JPWO2009041194A1 - High strength and high conductivity copper alloy with excellent hot workability - Google Patents

High strength and high conductivity copper alloy with excellent hot workability Download PDF

Info

Publication number
JPWO2009041194A1
JPWO2009041194A1 JP2009534243A JP2009534243A JPWO2009041194A1 JP WO2009041194 A1 JPWO2009041194 A1 JP WO2009041194A1 JP 2009534243 A JP2009534243 A JP 2009534243A JP 2009534243 A JP2009534243 A JP 2009534243A JP WO2009041194 A1 JPWO2009041194 A1 JP WO2009041194A1
Authority
JP
Japan
Prior art keywords
phase particles
alloy
copper alloy
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009534243A
Other languages
Japanese (ja)
Other versions
JP5232794B2 (en
Inventor
雅俊 衛藤
雅俊 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009534243A priority Critical patent/JP5232794B2/en
Publication of JPWO2009041194A1 publication Critical patent/JPWO2009041194A1/en
Application granted granted Critical
Publication of JP5232794B2 publication Critical patent/JP5232794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

熱間加工性が良好で曲げ加工性を損なうことなく高強度、高導電性及び高熱伝導性を発揮するCu−Ni−P系合金からなる電子部品用銅合金を提供する。質量割合にて、Ni:0.50%〜1.00%、P:0.10%〜0.25%を含有し、NiとPの含有量比率Ni/P:4.0〜5.5で且つ、Cr:0.03%〜0.45%、O:0.0050%以下であり、Fe、Co、Mn、Ti、Zrのうち1種類以上の含有量が合計で0.05%以下、好ましくは0.03%以下で残部がCu及び不可避的不純物から成る銅合金において、Ni−P系第2相粒子の大きさについて、長径:a、短径:bとした時、a:20nm以上50nm以下で且つアスペクト比a/b:1以上5以下の第2相粒子が銅合金中に含まれる全第2相粒子の面積率で80%以上を占める銅合金。Provided is a copper alloy for electronic parts made of a Cu-Ni-P-based alloy that exhibits good hot workability and exhibits high strength, high electrical conductivity, and high thermal conductivity without impairing bending workability. In terms of mass ratio, Ni: 0.50% to 1.00%, P: 0.10% to 0.25%, Ni / P content ratio Ni / P: 4.0 to 5.5 And Cr: 0.03% to 0.45%, O: 0.0050% or less, and the total content of one or more of Fe, Co, Mn, Ti, and Zr is 0.05% or less. In a copper alloy, preferably 0.03% or less, and the balance being Cu and inevitable impurities, the size of the Ni-P-based second phase particles is a: 20 nm when the major axis is a and the minor axis is b. A copper alloy that occupies 80% or more in terms of the area ratio of all second phase particles in which the second phase particles having an aspect ratio of a / b: 1 to 5 are included in the copper alloy.

Description

本発明は、高強度、高導電性の電子機器部品用銅合金に関するものであり、特に小型、高集積化された半導体機器リード用及び端子コネクタ用銅合金において、熱間加工性に優れ、曲げ加工性を損なうことなく特に強度、導電性、熱伝導性に優れた電子部品用銅合金に関する。   The present invention relates to a high-strength, high-conductivity copper alloy for electronic device parts, and particularly excellent in hot workability and bending in a small and highly integrated copper alloy for semiconductor device leads and terminal connectors. The present invention relates to a copper alloy for electronic parts that is particularly excellent in strength, conductivity and thermal conductivity without impairing workability.

銅及び銅合金は、コネクタ、リード端子等の電子部品及びフレキシブル回路基板用として多用途に渡って幅広く利用されている材料であり、急速に展開するIT化による情報機器の高機能化及び小型化・薄肉化に対応して更なる特性(強度、曲げ加工性、導電性)の向上を要求されている。
又、ICの高集積化に伴い、消費電力の高い半導体素子が多く使用されるようになり、半導体機器のリードフレーム材には、放熱性(導電性)の良いCu−Ni−Si系やCu−Fe−P、Cu−Cr−Sn、Cu−Ni−P等の析出型合金が使用されるようになった。
特許文献1では、Cu−Ni−P系合金中のNi、P、Mg成分量を調整し、強度及び導電性、耐応力緩和性を備えた合金が報告されている。
特開2000−273562号公報
Copper and copper alloys are materials widely used for electronic parts such as connectors and lead terminals and flexible circuit boards. High-functionality and miniaturization of information equipment due to the rapid development of IT.・ Further improvements in properties (strength, bending workability, conductivity) are required in response to thinning.
In addition, with the high integration of ICs, many semiconductor elements with high power consumption are used, and the lead frame material of semiconductor devices has a good heat dissipation (conductivity) such as Cu-Ni-Si or Cu. Precipitation alloys such as -Fe-P, Cu-Cr-Sn, and Cu-Ni-P have come to be used.
Patent Document 1 reports an alloy having strength, conductivity, and stress relaxation resistance by adjusting the amounts of Ni, P, and Mg components in a Cu-Ni-P alloy.
JP 2000-273562 A

一般に、銅合金の鋳造、例えば連続或いは半連続鋳造において、鋳塊はモールドにより抜熱され、塊の表層の数mmを除いて内部はやや時間をかけて凝固する。この際に、凝固時及び凝固後の冷却過程において、室温におけるCu母相への固溶の限界を超えて含有された合金元素が結晶粒界及び結晶粒内に晶出又は析出する。特にCu−Ni−P系合金の結晶粒界に晶出又は析出したNi−P系化合物は母相のCuより融点が低いため、凝固中の不均一な歪等で発生する応力や外力により、Ni−P系化合物の部分で破壊が生じる。また、熱間圧延の加熱時においても、Ni−P系化合物が軟化又は液相化すると熱間圧延時に割れが生じる。このようにCu−Ni−P系合金には鋳造時の割れや熱間圧延時の割れが発生する問題があったが、特許文献1にはそのような問題は意識されていない。
本発明の目的は、鋳造工程中や熱間加工工程における加熱中または熱間加工中に発生する割れを防止し、熱間加工性が良好で曲げ加工性を損なうことなく高強度、高導電性及び高熱伝導性を発揮するCu−Ni−P系合金からなる電子部品用銅合金を提供しようとするものである。
In general, in the casting of a copper alloy, for example, continuous or semi-continuous casting, the ingot is heat-extracted by a mold, and the inside solidifies with some time except for a few mm of the surface layer of the ingot. At this time, in the cooling process during solidification and after solidification, alloy elements contained exceeding the limit of solid solution in the Cu matrix at room temperature are crystallized or precipitated in the crystal grain boundaries and crystal grains. In particular, since the Ni-P-based compound crystallized or precipitated at the crystal grain boundary of the Cu-Ni-P-based alloy has a melting point lower than that of the parent phase Cu, due to stress or external force generated due to non-uniform strain during solidification, Breakage occurs in the Ni-P compound portion. Further, even during hot rolling, cracking occurs during hot rolling when the Ni-P compound softens or becomes liquid phase. As described above, the Cu—Ni—P-based alloy has a problem that a crack at the time of casting or a crack at the time of hot rolling occurs, but Patent Document 1 does not recognize such a problem.
The object of the present invention is to prevent cracks that occur during heating or hot working in the casting process or hot working process, and have good hot workability and high strength and high conductivity without impairing bending workability. And a copper alloy for electronic parts made of a Cu-Ni-P alloy exhibiting high thermal conductivity.

本発明者らは上記の目的を達成すべく、研究を重ねた結果、下記構成を採用することにより曲げ加工性を損なうことなく優れた熱間加工性と優れた強度及び導電性を具備するCu−Ni−P系合金が得られることを見出した。
本発明は銅合金においてNi:0.50%〜1.00%(本明細書において、成分割合を表す%は質量%とする)、P:0.10%〜0.25%を含有し、NiとPの含有量比率Ni/P:4.0〜5.5で且つ、Cr:0.03%〜0.45%、O:0.0050%以下であり、Fe、Co、Mn、Ti、Zrのうち1種類以上の含有量が合計で0.05%以下、好ましくは0.03%以下で残部がCu及び不可避的不純物から成る銅合金において、第2相粒子の大きさについて、長径:a、短径:bとした時、a:20nm〜50nmで且つアスペクト比a/b:1〜5の第2相粒子が銅合金中に含まれる全第2相粒子の面積率で80%以上を占めることを特徴とする熱間加工性に優れた高強度高導電性銅合金である。
本発明の銅合金は、更にSnおよびInのうち1種類以上を合計で0.01%〜1.00%含むこともできる。
The present inventors have conducted research to achieve the above object, and as a result, by adopting the following configuration, Cu having excellent hot workability, excellent strength and conductivity without impairing bending workability. It has been found that a -Ni-P alloy can be obtained.
The present invention includes a copper alloy containing Ni: 0.50% to 1.00% (in the present specification,% representing the component ratio is mass%), P: 0.10% to 0.25%, Ni / P content ratio Ni / P: 4.0 to 5.5, Cr: 0.03% to 0.45%, O: 0.0050% or less, Fe, Co, Mn, Ti In the copper alloy in which the content of one or more of Zr is 0.05% or less in total, preferably 0.03% or less, and the balance is made of Cu and inevitable impurities, : A, minor axis: b, a: 20 nm to 50 nm, and the second phase particles having an aspect ratio of a / b: 1 to 5 are 80% in terms of the area ratio of all the second phase particles contained in the copper alloy. It is a high-strength, high-conductivity copper alloy excellent in hot workability characterized by occupying the above.
The copper alloy of the present invention may further contain one or more of Sn and In in a total of 0.01% to 1.00%.

本発明では、Cu−Ni−P系合金へCrを特定量添加することによって、Ni−P化合物の結晶粒界への晶出又は析出を抑制し、これによって粒界の高温脆性を改善して熱間加工性の向上を図ることができる。   In the present invention, by adding a specific amount of Cr to the Cu-Ni-P alloy, crystallization or precipitation of the Ni-P compound at the crystal grain boundary is suppressed, thereby improving the high temperature brittleness of the grain boundary. The hot workability can be improved.

次に、本発明において銅合金の成分組成の数値範囲を限定した理由をその作用と共に説明する。
[Ni量]
Niは合金中に固溶して強度、耐応力緩和特性及び耐熱性(高温での高強度維持性)を確保する作用があると共に後述するPとの化合物を析出させ、合金の強度上昇に寄与する。しかし、その含有量が0.50%未満であると所望の強度が得られず、一方、1.00%を超えてNiを含有させると導電率の低下が顕著となり、引張強さ650MPa以上で且つ導電率45%IACS以上の高強度高導電性が得られなくなる。従って本発明の合金のNi含有量は0.50%〜1.00%である。
[P量]
Pは、耐熱性を向上させ、且つNiとの化合物を析出して合金の強度を向上させる。P含有量が0.10%未満であると化合物の析出が不充分であるため、所望の強度が得られない。一方、P含有量が0.25%を超えて含有させるとNiとPの含有バランスが崩れて合金中のPが過剰になり、固溶P量が増大して導電率の低下が顕著となる。従って本発明の合金のP含有量は0.10%〜0.25%である。
[Ni/P比]
NiとPの含有量が上記の限定範囲内にあってもNiとPの含有比率Ni/Pが第2相粒子の適切な化学量論的組成比から外れると、すなわち、4.0未満の場合にはPの固溶する量が増大し、5.5を超えた場合にはNiの固溶する量が増大してしまい、導電率の低下が顕著となり好ましくない。従って本発明の合金のNi/P比は4.0〜5.5以下、好ましくは4.5〜5.0である。
Next, the reason for limiting the numerical range of the component composition of the copper alloy in the present invention will be described together with its action.
[Ni content]
Ni dissolves in the alloy and has the effect of ensuring strength, stress relaxation resistance and heat resistance (high strength maintenance at high temperatures), and precipitates a compound with P, which will be described later, thereby contributing to an increase in the strength of the alloy. To do. However, if the content is less than 0.50%, the desired strength cannot be obtained. On the other hand, if Ni is contained in excess of 1.00%, the decrease in conductivity becomes significant, and the tensile strength is 650 MPa or more. In addition, high strength and high conductivity with a conductivity of 45% IACS or higher cannot be obtained. Therefore, the Ni content of the alloy of the present invention is 0.50% to 1.00%.
[P amount]
P improves heat resistance and precipitates a compound with Ni to improve the strength of the alloy. If the P content is less than 0.10%, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, if the P content exceeds 0.25%, the balance of Ni and P content is lost, P in the alloy becomes excessive, the amount of solute P increases, and the decrease in conductivity becomes significant. . Therefore, the P content of the alloy of the present invention is 0.10% to 0.25%.
[Ni / P ratio]
Even if the content of Ni and P is within the above-mentioned limited range, if the content ratio Ni / P of Ni and P deviates from the appropriate stoichiometric composition ratio of the second phase particles, that is, less than 4.0 In this case, the amount of solid solution of P is increased, and when the amount exceeds 5.5, the amount of solid solution of Ni is increased. Therefore, the Ni / P ratio of the alloy of the present invention is 4.0 to 5.5 or less, preferably 4.5 to 5.0.

[Cr量]
一般にCu−Ni−P系合金の凝固時の冷却速度が遅い場合、例えば1100℃から950℃の冷却速度が30℃/分未満の時、Ni−P系化合物が結晶粒界に集約化、粗大化を伴って晶出するため好ましくない。
Crは、Cu−Ni−P系合金の凝固時や凝固後の冷却過程及び熱間加工の加熱時に、Ni−P化合物の結晶粒界への晶出又は析出を抑制し、合金の熱間加工性を向上させる。しかし、その含有量が0.03%未満であると熱間加工性の改善効果が得られず、一方、0.45%を超えてCrを含有させるとNi−P−Cr、Cr−P等の化合物が溶解中又は凝固中に生じたり、Crの晶出物が生じてしまう。これらのCrを含む化合物及び晶出物は、溶体化処理でCu母相中に固溶せず、そのため時効処理で析出するNi−P化合物が減少し、合金の強度低下を招く。更にNi−P−Cr、Cr−P等の化合物は、製品では長径5μm以上の介在物となって製品に残存し、製品の表面欠陥、曲げ加工時の割れの起点、めっき処理時の欠陥の起点になるため、好ましくない。従って、本発明の合金のCr含有量は、0.03%〜0.45%、好ましくは0.05%〜0.30%である。
[Cr content]
In general, when the cooling rate during solidification of a Cu—Ni—P alloy is slow, for example, when the cooling rate from 1100 ° C. to 950 ° C. is less than 30 ° C./min, the Ni—P compound is aggregated and coarsened at the grain boundaries. It is not preferable because it crystallizes with crystallization.
Cr suppresses crystallization or precipitation of the Ni-P compound at the grain boundary during the solidification of the Cu-Ni-P-based alloy, during the cooling process after solidification, and during hot working, thereby hot working the alloy. Improve sexiness. However, if the content is less than 0.03%, the effect of improving hot workability cannot be obtained. On the other hand, if the Cr content exceeds 0.45%, Ni—P—Cr, Cr—P, etc. This compound is generated during dissolution or solidification, and a crystallized product of Cr is generated. These Cr-containing compounds and crystallized substances are not solid-dissolved in the Cu matrix by the solution treatment, so that the Ni—P compounds precipitated by the aging treatment are reduced, and the strength of the alloy is reduced. Further, compounds such as Ni—P—Cr and Cr—P remain in the product as inclusions having a major axis of 5 μm or more, and surface defects of the product, starting points of cracks during bending, and defects during plating processing. Since it becomes a starting point, it is not preferable. Therefore, the Cr content of the alloy of the present invention is 0.03% to 0.45%, preferably 0.05% to 0.30%.

[Fe、Co、Mn、Ti及びZr量]
Fe、Co、Mn、Ti及びZrは、いずれもPと化合物を生成しやすく、溶解や凝固中にFe−P、Co−P、Mn−P、Ti−P、Zr−P等の化合物が生じ、また、時効処理でこれらの化合物が析出するとNi−P系の第2相粒子が減少し、合金の強度低下を招く。このため、Fe、Co、Mn、Ti及びZrの単独または2種類以上の含有量は0.05%以下、好ましくは総量で0.03%以下である。
[Fe, Co, Mn, Ti and Zr amounts]
Fe, Co, Mn, Ti and Zr all easily form compounds with P, and compounds such as Fe-P, Co-P, Mn-P, Ti-P, Zr-P are formed during dissolution and solidification. Further, when these compounds are precipitated by the aging treatment, Ni-P-based second phase particles are reduced, and the strength of the alloy is reduced. Therefore, the content of Fe, Co, Mn, Ti and Zr alone or in combination of two or more is 0.05% or less, preferably 0.03% or less in total.

[O量]
OはP及びCuと合金中で反応しやすく、合金中に酸化物の状態(Cu−P−O)で存在するとNiとPの化合物の析出を阻害し、強度向上が低下すると共に曲げ加工性が劣化する。従って、本発明の合金のO含有量は、0.0050%以下、好ましくは0.0030%以下である。
[O amount]
O easily reacts with P and Cu in the alloy, and when present in the alloy in an oxide state (Cu—P—O), the precipitation of Ni and P compounds is hindered, the strength improvement is lowered, and bending workability is reduced. Deteriorates. Therefore, the O content of the alloy of the present invention is 0.0050% or less, preferably 0.0030% or less.

[Sn、In量]
Sn及びInは、いずれも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有している。従って必要に応じてこれらの金属を1種類以上添加するが、その含有量が総量で0.01%未満であると固溶強化による強度向上の効果が得られず、一方、総量で1.0%以上を添加すると合金の導電率及び曲げ加工性低下が顕著になる。このため、単独添加又は2種類以上の複合添加されるSn及びIn量は、0.01%〜1.0%、好ましくは総量で0.05%〜0.8%である。なお、これらの元素は本発明においては、意図的に添加される元素であり、不可避的不純物とはみなさない。
[Sn, In amount]
Both Sn and In have the effect of improving the strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy. Accordingly, if necessary, one or more of these metals are added. If the total content is less than 0.01%, the effect of improving the strength by solid solution strengthening cannot be obtained, while the total amount is 1.0. When adding more than%, the electrical conductivity and bending workability of the alloy are significantly reduced. For this reason, the amount of Sn and In added individually or in combination of two or more types is 0.01% to 1.0%, preferably 0.05% to 0.8% in total. In the present invention, these elements are intentionally added elements and are not regarded as inevitable impurities.

[第2相粒子の大きさと面積率]
本発明の第2相粒子には、析出物、晶出物、介在物等が含まれる。本発明の組成範囲内では通常、Ni−P系第2相粒子以外の第2相粒子は析出せず、Ni−P系第2相粒子は、溶体化処理に加えて時効処理で特定の大きさに制御できる。その他の第2相粒子として、本発明では溶解及び鋳造中に生じる「晶出物」(Ni−P、Ni−P−Crなど)や「介在物」(Cu−O、Cu−Ni−P−O、Cu−Ni−P−Cr−O、Cu−Sなどの酸化物や硫化物)が存在し得るが、これらが存在する場合、その大きさは100nmから1μmを超え、溶体化処理及び時効処理によっても本発明の範囲内の大きさに制御できない。そのため、晶出物や介在物を合金中に残存させないよう溶体化処理を十分に行い、介在物の生成を抑制するため、P、Crなどの添加量を規定し、酸化物(介在物)の生成を抑制するため、O含有量を低く規定する。晶出物や介在物を十分に低減できなかった試料中の全第2相粒子の面積率Cは80%未満になり、本発明の範囲外となる。
第2相粒子の長径をa(nm)、短径をb(nm)とすると、最終冷間圧延前のaが20nm未満の第2相粒子は、加工歪η=2以上の圧延加工を行うと、第2相粒子が銅中に再固溶し、導電率を低下させてしまい好ましくない。ここで、加工歪ηは、圧延前の板厚をt0、圧延後の板厚をtとした場合、η=ln(t0/t)で表される。一方、最終冷間圧延前のaが20nm以上の第2相粒子は、加工歪η=2以上の圧延加工でも再固溶しにくく、20nm以上の第2相粒子として存在し、析出強化及び加工強化に寄与する。しかし、圧延前の長径aが50nmを超える第2相粒子では圧延後も再固溶しにくくその大きさを保つため、合金中の第2相粒子の分散間隔が大きくなりすぎ、そのため析出強化及び加工強化効果が得られなくなる。
尚、上記長径a及び短径bは最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面画像について画像解析装置を用いて長径aが5nm以上の第2相粒子のすべてについて測定した全第2相粒子の長径及び短径それぞれの平均値である。
上記より、本発明の合金の最終冷間圧延前の第2相粒子の好ましい大きさは、長径aが20nm〜50nmである。
[Size and area ratio of second phase particles]
The second phase particles of the present invention include precipitates, crystallization products, inclusions and the like. Within the composition range of the present invention, the second phase particles other than the Ni-P-based second phase particles usually do not precipitate, and the Ni-P-based second phase particles have a specific size in the aging treatment in addition to the solution treatment. You can control it. As other second phase particles, in the present invention, “crystallized substances” (Ni—P, Ni—P—Cr, etc.) and “inclusions” (Cu—O, Cu—Ni—P—) generated during melting and casting are used. O, Cu-Ni-P-Cr-O, Cu-S, and the like) may be present, but when they are present, the size thereof exceeds 100 nm to 1 μm, and solution treatment and aging The size within the range of the present invention cannot be controlled even by processing. Therefore, in order to prevent the formation of inclusions by sufficiently performing solution treatment so as not to leave crystallized substances and inclusions in the alloy, the amount of addition of P, Cr, etc. is specified, and oxides (inclusions) In order to suppress the formation, the O content is specified to be low. The area ratio C of all the second phase particles in the sample in which the crystallized substances and inclusions could not be sufficiently reduced becomes less than 80%, which is outside the scope of the present invention.
When the major axis of the second phase particle is a (nm) and the minor axis is b (nm), the second phase particle having a before the final cold rolling of less than 20 nm undergoes a rolling process with a working strain η = 2 or more. Then, the second phase particles are re-dissolved in copper, which lowers the conductivity, which is not preferable. Here, the processing strain η is represented by η = ln (t 0 / t), where t 0 is the thickness before rolling and t is the thickness after rolling. On the other hand, the second phase particles having an a of 20 nm or more before the final cold rolling are not easily re-dissolved even in a rolling process having a processing strain η = 2 or more, and are present as second phase particles of 20 nm or more. Contributes to strengthening. However, in the second phase particles having a major axis a of more than 50 nm before rolling, it is difficult to re-dissolve after rolling, and the size thereof is maintained. Therefore, the dispersion interval of the second phase particles in the alloy becomes too large. The processing strengthening effect cannot be obtained.
The major axis a and the minor axis b are obtained by cutting the alloy strip before the final cold rolling parallel to the rolling direction at a right angle to the thickness, and using the image analysis apparatus for the sectional image, the major axis a is 5 nm or more of the second phase particles. It is the average value of each major axis and minor axis of all second phase particles measured for all.
From the above, the preferred size of the second phase particles before the final cold rolling of the alloy of the present invention is that the major axis a is 20 nm to 50 nm.

又、第2相粒子のアスペクト比をa/bで表すと、a/bが5を超える場合には、η=2以上の圧延加工を行うと第2相粒子が銅中に再固溶してしまい導電率を低下させてしまう。従って最終冷間圧延前の第2相粒子のアスペクト比a/bは、好ましくは1〜5、更に好ましくは1〜3である。   In addition, when the aspect ratio of the second phase particles is represented by a / b, when a / b exceeds 5, the second phase particles are re-dissolved in copper when rolling is performed with η = 2 or more. As a result, the conductivity is lowered. Therefore, the aspect ratio a / b of the second phase particles before the final cold rolling is preferably 1 to 5, more preferably 1 to 3.

強度及び導電率の低下を防ぐために好ましくは、本発明の合金の最終冷間圧延後の第2相粒子のaは20nm〜50nmかつa/bは1〜5である。しかしながら、全ての第2相粒子を上記a及びa/bの好ましい範囲内にすることは困難であるため、上記a及びa/bの範囲となる第2相粒子の全第2相粒子に対する割合が重要になる。尚、「全第2相粒子」とは、長径aが5nm以上の第2相粒子全てを言う。そこで、時効処理後で最終冷間圧延前の合金中の全第2相粒子の面積総和に対する、上記a及びa/bの好ましい範囲にある第2相粒子の面積総和の割合を面積率Cとすると、本発明の面積率Cは80%以上である。
面積率Cが80%未満の場合とは、aが50nmを超える第2相粒子又は20nm未満の第2相粒子が多く存在する場合である。例えば、aが50nmを超える第2相粒子や溶解鋳造時に生じた晶出物が熱間圧延前の加熱や溶体化処理で固溶せずに残存した1000nm以上のNi−P粒子(晶出物)が多く存在する時には、強度向上に寄与する大きさの20から50nmの微細な第2相粒子の分散間隔が大きいため、圧延加工での加工硬化によっての所望の強度は得られない。一方、aが20nm未満の第2相粒子は、圧延加工によって再固溶してしまうため、導電率の低下が顕著になる。
In order to prevent a decrease in strength and electrical conductivity, the a of the second phase particles after the final cold rolling of the alloy of the present invention is preferably 20 nm to 50 nm and a / b is 1 to 5. However, since it is difficult to make all the second phase particles within the preferable ranges of a and a / b, the ratio of the second phase particles in the range of a and a / b to the total second phase particles. Becomes important. “All second phase particles” refers to all second phase particles having a major axis a of 5 nm or more. Therefore, the ratio of the total area of the second phase particles in the preferable range of a and a / b to the total area of all the second phase particles in the alloy after the aging treatment and before the final cold rolling is expressed as an area ratio C. Then, the area ratio C of the present invention is 80% or more.
The case where the area ratio C is less than 80% is a case where there are many second phase particles in which a exceeds 50 nm or second phase particles less than 20 nm. For example, second-phase particles with a exceeding 50 nm or crystallized products generated during melt casting remain 1000-nm or more Ni-P particles (crystallized products) remaining without being dissolved in the heating or solution treatment before hot rolling. ) Is present in large amounts, the dispersion interval of the fine second phase particles having a size of 20 to 50 nm that contributes to the strength improvement is large, so that the desired strength by work hardening in the rolling process cannot be obtained. On the other hand, since the second phase particles having a of less than 20 nm are re-dissolved by rolling, the decrease in conductivity becomes remarkable.

上記本発明の要件を満たすCu−Ni−P系合金は、通常当業者が製造において採用する、インゴット鋳造、熱間圧延、溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍等において、適宜加熱温度、時間、冷却速度、圧延率等を選択することにより製造することが出来る。例えば、(1)溶解・鋳造、(2)熱間圧延、(3)酸化スケール除去、(4)冷間圧延(厚さ調整)、(5)溶体化処理、(6)冷間圧延、(7)時効処理、(8)表面清浄処理(研磨や酸洗)、(9)冷間圧延(最終)、(10)歪み取り焼鈍の順で一部の工程を繰り返したり省略したりして製造する。
好ましくは時効処理の際の温度及び時間を適宜調整し、最終冷間圧延の加工度η=0〜1.4程度とすると良い。
The Cu—Ni—P alloy satisfying the above-mentioned requirements of the present invention is generally used by those skilled in the art for ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, final cold rolling, strain. In the annealing and the like, it can be produced by appropriately selecting the heating temperature, time, cooling rate, rolling rate and the like. For example, (1) melting and casting, (2) hot rolling, (3) oxide scale removal, (4) cold rolling (thickness adjustment), (5) solution treatment, (6) cold rolling, ( 7) Manufactured by repeating or omitting some steps in the order of aging treatment, (8) surface cleaning treatment (polishing and pickling), (9) cold rolling (final), and (10) strain relief annealing. To do.
Preferably, the temperature and time during the aging treatment are appropriately adjusted so that the degree of work η = 0 to 1.4 in the final cold rolling.

試料の製造
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金(P)、10%Cr−Cu母合金(Cr)、錫(Sn)、インジウム(In)、10%Fe−Cu(Fe)、10%Co−Cu(Co)、25%Mn−Cu(Mn)、スポンジチタン(Ti)及びスポンジジルコニウム(Zr)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、45×45×90mmのインゴットに鋳造した。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.15mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」及び「導電率」の評価を行った。
Manufacture of samples Mainly made of electrolytic copper or oxygen-free copper, nickel (Ni), 15% P—Cu master alloy (P), 10% Cr—Cu master alloy (Cr), tin (Sn), indium (In) 10% Fe-Cu (Fe), 10% Co-Cu (Co), 25% Mn-Cu (Mn), sponge titanium (Ti) and sponge zirconium (Zr) are used as auxiliary materials, and vacuum is used in a high-frequency melting furnace. It melt | dissolved in the inside or argon atmosphere, and casted to the ingot of 45x45x90 mm. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.15mm. Various test pieces of the obtained plate material were collected and tested, and “strength” and “conductivity” were evaluated.

インゴットの熱間加工性評価
「熱間加工性」は、熱間圧延によって評価した。即ち、インゴットを45×45×25mmに切断し、850℃に1時間加熱後、厚さ25mmから5mmまで3パスで熱間圧延試験を行った。熱間圧延後の試料の表面及びエッジについて目視により割れが認められた場合を、“割れ有り”、表面及びエッジに割れが無く、平滑な場合を、“割れなし”とした。
本発明では、熱間加工性に優れたとは、上記評価で“割れなし”であることをいう。
試験片の物性評価
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。
本発明では、高強度とは、上記評価で引張強さ650MPa以上であることをいう。
「導電率」は4端子法を用いて試験片の電気抵抗を測定し、%IACSで表示した。
本発明では、高導電とは、上記評価で導電率45%IACS以上であることをいう。
「曲げ加工性」は90度W曲げ試験で評価した。試験はCES−M0002−6に準拠し、R−0.1mmの治具を使用して50kNの荷重で90度曲げ加工を行った。曲げ部の評価は、中央部山表面の状況を光学顕微鏡で観察して割れが発生したものを×、シワが発生したものを△、良好なものを○とした。曲げ軸は圧延方向に対して直角(Good way)とした。
Evaluation of hot workability of ingot “Hot workability” was evaluated by hot rolling. That is, the ingot was cut into 45 × 45 × 25 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in three passes from a thickness of 25 mm to 5 mm. The case where cracks were visually observed on the surface and edge of the sample after hot rolling was defined as “cracked”, and the case where the surface and edge were not cracked and smooth was defined as “no crack”.
In the present invention, “excellent in hot workability” means “no crack” in the above evaluation.
Evaluation of Physical Properties of Test Pieces “Strength” was measured using a No. 13 B test piece by a tensile test specified in JIS Z 2241, and the tensile strength was measured.
In the present invention, high strength means that the tensile strength is 650 MPa or more in the above evaluation.
“Conductivity” was measured by measuring the electrical resistance of a test piece using a four-terminal method and expressed in% IACS.
In the present invention, high conductivity means that the conductivity is 45% IACS or more in the above evaluation.
“Bending workability” was evaluated by a 90 ° W bending test. The test was performed in accordance with CES-M0002-6, and bending was performed 90 degrees with a load of 50 kN using an R-0.1 mm jig. In the evaluation of the bent portion, the state of the surface of the central mountain was observed with an optical microscope. The bending axis was set at right angles to the rolling direction (Good way).

Ni−P系第2相粒子の評価
最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、走査型電子顕微鏡及び透過型電子顕微鏡を使用して、断面の第2相粒子を10視野観察した。第2相粒子の大きさが5〜50nmの場合は50万倍〜70万倍の視野(約1.4×1010〜2.0×1010nm2)、50〜2000nmの場合は5万倍〜10万倍の視野(約1.0×1013〜2.0×1013nm2)で撮影を行った。撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて長径aが5nm以上の第2相粒子のすべてについて個々に長径a、短径b、及び面積を測定した。これら第2相粒子からランダムに100個選び、全第2相粒子の長径の平均ataと短径の平均bta及びこれらから求めた平均のアスペクト比ata/btaを得て、それぞれ長径a、短径b及びアスペクト比a/bとした。長径aが5μm以上の全ての第2相粒子の面積の総和を全第2相粒子の総面積とした。その全第2相粒子の総面積に対して、長径aが20nm〜50nm、アスペクト比a/bが1〜5である第2相粒子の面積総和の割合を面積率C(%)とした。
尚、最終冷間圧延(通常は加工歪η=2以上)により、長径20nm以下のNi−P系第2相粒子又は長径20nmを超えているがアスペクト比が5を超える第2相粒子は固溶してしまうが、20nm以上かつアスペクト比が1〜5の第2相粒子は最終冷間圧延後もその長径、短径及びアスペクト比を保つことを確認した。又、第2相粒子の面積率Cも、20nmを超える第2相粒子は圧延で再固溶しないため最終冷間圧延後もほとんど変化しなかった。
Evaluation of Ni-P System Second Phase Particles The alloy strip before the final cold rolling is cut parallel to the rolling direction at a right angle to the thickness, and the second phase particles having a cross section are obtained using a scanning electron microscope and a transmission electron microscope. 10 fields of view were observed. When the size of the second phase particles is 5 to 50 nm, the field of view is about 500,000 to 700,000 times (approximately 1.4 × 10 10 to 2.0 × 10 10 nm 2 ), and when the size is 50 to 2000 nm, 50,000 Images were taken with a field of view of about 100,000 to 100,000 times (approximately 1.0 × 10 13 to 2.0 × 10 13 nm 2 ). Using the image of the photographed photograph, the major axis a, the minor axis b, and the area of each of the second phase particles having a major axis a of 5 nm or more were measured using an image analyzer (trade name Luzex, manufactured by Nireco Corporation). Randomly select 100 particles from these second phase particles to obtain the average major axis a ta and the minor axis average b ta of all the second phase particles and the average aspect ratio a ta / b ta determined from them. a, minor axis b, and aspect ratio a / b. The total area of all the second phase particles having a major axis “a” of 5 μm or more was defined as the total area of all the second phase particles. The ratio of the total area of the second phase particles having a major axis a of 20 nm to 50 nm and an aspect ratio a / b of 1 to 5 was defined as an area ratio C (%) with respect to the total area of all the second phase particles.
In addition, the final cold rolling (usually processing strain η = 2 or more) causes Ni—P-based second phase particles having a major axis of 20 nm or less or second phase particles having a major axis of more than 20 nm but an aspect ratio of more than 5 to be solid. Although it melts, it was confirmed that the second phase particles having an aspect ratio of 1 to 5 of 20 nm or more maintain their major axis, minor axis and aspect ratio even after the final cold rolling. Further, the area ratio C of the second phase particles was hardly changed even after the final cold rolling because the second phase particles exceeding 20 nm were not re-dissolved by rolling.

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表1に示す成分組成の銅合金について、比較例とともに説明する。本発明の合金実施例1〜8は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。一方、比較例9〜26までの結果を検討すると、比較例9〜12については、Crの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例13は、SnとInの添加量の合計が1.0%を超えるため、比較例14は、Inの添加量の合計が1.0%を超えるため、導電率の低下が生じ曲げ加工性に劣るものであった。比較例15は、Ni/P比が高く外れるために、Niの固溶する量が増大して導電率の低下が生じ、第2相粒子の量が少ないため、強度も低い。比較例16は、Ni/P比が適切な組成比から低く外れるために、Pの固溶する量が増大して導電率の低下が生じ、強度が低い。比較例17は、Ni及びPの添加量が本発明の規定する範囲から低く外れるため、強度が低い。比較例18は、Ni量が、比較例19はP量が本発明の規定する範囲から高く外れるため、導電率の低下が生じた。比較例20は、Oの含有量が0.050%を超えるため、Cu−P−Oの酸化物が溶解時に生成し、Ni−P系の第2相粒子量が減少し、強度が低く、曲げ加工性が劣る。比較例21は、Crの含有量が本発明の規定する範囲から高く外れるため、Ni−P−CrやCr−P等が溶解・鋳造時に生成、晶出したことにより、Ni−P系の第2相粒子が減少し、強度と導電率が低く、曲げ加工性も劣る。比較例22及び23は、Fe、Co、Mn、Ti及びZrの含有量が本発明の規定する範囲から高く外れるため、これらの元素とPが化合物を生成したことにより、Ni−P系の第2相粒子が減少し、強度が低い。比較例24は、Ni−P系第2相粒子の平均長径が本発明の規定する範囲から高く外れるため、長径20〜50nmで且つアスペクト比1〜5の第2相粒子の面積率Cがゼロとなり冷間圧延による強度上昇が得られず、強度が低い。比較例25と26は、Ni−P系第2相粒子の平均長径が本発明の規定する範囲から低く外れたため、面積率Cが80%未満であり冷間圧延でNi−P系第2相粒子が固溶し、導電率が低い。   Examples of the high-strength, high-conductivity copper alloy excellent in hot workability according to the present invention will be described with reference to the copper alloys having the component compositions shown in Table 1 together with comparative examples. Alloy Examples 1 to 8 of the present invention had excellent strength and conductivity without cracking during hot rolling. On the other hand, when the results of Comparative Examples 9 to 26 were examined, in Comparative Examples 9 to 12 there was no addition of Cr or less than the specified amount, so cracking occurred during hot rolling. In Comparative Example 13, the total addition amount of Sn and In exceeds 1.0%. In Comparative Example 14, the total addition amount of In exceeds 1.0%. It was inferior in nature. In Comparative Example 15, since the Ni / P ratio deviates high, the amount of Ni dissolved increases and the conductivity decreases, and the amount of second phase particles is small, so the strength is low. In Comparative Example 16, since the Ni / P ratio deviates from an appropriate composition ratio, the amount of dissolved P increases, resulting in a decrease in conductivity and low strength. Comparative Example 17 has low strength because the addition amounts of Ni and P deviate from the range defined by the present invention. In Comparative Example 18, the amount of Ni was different, and in Comparative Example 19, the amount of P was significantly out of the range defined by the present invention, resulting in a decrease in conductivity. In Comparative Example 20, since the content of O exceeds 0.050%, an oxide of Cu-PO is generated when dissolved, the amount of Ni-P-based second phase particles is reduced, and the strength is low. Bending workability is inferior. In Comparative Example 21, since the content of Cr deviates from the range defined by the present invention, Ni—P—Cr, Cr—P, etc. are produced and crystallized during melting / casting. Two-phase particles are reduced, strength and conductivity are low, and bending workability is also poor. In Comparative Examples 22 and 23, the contents of Fe, Co, Mn, Ti and Zr deviate from the range defined by the present invention. Two-phase particles are reduced and the strength is low. In Comparative Example 24, since the average major axis of the Ni-P-based second phase particles deviates from the range defined by the present invention, the area ratio C of the second phase particles having a major axis of 20 to 50 nm and an aspect ratio of 1 to 5 is zero. Thus, the strength cannot be increased by cold rolling, and the strength is low. In Comparative Examples 25 and 26, since the average major axis of the Ni-P-based second phase particles deviated from the range defined by the present invention, the area ratio C was less than 80%, and the Ni-P-based second phase was obtained by cold rolling. Particles are solid solution and conductivity is low.

Figure 2009041194
Figure 2009041194

Figure 2009041194
Figure 2009041194

Claims (2)

質量割合にて、Ni:0.50%〜1.00%、P:0.10%〜0.25%を含有し、NiとPの含有量比率Ni/P:4.0〜5.5で且つ、Cr:0.03%〜0.45%、O:0.0050%以下であり、Fe、Co、Mn、Ti、Zrのうち1種類以上の含有量が合計で0.05%以下で残部がCu及び不可避的不純物から成る銅合金において、第2相粒子の大きさについて、長径:a、短径:bとした時、a:20nm以上50nm以下で且つアスペクト比a/b:1以上5以下の第2相粒子が銅合金中に含まれる全第2相粒子の面積率で80%以上を占めることを特徴とする熱間加工性に優れた高強度高導電性銅合金。   In terms of mass ratio, Ni: 0.50% to 1.00%, P: 0.10% to 0.25%, Ni / P content ratio Ni / P: 4.0 to 5.5 And Cr: 0.03% to 0.45%, O: 0.0050% or less, and the total content of one or more of Fe, Co, Mn, Ti, and Zr is 0.05% or less. In the copper alloy consisting of Cu and inevitable impurities, the size of the second phase particles is as follows: a: 20 nm to 50 nm and aspect ratio a / b: 1 when the major axis is a and minor axis is b A high-strength, high-conductivity copper alloy excellent in hot workability, characterized in that the second phase particles of 5 or less occupy 80% or more in the area ratio of all the second phase particles contained in the copper alloy. Sn及びInのうち1種以上を合計で0.01%〜1.0%含むことを特徴とする請求項1に記載された熱間加工性に優れた高強度高導電性銅合金。   The high-strength, high-conductivity copper alloy excellent in hot workability according to claim 1, wherein one or more of Sn and In are contained in a total of 0.01% to 1.0%.
JP2009534243A 2007-09-27 2008-08-21 High strength and high conductivity copper alloy with excellent hot workability Expired - Fee Related JP5232794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009534243A JP5232794B2 (en) 2007-09-27 2008-08-21 High strength and high conductivity copper alloy with excellent hot workability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007251849 2007-09-27
JP2007251849 2007-09-27
JP2009534243A JP5232794B2 (en) 2007-09-27 2008-08-21 High strength and high conductivity copper alloy with excellent hot workability
PCT/JP2008/064931 WO2009041194A1 (en) 2007-09-27 2008-08-21 High-strength high-electroconductivity copper alloy possessing excellent hot workability

Publications (2)

Publication Number Publication Date
JPWO2009041194A1 true JPWO2009041194A1 (en) 2011-01-20
JP5232794B2 JP5232794B2 (en) 2013-07-10

Family

ID=40511088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534243A Expired - Fee Related JP5232794B2 (en) 2007-09-27 2008-08-21 High strength and high conductivity copper alloy with excellent hot workability

Country Status (5)

Country Link
JP (1) JP5232794B2 (en)
KR (1) KR101203437B1 (en)
CN (1) CN101784684B (en)
TW (1) TWI386493B (en)
WO (1) WO2009041194A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155405B2 (en) * 2015-04-24 2017-06-28 古河電気工業株式会社 Copper alloy material and method for producing the same
CN105603253B (en) * 2016-01-15 2017-10-17 宁波博威合金材料股份有限公司 A kind of nickeliferous phosphorus, the Cu alloy material of nickel boron phase and its manufacture method
CN107541613B (en) * 2016-06-28 2019-03-08 沈阳慧坤新材料科技有限公司 One Albatra metal and its preparation method and application
CN110643850B (en) * 2019-10-24 2020-12-01 宁波博威合金材料股份有限公司 Copper alloy with excellent bending performance and preparation method and application thereof
CN115537595B (en) * 2022-09-30 2023-08-01 宁波金田铜业(集团)股份有限公司 Copper foil and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133033A (en) * 1985-12-04 1987-06-16 Mitsubishi Metal Corp Cu alloy lead material for semiconductor device
JPH04231446A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Conductive material
JP3465108B2 (en) * 2000-05-25 2003-11-10 株式会社神戸製鋼所 Copper alloy for electric and electronic parts
JP3968955B2 (en) 2000-05-30 2007-08-29 Jfeスチール株式会社 Organic coated steel plate with excellent corrosion resistance
JP3699701B2 (en) * 2002-10-31 2005-09-28 日鉱金属加工株式会社 Easy-to-process high-strength, high-conductivity copper alloy
JP4118832B2 (en) * 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP4634955B2 (en) * 2006-03-31 2011-02-16 Jx日鉱日石金属株式会社 High strength copper alloy with excellent bending workability and dimensional stability
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP5101149B2 (en) * 2007-03-30 2012-12-19 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
JP4950734B2 (en) * 2007-03-30 2012-06-13 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
JP5079574B2 (en) * 2008-03-31 2012-11-21 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability

Also Published As

Publication number Publication date
JP5232794B2 (en) 2013-07-10
TWI386493B (en) 2013-02-21
KR20100021666A (en) 2010-02-25
CN101784684A (en) 2010-07-21
KR101203437B1 (en) 2012-11-21
CN101784684B (en) 2012-05-23
WO2009041194A1 (en) 2009-04-02
TW200925298A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
CN107208191B (en) Copper alloy material and method for producing same
JP2011252188A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2013213237A (en) Cu-Zn-Sn-Ni-P-BASED ALLOY
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2005307223A (en) High-strength and high-conductivity copper alloy
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP4937628B2 (en) Copper alloy with excellent hot workability
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4175920B2 (en) High strength copper alloy
JP4750602B2 (en) Copper alloy with excellent hot workability
JP7133327B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP2008056974A (en) Copper alloy superior in hot workability
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
TWI384083B (en) High-strength, high-conductivity copper alloy with excellent hot workability
JP7133326B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
JP4679040B2 (en) Copper alloy for electronic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees