結果が得られる。付着力の強い粒子の平均値は、光学顕微鏡の測定で1 μm〜7 μmの間にある。より好ましくは 2 μm〜5 μmの間にある。7 μmより大きな粒子は付着力が弱く、機械的な振動で容易に金属電極面から脱落する。1 μmより小さい粒子は、粉末の保存中に空気中から毛管凝縮により水分を吸着し、凝集する。凝集粒子塊は大粒子と等価であるので使えない。
上記した条件を具備した新しい電子源を蛍光放電灯管に使用した時、放電灯のガス放電に以下に述べる特徴がある。第一の特徴は、金属電極から絶縁体粒子に電流は流れない。ガス放電に必要な電子は、ガスのイオン化によりガス空間内から調達し、累積イオンに再会して消滅する。即ち、放電管内の電子の流れは、放電管内で発生し、閉じる内部回路である。この内部回路が放電管内に形成される。内部回路には放電管外の電気回路(外部回路)から電子は流れ込まない。蛍光放電灯管の駆動回路は外部回路を形成し、誘導電流を持つが、内部回路に電子を直接供給しない。電子の流れに限定すれば、内部回路は外部電源回路と独立して存在する。内部回路を形成する電子源の大きさは、外部回路の金属電極に印加する電位により制御される。図2に上記した内部回路15と外部回路12を模式化して示す。
今までの蛍光放電灯管の放電現象の調査では、駆動回路の電気特性を測定していた。同じように本発明になる蛍光放電灯管の外部回路に探針を接続すると、電気信号が検出でききる。ここに誤解が発生する。誤解は解かなければならない。図2の外部回路 12に流れる電流は、金属電極を覆う絶縁体粒子の誘電分極と脱分極時に流れる誘導電流であり、内部回路15に流れる電流とは関係ない。現在の所、内部回路の電流を検出する方法がない。
外部回路からの電子の流れ無しにガス放電が可能とすると、ガス放電に必要な内部電流の大きさが推定できる。一個の電子が一個のガス原子を励起し、一個の光子の発光が発生すると仮定する。この仮定下でガス原子を励起する最大電子流を計算できる。要求される最大電流を、通常の蛍光放電灯管内を満たすガス原子の数から求める。その数は蛍光放電灯の内容積が決まると、Boyle-Charles の法則でガスのモル数が計算できる。Avogadoro数を使い、計算したモル数内に含まれる原子の数が計算する。計算したガス原子の数量を電流に換算すると、多くの蛍光放電灯では約0.1ミリアンペアーである。現実には、一個の電子は繰り返し使用するので、本発明になる内部回路を構成する電子源を使用し、蛍光放電灯管を理想条件で放電すれば、蛍光放電灯管の消費電力は更に小さく、著しい省電型蛍光放電灯管が開発できるが、放電灯内の電流を直接測定できない。外部回路に流れる電流と電圧から放電灯の電力を決めるが、それでも通常の蛍光放電灯の消費電力より極度に減少する。ガス放電に必要な内部回路の電子の挙動は単純でなく、同じ電子数を使用しても結果は大いに異なる。省電型蛍光放電灯管を求めるには単純でない電子の挙動を解明し、電子挙動の最適化が必要である。
分極絶縁体粒子表面上の累積電子から取り出した電子は、初速度がゼロに近いので、市販放電灯用蛍光体で作られた蛍光膜では問題が発生する。Applied Physics Letters, 43,pp1073-4, 1983 (非特許文献 4)の論文によれば市販蛍光体粒子には電子と正孔のトラップが不可欠に存在し、蛍光体粒子は永続性内部分極(PIP)を持つ。PIP電荷の電界が蛍光体粒子外に広がる。多くの場合、蛍光体粒子外に広がる電界は負電界である。蛍光膜に光を照射すると、捕獲電子がトラップから伝導帯に上がる結果、PIPの電界は消える。蛍光体材料は電子写真や乾式コピー機の感光材料として広く使われている。市販放電灯用蛍光体のPIPは光感光材料としての特性が弱いので、感光材料として実用されていないが、市販放電灯用蛍光体のPIPは、低いエネルギーを持って蛍光膜に接近してくる電子に対し十分に作用する。これは放電灯を使用した実験では観測が困難である。参考文献 3, pp141-149の記載によると、電子線照射下の蛍光膜の特性調査でPIPの存在を定量的に明らかに出来る。市販放電灯用蛍光体のPIPの負電界の大きさは、加速電圧を変化させた電子線を蛍光体膜に照射した実験で決定できる。測定から決定した蛍光膜上の負電位は約 110 V〜150 Vの間にある。蛍光膜に200 V以上の正電界を蛍光膜が塗布されたガラス基板の裏側から印加するとPIPの負電荷は蛍光膜から消え、正電荷が現れる。照射電子は蛍光膜に達し発光するようになる。外部電界印加によるPIPの出現と消滅する現象は電子写真や乾式コピー機の感光材料と同じで何回でも反復する。
市販蛍光体粒子の持つPIPの存在を理解していなかった蛍光放電灯管の開発者達は、蛍光膜のPIP 負電荷の消却に苦労していた。蛍光膜の下側や表面に導電膜を付け、又は放電管の外壁面に導電膜を付けたり、放電管外壁に近い所に金属板を配置し、放電の初期にだけそれらの導体に正電位を印加する外部回路を採用し、点灯時間が秒単から分単位で変わる瞬時点灯の蛍光放電灯を開発していた。それより速い時間で点灯する方法として、電極周辺の蛍光膜の上にセシウムCs原子の薄膜を付着するか、光を蛍光膜に照射する工夫を重ねて来たが、放電開始時間の短縮は秒単位の短縮に留まっていた。既述したように放電開始時間の困難は、蛍光膜を構成する蛍光体粒子が持つPIPによる作用と関係する。蛍光膜のPIPを消去できれば、蛍光放電灯管は10ミリ秒以下の瞬時に本当に発光する。蛍光放電灯の瞬時点灯は解決が難しい課題であったので、更に詳細に述べよう。
初速度がゼロに近い電子を蛍光放電管中に導入すると、蛍光体粒子のPIPによる負電荷により、電子は蛍光膜に近づけない。更にガス原子が充填したガス空間にも入れない。ガス空間はガスの最外殻電子軌道を充填している電子の負電界 (5 x 105 eV)がガス空間に広がり、その負電界に阻まれ、電子はガス空間中にも入れず、蛍光放電灯管は放電しない。ガスを放電させるには蛍光膜のPIPを変更し、各蛍光体粒子の表面に負電位が存在しないようにする必要がある。最も良い方法は、150 eV以下の低電圧電子線で発光するCL蛍光体で蛍光膜を作ると良い。この種の蛍光体は蛍光体粒子中にトラップを持たないので、PIPを持たない。低電圧CL蛍光体で蛍光膜を作ると、累積電子源から取り出した電子は、蛍光膜面上に容易に入りこみ、蛍光膜上を一方向に進み、表面伝導をする。蛍光膜上を一方向に表面伝導する電子の存在は、蛍光膜の僅かな凹凸の凸の部分に電子が当たり蛍光体粒子がCL発光するので確認できるが、その発光強度は極度に低い。蛍光体技術者と蛍光放電灯管の技術者は、発光強度が低いとしてこの低電圧CL蛍光体を無視した。本発明者は、発光強度に注目を払うよりも、何故、電子線照射下では明るいCL蛍光体の発光が蛍光放電灯管の蛍光膜では低いのかを疑問とした。低電圧CL蛍光体膜の実験は、蛍光放電灯管の放電機構の基本に関わる非常に大切な情報を提供する。本発明になる電子供給源を使い、低電圧発光CL蛍光膜を使う時、蛍光放電灯管のガス放電は、10ミリ秒以下の瞬時に起こる事実である。この事実は蛍光放電灯管の瞬時放電に対して種々の工夫が過去に試みられて来たが、それらの工夫を無意味とし、電子供給源と蛍光膜を選択してだけで、従来考えられなかった速度で蛍光放電灯管を瞬時点灯させる方法を発見した。この発見を基に、蛍光放電灯管で明るく発光する放電機構の解明を科学的に進めた。
陰極と陽極電極間にある電界は1方向である。こう考えると電子の動きは1方向となる。1方向に動く電子がガス原子と会合できる確率を計算できる。電子の直径は 5.6 x 10-13 cmである。電子が原子と遭遇する断面積を原子の直径とすると、1方向に動く電子の体積は6 x 10-27cm3/cmとなる。常温にある1モルのガスは1気圧下で22.4 x 103cm3である。計算にLCDのバックライト用CCFL(内径0.25 mm, 管長 73 cm)を例に取ると、管の体積は23 cm3となる。封入アルゴンガスの圧力は0.1気圧(70 Torr/760 Torr)であるので、管中のArガスのモル数は 1 x 10-3モル(= 23/22.4 x 10-3)と計算できる。1モルガスのAvogadro数 は6 x 1023個であるので、CCFL管中には6x 1020 個のArガス原子が無作為に分布(ボルツマン分布)している。1方向に動く電子の体積は6 x 10-27cm3/cmであるので、1方向に動いている電子経路に含まれるArガス原子の数は 10-8となり、極度に少なく、電子はガス原子と衝突しないと考えた方が良い。電子の速度は2 x 105 cm/secである。上記計算は決定的に次の事実を示す。放電現象の解析でガス空間を1方向に進む電子を考えることはできない。結論はガス放電を解析する時に重要な結論である。
蛍光膜上を一方向に表面伝導している電子がガス原子と遭遇する確率は極度に低く(10-8 /73 cm)、放電管からのガス放電は観察できない。ガスを放電させるには、1方向に伝導する表面電導電子の軌道を強制的に撹乱し、適した運動エネルギーを持った電子の軌道をガス空間の方向に曲げると良い。軌道を曲げられた加速電子はガス原子と非弾性衝突する確率が大きい。電子軌道を曲げるには、市販蛍光放電灯用蛍光体粒子のPIP電荷が適している。蛍光膜を低電圧CL蛍光体と蛍光放電灯用蛍光体粒子を適度の割合で混合し、蛍光膜を作ると上記した蛍光膜の表面伝導と軌道を曲げる両機能を兼ねた蛍光膜が出来る。
蛍光膜を構成する蛍光体粒子の表面状態で表面伝導電子の軌道が変わる事実を立証する手法がある。それは緑色に発光するMn付活珪酸亜鉛蛍光体 (Zn2SiO4:Mn)を使用して実証できる。Zn2SiO4:Mn蛍光体は2の方法で製造できる。第一の方法は、化学量論よりも 20 %過剰なSiO2を原料に添加し、蛍光体を製造する。製造したZn2SiO4:Mn蛍光体粒子表面には、過剰な添加で反応しなかったSiO2の微粒子が付着している。付着したSiO2の微粒子は化学的にも物理的にも取り去る方法は無い。この蛍光体を蛍光放電管の内壁面に塗布し、5 kVの高電圧を電極に印加すると蛍光放電灯は明るく緑色に発光する。SiO2の微粒子は紫外線を吸収せず、帯電したSiO2微粒子の負電荷が電子をガス空間に弾く働きをする。だが、放電している電子は蛍光膜に近づけないので、陽光柱はSiO2微粒子上にできたSBE鞘の中に収められ、取り出せる蛍光膜の発光に飽和現象が現れる。同じ蛍光体をCRTの蛍光膜にし、150 eVの電子線を蛍光膜に照射しても蛍光膜は発光しない。蛍光体粒子表面に付着しているSiO2微粒子が負に帯電し、蛍光膜に近づく電子を弾くからである。今度は原料の混合時に酸化亜鉛ZnOを20 %過剰に添加し、この混合原料を使用して蛍光体を製造する。製造した蛍光体粒子の表面には未反応のZnO微粒子が沢山付着している。ZnO微粒子を化学的に取り去る目的で、製造した蛍光体粉をアンモニア水溶液(NH4OH液)でエッチングすると、ZnO微粒子が取り払われたZn2SiO4:Mn蛍光体が得られる。この蛍光体でCRT蛍光膜を作り、150 eVの電子線を蛍光膜に照射すると、蛍光膜は明るい緑色のCLで発光する。同じ蛍光体を蛍光放電灯管の内壁面に塗布し、高電圧を電極に印加する。蛍光放電灯は非常に暗い緑色に発光する。次にSiO2を過剰に添加して作った蛍光体粉と、ZnO過剰で作りNH4OH液でエッチングした蛍光体粉を重量比で7対3の割合で機械的に混合する。この混合蛍光体粉を蛍光放電管の内壁面に塗布する。蛍光放電灯管はSiO2過剰で作った単独蛍光膜よりも明るく(30% 増加)発光する蛍光放電灯管が得られる。上記した実験はCL発光で明るいが、蛍光放電灯管の蛍光膜では暗く発光する蛍光体の使用で追試できる。例えば、表面が化学的にも物理的にも清浄なY2O2S:Tb 緑色発光蛍光体の場合がある。この実験事実は、明るく発光する蛍光放電灯管を製造する上で考慮しなければならない重要項目を明確に示す。
内径が25 mm以上の蛍光放電灯管は、資源が豊富にある安価で1種類の蛍光体で白色に発光するアンチモンとマンガン2重付活になるハロ燐酸カルシウム蛍光体 [3Ca3(PO4)2 CaFCl:Sb:Mn]が長い間使用されて来た。3Ca3(PO4)2CaFCl:Sb:Mn蛍光体は内径が10 mm以下の蛍光放電灯では輝度が非常に暗くて使えず、資源の枯渇が心配される10倍以上も高価な三色希土類蛍光体を混合した白色発光蛍光膜が使われる。3Ca3(PO4)2CaFCl:Sb:Mnが内径の小さい蛍光放電灯管に使用できない理由を出版書籍で探しても見つからない。本発明者はその理由を調べた。3Ca3(PO4)2CaFCl:Sb:Mn蛍光体の発光はSb3+発光中心をUVで直接刺激し、Sb3+が発光した青色発光を同一粒子内のMn2+に吸収させ黄色のMn2+を発光させる。Sb3+とMn2+の二つの発光で白色を一個の蛍光体粒子中で得ている。発光過程に基体結晶の吸収が関与しないので、この蛍光体は電子の照射下で絶縁体結晶の特性を持つ。絶縁体結晶粒子は放電管内に置かれると粒子表面に強いSBEを容易に形成する。その結果、ガス放電の陽光柱はBSE鞘に納まる。放電管径を狭くすると、蛍光膜上のSBEの強度は変わらないので、陽光柱の直径のみが狭くなり、ガス放電量が飽和する。Zn2SiO4:Mn蛍光体の所で述べたと同じように、3Ca3(PO4)2CaFCl:Sb:Mn蛍光体粉に重量比で30%の低電圧で白色発光するCLZnO蛍光体粉を機械混合する。混合蛍光体粉を内径が 10 mmのCCFL蛍光放電灯管の内壁面に塗布する。このCCFLは瞬時に放電し、内径25 mm以上の従来の蛍光放電灯管の蛍光膜の輝度よりも明るく白色に発光する。上記した実験は、蛍光放電灯管内の蛍光膜が明るく発光する具備条件を示す。
ガス空間を移動する電子の挙動を更に詳しく調べる。一般的に言えば、加速電子の非弾性衝突により、ガス原子の励起とイオン化が起こる。加速された電子がガス原子を励起するに適切な大きさのエネルギーを持った時、ガス原子の励起だけが起り、光を放出(放電)する。ガス原子と非弾性衝突した電子はエネルギーを失い、軌道を変えるがガス空間中に留まり、次の高周波の波により再加速され、他のガス原子と非弾性衝突をする。この繰り返しで電子は放電管中の陽光柱の中を対極に向かって進む。1電子が非弾性衝突間に進む距離(平均自由工程)はPaschen曲線の測定で決まり (pd)で求められる。求められた平均自由工程はHCFLでは10 μm, CCFLでは0.2 μm前後である。陰極と陽極間に印加する電位から単位長さの電界強度を計算し、平均自由工程内の電界強度を計算する。代表的なCCFLの管長は73 cmで電極間に印加するピーク電位は1,200 Vであるので、ピーク電圧下でも0.2 x 10-3 V/0.2 μmと計算される。この値は電子の非弾性衝突でHg蒸気を励起するに必要なエネルギー(10.4 eV)に程遠い。一般に考慮されている陽光柱の電位勾配で電子が加速する思考では、非弾性衝突してエネルギーを失った電子を加速できない。従来の思考の誤りである。
既に述べたように電子の質量は9 x 10-28 グラム、イオンの質量は2 x 10-24グラムである。電荷量は共に1.6 x 10-19 クーロンで変わらない。軽い電子は、高周波電界の波に乗り、容易に動くと仮定すると、経験的に求めた最適高周波の1波長と実験で求めた平均自由工程は一致するはずである。経験的に求めたCCFLに印加する最適高周波の1波長の長さ(λcal)を計算すると印加周波数により、1波長の長さが下記のように変わる。
(1) λcal = 0.2 μm = 0.2 x 10-4 cm (= 1cm/50 x 103Hz) 50 kHz
(2) λcal = 0.3 μm = 0.3 x 10-4 cm (= 1cm/30 x 103Hz) 30 kHz
(3) λcal = 1.0 μm = 1.0 x 10-4 cm (= 1cm/10 x 103Hz) 10 kHz
(4) λcal = 10 μm = 1.0 x 10-4 cm (= 1cm/1 x 103Hz) 1 kHz
上記波長は、実験で求めた平均自由工程と測定の誤差範囲で一致する。この一致は、非弾性衝突をした最初の電子は、ガス空間から消える事無く、再度高周波電界の波(ピーク電圧が1,500 V)に乗りエネルギーを高周波電界から得ていることを示す。即ち、ガス空間に存在する電子は、放電管内の途中で消滅する事無く、高周波に共鳴し、放電管中を軸方向に進み、ガス原子と非弾性衝突を繰り返す。蛍光放電管中にできる陽光柱は、ガス原子の励起エネルギーに相当する電子が高周波と共鳴し、同じ電子が繰り返しガス原子を励起して出来ている。電子が高周波と共鳴して放電管中を軸方向に進むモデルを採用すると、陽光柱中の電位勾配はゼロとなる。過去の多くの測定データーを検証すると、そのようなデーターが1900年代の報告で幾つか見つかる。陽光柱中に電位勾配があり、電子は電位勾配で加速されるとする最近の測定データーの信頼性は測定技術に問題があり、測定法の確認が待たれる。また加速電子とガス原子の衝突で電子数が雪崩式に増加するとの説明は、陰極と陽極で検出される電子数が同じであるので受け難い。蛍光膜を構成する個々の蛍光体粒子の帯電状況を最適化するとき、高周波電界の波のピーク電位は大幅に減少する。電子の高周波共鳴は電子の動きを巨視的に見た時であり、微視的に電子挙動を見ると、一波長内の電子の挙動は、蛍光膜を構成する蛍光体粒子の表面荷電状態に大きく影響を受ける。
現在の高周波条件(50 kHz)では平均自由工程は0.2 μm である。一方、蛍光体粒子の平均粒子径は4 μmであるので、高周波に共鳴した電子は一個の蛍光体表面を通過する間に、20回も同一蛍光体表面に達していると計算される。一部の電子は高速に加速され蛍光膜のCL蛍光体粒子に突入するが、参考文献1の記載によればCL蛍光体表面にはSBEが形成できず、表面伝導電子に変わる。電子は上記した動きの繰り返しにより放電管中を管軸方向に進み、放電灯管の他端にある累積イオンに到達し、イオンと再結合しガス原子に戻る。効率の良い蛍光放電灯管の蛍光膜は、電子の表面伝導を許すと同時に、表面電導する電子軌道を曲げ、ガス空間に向かわせる機能も持ち合わせなければならない。上記した蛍光膜の大きな特徴は、蛍光膜は暗所でも瞬時に点灯する。更に、電子が蛍光体粒子に突入した時に発生するSBEも発生しないので、SBE鞘も無くなり、蛍光膜の輝度が増加する。従来の蛍光膜の使用では解決不能とされた大きな垣根が本発明で取り去られた。以上の記載で電子供給源と蛍光膜、ガス放電に関する問題点の全ては解決できた。
本発明は蛍光放電灯管のガス原子を最大限に放電させると同時に、FLの駆動電力を最小値に引き下げた高輝度で省電型蛍光放電灯管を提供する。本発明になる蛍光放電灯のもう1つの特徴は蛍光ランプの操作寿命を極度に引き伸ばし、人は生涯に1つの蛍光放電灯管を購入すれば良い様にする。そうすれば一個当たりの蛍光放電灯管製造の生涯使用電力を極度に引き下がる。近年問題と成っている環境保護の課題に大きく貢献する蛍光放電灯を提供する。
本発明に係る蛍光放電灯管内に形成した内部回路の原理の説明図。 本発明に係る蛍光放電灯管の点灯に関与し、電流の流れが孤立している内部回路と外部駆動回路の説明図。 本発明に係る蛍光放電灯管の点灯に関与する外部駆動回路に流れる電子流と、蛍光放電灯管の放電に関与する内部回路を形成する電子流の説明図。 本発明に係る蛍光放電灯管内に設置される絶縁体粒子で覆われた金属電極で、金属電極の形状がカップ状金属電極と平板状金属板を使用した例示図。 本発明に係る蛍光放電灯管内に設置する絶縁体粒子で覆われた金属電極で、金属電極の形状として金属棒と金属フィラメントを用いた例示図。 本発明において蛍光膜表面に導入する電子の挙動が、蛍光膜の荷電状態による変わる様子を説明する模式図。 本発明において低電圧電子線発光蛍光体粉と光発光蛍光体粉の混合粉で作られる最適な蛍光膜の状態を示す模式図。 従来の蛍光放電灯管内部に設置した金属陰極の表面に表面結合電子 (SBE)が必然的に形成される現象の説明図。
符号の説明
1 蛍光放電灯管(又はガラス管)
2 金属電極
3 金属電極
4 絶縁体粒子
5 ガス放電
6 外部電源(高周波電源)
7 電子源(電子供給源)
8 イオン源(正イオン源)
9 蛍光放電灯管(又はガラス管)
10 蛍光膜(又は蛍光体膜)
11 陽光柱
12 外部回路
13 コンデンサー
14 誘導電流
15 内部回路
16 電子源(電子供給源)
17 イオン源(正イオン源又は累積正イオン)
18 リード電極
19 釣鐘型電極
20 小ガラス管
21 平板状金属電極
22 棒状金属電極
23 ガラスフリット
24 PIPを持つ蛍光膜(市販PL蛍光体膜)
25 PIPを持たない蛍光膜(CL蛍光体膜)
26 PIP(PIP負電荷又はPIP鞘)
28 フィラメント電極
28a フィラメント電極断線部
28c フィラメント電極の一端
28d フィラメント電極の他端
30 金属陰極
CCFL 冷陰極蛍光放電灯管
CL 電子線発光(Cathode Luminescence)
e 電子(放出電子)
EL 無機電界発光
FL 蛍光放電灯
h 正孔
HCFL 熱陰極電極
LED 発光ダイオード
LCD 液晶ディスプレイ
OLED 有機電界発光ディスプレイ
PIP 永続性内部分極
PL 光発光(Photo Luminescence)
SBE 表面結合電子(surface-bound-electrons)
UV 紫外線
本発明の内容を添付した図面を使用して詳細に説明する。説明に当たり蛍光放電灯(FL)の点灯は、駆動回路に接続した金属電極に電圧を印加し、放電灯管内のガスを放電させ、ガスの励起により発光した不可視の紫外線を放電灯管ガラス内壁面に塗布した蛍光膜により可視光に変換するまでの工程をさす。本発明になる蛍光放電灯管は、金属電極に電圧を印加し、蛍光放電灯管を点灯するが、放電に必要な電子は、従来の蛍光放電灯管のように電源回路に接続した金属電極から直接に放電管内に注入しない。高周波点灯している放電灯管内部にイオン化により形成された電子を絶縁体粒子表面に累積して出来た新規の電子源から電子をガス空間に取り出し、この電子をガス放電に関与させた後、放電管の他端に集積するイオンと再結合させ、内部回路が閉じる。即ち、蛍光放電灯管の点灯に、放電灯外部から電子を放電灯管内に注入せず、放電灯管内部で電子を調達し、放電灯管内で調達した電子の全てが消費される。ガス空間に入った電子は消える事無く、同じ電子がガス原子と非弾性衝突を何度も繰り返し、放電灯管内を軸方向に進む。ガス放電に必要な電子数は、放電灯管が含有するガス原子の数よりも少なくなる。内部電流量は放電灯管あたり0.1〜1mAと計算されるが、内部電流を直接に測定する方法が無いので確認できない。蛍光放電灯管の消費電力は、外部回路に流れる電流と電圧の測定で決めている。本発明になる蛍光放電灯管の消費電力も外部回路の電流と電圧の測定で決めるが、放電灯内部の消費電力と1対1で対応していない。外部回路に流れる電流は金属電極を覆う絶縁体粒子の分極と分極解離に要する誘電電流であり、金属電極を覆う絶縁体粒子数に比例して増減する。金属電極の面積を最小化すると絶縁体粒子数も減少し、外部回路の誘導電流も最小化し、見掛け上蛍光放電灯の消費電力は減少する。本発明になる蛍光放電灯管は、この見かけ上の消費電力を従来の蛍光放電灯の消費電力の数分の一に減少する。更に、本発明になる電子供給源の使用では放電ガスに露出した金属は皆無であるので、陽イオンによる金属スッパターは起こらず、スッパターによる電子供給源の減少は皆無である。蛍光放電灯管内に有機残留ガスが存在しない場合、放電管内に輝度を減少させる要因はなくなる。その結果、蛍光放電灯管の点灯寿命が従来の蛍光放電灯管では考えられない驚異的な長さに延長する。点灯寿命は初期輝度を100,000時間以上も保持する。
本発明になる蛍光放電灯管内の電子の動きは、固体と液体中の電子の動きとは異なる。原子が規則正しく配列している固体中の電子電導は、格子振動(電気抵抗)に規制される。無秩序に原子が配列している液体中の電子伝導は、イオンまたは電子濃度に比例する。蛍光放電灯内の放電は電子が担うがその電子の挙動は、固体や液体の場合と異なり、遙かに大きな影響を蛍光膜の荷電分布から受け、その影響下で挙動が決まるので、放電灯管内の電子の挙動にはオームの法則は通用しない。蛍光放電灯管内の蛍光膜上には、(a)励起ガス原子が発した紫外線光子、(b)ガスと非弾性衝突して散乱した電子、(c)散乱電子が高周波電界と共鳴し、高周波電界場から得た高エネルギー電子である。紫外線光子は無電荷であるので蛍光膜上の電荷の作用は受けない。過去の放電で見過ごされていた点は、負電荷を持って移動している電子は、蛍光膜中の各蛍光体粒子の電荷の影響を顕著に受け電子軌道の方向を変える。個々の蛍光体粒子が持つ負電荷には、蛍光体粒子が内部分極による固有電荷(PIP)と蛍光体粒子表面に出来る表面結合電子(SBE)がある。SBEは蛍光体粒子表面に微少絶縁体が付着していると微少絶縁体に不可避に現れる。SBEの負電界により、蛍光体粒子は隠蔽される。蛍光膜上にあるこれ等の負電界は、クーロン反発力により蛍光膜への電子接近を遠ざける結果、ガス放電路はSBE負電荷の鞘に収まり、蛍光膜からSBEの電荷量により決まる距離を隔ててガス放電路(陽光柱)は存在する。陽光柱と蛍光膜の間隙には非励起Hgガスが存在し、ガス放電路から放射する254 nm 紫外線を効率よく吸収する結果、蛍光膜に到達する254 nm 紫外線量が飽和する。即ち、SBE鞘の存在が、従来の蛍光放電灯管の輝度の飽和現象になり、輝度の最大値を規制していた。本発明はSBEを取り去った蛍光体粒子とSBEを保持している蛍光体粒子とを適切な割合で混合し、その混合体で蛍光膜を作り、蛍光膜から高輝度が得られる事を発見し、高輝度、長寿命で、消費電力を顕著に低減した新規構造からなる蛍光放電灯を提供する。
図1は、本発明におけるFLの放電機構の原理を図解した説明図である。放電灯の駆動回路と直結した金属電極2と3をガス放電灯管1内に入れ、放電灯外にある電源6より交流高周波電界を金属電極に印加する。説明を容易にする目的で、図1では各金属電極2と3上にそれぞれ一個の絶縁体粒子4を置く。金属電極2と3に電圧を印加すると、絶縁体粒子4は、図1に示した分極方向で瞬時に分極する。一般に絶縁体粒子の誘電率εは大きいので、絶縁体粒子4に誘起した分極電荷の電位は、金属電極2と3の電位よりε倍高い。絶縁体粒子4に誘起した分極電荷の内、ガス空間側の電荷は電界をガス空間に広げる。絶縁体粒子4と金属電極2と3がac高周波電界中に置かれた時、金属電極周辺のガスは瞬時にac高周波電界によりイオン化し、電子eとイオンArが相互作用を持たない距離に分離する。即ち、自由電子と自由イオンとなる。自由電子と自由イオンはそれぞれガス空間中を対極となる誘電体分極に引き寄せられる。引き寄せられた自由電子(と自由イオン)は絶縁体粒子内に突入するだけのエネルギーを持たず、自由電子は絶縁体内の正電荷と界面を介して結合する。この繰り返しにより、時間の経過と共に結合電子が絶縁体粒子表面に累積し、電子供給源7が絶縁体粒子4の表面に形成される。同様にしてAr+ によるイオン源8が絶縁体粒子4の表面に形成される。蛍光放電灯管内のガス発光は電子源7から取り出された電子が移動し、Ar+の正イオン8に届く間で起こる。上記したように放電に必要な全電子は放電灯管内で調達し、管内で消費され、ガス放電5に必要な電子は放電灯管外からは全然供給されない。これが本発明になる電子源7の形成と放電5の特徴である。
図2は本発明になる蛍光放電灯の点灯時に存在する2つの等価回路を示し、放電灯を実質的に駆動する外部回路12と放電灯管内部で放電を担当する内部回路15を図示する。図2(A)に図示した外部回路12は2つのコンデンサー13と電源6から成る。コンデンサー13は、実質的に金属電極2と3を覆う絶縁体粒子4である。外部回路12には、ac高周波による駆動時、絶縁体粒子4の分極と分極解離をする(コンデンサーと等価)誘導電流14が流れる。外部回路12には更に放電灯内部で電子が動くと、その放電管内部の電子流による誘導電流14が流れるが、その大きさは小さい。外部回路12にdc電圧を印加するとき、外部回路12に電流は流れず,放電灯管は放電しない。図2(B)に図示した内部回路15は、電子供給源16と累積した正イオン源17と、放電管内で放電している陽光柱11からなる。放電は、電子供給源16と累積正イオン源17間の電子移動で発生する。図から明らかなように、蛍光放電灯の内部回路15と外部回路12の間には、直接な電子の流れが無い。
図3は、本発明の電子源7を使用し、蛍光放電灯9の操作を示す略図である。蛍光放電灯の容器は真空封止したガラス管9で作られる。ガラス管9内には、多数の絶縁体粒子4で覆われた金属電極2と3が内蔵され、ガラス管9の内壁面には蛍光膜10 が蛍光体粒子(大きさが4 μm前後)の適度の厚さで塗布されている。ガス放電の陽光柱11は蛍光膜10に接近できず、蛍光膜から僅かに距離を置きガラス管9の中央に配置される。陽光柱11で発光したUV光は電荷を持たないので、蛍光膜内の蛍光体粒子の電荷に影響を受けずに蛍光膜10に到達し、蛍光膜10で可視光に変換される。陽光柱11と蛍光膜10の間に非励起の水銀蒸気が存在する。この非励起の水銀蒸気が、陽光柱11で発光したUV光を蛍光膜に到達する前に吸収(自己吸収)するので、発光に飽和現象が現れる。詳細は後述の蛍光膜のところで述べる。
本発明は補完する二つの部分から成立している。第一は蛍光放電灯内で電子の供給源となる金属電極上の絶縁体粒子表面に出来る電子源16と累積正イオン17である。第二は放電灯管内を移動し、ガスの発光を生起する電子の振る舞いが、蛍光膜を構成する各蛍光体粒子の電荷による作用を受けるので、影響を与える蛍光体粒子の電荷の最適条件を見いだす作業である。
本発明になる蛍光放電灯は、電子供給源として熱陰極を使わない。本発明になる新規な電子源は,冷陰極(CCFL)の金属電極を絶縁体粒子で蔽い、絶縁体粒子上に累積する電子を供給源とする。基材はCCFLの金属電極である。図4はCCFLで考慮された冷陰極電極の中で、一般的に使われる金属電極の表面を絶縁体粒子4で覆った電極構造を示す。最も一般的に使われる金属電極は、図4(A)に示した釣鐘型電極19である。この釣鐘型電極19を使用することはできるが、釣鐘型電極19は表面積が大きく、表面を覆う絶縁体粒子数が多くなり、絶縁体粒子の充放電で外部回路に大きな誘導電流が流れるので、実用で不利益になる。絶縁体粒子の充放電で流れる外部回路の誘導電流を最小にするには、金属電極の形状を平板状にすると良い。図4(B)は平板状金属電極21を使用し、平板状金属電極21の放電ガス面に絶縁体粒4を付着させてある。この電極構造では絶縁体表面に存在する電子の取り出しに顕著な異方性が現れる。前記釣鐘型電極19及び平板状金属電極21には外部電圧印加用のリード電極18が接続されている。Physical Review Letters,Vol. 27, 1971, P1345の論文 (非特許文献5)に従えば、電子は絶縁体界面に沿う平行方向に移動すると移動性が高いが、表面に対し垂直方向に電子を取り出すと移動性は悪い。従来の蛍光放電灯では電子を陰極面に直角方向で取り出していたので、取り出した電子による放電で問題が出ていた。蛍光放電灯を瞬時に放電させるには、電子をガス空間に直接入れるのでなく、電子供給源から先ず電子を蛍光膜上に取り出し、この電子を加速させた後にガス空間に向かって散乱させる順序を踏むと、10ミリ秒以下の速度で蛍光放電灯管が点灯する。金属電極21はこの順序になる電子の取り出しに非常に適している。しかも、平板状金属電極21から取り出す電子は、蛍光放電灯管の管端から1mmから3mmの間の電子を取り出せるので、蛍光膜を管端から1mm付近まで塗布しておけば、蛍光放電灯管の全長が均一に発光する。従来のCCFLでは金属電極の大きさにより、管端から10 mm以上、HCFLでは熱陰極の大きさによりさらに長く2から3 cmの間が暗くなる欠点があった。この問題は、本発明になる図4(B)の平板状金属電極21を採用するとき解決する。
眼は部屋の照明に使われる蛍光放電管の1秒前後の点灯速度の差を感知できないので、発明した蛍光放電灯管を部屋の照明に使用しても点灯速度の差は眼で感知できない。本発明に係る蛍光放電灯管をLCD等の表示装置の光源(バックライト)に使用するとき、10ミリ秒以下の速度の点灯が可能となり、バックライトの線走査点滅が可能となる。その結果、スクリーン上に写される画質はLCDの特性への依存が減少し、眼で明確に認識できる画質の向上がある。それは、画像の小さな揺れや歪みがなくなり、石炭の黒を基準とし、薄曇りの昼間の光照度である350 cd/m2の照度との間のコントラスト比による自然に近い鮮明な映像となる。現在のLCDスクリーン上の映像を長く見ていると、黒水準に明るさがあり、その水準から高コントラスト値を取るので上限輝度が高く、昼間の太陽の直射日光の映像と等価な映像となる。更にLCDの特性により、明確に認知できない映像の不鮮明を長時間見るので、眼を永久に損傷する。その結果、人は眼鏡を毎年変えなければならない。この問題は本発明になるCCFLを使用したLCDでは解決される。個人的な眼の永久損傷ばかりでない。LCDの消費電力も大幅に減少する。LCDの光透過率は8%前後であり、CCFLの点灯速度が1秒前後であるので、線走査が不能となり全面を均一に光らしている。バックライトを線走査で光らせると、消費電力は走査線の数に逆比例し、一次関数で減少する。走査線数が10本ならば、バックライトの消費電力は十分の一に減少する。走査線数を20本にすれば、二十分の一の電力消費となる。バックライトの消費電力の減少は、直ちにLCD表示装置の省電となる。
平板状金属電極21はCCFLの放電管ガラス径を細くする上で有利である。放電管ガラス内径1.5 mmよりも細くなると図4(B)に示したように、片面だけに絶縁体粒子を塗布しただけでは十分な電子が取り出せない。その場合には、図4(C)に図示したように、平板状金属電極21の両面に絶縁体粒子を塗布すればよい。図4(C)の電極を使用すると、内径1mm以上で高輝度なCCFLの製造が可能となる。なお、図4(A)〜(C)において、小ガラス管20は、ガラス管9の内部を真空引きした後、ArガスやHgガスを注入する微小ガラス管で、最後に前記小ガラス管20を溶着してガラス管9を封止する。平板状金属電極21の材質は金属の電気抵抗が絶縁体粒子の分極に関係しないので、特別な要求はないが、硬度が高い材料を使用した方が作業性がよい。平板状金属電極21の電極厚さは、使用する金属材料により変わる。選択基準は絶縁体粒子の保持と、製造時の電極設定作業の容易さで、どのような金属材料でも使える。考慮しなければならない点は、金属表面の腐食による有機ガスと無機ガスの吸着である。ガス吸着があると、蛍光放電灯の寿命、特に蛍光膜の発光がそれらのガスの吸着で弱められるので注意が必要である。使用するNi-Cr合金を使用した場合、最適な厚みは0.2 mmから1 mmの間にある。平板状金属電極21の直径は、使用する蛍光放電管の管径により変わるが、内管径が15 mm以上の蛍光放電管には、直径10 mmの平板状金属電極21の使用が可能であるので最大直径は10 mmである。蛍光放電管の内管径が5 mm から15 mmの間である場合、金属電極の直径は内径より2 mm小さくすると良い。蛍光放電管の内管径が5 mm から2 mmの場合、金属電極の大きさは内径より1 mm小さくすると良い。蛍光放電管の内管径が2 mm以下の場合、金属電極の大きさは内径より0.5 mm小さくすると良い。
蛍光放電管の内管が2 mm 以下の場合、平板状金属電極21の作業性を考え、棒状金属電極を採用することもできる。図5(A)に棒状金属電極22の表面に絶縁体粒子を塗布した例が示されている。棒状金属電極22は、ガラスに封じるディメット線の先端に固い金属棒をウエルダーで融接着し、金属棒に絶縁体粒子を付着させるだけでできるので、細いCCFLの作業性に優れる。使用する金属棒の太さは0.5 mmから1 mmであるが、太さに限定はない。長さは0. 5 mmから 5 mmの間であればよい。ここに示した数字よりも長くても、また短くとも電極として使えるのは勿論である。
金属電極の表面に絶縁体粒子が付着し易いように金属の表面を粗面にすると良いが, 粗面を化学エッチングで作らない方が良い。化学エッチングした面は絶縁体粒子には滑面となり、絶縁体粒子の付着が難しい。金属表面を粗面にするには、粉末粒子径が絶縁体粒子径より僅かに小さく、平均値で1から3 μmの粉末研磨剤を使用すると良い。
図5(B)には、棒状金属電極22の表面にガラスフリット23を被覆形成し、このガラスフリット23の表面に絶縁体粒子を塗布した例が示されている。この例では、絶縁体粒子を更に強固に金属表面に付着させる目的で、非晶質フリットガラス23を金属の表面に先ず付け、熔融点以上の温度に加熱した後に絶縁体粒子を塗布し、再度加熱し、フリットガラス23を熔融した後に室温まで冷却すると、絶縁体粒子が熔融フリットガラス23の助けにより強固に接着する。しかし、フリットガラス無しで作った方が性能は良い。
図5(C)には、金属電極であるフィラメント電極28の表面に絶縁体粒子4を塗着した例が示されている。従来、HCFLではフィラメント電極に電流を通電して加熱し、熱電子放出させていたが、このフィラメント電極28の両端28c、28dを結線してリード電極18に接続して通電不能にし、リード電極18に電位を印加するだけで本発明の金属電極に転換できる。HCFLに使用されるフィラメント電極にはBaOのような絶縁体粒子4が塗着されており、このフィラメント電極28に電位を印加しても通電しないから熱電子放出はなく、HCFLとしては機能しない。しかし、リード電極18を介して結線されたフィラメント電極28に電位を印加すると絶縁体粒子4に誘電分極を生起できる。この誘電分極により絶縁体粒子4の近傍に放電ガスに由来する電子源や陽イオン源を形成できる。
図5(D)には、断線したフィラメント電極28の表面に絶縁体粒子4を塗着した例が示されている。HCFLでは、断線部28aによりフィラメント電極28が断線すると、通電不能により熱電子放出が消失し、発光しなくなった蛍光放電灯管は不良品として廃棄されていた。しかし、この断線したフィラメント電極28の両端28c、28dを結線してリード電極18に接続すると、リード電極18に電位を印加することによりフィラメント電極28の全体を同電位に電位印加することが可能になる。フィラメント電極に絶縁体粒子4が塗着されていると、電位印加により絶縁体粒子4に誘電分極を生起できる。この誘電分極により絶縁体粒子4の近傍に放電ガスに由来する電子源や陽イオン源を形成できる。従って、断線したフィラメント電極を結線するだけで本発明の金属電極として利用でき、従来廃棄されていた蛍光放電灯管を再生することが可能になり、本発明により再生効果と省エネルギー効果を発揮できる。
図5(E)には、フィラメント電極28の一端28cにリード電極18を接続し、他端28dを浮かせた例が示されている。他端28dを電気的に浮かせているから、前記フィラメント電極28は通電不能になり、また一端28cをリード電極18に接続しているから、リード電極18に電位を印加するだけでフィラメント電極28の全体を本発明の金属電極に転換できる。その作用効果は図5(C)と同様であるから、その詳細を省略する。
図5(F)には、断線したフィラメント電極28の一端28cにリード電極18が接続され、他端28dを電気的に浮かせた例が示されている。前記リード電極18に電気的に導通したフィラメント電極28の部分には電位が印加され、前記フィラメント電極部分に塗着された絶縁体粒子4は誘電分極して、絶縁体粒子4の近傍に電子源又は陽イオン源が形成される。他方、電気的に浮いたフィラメント電極部分には誘電分極が生じず、電子源又は陽イオン源の形成には寄与しない。その作用効果は図5(D)とほぼ同様であるから、その詳細を省略する。
金属電極上に塗布する絶縁体材料4は誘電率εが3〜50までの値を持つ絶縁体ならばいずれも絶縁体粒子として使える。誘電率εが50以上の絶縁体を使用すると、外部回路のac電圧の立ち上がりと立下りが遅くなり、放電灯の点灯速度が遅くなる。同時に電力も増えるので得策でない。無機絶縁材料の蒸発温度は一般的に言えば非常に高温度まで安定であるので、蛍光放電灯管の寿命に影響を与えない。更に、蛍光放電管中の正イオンは絶縁体粒子を直撃することもなく、図1で明らかなように負電位の金属陰極に衝突することもない。従って、陰極に原因した蛍光放電灯管の寿命因子は本発明の蛍光放電灯管から消える。ここで蛍光放電灯管の寿命についてもう少し述べて整理する。蛍光放電灯管で寿命を決めるもう一つの因子は、蛍光膜輝度の経時劣化である。蛍光膜の輝度の経時劣化は、蛍光体の発光中心の破壊による劣化とする説明が出版書籍の中で確立しているが、この説明は間違いである。結晶の格子点を占有している発光中心は非常に安定である。だが蛍光体粒子の界面付近は不安定で、沢山の格子欠陥が製造時に出来る。特にイオン半径の大きな陰イオンは結晶界面で存在が不安定であり、結晶格子から抜け出し陰イオン欠陥を、原子層で表面から5層ぐらいの間に作る。蛍光体の製造において還元性雰囲気中で高温加熱すると、強制的に酸素欠陥数が増加する。これらの陰イオン欠陥を持った蛍光体粒子は、製造した蛍光放電管中の残留ガスを吸着する。蛍光体粒子表面に吸着した有機ガスは、蛍光膜に照射する254 nm紫外線を吸収するので、蛍光体粒子に到達する紫外線強度はその分だけ減少する。蛍光膜輝度は吸着ガスの量に従って減少する理由である。化合物結晶の表面から陰イオン欠陥を完全に取り除く方法はない。蛍光膜の劣化の主因は有機残留ガスである。残留ガスは蛍光放電灯の製造時の脱ガス工程で無視できる水準まで除ける。即ち、蛍光放電灯管の製造工程を改良すれば残留ガスの影響は無視できる。有機残留ガスを無視できる所まで取り除いた本発明になる蛍光放電灯管の寿命は、寿命に関与する全因子が無視できるので、初期輝度を 100,000時間以上も保持する。
絶縁材料の話に戻る。使用する絶縁体粒子は各粒子が個別化した粒子でなければならない。凝集粒子を含まないことが大切である。0.5μm以下の粒子が粉体材料に含まれていると、粉体の保存中に小さい粒子の接触面に毛管凝縮で空気中の水が吸着し、吸着水と絶縁体粒子表面との間に電気化学反応が起こり、粒子は凝集する。従って、使用する絶縁体粉に0.5μm以下の粒子が含まれないことが望ましい。絶縁体粒子の平均粒子径は、顕微鏡下で大きさを決定する方法で1μm〜10μmであれば使用できる。特に、平均粒子径が1μm〜7μmにある絶縁体粒子を使用すると良い結果が得られる。
絶縁体粒子材料は、化学ハンドブックに記載されている無機酸化物であればどれも使用できる。それらの中で望ましい酸化物として、MgO, SiO2, AlO3, CaO, SrO, BaO, Y2O3, La2O3, CaAlO3, アルミ酸塩と珪酸塩、及びその複合化合物などがある。これらの酸化物の他に、蛍光体の基体結晶がある。蛍光体の基体結晶は非対称の格子点を持っており、高い誘電率を持つので有利である。絶縁体素材として使える蛍光体粒子は、Y2O3, Y2OS, YVO4, YPO4, ZnS, ZnO, (Y,Gd)2O3, (Y,Gd)BO3, Y(P,V)O4, LaPO4, BaMgAl10O17等である。上記した蛍光体の基体結晶に蛍光体の発光中心となる付活剤を導入した蛍光体粒子も使用できる。但し、化学的に活性なSを含む化合物は、Hg蒸気と化学反応してHgS(黒色物質)を形成するので使用できない。粒子表面層にSを含まなければ使用可能である。利用する粒子表面は化学的にも物理的にも清浄な表面が要求される。上記した化合物以外に誘電率の大きなペロブスカイト粒子が知られている。その代表として、PbZrO3, PbTiO3, CaTiO3, SrTiO3, BaTiO3, PbTiO3と PbZrO3の固溶体 (PZT)、PbTiO3とCaTiO3の固溶体などがある。ペロブスカイト粒子の誘電率は非常に大きい。既に述べたように、粒径が大き過ぎる誘電率材料の粒子は、例え沢山の自由電子やイオンを累積しても、ペロブスカイト粒子の充放電で外部回路の誘起電流の速度が遅くなるので使えない。
発明した新電子源は、蛍光放電灯管製造の部品として扱われる。部品としての新電子源の作り方を実施例により、詳細に述べる。
[実施例1]
本発明になる電子源の部品は、絶縁体粒子を金属電極上に適当な厚さに塗布することである。絶縁体粒子は粉末であるので、絶縁体粒子とビヒクルと呼ばれる結合剤溶液を調合し、塗布液(スラリー)を作る。一般に使用されるビヒクルには表1に示す2種類がある。どちらのビヒクルを使用しても同じ結果が得られる。
Figure 2009050930
Figure 2009050930
Ni金属棒電極にY(V,P)O4:Eu赤色蛍光体粉末を絶縁体粒子に選び、ビヒクルAでスラリーを作る。その調合割合を表2に示す。表2の材料を秤により正確に秤量し、両者をよく混ぜ合わせるとスラリーが出来る。Ni金属棒電極をスラリーに漬け、直ちに引き上げると、Ni金属棒電極表面にスラリーが付着する。付着した絶縁体粒子層数は、表2に示した混合割合を変えて調節する。引き上げられたNi金属棒電極上の絶縁体粒子層はスラリーで濡れているので、50 ℃前後の温風を吹きつけ乾燥する。乾燥後、電極を蓋のない炉にいれ550℃で10分〜30分加熱する。加熱により有機物が酸化され、水蒸気と炭酸ガスになり空気中に放散する。Ni金属棒電極を室温まで下げると、Y(V,P)O4:Eu赤色蛍光体の白色粉末が塗布したNi金属棒電極が得られる。この白色粉末を塗布したNi金属棒電極はCCFL電極として使用できる。
[実施例2]
Ni-Cr円盤状金属電極にY2O3:Eu赤色蛍光体粉末を絶縁体粒子として選択し、ビヒクルBを選択し、スラリーを調合する。スラリーを作る時の調合割合を表3に示す。表3の材料を秤により正確に秤量し、両者をよく混ぜ合わせるとスラリーが出来る。このスラリーにNi-Cr円盤状金属電極を漬け、引き上げると、Ni-Cr円盤状金属電極の両表面にスラリーが付着する。付着した絶縁体粒子層数は、表3に示した混合割合を変えて調節する。引き上げられたNi-Cr円盤状金属電極上の絶縁体粒子層はスラリーで濡れているので、弱い温風を吹きつけて乾燥する。乾燥後、電極を蓋のない炉に入れ550℃で10分〜30分加熱すると、有機物が酸化により分解し、水蒸気と炭酸ガスとなり空気中に放散する。Ni-Cr円盤状金属電極を室温まで下げると、Y2O3:Eu赤色蛍光体の白色粉末が塗布したNi-Cr円盤状金属電極が得られる。この白色粉末を塗布したNi-Cr円盤状金属電極はCCFLの電極として使用できる。
Figure 2009050930
[実施例3]
Ni金属棒電極にBaO絶縁体粒子とビヒクルBを選び、スラリーを作る。調合割合を表4に示す。製造工程は実施例1と2に述べたと同じ工程であるので略す。この白色粉末を塗布したNi金属棒電極がCCFLの電極として使用できる。
Figure 2009050930
[実施例4]
Niカップ電極にBaMgAl10O17絶縁体粒子とビヒクルAを選び、スラリーを作る。調合割合を表5に示す。製造工程は実施例1と2に述べたと同じ工程であるので略す。この白色粉末を塗布したNiカップ電極がCCFLの電極として使用できる。
Figure 2009050930
実施例に示さない酸化物、複合酸化物の粉末粉を使用しても、実施例2〜4に示したと同じ結果が得られるので、これ等の実施例の既述を略すが、本発明から除外するものではない。
[実施例5]
実施例5では、HCFLに広く使われている熱陰極を本発明になる電子源で置換するとどの問題が解決するかが述べられる。世界で最も広く使用されている電極は熱陰極である。熱陰極は800℃前後に加熱したタングステンフィラメントを酸化バリウム(BaO)等で被覆した陰極である。熱したBaO層の最上層に配置したBaから電子が真空中に放出する。HCFLを操作すると、電極付近の管壁温度が他の部分の管壁温度よりも高くなる。管内径が10 mmより細い省電型HCFLでは手で触れない高温度 (50 ℃から60 ℃)に加熱する。電極周辺の放電管の管壁温度が上昇する原因が明らかで無かったので、対策が採られていない。本発明者の研究によれば、陰極表面は不可避的に形成される表面結合電子SBE (105 V/cm)で覆われており、SBEの負電界を越えて陰極から電子を取り出すには、105 V/cm以上の陽極電圧の印加が陰極に必要である。陰極から取り出された電子は当然ながら105V/cm以上のエネルギーを持つ高速電子である。ガス原子の満ちたガス空間に突入した高速電子は、陰極と陽極間の強い一方向の電場により、電子は一方向に進む。一方向に進む高速電子はガス原子を励起するよりもガス空間をある距離だけ通過すると、ガス原子と非弾性衝突し、ガス原子をイオン化して電子とイオンに分離する。イオン化に当たりガス原子のエントロピーの変化で熱が出る。この熱により陰極周辺の広い範囲で放電灯の管壁温度が高くなる。高速電子はガス原子と非弾性衝突を繰り返しながらエネルギーを僅かずつ失い、陰極からある距離を移動した所で、移動電子のエネルギーはガス原子を励起するエネルギーまで減少する。電子によるガス原子の励起には熱の放出を伴わない。それ故、以後の管軸長では管壁温度は一定となる。陰極付近の管壁温度が上昇するのが第一のHCFLの問題である。この問題は、蛍光放電灯管の主放電に関与しないガス原子のイオン化が発生している事実を示す。これは蛍光放電管の点灯には無駄なエネルギーの消費である。本発明になる電子源を電子供給源に採用すると、HCFLはCCFLとなるが、電子源から取り出された電子のエネルギーはゼロ速度に近く、ガス原子のイオン化は起こらない。従って、蛍光放電灯管の点灯で、蛍光放電管端周辺の温度上昇は無い。それ故、本発明になる電子源を使用したCCFLの点灯電力は、従来のHCFLとCCFL蛍光放電灯管の点灯電力より顕著に減少する。
第二の問題は陰極前面で発生する大きな陰極電圧降下である。蛍光放電灯の全エネルギーの30%〜40%のエネルギーが陰極電圧降下で失われる。陰極電圧降下はCCFLでも発生しているから、熱電子陰極に固有でないので一般論として述べる。上述したように電子を真空中に直接取り出す陰極は、不可避にできる強い負電荷のSBE (105 V/cm)で覆われている。陰極から電子を取り出すには、105 V/cm以上の陽極電圧の印加が陰極に必要になる。取り出された電子は陰極と陽極間の強い一方向の電場により、一方向に進む。一方向に進む高速電子はガス原子を励起するよりもガス空間を通過する中、ガス原子と非弾性衝突し、ガス原子をイオン化して電子とイオンに分離する。高速電子はガス原子と非弾性衝突を繰り返しながらエネルギーを僅かずつ失い、陰極からある距離を移動した所で、移動電子のエネルギーがガス原子を励起するエネルギーの水準まで減少する。電子によるガス原子の励起には熱の放出が伴わないことは既に述べた。以後の放電に関与する電子は、ガス原子を励起する水準のエネルギーを持った電子の挙動で決まり、陰極に出来たSBEの影響を受けない放電となる。この放電が陽光柱放電である。陰極電圧降下が起こる範囲は、陰極表面と陽光柱の始まるまでの間に一致する。
この範囲には、陰極から取り出された場所によりエネルギー値が異なる高速電子、ガス原子のイオン化により発生した自由イオンと自由電子が混在するが、各荷電粒子の分布が均一でなく、陰極面からの距離により不規則に変わる。この変化の中でガス原子を励起できるエネルギーを持った電子もあり、ガス原子を励起し発光させるが、その数は少ない。その他のエネルギーを持った電子とイオンはガス原子を発光させない。電子のエネルギーを決める1因子に、電子とイオンの質量の差がある。イオン化して出来たイオンと電子は陰極と陽極の電界により、電界中を移動するが、移動速度、移動方向、移動距離が大きく異なるのでガス空間中で偏って分布する。偏積分布したイオンの電界(陽極電界と逆方向)が軽量で動く電子に作用する。エネルギー値が異なる高速電子、偏積したイオン、電界強度により容易に動く電子の複雑な分布が、これ等の荷電粒子が均一に分布することを許さず、それに基づいた線状発光縞が観察される。陰極電圧降下の起こる範囲は線状発光縞が発生する範囲に相当する。従来の陰極を使用する限り、SBEは陰極面に不可避に出来るので、陰極電圧降下も不可避に発生する。従来の陰極電極を本発明の電子源で置き換えるだけで、陰極電圧降下は蛍光放電灯から完全に消える。その結果、本発明の電子源を使用したCCFLの点灯消費電力は、従来品に比して約40 % 減少するので、環境汚染問題に大いに貢献する。
第三の問題は蛍光放電灯の点灯寿命である。HCFLを使用した蛍光放電灯の寿命は、電極金属周辺に出来た陽イオンが陰極電位に引き寄せられ、陰極に弾性衝突し、陰極金属の局部を高温度に加熱し、そこから金属蒸気が蒸発することに原因する。本発明になる電子源を採用すると、放電ガス内に陽イオンにさらされた金属は皆無である。従って、寿命の飛躍的な延長が可能となる。
以上までに記した詳細な発明の内容は、蛍光放電灯管の電子供給源の改良であった。本発明になる電子源を使用すると、初速ゼロに近い電子が放電路に取り出せる。その結果、従来の蛍光放電灯管の研究では解明が困難であった現象が解明できるようになった。それらは蛍光放電灯管の放電点灯開始時間の遅れ、陽光柱のSBE鞘への収納である。この問題は、蛍光膜を構成する各蛍光体粒子の荷電状態に原因する。今まで誰もが蛍光体粒子の物性が理解出来なかったので、この問題の解明に手を付なかった。以下に各蛍光体粒子の荷電状態が放電電子に関与する状態を詳述する。
FL管内のガス放電に影響を与える蛍光膜の4つの荷電状態と電子軌道の変化を図6に図解する。図6(A)は、蛍光放電灯管ガラス9の内壁面に市販放電灯用 (PL) 蛍光体粉を塗布して出来た蛍光膜24の部分図である。市販PL用蛍光体の全粒子は持続性内部分極 (PIP)を製造時から保持して居り、粒子外にPIPの負電荷 (約 150 V )の電界を及ぼす。当然の理で市販PL蛍光体を使って作った蛍光膜24の上面はPIPの負電荷で覆われる。そこに初速ゼロに近い電子源からの電子eが近づくと、電子eはPIPの負電界から静電反発を受け、蛍光膜上に入れない。それだけではない。ガス空間はガス原子の最外殻を充填している外殻電子による負電界で満ち、電子eはガス空間にも入れない。ガス原子は放電しない。即ちガス放電は点灯しない。
蛍光放電管中のガス空間に侵入できる電子は、高エネルギー電子だけである。従来の放電灯管は、高エネルギー電子を陰極から取り出したので、電子はガス空間に突入できたが、高エネルギー電子は蛍光膜上の表面伝導は出来ず、ガス放電を点火出来なかった。蛍光放電灯管のガス放電には、ガス放電に先立ち、蛍光膜上に低速電子の導入が必要である。使用した高エネルギー電子は一方向に直進し、散乱電子は蛍光膜のPIP負電界に打ち勝つことが出来なかった。蛍光膜周辺に電導体を設置し、300 V前後の正電圧を印加すると、放電灯のガスが点火する現象を経験的に見出した。特殊CRT開発者も経験的に知っていた。蛍光膜のPIPは200 V以上の正電界を蛍光膜に印加すると蛍光膜から消える。蛍光膜のPIPの存在とその消去の方法は、乾式複写機や電子写真の感光板に実用されている。蛍光体材料も感光板として使えるが性能が低いので実用化できない。蛍光膜のPIPは特殊CRT (蓄積管)にも利用されている。蛍光放電灯管の放電の点火法として、蛍光放電灯管の技術者は蛍光膜のPIPの消去法を経験的に見つけたが、PIPそのものの存在を理解できなかったので動作原理が不明であった。PIPの消去により付随して発生する諸問題の除去に苦労し、経験で見つけた方法を社内機密とした。本発明者は、蛍光体の選択により、PIPの問題を全面的に解決する。蛍光体の種類と作り方を制御すると、蛍光膜にPIPを作らない蛍光体を作ることが出来る。
図6(B)に蛍光体粒子がPIPを持たない蛍光体を使用して作られた蛍光膜25上に初速ゼロに近い電子を導入した時の、蛍光膜表面伝導電子の状態を示す。PIPを持たない蛍光体としては、15 V以下の低電子線の照射下で発光するCL蛍光体である。代表的な蛍光体は、緑白色に発光する又は390 nmにピークを持って鋭い線状発光する酸化亜鉛 (ZnO) 蛍光体、ナトリウムの化合物を融剤に使わずに作られた青色発光硫化亜鉛 (ZnS:Ag:Cl) 蛍光体、緑色発光硫化亜鉛 (ZnS:Cu:Al) 蛍光体,及び特殊条件下で作られたMgOがある。蛍光膜に照射する電子のエネルギーを120 Vまで上げると、酸化亜鉛過剰で製造された珪酸亜鉛 (Zn2SiO4:Mn) 蛍光体、表面を化学エッチングして作られた硫酸化イットリウム (Y2O2S:Eu or Tb)蛍光体、融剤を使用しないで作られた酸化イットリウム (Y2O3:Eu or Dy) 蛍光体等が加わる。図6(B)の例はZnO蛍光体で蛍光膜を作った場合を示す。蛍光膜表面に入った低速電子は、PIP負電界が存在しないため、容易に蛍光膜上に入り、放電管の他端にある累積イオン8の電界により加速され、蛍光膜表面上を一方向に進み、累積イオン8に到達し再結合によりガス原子に戻る。通常のFL管(管長50 cm)で一方向に進む電子軌道にガス原子が存在する確率は計算できる。その値は10-6であり、一方向に進む加速電子がガス原子と衝突する確率はゼロと考えて良い。表面伝導する電子によるガス原子の発光はない。更に蛍光膜上を表面伝導する電子の直接計測法がない。間接には放電管の外壁に設置した導体に大きな誘導電流が検出できるので、大きな表面伝導電流が流れていると理解できる。次の事実を観測できた。ZnO蛍光膜は完全な平滑面で無いので、蛍光膜表面上を一方向に進む加速電子は蛍光膜の突起した部分に衝突し、その部分の蛍光体はCL発光する。微弱なCL発光であるが一方向に進む加速電子の存在を確認できる。蛍光膜が完全な平滑面であると、電子の動きは検出出来ない。加速電子の検出にY2O3:Eu 蛍光体 (110 Vの電子照射で発光する)の蛍光膜を使用すると、次のことが観測できる。Y2O3:Eu 蛍光体には数少ない蛍光体粒子に欠陥があり、その粒子の負電荷により、一方向に進む電子軌道が曲げられ、表面伝導で加速された電子がガス原子の充満したガス空間に入る。ガス空間に軌道を曲げられた加速電子はガス空間のガス原子と非弾性衝突する。非弾性衝突でエネルギーを受けたガス原子 (Hg) は励起され、紫外線を発光する。発光した紫外線は蛍光膜に照射され、蛍光膜はPLを発光する。非弾性衝突で軌道を曲げられた電子はガス空間に留まり、ガス空間に印加されている高周波電界により加速され、ガス空間の他のガス原子を励起する。この繰り返しがガス空間で起こりガス原子は放電を開始する。蛍光膜中に含まれ、一方向に進む電子軌道を曲げる粒子数は少ないので、PL発光強度は低いが、ZnO蛍光膜の場合より多くの蛍光体粒子がPL発光する。このように一方向に進む加速電子と、加速電子の軌道をガス空間に曲げ、ガス原子を励起する方法が、PL発光の観察により明確に検出できる。同じ結果はZn2SiO4:Mn緑色発光蛍光体やY2O2S:Eu赤色蛍光体を使用しても検出できる。だがこれ等の蛍光体から単独で作った蛍光膜の発光は、実用水準の発光強度に比較するとかなり低い。上述した実験は実務を大切にする放電灯技術者には低輝度であるので無視された。しかし、上述したように非常に重要な科学情報を提供しているのを見逃した。
PIPを持たない蛍光膜は、低速電子の蛍光膜上の電子電導を容易に許容し、電子を加速する(引き金の役割)が、蛍光放電灯管中のガスの励起には直接貢献しない。蛍光膜中に負帯電している蛍光体粒子が存在すると、加速電子の軌道はそこで曲げられガス空間に入り、ガス原子を励起する。励起したガス原子は紫外線を発光する。非弾性衝突した電子は、ガス空間に留まり、高周波電界により加速され、他のガス原子を励起する。この繰り返しでガス放電は点火する。これが実用蛍光放電灯管のガス放電を瞬時に点灯する機構である。この観察は蛍光放電灯管を科学解析する上で非常に重要な発見である。
図6(C)は上記した発見を確認する目的で、蛍光放電灯管の蛍光膜の終端の小面積にZnO蛍光体粒子25(PIP無し)を塗布し、残りの大面積に市販PL蛍光体粒子を配列した蛍光膜24(PIP有り)で蛍光放電管内壁面を覆う。実験的には先ず市販PL蛍光体粒子をガラス内壁面に塗布し、乾燥してから結合剤を焼却する。ガラス端の蛍光膜を柔らかい布でふき取った後、ZnO蛍光体粒子25を拭き取ったガラス面に塗布する。乾燥してから結合剤を焼却する。この方法により、図6(C)の蛍光膜が出来る。
この蛍光膜に本発明になる電子源を設置し、初速ゼロに近い電子を導入する。電子はZnO蛍光体粒子25の配列した所で加速され、ガス原子の励起可能なエネルギーを持つ。加速電子は、しかし市販蛍光膜24上に立ち入ることが出来ず、電子軌道を曲げてガス空間に入る。ガス空間に入った電子はガス原子と非弾性衝突し、ガス原子を励起し、ガス空間の放電を点灯する。この現象が蛍光放電灯管のガス放電の瞬時点灯となる。非弾性衝突した電子は、ガス空間の高周波の波に乗り、高周波電界から適切なエネルギーを獲得し、次のガス原子を非弾性衝突で励起する。放電路を伝播する高周波の波と共鳴した電子はこの繰り返しによりガス原子を励起しながら放電管中を管端まで移動し、最後にイオンと結合して消える。蛍光放電管中を高周波の波と共鳴して移動する電子は、我々の眼で観察したとき、蛍光放電灯管は均一強度で発光する蛍光膜として観察される。しかし、大切な事実が見過ごされていた。
放電路中を移動する電子は加速によりエネルギーを持ち、ガス原子と非弾性衝突をする。非弾性衝突した電子の軌道方向は無作為である。無作為方向に散乱された電子の中には蛍光膜に接近する機会を持つ電子があるが、蛍光膜にはPIP26の負電荷が存在するので、その電子は蛍光膜に接近できず、陽光柱内に戻る。高周波の波に共鳴しているガス原子を発光させる電子の活動範囲は、ガス放電管の全空間ではなく、蛍光膜から一定の距離を保持した放電管の中央のガス空間内に限定される。それがPIP鞘26に収められた陽光柱である。ガス原子は電気的に中性であり、電界や電荷の影響を受けず、放電管内に均一濃度で分布する。PIP鞘26に収められた陽光柱と蛍光膜の間にガス原子(未励起ガス原子)が均一濃度で分布している。陽光柱で発光した光がガス原子の励起準位から基底準位への電子遷移で発生しているならば、発光した光はガス原子による吸収が許容となる。その場合陽光柱内で発光した光は陽光柱と蛍光膜間に介在するガス原子により吸収され、蛍光膜に届くのは吸収された残量になる。蛍光放電灯の場合、低圧Hg蒸気の発光を利用する。発光はHgの励起準位6pから基底準位6sへの電子遷移であるので、陽光柱と蛍光膜間に存在するHg蒸気により吸収を受ける。光は電荷を持たない粒子であるのでPIPの影響を受けず、陽光柱と蛍光膜間に存在するHg蒸気により吸収を受けた残量だけが蛍光膜に到達する。蛍光体粒子は大きな光屈折率を持った粒子であるので、紫外線の一部が蛍光膜の表層に配列した蛍光体粒子に突入し、発光中心に直接吸収されて可視光を発光する。表層粒子で反射した紫外線は散乱光となり蛍光膜の深部にある蛍光体粒子に突入し,発光する。与えられた蛍光放電灯管で蛍光膜に到達する紫外線量を増加させるには、蛍光膜がPIP負電荷で覆われないようにすると良い。即ち、PIP鞘を作らないようにすると良い。
蛍光膜に接近して配置した導体に正電位を印加すると蛍光膜のPIP電荷は消える。その結果、PIP鞘26は消え、陽光柱は蛍光膜まで広り、輝度が増加すると期待すると、そうではない。PIPが存在しない蛍光膜は図6(B)に示した蛍光膜25と等価になり、電子は負電界のガス空間に入れず、蛍光膜表面上を一方向に進む表面伝導になり、蛍光放電灯管の輝度は著しく減少する。高輝度に発光する蛍光膜には、蛍光膜を表面伝導により電子を加速する働きと、その電子軌道をガス空間に曲げるPIP蛍光体粒子の両者の蛍光体粒子の組み合わせが必要である。実務的にはPIP電荷の作用の及ばない所に陽光柱を作れば良いことになり、Hg原子による自己吸収を容認し、管径が25 mm以上と大きな蛍光放電灯が実用され、最適条件を経験的に求めた。これが従来の蛍光放電灯であり、陽光柱内でHgが発光した254 nm紫外線の自己吸収を許容し、発光の飽和現象のある蛍光放電灯を実用化してきた。
図5の結果より、図6(D)に図示したように、PIPを持つ市販PL蛍光体24とPIPを持たない低電圧CL蛍光体25をガラス管内面に交互に配列する。PIP26の作用は大いに減殺され,ガス放電の点火が早く、陽光柱の広がりによる輝度上昇が見られた。ここで低電圧CL蛍光体25の選択が必要になった。低電圧CL蛍光体25の候補は前記した。これ等の蛍光体のどれでもが使用できるとは限らない。市販されているこれ等の蛍光体の中には、表面処理と言って絶縁体の微細粒子が表面に付着している。他の場合、蛍光体製造時の処理が不十分で残留物が粒子表面に残っている。陽光柱から散乱により蛍光体粒子に照射した電子は、蛍光体粒子内に入り、蛍光体粒子から二次電子を真空中に放出する。その時蛍光体粒子の中に正孔を残す。この正孔と二次電子が真空中で結合し、金属陰極の場合と同様な機構で粒子表面にSBEを形成する。不純物が付着していると、その不純物の表面にもSBEが形成する。CL蛍光体粒子の発光は、電子の入射で蛍光体粒子内に沢山できる正孔と電子が発光中心で再結合して発光する。CL蛍光体粒子の表面が清浄であると、CL蛍光体粒子の表面にあるSBEは結合相手である蛍光体粒子内の正孔を失う。相手を失った真空中の電子は自由電子となり、加速され電子軌道を陽光柱に曲げられ放電に寄与する。問題は粒子表面に付着している不純物上にできたSBEである。PIPと等価の作用をもつ。困ったことに不純物上のSBEの消去はできない。この理由で、低電圧CL蛍光体の選別が大切となる。最も確かな低電圧CL蛍光体はZnO蛍光体である。ここでCL蛍光体の方がPL蛍光体より明るい理由を説明する。蛍光体粒子内に突入した1個の入射電子により作られる電子と正孔対数は入射電子が結晶格子と非弾性散乱する数に相当する(約1,000個)。一方、PL蛍光体粒子では一個の光子は一個の発光中心しか励起できない。CL蛍光体が明るい理由である。
蛍光放電灯管の内壁面にPL蛍光体24と低電圧CL蛍光体25を隣り合わせにして蛍光膜を製造するのは至難の業である。出版された論文、Journal Physics D Applied Physics,32, (1999), pp 513-517(非特許文献6)によれば、FLの最適蛍光膜厚は蛍光体粒子の3層で出来ている。この蛍光膜に照射する電子の突入できる粒子は、最上層に配列した粒子だけであり、紫外線は粒子の荷電に影響を受けず、蛍光膜中に突入する。突入深度は粒子層数にして3層である。この理由で、市販蛍光体粒子24を3層になるようにガラス管内壁面に塗布し、乾燥後低電圧CL蛍光体25を市販蛍光体層24の上に散布するように塗布すると、本発明になる蛍光膜が製造できる。このようにして作られた蛍光膜の模式図を図7(A)に示す。
蛍光膜を2度に分けて塗布するのは、作業工程が複雑になる。蛍光体スラリーの一回塗布で蛍光膜を作る方法を考案した。市販PL蛍光体の平均粒子径を4 μmとする。低電圧CL蛍光体の粒子径を2 μmとする。粒子径が異なる2種類の蛍光体粉を、重量比でPL蛍光体:CL蛍光体=7:3の割合で秤量し、秤量粉体を混合瓶に入れ、均一に混ざるまで混合し、蛍光体塗布液を作り放電管ガラス内壁面に塗布する。塗布液が乾燥しないとき、ガラス管壁に近い所には大きなPL蛍光体粒子24が選択的に集まり、蛍光膜の表面に小さなCL蛍光体粒子25が多く集まるので、図7(B)に示した蛍光膜が得られる。図7(B)の蛍光膜を使い蛍光放電灯管を作ると、表面層にあるCL蛍光体粒子はSBEを形成しないので、陽光柱内で高エネルギーを持った電子はCL蛍光体粒子に達する。その結果、陽光柱が蛍光膜の所まで接近して紫外線を放射する。この紫外線は未励起Hg原子が介在せず、より多くの紫外線がPL蛍光体層に入射する。その結果、蛍光膜のPL強度が増加する。ここに使用するCL蛍光体粒子の大きさは、PL蛍光体の平均粒子径が4μmであるとき、平均値で1μm〜3μmであるとき、良好な結果が得られた。この粒子径はPL蛍光体の粒子径により変わる。注意することは、CL蛍光体粒子が1μm以下と小さい時、粒子は蛍光膜の表面に配列せず、蛍光膜の乾燥時に蛍光膜の底に集まり、CL蛍光体粒子の効果は減退する。以下に実施例を用いて更に詳細に蛍光膜に付いて述べる。
[実施例6]
本発明になる低電圧発光CL蛍光体を混合した蛍光膜の一例を述べる。蛍光膜は表6に示した蛍光体粉を混合して作った。性能の良い低電圧CL蛍光体としてZnS系蛍光体があるが、基体結晶の硫黄Sが放電中にHg蒸気と化学反応しHgSを形成するので避けた。
表6の各蛍光体粉の重量を秤量し、混合瓶に入れ秤量蛍光体粉が良く混ざるまで混合する。この混合粉体に、ビヒクルAを150グラム添加し、蛍光体粒子がスラリー中に良く分散するように攪拌する。蛍光体スラリーを外径5 mmのガラス管内に導入し、暫しの間放置した後、スラリーをガラス管内から取り去ると、ガラス内壁面に蛍光体粒子が付着し、蛍光膜がガラス管内壁面に塗布される。蛍光膜を温風乾燥した後、600 ℃で30分間蓋のない炉で加熱し、蛍光膜内の有機結合剤を熱分解により水蒸気と炭酸ガスとして管内から取り去ると、蛍光体粒子だけからなる蛍光膜がガラス管壁に残る。ガラス管壁端にある蛍光膜を柔らかな布で拭き取る。拭き取ったガラス管の箇所に、実施例4と5のうちのどちらかの電極を挿入する。一方の管端はガラス管を溶融して電極を封着する。もう一方の管端のガラス管を僅かに溶融し管径を細くする。細くなった管径の先にHgアマルガムとBaゲッターを設置した後、開口した小ガラス管20を排気装置に接続し、ガラス管内の空気を真空ポンプを用いて取り去る。HgアマルガムとBaゲッターを設置したガラス管の箇所を除き、ガラス管全体を炉内にいれ、500 ℃前後に加熱してガラス管内の材料から脱ガスをする。脱ガス工程が終わったならば、温度を室温近くまで下げる。その後にHgアマルガムとBaゲッターを僅かに加熱し、それらからのガス放出を行う。ガスはポンプで排気する。その後、70 Torr前後のArガスを導入し、HgアマルガムとBaゲッターが収納された先のガラスを融解してガラス管を排気装置から切り離す。切り離し後、HgアマルガムとBaゲッターを加熱し活性化する。その後、電極部分の排気細管を融解して封じると、外径5mmのCCFL蛍光放電灯管が得られる。このCCFLは10ミリ秒前後の速度で放電が点灯する。点灯速度は暗所でも変わらないのは当然の理である。この放電灯には陰極電圧降下が無く、外部回路で測定した点灯電力は従来のCCFLよりも30%減少する。更に陽光柱の径を規制したSBE鞘が無いので、蛍光放電灯管の蛍光膜からは13 % 以上の光が取り出せる。
Figure 2009050930
[実施例7]
表7は本発明になる低電圧発光CL蛍光体粉を混合した蛍光膜の他の例である。市販PL蛍光体は、青色に化学式 (Ca,Sr,Ba,Mg)(PO4)6Cl:Eu2+、緑色にBaMgAl10O17:Eu2+:Mn2+、赤色にY(V,P)O4:Eu3+の蛍光体を混合して白色発光になるように調製され、更に低電圧CL蛍光体にZnO蛍光体粉を添加する。蛍光膜の製造工程と蛍光放電灯管の製造工程は実施例6に述べたと同じであるので略す。
Figure 2009050930
[実施例8]
表8は本発明になる低電圧発光CL蛍光体粉を混合した蛍光膜の更に他の例である。実施例6と7に使用した蛍光体では、貴重な希土類元素を使うので、非常に高価である。特に、資源の枯渇が見込まれるテルビウムTb元素を多量に使用する。これ等の貴重な元素を使用しない明るい蛍光放電灯の開発が急がれる。NTSCのx-y色度座標点で緑色に明るく発光する蛍光体はZn2SiO4: Mn2+ 蛍光体である。Zn2SiO4: Mn2+ 蛍光体粉にはPL 用とCL用により2種類の異なった製造法がある。従来の蛍光放電灯管に使われていたのはPL用Zn2SiO4: Mn2+ 蛍光体粉で、粒子表面にSiO2 絶縁体微粒子を多量に付着した蛍光体粒子粉であった。この蛍光体粉末は、管径の大きな蛍光放電灯に使用できたが、蛍光膜に形成する強いSBE鞘に陽光柱が収まるので、管径を細くした蛍光放電灯管の蛍光膜には使用できなかった。蛍光放電灯管の内壁面でSBEを形成しないZn2SiO4: Mn2+ 蛍光体粉は、120 eVの電子線照射下で明るくCL発光するZn2SiO4: Mn2+蛍光体粉である。このCL発光Zn2SiO4: Mn2+蛍光体粉を希土類付活した青色蛍光体粉と赤色蛍光体粉と混合すると、白色に発光する蛍光体粉が得られる。この蛍光体粉を管径15 mm以下のCCFL管の内壁に塗布する蛍光膜に採用すると、CL発光Zn2SiO4: Mn2+ 蛍光体粉の粒子上にはSBEが形成せず、陽光柱は蛍光膜まで接近し明るく発光する。従って、多色のPL蛍光体粉との混合粉で白色を出す蛍光膜にCL発光Zn2SiO4: Mn2+ 蛍光体粉を使用できる。管径が15 mm 以下の細管のCCFLが得られる。貴重なTbを多量に使用しなくとも、白色に発光するCCFLが得られる。表8に緑色がNTSC色度座標点を持つ白色蛍光膜を得る蛍光体粉の混合割合を示す。調合粉は表8に示したPL蛍光体粉に限定されず、CCFLに使用する他種類のPL青色発光蛍光体粉と他種類のPL赤色蛍光体粉の混合粉を使用しても同じ結果が得られる。蛍光膜の製造工程と蛍光放電灯管の製造工程は実施例6に述べたと同じであるので略す。
Figure 2009050930
[実施例9]
経験で得られた結果によると、実施例8の細管CCFLの蛍光膜の構成は、約35重量%のCL緑色蛍光体粉と23 重量%のPL緑色蛍光体粉が含まれた時に最高の輝度が得られた。調合割合を表9に示す。表9の調合は実施例としての1例であり、調合するPL蛍光体は表9に示したPL蛍光体に限定されず、CCFLに使用する他種類のPL青色発光蛍光体粉と他種類のPL赤色蛍光体粉の混合粉を使用しても同じ結果が得られる。蛍光膜の製造工程と蛍光放電灯管の製造工程は実施例6に述べたと同じであるので略す。
Figure 2009050930
[実施例10]
実施例6〜9に使用した蛍光体は、クラーク数が小さく資源の枯渇が心配される貴重な希土類元素を使うので、非常に高価である。特に、資源の枯渇が見込まれるテルビウムTbとEu元素を多量に使用する。これ等の貴重な元素を使用しない明るい蛍光放電灯の開発が急がれる。本発明者は、旧来、蛍光放電灯管に使用していたハロ燐酸カルシウム白色発光蛍光体Ca5(PO4)3(F,Cl):Sb3+:Mn2+ に着目した。本発明者の研究によれば、ハロ燐酸カルシウム蛍光体で作られた蛍光膜は、蛍光放電管中でPIPに原因した放電発光の点灯に問題があった。更に、点灯中に蛍光膜に強いSBEが形成され、陽光柱は強いSBE鞘に収まり、陽光柱と蛍光膜間に介在するHg蒸気による254 nm紫外線の吸収があり、蛍光放電灯管の光出力を強く規制していた。このような現象が発生する主因は、ハロ燐酸カルシウム蛍光体の発光は、発光中心がSb3+とMn2+の増感作用を利用しており、1つの蛍光体粒子中で、Sb3+が直接254 nm 紫外線を吸収し、Sb3+の発光した青色光の一部をMn2+が吸収して黄色の幅広いバンドで発光し、2つの発光バンドで白色を出していた。付活剤の励起機構の分類に従えば、直接励起蛍光体であり、基体結晶の電子と正孔は発光に関与しない。この種の蛍光体は、電子線照射下では暗いCLしか発光しない。これは公知の事実である。見過ごされた点は、直接励起蛍光体粒子の物性は、基体結晶の電子と正孔が関与しないので、電子線照射下で絶縁体の特性を持つ事であった。既述したように、蛍光放電灯管内の蛍光膜には、陽光柱内で非弾性衝突した直後の電子の進行方向は無作為であり、蛍光膜にも高エネルギーを持った電子が届く。絶縁体に電子が照射すると、絶縁体粒子表面にSBEが形成する。SBE量は時間と共に積算され、結果として強いSBEができる。これがハロ燐酸カルシウム蛍光体を使用すると陽光柱はSBE鞘の中に入り、蛍光膜の輝度飽和現象となる。SBE鞘の問題を解決すれば、ハロ燐酸カルシウム蛍光体を内径2mmのCCFLの蛍光膜に適用できる。CCFLにハロ燐酸カルシウム蛍光体が使用できれば、資源の枯渇が心配されている希土類元素を使用しないで、安価な白色発光CCFLが得られる。ハロ燐酸カルシウム蛍光体が抱えていた放電発光の点灯遅れの問題は、蛍光放電灯に使用しているPL蛍光体に共通した問題であり、問題は解決できる。以下に実施例で解決法を述べる。
Figure 2009050930
表10に示したように白色発光ハロ燐酸カルシウム蛍光体粉70グラムと青白色に発光する低電圧CL ZnO蛍光体粉30グラムを秤量し、粉体混合する。この混合粉体を150グラムのビヒクルAと混合してスラリーを作る。以後の蛍光膜の製造工程は実施例6に述べたと同じであるので略す。得られた内径2 mmのCCFLはミリ秒の単位で瞬時に点灯し、蛍光膜上にSBEは殆ど検出できず、従来の25 mm管による蛍光放電灯よりも遥かに明るく発光するCCFLが得られる。本発明になるハロ燐酸カルシウム蛍光体粉の材料コストは現在市販されているCCFLよりも非常に低く、約十分の一である。開発した内径5 mm以上のCCFL蛍光放電灯は室内照明用として最適である。特に外径15〜20 mmのCCFLは部屋の照明に適する。開発した蛍光灯は安価であり、寿命は100,000時間以上と長いので、使用者の利益となる。
[実施例11]
実施例10で示したCCFLをLCDのバックライトに使用した時、赤色の光が足りない。純赤色で発光する蛍光体はEu3+イオンを発光中心とする蛍光体である。Eu3+を付活剤とする蛍光体は数多く発表されており、実用Eu3+蛍光体のいずれもが、電子線照射下で明るく発光する蛍光体である。それらの中で、110 eVの電子線で発光する蛍光体はY2O3:Eu3+蛍光体である。実施例11はY2O3:Eu3+蛍光体を赤色の補強とした例であるが、この蛍光体に限定されず、他の赤色蛍光体も赤色の補強に使用できることを限定するものではない。
Figure 2009050930
表11は白色発光Ca5(PO4)3(F,Cl):Sb3+:Mn2+の赤色波長範囲の光を補強する目的で、表10の混合蛍光体粉に赤色発光Y2O3:Eu3+蛍光体粉 (611 nmに線発光波長を持つ)を添加した場合である。混合蛍光体粉はビヒクル A を使用してスラリーを調合した。以後の蛍光膜の製造工程は実施例6に述べたと同じであるので略す。得られた外形2 mm のCCFLは1ミリ秒前後の速度で瞬時に放電し、Y2O3:Eu3+蛍光体 (611 nmに線発光)の発光で色補正がなされ、LCDのバックライトに使用できる。その上で陰極電圧降下は観察できず、点灯しているCCFL管中の蛍光膜上にSBEは殆ど検出できない特徴を示す。
本発明によれば、陰極電圧降下が無くなるから省エネルギーに貢献でき、外部電源の電流を低減でき、同時に電極近傍の明暗の縞状模様が無くなり、照度を格段に向上できる蛍光放電灯管を実現できる。また、本発明によれば、金属陰極の損耗が無いから蛍光放電灯管を長寿命化でき、蛍光放電灯管一本当たりの照度を格段に向上させ、急速点灯と全面点灯を可能にした蛍光放電灯管が実現できる。この蛍光放電灯管には直線管、曲線管、サークル管、蛍光電球及びその他の蛍光放電灯が含まれる。また、この蛍光放電灯管を利用したバックライト装置を有するLCD表示装置(液晶表示装置)も同時に提供することができる。

Claims (16)

  1. 蛍光放電灯のガラス管内壁面に蛍光膜を塗布した蛍光放電灯管において、前記ガラス管内の放電ガスの点灯が、電子の流れで独立している内部回路と、電源に接続された外部回路により生起されることを特徴とする蛍光放電灯管。
  2. 前記内部回路が、前記蛍光放電灯管内部の両端にそれぞれ個別に形成された電子源とイオン源から成り、前記蛍光放電灯管内のガス放電は、前記電子源から取り出された電子が前記イオン源に向かってガス空間を移動する過程で起こり、移動する前記電子がイオン源に到達したとき、前記電子がイオンと再結合して前記内部回路が閉じる請求項1に記載の蛍光放電灯管。
  3. 前記蛍光放電灯管内の一端に電気絶縁体粒子を層状に被覆した金属電極を配置して前記電子源形成用電極とし、前記蛍光放電灯管内の他端に電気絶縁体粒子を層状に被覆した金属電極を配置して前記イオン源形成用電極とした請求項2に記載の蛍光放電灯管。
  4. 前記電子源形成用電極の前記金属電極に正極性の電位を印加して、前記金属電極の電気絶縁体粒子を誘電分極し、電極周辺のガスのイオン化により発生した自由電子が誘電分極した前記電気絶縁体粒子の正電荷に引き寄せられ、前記自由電子が前記電気絶縁体粒子直前のガス空間で前記電気絶縁体粒子内の正電荷と結合してできた空間電子雲を前記電子源とし、前記イオン源形成用電極の前記金属電極に負極性の電位を印加して、前記金属電極の電気絶縁体粒子を誘電分極し、電極周辺のガスのイオン化により発生したイオンが誘電分極した前記電気絶縁体粒子の負電荷に引き寄せられ、前記イオンが前記電気絶縁体粒子の分極負電荷と結合してできたイオン集団を前記イオン源とする請求項3に記載の蛍光放電灯管。
  5. 前記電子源から電子を蛍光膜表面に取り出し、蛍光膜の表面伝導により電子を加速し、加速電子をガス放電の点火の引き金とし、前記加速電子の軌道を負電荷を持った蛍光体粒子によりガス空間に曲げ、蛍光放電灯管のガスを瞬時に点灯放電させることにより、陰極電圧降下の無いガス放電を生起させる請求項4に記載の蛍光放電灯管。
  6. 前記蛍光膜の表面に負電荷を持たない蛍光体粒子と負電荷を持った蛍光体粒子を交互に配置させて、前記蛍光膜表面の複数箇所で前記加速電子を前記負電荷を有した蛍光体粒子によりガス空間側に曲げる請求項5に記載の蛍光放電灯管。
  7. 前記蛍光放電灯管のガラス管内壁面に塗布される前記蛍光膜が、電子線発光蛍光体粉と光発光蛍光体粉の混合粉体からなる請求項1〜6のいずれかに記載の蛍光放電灯管。
  8. 前記光発光蛍光体粉が個別に三色に発光する三種類の希土類光発光蛍光体粉からなり、前記電子線発光蛍光体粉が低電圧電子線発光蛍光体粉からなる請求項7に記載の蛍光放電灯管。
  9. 前記希土類光発光蛍光体粉の内、緑色に発光する光発光蛍光体粉がCL発光珪酸亜鉛蛍光体粉で置換される請求項8に記載の蛍光放電灯管。
  10. 前記希土類光発光蛍光体粉の内、緑色に発光する光発光蛍光体粉がCL発光珪酸亜鉛蛍光体粉とPL発光珪酸亜鉛蛍光体粉の混合粉体で置換される請求項8に記載の蛍光放電灯管。
  11. 前記蛍光膜で、前記低電圧電子線発光蛍光体の粒子を、前記蛍光膜の表面に不連続に散布するように配置した請求項8〜10のいずれかに記載の蛍光放電灯管。
  12. 前記蛍光膜が、単独で白色に発光する光発光蛍光体粉と低電圧電子線発光蛍光体粉の混合粉体からなる請求項7に記載の蛍光放電灯管。
  13. 前記蛍光膜が、白色に光発光する前記光発光蛍光体がハロ燐酸カルシウム蛍光体からなる請求項12に記載の蛍光放電灯管。
  14. 前記蛍光膜に、赤色発光を補強する電子線発光酸化イットリウム蛍光体が追加的に添加された請求項13に記載の蛍光放電灯管。
  15. 請求項1〜14のいずれかに記載の蛍光放電灯管の単独又は複数個を平面に配列し、LCD表示装置のバックライトに使用することを特徴とするLCD表示装置。
  16. 前記蛍光放電灯管の複数個を垂直方向又は水平方向に配置し、それぞれの蛍光放電灯管を単独で、又は複数個の蛍光放電灯管を集団で、線順次に走査する方式で順次に点灯し、線順次の映像をLCD表示装置のスクリーン全体に映すことを特徴とする請求項15に記載したLCD表示装置。
JP2009537975A 2007-10-19 2008-07-24 新規構造の蛍光放電灯管及びlcd表示装置 Expired - Fee Related JP4923110B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009537975A JP4923110B2 (ja) 2007-10-19 2008-07-24 新規構造の蛍光放電灯管及びlcd表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2007/070431 WO2009050818A1 (ja) 2007-10-19 2007-10-19 蛍光放電灯管及び液晶表示装置
JPPCT/JP2007/070431 2007-10-19
JP2009537975A JP4923110B2 (ja) 2007-10-19 2008-07-24 新規構造の蛍光放電灯管及びlcd表示装置
PCT/JP2008/063265 WO2009050930A1 (ja) 2007-10-19 2008-07-24 蛍光放電灯管及び液晶表示装置

Publications (2)

Publication Number Publication Date
JPWO2009050930A1 true JPWO2009050930A1 (ja) 2011-02-24
JP4923110B2 JP4923110B2 (ja) 2012-04-25

Family

ID=46243873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009537975A Expired - Fee Related JP4923110B2 (ja) 2007-10-19 2008-07-24 新規構造の蛍光放電灯管及びlcd表示装置

Country Status (1)

Country Link
JP (1) JP4923110B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795381B (zh) * 2021-01-29 2022-07-08 成都理工大学 一种用于农业照明的钙钛矿结构荧光粉及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925875A (ja) * 1982-08-03 1984-02-09 Nichia Denshi Kagaku Kk 陰極線管用螢光体
JPH0695454B2 (ja) * 1989-08-09 1994-11-24 松下電工株式会社 可変光色点灯装置
JP3189285B2 (ja) * 1991-03-13 2001-07-16 東芝ライテック株式会社 無電極形低圧放電灯
JP3170821B2 (ja) * 1991-09-24 2001-05-28 東芝ライテック株式会社 無電極放電灯
JP3486908B2 (ja) * 1992-08-20 2004-01-13 東芝ライテック株式会社 低圧水銀蒸気放電ランプ
JPH06100858A (ja) * 1992-09-22 1994-04-12 Toshiba Lighting & Technol Corp けい光体およびこれを用いたけい光ランプ
JP2001303042A (ja) * 2000-04-20 2001-10-31 Toshiba Corp ラピッドスタート形蛍光ランプ用蛍光体およびそれを用いたラピッドスタート形蛍光ランプ
DE10057881A1 (de) * 2000-11-21 2002-05-23 Philips Corp Intellectual Pty Gasentladungslampe mit Leuchtstoffschicht
KR100857990B1 (ko) * 2002-08-05 2008-09-10 비오이 하이디스 테크놀로지 주식회사 액정표시장치의 백라이트유니트 구조
JP2004207183A (ja) * 2002-12-26 2004-07-22 Nippon Electric Glass Co Ltd 蛍光ランプ

Also Published As

Publication number Publication date
JP4923110B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
JP2006059786A (ja) プラズマディスプレイパネル
Psuja et al. Rare‐earth doped nanocrystalline phosphors for field emission displays
JP2009013412A (ja) 金属化合物で安定化された混成化されたナノ蛍光体膜、その用途およびその製造方法
KR20060044712A (ko) 축광 형광체 분말, 그 제조 방법 및 잔광성 형광 램프
TWI258791B (en) Vacuum ultraviolet-excited ultraviolet phosphor and light-emitting device that uses this phosphor
CN101868845B (zh) 荧光放电灯管及液晶显示装置
JP4923110B2 (ja) 新規構造の蛍光放電灯管及びlcd表示装置
WO1980001436A1 (en) Metal-vapor discharge lamp
TW200405380A (en) Dielectric barrier-discharge lamp with improved color rendition
US20080174226A1 (en) Mercury-free flat fluorescent lamps
JP5600590B2 (ja) 省電高輝度集積型蛍光灯
JP4883998B2 (ja) 蛍光体とその製造方法
Butler et al. Electroluminescence of zinc sulphide phosphors
JP2001303042A (ja) ラピッドスタート形蛍光ランプ用蛍光体およびそれを用いたラピッドスタート形蛍光ランプ
CN201097397Y (zh) 一种采用磁化的等离子体显示器
WO2009081482A1 (ja) 外部電極蛍光放電灯管、平面型光源及び液晶表示装置
WO2009104261A1 (ja) 省電高輝度集積型蛍光放電灯
US9123525B2 (en) Phosphor materials, fluorescent lamps provided therewith, and methods therefor
JP4982812B2 (ja) 真空紫外光励起用蛍光体
WO2009054030A1 (en) Mercury-free flat fluorescent lamps
KR940007648B1 (ko) 저압 수은 증기 방전 램프
Ozawa Coil-EEFL Tubes as Unrivaled Light Source with Small Wcoil Over Solid Light Sources
CN1996541A (zh) 一种采用磁化的等离子体显示器及等离子体放电方法
CN103210472B (zh) 发光设备
JP2005048146A (ja) 紫外線蛍光体及び紫外線蛍光ランプ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4923110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees