JPWO2009011164A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JPWO2009011164A1
JPWO2009011164A1 JP2009523564A JP2009523564A JPWO2009011164A1 JP WO2009011164 A1 JPWO2009011164 A1 JP WO2009011164A1 JP 2009523564 A JP2009523564 A JP 2009523564A JP 2009523564 A JP2009523564 A JP 2009523564A JP WO2009011164 A1 JPWO2009011164 A1 JP WO2009011164A1
Authority
JP
Japan
Prior art keywords
insulating film
film
thin film
opening
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009523564A
Other languages
English (en)
Inventor
公志郎 小泉
公志郎 小泉
仁 瀬下
仁 瀬下
英雄 木下
英雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Publication of JPWO2009011164A1 publication Critical patent/JPWO2009011164A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Pressure Sensors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

加工寸法精度良くドライエッチング法とウエットエッチング法とを組み合わせたエッチング工程を実施できる技術を提供するために、センサ膜12上に層間絶縁膜13、エッチングストッパ膜14、層間絶縁膜15、18および表面保護膜19を順次成膜する。エッチングストッパ膜14としては、層間絶縁膜13、15、18とエッチング選択比が異なる材料を選択する。次いで、エッチングストッパ膜14をエッチングストッパとして表面保護膜19および層間絶縁膜18、15を順次ドライエッチングし、続いて層間絶縁膜13をエッチングストッパとしてエッチングストッパ膜14をドライエッチングする。その後、センサ膜12をエッチングストッパとして層間絶縁膜13をウエットエッチングする。

Description

本発明は、半導体装置およびその製造技術に関し、特に、ドライエッチング法とウエットエッチング法とを組み合わせたエッチング工程により加工された半導体装置およびその製造技術に適用して有効な技術に関するものである。
特開2002−131276号公報(特許文献1)には、光アドレス電位応答センサを用いて化学イメージセンサセルを構成することにより、環境負荷を軽減し、使用勝手の良い、安価なケミカルイメージセンサを実現する技術が開示されている。
特開2002−181773号公報(特許文献2)には、半導体基板上のMOS型デバイスのゲート膜上にセンサの感応部、参照電極、対極を設け、これらを電解質材料で被覆して成る化学センサにおいて、裏面照射による表面光電圧法を用いた化学イメージセンサを構成することにより、ケミカルイメージ信号の高速処理、装置の小型化、および安価なケミカルイメージセンサを実現する技術が開示されている。
特開2001−272372号公報(特許文献3)には、ゲート電極とドレイン電極との間にダイヤモンドの水素終端表面が露出したチャネルと、このチャネルの露出したダイヤモンドの水素終端表面を満たす液体電解質からなるゲートとを備え、液体電解質の中で安定に動作する電界効果トランジスタが開示されている。
WO2003/042683号公報(特許文献4)には、FET(Field Effect Transistor)型センサと、そのセンサを用いたイオン濃度検出方法および塩基配列検出方法が開示されている。
特開2002−131276号公報 特開2002−181773号公報 特開2001−272372号公報 WO2003/042683号公報
本発明者らは、MEMS(Micro Electro Mechanical Systems)によるpHイメージセンサの製造技術について検討している。その中で、本発明者らは、以下のような課題を見出した。
すなわち、本発明者らが検討しているMEMSによるpHイメージセンサのセンサ部は、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の上に薄い酸化膜を介して薄いセンサ膜(SiN膜)が設けられた構造となっており、このセンサ膜であるSiN膜へのH(水素)イオンの吸着密度によってpHを計算するものである。このような使用原理であることから、センサ膜であるSiN膜が露出していなければならず、センサ膜上の層間絶縁膜および表面保護膜にセンサ膜に達する開口部を形成する必要がある。このような開口部を形成する際に、センサ膜がドライエッチング雰囲気に曝されると、センサ膜のHイオン吸着能力が低下してしまうため、センサ膜表面近くではウエットエッチングにより開口部を形成しなければならない。
ドライエッチングが異方性エッチングであるのに対し、ウエットエッチングは等方性エッチングである。そのため、センサ膜上の層間絶縁膜が厚くなった場合には、ウエットエッチングだけで上記開口部を形成しようとすると、サイドエッチング量も増加してしまうことから、開口部の径が所望の径より大きくなり過ぎてしまう不具合の発生が懸念される。そのため、センサ膜の直前まではドライエッチングで加工を進め、最後のセンサ膜の表面を露出させる工程だけをウエットエッチングで行う加工法が考えられる。
しかしながら、センサ密度を高めるために、MISFETやMISFETと電気的に接続する配線等の加工寸法の微細化が進むと、上記開口部の径も小さくなり、ウエットエッチングによるサイドエッチング量が開口部の加工寸法に大きな影響を及ぼす。すなわち、ドライエッチングを、センサ膜に達しない安全な時点で止め、残りをウエットのオーバーエッチングで加工すると、ウエットエッチングする膜厚が厚くなってしまうことから、サイドエッチング量が大きくなり、開口部を微細化できなくなってしまう不具合を生じることになる。
また、上記開口部の微細化を目的として、ドライエッチングをセンサ膜寸前まで行い、残りをウエットエッチングで加工する加工法が考えられる。しかしながら、ドライエッチングをセンサ膜寸前まで行うことから、センサ膜がドライエッチング雰囲気に曝されてしまい、センサ膜のHイオン吸着能力が低下してしまう不具合の発生が懸念される。
さらに、上記pHイメージセンサに多層に配線等が設けられた構造となると、段差形状が複雑に現れてくることになり、層間絶縁膜の膜厚も厚く、かつ均一な膜厚ではなくなる。そのため、その段差形状による層間絶縁膜の厚さの違いを考慮したドライエッチングおよびウエットエッチングの制御が不可能に近い状態となってしまう。また、段差を均一にしてセンサ部(センサ膜)上の層間絶縁膜の膜厚を均一にするには、センサ部周辺の配線レイアウト等の制約が大きくなってしまい、自由なレイアウト設計ができなくなってしまう不具合が生じる。また、段差のためにサイドエッチング量が加工個所によってばらつき、エッチ残りおよびオーバーエッチング等に起因する短絡事故等が発生し、pHイメージセンサの歩留まりを低下させてしまうことが懸念される。
ところで、上記センサ膜上の層間絶縁膜の膜厚が厚くなり、センサ膜に達する開口部の径が小さくなると、層間絶縁膜のドライエッチング時に副生成物として発生したポリマーが開口部の側壁に付着してしまうことの影響も大きくなる。すなわち、このポリマーはウエットエッチングでは除去し難いため、開口部内にポリマーによるエッチ残りが発生し、開口部の加工自体が行えなくなってしまう不具合が懸念される。
本発明の目的は、加工寸法精度良くドライエッチング法とウエットエッチング法とを組み合わせたエッチング工程を実施できる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
(1)本発明による半導体装置は、
半導体基板の主面に形成されたセンサ素子と、
前記センサ素子が形成された前記半導体基板の前記主面上に形成された第1の薄膜と、
前記第1の薄膜を含む前記半導体基板の前記主面上に形成された第1の絶縁膜と、
前記第1の絶縁膜上に形成された第2の絶縁膜と、
前記半導体基板の前記主面の第1の領域上の前記第1の絶縁膜と前記第2の絶縁膜との間でパターニングされ前記第1の絶縁膜および前記第2の絶縁膜に対してエッチング選択比を有する第2の薄膜と、
前記第1の絶縁膜、前記第2の絶縁膜および前記第2の薄膜に形成され、前記第1の薄膜に達する開口部とを有し、
前記センサ素子は、前記半導体基板の前記主面上にてパターニングされた第1の電極を備え、前記開口部を介して前記半導体基板に達する被計測物質を検知し、
前記第1の薄膜は、前記第1の電極の上面および側面と、前記開口部の底部と、前記開口部の側面の少なくとも一部とを覆い、
前記第2の薄膜は、前記第1の電極の上面を覆い、
前記開口部の前記底部および前記開口部の前記側面の少なくとも一部における前記第1の薄膜の表面は、露出され、
前記第1の薄膜は、前記被計測物質により前記センサ素子を電気的に作用させる薄膜である。
(2)また、本発明による半導体装置は、
半導体基板の主面に形成されたセンサ素子と、
前記センサ素子が形成された前記半導体基板の前記主面上に形成された第1の薄膜と、
前記第1の薄膜を含む前記半導体基板の前記主面上に形成された第1の絶縁膜と、
前記第1の絶縁膜上に形成された第2の絶縁膜と、
前記半導体基板の前記主面の第1の領域上の前記第1の絶縁膜と前記第2の絶縁膜との間で第1のパターンでパターニングされ、前記第1の絶縁膜および前記第2の絶縁膜に対してエッチング選択比を有する第3の薄膜と、
前記第1の絶縁膜および前記第2の絶縁膜に開口され、前記第1の薄膜に達する開口部とを有し、
前記センサ素子は、前記半導体基板の前記主面上にてパターニングされた第1の電極を備え、前記開口部を介して前記半導体基板に達する被計測物質を検知し、
前記第1の薄膜は、前記第1の電極の上面および側面と、前記開口部の底部と、前記開口部の側面の少なくとも一部とを覆い、
前記開口部の前記底部および前記開口部の前記側面の少なくとも一部における前記第1の薄膜の表面は、露出され、
前記第1の薄膜は、前記被計測物質により前記センサ素子を電気的に作用させる薄膜である。
(3)また、本発明による半導体装置の製造方法は、
(a)半導体基板の主面にセンサ素子を形成する工程、
(b)前記センサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
(c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
(d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記半導体基板の前記主面の第1の領域上にて前記第2の薄膜をパターニングする工程、
(e)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有する第2の絶縁膜を形成する工程、
(f)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域上の前記第2の絶縁膜を第1の平面形状で異方的にドライエッチングし、前記第2の薄膜に達する開口部を形成する工程、
(g)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を前記第1の絶縁膜に達するように拡張する工程、
(h)前記(g)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
を含む。
(4)また、本発明による半導体装置の製造方法は、
(a)半導体基板の主面に第1のセンサ素子および第2のセンサ素子を形成する工程、
(b)前記第1のセンサ素子および前記第2のセンサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
(c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
(d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記半導体基板の前記主面の第1の領域上および第2の領域上にて前記第2の薄膜をパターニングする工程、
(e)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有し、前記第1の領域上と前記第2の領域上とで膜厚が異なる第2の絶縁膜を形成する工程、
(f)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域および前記第2の領域上の前記第2の絶縁膜をそれぞれ第1の平面形状で異方的にドライエッチングし、前記第1の領域および前記第2の領域のそれぞれに前記第2の薄膜に達する開口部を形成する工程、
(g)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を前記第1の絶縁膜に達するように拡張する工程、
(h)前記(g)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
を含む。
(5)また、本発明による半導体装置の製造方法は、
(a)半導体基板の主面にセンサ素子を形成する工程、
(b)前記センサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
(c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
(d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第3の薄膜を形成し、前記半導体基板の前記主面の第1の領域上にて前記第3の薄膜を第1のパターンでパターニングする工程、
(e)前記第3の薄膜を含む前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記第1の領域上にて前記第2の薄膜をパターニングする工程、
(f)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有する第2の絶縁膜を形成する工程、
(g)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域上の前記第2の絶縁膜を第1の平面形状で異方的にドライエッチングし、前記第2の薄膜に達する開口部を形成する工程、
(h)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を拡張する工程、
(i)前記(h)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
を含む。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
加工寸法精度良くドライエッチング法とウエットエッチング法とを組み合わせたエッチング工程を実施できる。
本発明の実施の形態1である半導体装置の製造方法を説明する要部断面図である。 図1に続く半導体装置の製造工程中の要部断面図である。 図2に続く半導体装置の製造工程中の要部断面図である。 図3に続く半導体装置の製造工程中の要部断面図である。 図4に続く半導体装置の製造工程中の要部断面図である。 本発明の実施の形態1である半導体装置の製造工程中の要部平面図である。 図5に続く半導体装置の製造工程中の要部断面図である。 図7に続く半導体装置の製造工程中の要部断面図である。 本発明の実施の形態1である半導体装置の製造工程中の要部平面図である。 本発明の実施の形態1の半導体装置であるpHイメージセンサの動作原理を示す説明図である。 本発明の実施の形態1である半導体装置の製造方法と比較した半導体装置の製造工程中の要部断面図である。 図11に続く半導体装置の製造工程中の要部断面図である。 本発明の実施の形態1である半導体装置の製造方法と比較した半導体装置の製造工程中の要部断面図である。 pHイメージセンサの動作不具合を示す説明図である。 本発明の実施の形態1である半導体装置の要部平面図である。 本発明の実施の形態2である半導体装置の製造方法を説明する要部断面図である。 図16に続く半導体装置の製造工程中の要部断面図である。 図17に続く半導体装置の製造工程中の要部断面図である。 図18に続く半導体装置の製造工程中の要部断面図である。 図19に続く半導体装置の製造工程中の要部断面図である。 本発明の実施の形態2である半導体装置の製造方法と比較した半導体装置の製造工程中の要部断面図である。 本発明の実施の形態3である半導体装置の製造工程中の要部平面図である。 図22に続く半導体装置の製造工程中の要部平面図である。 本発明の実施の形態3である半導体装置の製造方法と比較した半導体装置の製造工程中の要部平面図である。 本発明の実施の形態4である半導体装置の製造工程中の要部断面図である。 本発明の実施の形態4である半導体装置の製造工程中の要部平面図である。 本発明の実施の形態5である半導体装置の製造工程中の要部断面図である。 本発明の実施の形態5である半導体装置の製造工程中の要部平面図である。 本発明の実施の形態5である半導体装置の製造工程中の要部平面図である。 本発明の実施の形態5である半導体装置の製造工程中の要部平面図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、実施例等において構成要素等について、「Aからなる」、「Aよりなる」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、材料等について言及するときは、特にそうでない旨明記したとき、または、原理的または状況的にそうでないときを除き、特定した材料は主要な材料であって、副次的要素、添加物、付加要素等を排除するものではない。たとえば、シリコン部材は特に明示した場合等を除き、純粋なシリコンの場合だけでなく、添加不純物、シリコンを主要な要素とする2元、3元等の合金(たとえばSiGe)等を含むものとする。
また、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。
また、本実施の形態で用いる図面においては、平面図であっても図面を見易くするために部分的にハッチングを付す場合がある。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
本実施の形態1の半導体装置は、たとえばMEMSによるpHイメージセンサである。この本実施の形態1の半導体装置およびその製造工程について、図1〜15を用いて説明する。
まず、図1に示すように、たとえば単結晶シリコンからなる半導体基板(以下、単に基板と記す)1の主面(素子形成面)に選択的にn型の導電型を有する不純物(たとえばP(リン))およびp型の導電型を有する不純物(たとえばBF(二フッ化ホウ素))を導入し、n型ウエル2およびp型ウエル3を形成する。次いで、基板1の主面にp型の導電型を有する不純物(たとえばBF)を導入し、p型ウエル4を形成する。
続いて、基板1の主面上に窒化シリコン膜を堆積し、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとしてその窒化シリコン膜をエッチングする。次いで、残った窒化シリコン膜をマスクとして基板1に熱処理を施すことにより、フィールド絶縁膜5を形成する。このフィールド絶縁膜5を形成することにより、基板1の主面においては、センサ素子が形成される活性領域が規定される。
続いて、上記窒化シリコン膜を除去した後、基板1に熱処理を施すことによって、薄い酸化シリコン膜6を形成する。次いで、基板1の主面にn型の導電型を有する不純物(たとえばP)を導入し、n型半導体領域7を形成する。
続いて、基板1に熱処理を施すことによって、基板1の主面に薄い酸化シリコン膜を形成する。次いで、基板1の主面上に多結晶シリコン膜および酸化シリコン膜を順次堆積する。次いで、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、それら酸化シリコン膜、多結晶シリコン膜および薄い酸化シリコン膜をエッチングすることにより、薄い酸化シリコン膜からなるゲート絶縁膜8、多結晶シリコン膜からなるゲート電極(第1の電極)9、および酸化シリコン膜からなるキャップ絶縁膜10を形成する。
続いて、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、基板1の主面に選択的にn型の導電型を有する不純物(たとえばP)を導入し、n型半導体領域11を形成する。ここまでの工程により、MOSトランジスタ構造(センサ素子)を形成することができる。
次に、図2に示すように、基板1の主面上に窒化シリコン膜を堆積することにより、センサ膜(第1の薄膜)12を形成する。次いで、そのセンサ膜12上に酸化シリコン膜を堆積することにより、層間絶縁膜(第1の絶縁膜)13を形成する。
続いて、その層間絶縁膜13上に、たとえば多結晶シリコン膜を堆積することにより、エッチングストッパ膜(第2の薄膜)14を形成する。このエッチングストッパ膜14としては、下層の層間絶縁膜13および上層の層間絶縁膜とエッチング選択比が異なる材質を適用するものである。本実施の形態1では、これら層間絶縁膜が酸化シリコン膜である場合にエッチングストッパ膜14を多結晶シリコン膜とした場合を例示したが、エッチングストッパ膜14は、Ti(チタン)膜、TiN(窒化チタン)膜、W(タングステン)膜、TiW(チタンタングステン)膜、Al(アルミニウム)膜および窒化シリコン膜等の導電性膜あるいは絶縁膜を用いてもよい。
続いて、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとしたエッチングにより、そのエッチングストッパ膜14をパターニングする。この時、エッチングストッパ膜14は、少なくともpHセンサとして動作する領域(第1の領域)上に残るようにパターニングする。
次に、図3に示すように、たとえば基板1上にプラズマCVD法で酸化シリコン膜を堆積することによって層間絶縁膜(第2の絶縁膜)15を形成する。次いで、その層間絶縁膜15の表面をCMP(Chemical Mechanical Polishing)法で研磨して平坦化する。
続いて、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして層間絶縁膜15、13およびセンサ膜12をエッチングし、n型半導体領域11に達するコンタクトホール16を形成する。次いで、コンタクトホール16内を含む層間絶縁膜15上にTi膜、TiN膜あるいはそれらの積層膜を堆積することによりバリア導電性膜を形成する。次いで、そのバリア導電性膜上に、たとえばAl膜をスパッタリング法で堆積する。この時、そのAl膜は、コンタクトホール16を埋め込む。次いで、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとしてそれらAl膜およびバリア導電性膜をエッチングすることにより、配線17を形成する。
次に、図4に示すように、たとえば基板1上にプラズマCVD法で酸化シリコン膜を堆積することによって層間絶縁膜(第2の絶縁膜)18を形成する。層間絶縁膜15、18の総膜厚は、層間絶縁膜13の膜厚より厚くなる。次いで、たとえばその層間絶縁膜18の表面をCMP法で研磨して平坦化した後、その層間絶縁膜18上に、たとえば窒化シリコン膜を堆積することによって表面保護膜(第2の絶縁膜)19を形成する。次いで、その表面保護膜19上にフォトレジスト膜R1を成膜し、そのフォトレジスト膜R1をフォトリソグラフィ技術によってパターニングする。このパターニングにより、そのフォトレジスト膜R1は、pHセンサとして動作する領域上にて除去される。
次に、図5に示すように、フォトレジスト膜(第1のマスキング層)R1をマスクとして表面保護膜19をドライエッチングし、所望の開口形状(第1の平面形状)の開口部20を形成する。表面保護膜19である窒化シリコン膜は、下層の層間絶縁膜18である酸化シリコン膜とエッチング選択比が異なるため、このドライエッチング工程時には、層間絶縁膜18をエッチングストッパとすることができる。
続いて、フォトレジスト膜R1および開口部20が形成された表面保護膜19をマスクとして層間絶縁膜18、15をドライエッチングし、開口部20を下方へ拡張する。前述したように、層間絶縁膜15の下層のエッチングストッパ膜14は、上層および下層の層間絶縁膜とエッチング選択比が異なるように材質が選択されている。そのため、層間絶縁膜18、15のドライエッチング工程時には、エッチングストッパ膜14でドライエッチングを停止することができる。また、図6は、フィールド絶縁膜5で範囲が規定された活性領域L、ゲート電極9およびエッチングストッパ膜14の平面での位置関係を示した要部平面図であり、エッチングストッパ膜14についてはハッチングを付して示してある。
これら表面保護膜19および層間絶縁膜18、15のドライエッチングは、横方向へのエッチングが非常に少ない異方性エッチングである。
次に、図7に示すように、開口部20下のエッチングストッパ膜14をドライエッチングして、開口部20を下方へ拡張する。前述したように、エッチングストッパ膜14は、下層の層間絶縁膜13とエッチング選択比が異なるように材質が選択されているため、エッチングストッパ膜14のドライエッチング工程時には、層間絶縁膜13でドライエッチングを停止することができる。
次に、図8に示すように、フォトレジスト膜R1を除去した後に、開口部20下の層間絶縁膜13をウエットエッチングし、開口部20の底部の全面および側部の一部のセンサ膜12を露出させる。このウエットエッチングは等方性エッチングであることから、層間絶縁膜13だけでなく、層間絶縁膜13と同じ酸化シリコン膜からなる層間絶縁膜15、18においても、層間絶縁膜13の厚さT1(図7参照)と同程度以上のT1Aで示すサイドエッチングが生じる。これは、開口部20下のセンサ膜12上の層間絶縁膜13を完全に除去するためにオーバーエッチングを行うからであり、オーバーエッチング時には、下方(基板1の厚さ方向)のエッチングは止まってもサイドエッチングは進行するからである。本実施の形態1において、このT1Aで示すサイドエッチング量は、層間絶縁膜13の厚さT1の数倍程度に抑制することができる。図9は、絶縁膜13のウエットエッチングを行った時点での要部平面図であり、エッチングストッパ膜14および開口部20下のセンサ膜12については、ハッチングを付して示してある。詳細は後述するが、この開口部20の底部に露出したセンサ膜12がpHセンサとして機能する。本実施の形態において、センサ膜12が露出しているとは、センサ膜12が上層の層間絶縁膜13、15、18、エッチングストッパ膜14および表面保護膜19に覆われていないことを言い、表面に自然形成される場合がある自然酸化膜等は含まないものとする。
図10に示すように、本実施の形態1のpHイメージセンサは、開口部20を試液21に浸し、その試液21中に電極22を挿入して電位を加えることによりMOSトランジスタ動作をさせ、この時センサ膜12が吸着するHイオン(H(被計測物質))の密度によって変動するMOSトランジスタの特性を基に試液21のpHを算出するものである。そのため、ゲート電極9の側面のセンサ膜12は、開口部20の側面に露出されていなければならない。また、センサ膜12が露出していなければならないだけでなく、開口部20の加工に当たっては、開口部20の底部に露出されるセンサ膜12のHイオン吸着能力の低下を防ぐことが求められる。センサ膜12である窒化シリコン膜は、層間絶縁膜15、18である酸化シリコン膜のドライエッチング雰囲気に曝されると、Hイオン吸着能力が低下してしまう。そこで、本実施の形態1では、センサ膜12の直上の層間絶縁膜13についてはウエットエッチングで除去することにより、センサ膜12のHイオン吸着能力の低下を防ぐことを可能としている。なお、W1で示される部分のセンサ膜12が実際にセンサとして機能する部分である。
また、本実施の形態1によれば、開口部20の形成後(ウエットエッチング後)において、エッチングストッパ膜14が開口部20の側壁から所定量が突出した状態となる。そのため、エッチングストッパ膜14における開口部20の平面(開口)寸法が小さくなるように開口部20のレイアウトを形成すれば、試液21中のpH計測時に影響を及ぼす不要な物質をエッチングストッパ膜14で濾し取るフィルタとして機能させることができ、その不要な物質がセンサ膜12に到達しないようにすることができる。それにより、試液21のpH値の計測精度を向上することができる。
また、エッチングストッパ膜14の膜厚については、ゲート電極9の厚さを基準として、ゲート電極9より厚くする場合とゲート電極9より薄くする場合とがある。
エッチングストッパ膜14の膜厚をゲート電極9より厚くした場合には、エッチングストッパ膜14の機械的強度を向上できるので、上記開口部20の側壁からの突出量を大きくすることができる。それにより、上記フィルタとしての機能を向上させることができる。
エッチングストッパ膜14の膜厚をゲート電極9より薄くする場合としては、エッチングストッパ膜14をセンサ膜12と同様の窒化シリコン膜から形成し、さらに開口部20の側壁からの突出部を小さくしてエッチングストッパ膜14で吸着する(濾し取る)物質を少なくしたい場合を例示できる。このようにエッチングストッパ膜14を薄く形成することにより、開口部20の側壁からの突出部を支える強度が小さくて済むので、層間絶縁膜13と層間絶縁膜15との間に残っているエッチングストッパ膜14も小さくすることができる。
また、層間絶縁膜13については、膜厚が厚すぎると前述の層間絶縁膜15のウエットエッチング時における層間絶縁膜15、18のサイドエッチング量が増加してしまう一方で、膜厚が薄すぎると開口部20の側壁から突出したエッチングストッパ膜14が吸着した(濾し取った)不要な物質の電荷がセンサ膜12に影響を及ぼし、間違った試液21のpH計測結果が出てしまう虞がある。このような層間絶縁膜13の膜厚は、計測する試液21に合わせて適宜膜厚を設定することができるが、本実施の形態1においては、層間絶縁膜13の膜厚はゲート絶縁膜8以上の膜厚とすることを例示できる。
ところで、上記エッチングストッパ膜14を省略した構造が考えられる。この場合には、層間絶縁膜15のドライエッチングによるオーバーエッチングが進み過ぎると、センサ膜12が層間絶縁膜15のドライエッチング雰囲気に曝されセンサ膜12のHイオン吸着能力を低下させてしまう虞があり、センサ膜12の直前で層間絶縁膜15のドライエッチングを停止することは難しいことから、層間絶縁膜15の残厚T2に余裕を持たせてドライエッチングを停止することが求められる(図11参照)。この後、その層間絶縁膜15の残厚T2分をウエットエッチングすることになるが、前述したように、ウエットエッチング時には層間絶縁膜15、18のサイドエッチングも発生してしまうが、そのサイドエッチング量(T2A)は前記層間絶縁膜15の残厚T2が厚くなるのに連動して増えることから(図12参照)、層間絶縁膜15の残厚T2が厚くなると、開口部20の開口径(W1)が微細となった場合には、開口部20を設計寸法通りに加工することが困難になってしまう不具合が懸念される。また、層間絶縁膜15、18のドライエッチング時には、副生成物が生成され、この副生成物がポリマー23となって開口部20の底部から側壁下部にかけて堆積する。このポリマー23は、層間絶縁膜15の残厚T2のウエットエッチングの進行を阻害し、ウエットエッチング後にも残留しやすいものである(図13参照)。このようなポリマー23が残留したままの場合、pHイメージセンサの動作時に、図14に示す電界がかからない領域NEAが生じてMOSトランジスタ動作が行えなくなり、pHイメージセンサとして機能しなくなってしまうことが懸念される。
一方、上記エッチングストッパ膜14を用いた本実施の形態1によれば、エッチングストッパ膜14下の層間絶縁膜13の膜厚を薄くしておくことにより、層間絶縁膜13のウエットエッチング時における層間絶縁膜15、18のサイドエッチング量(T1A)を極力小さく抑えることができる。それにより、開口部20が微細に設計されている場合でも精度よく加工することが可能となる。
また、上記エッチングストッパ膜14を用いた本実施の形態1によれば、層間絶縁膜15、18のドライエッチング時に生じたポリマーは、エッチングストッパ膜14上に付着することになる。エッチングストッパ膜14に付着したそのポリマーは、エッチングストッパ膜14のドライエッチング時(図7参照)に除去することができるので、層間絶縁膜13のウエットエッチング後にそのポリマーが残留してしまうことを防ぐことができる。それにより、本実施の形態1のpHイメージセンサがMOSトランジスタ動作を行えなくなってしまう不具合を防ぐことが可能となる。
その後、図15に示すように、基板1を切断することによって個片化された半導体チップ(以下、単にチップと記す)24を多層配線基板25に実装し、本実施の形態1のpHイメージセンサを製造する。チップ24には、前述の配線17と電気的に接続するボンディングパッド26が形成され、このボンディングパッド26と多層配線基板25に形成されたボンディングパッド27とがボンディングワイヤ28によって接続されることにより、チップ24と多層配線基板25とが電気的に接続される。また、チップ24の表面においては、開口部20が形成された領域とボンディングパッド26が形成された領域を隔離するように樹脂製の枠29が装着される。試液21のpH側定時には、この枠29内に試液21が浸され、枠29によって試液21が枠29外へ溢れ出ることを防止している。
本実施の形態1において、チップ24には、前述の開口部20が縦方向および横方向にそれぞれ10列ずつ配列され、それぞれの開口部20下が各々センサとなったアレイ構造が形成されている。たとえば、多層配線基板25をコンピュータと電気的に接続し、コンピュータの画面に各開口部20下で測定されたpHを各開口部20の配列に合わせてpHイメージ図として表示することにより測定結果を得ることができる。また、測定されたpHは、値に合わせて表示色を変えることにより、視覚的に理解しやすい測定結果とすることができる。
上記の本実施の形態1では、配線層は、配線17が形成された配線層のみの場合について例示したが、層間絶縁膜15および配線17を形成する工程を繰り返すことによって、さらに多層に配線層を形成してもよい。
(実施の形態2)
本実施の形態2は、pHセンサとなるセンサ膜12上の層間絶縁膜15、18の膜厚が異なる複数個所に前記実施の形態1で説明した開口部20を形成する場合の例である。
本実施の形態2では、図16に示すように、pHセンサとなるセンサ膜12上に複数個所開口部を設けるものであり、pHを計測するMOSトランジスタ構造(第1のセンサ素子、第2のセンサ素子)が複数の開口部に対応して複数設けられる。表面保護膜19を形成する工程までは、前記実施の形態1で説明した製造工程とほぼ同様であるが、開口部を設ける個所によって層間絶縁膜15、18の総膜厚が相対的に厚いT3と、相対的に薄いT4とになっている。このような場合においては、図17に示すように、まず、層間絶縁膜15、18の総膜厚が相対的に厚いT3(図16参照)の領域(第1の領域)において、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜R2をマスクとして表面保護膜19をドライエッチングし、開口部20Aを形成する。次いで、フォトレジスト膜R2および開口部20Aが形成された表面保護膜19をマスクとして層間絶縁膜18、15をドライエッチングし、開口部20Aを下方へ拡張する。この時、開口部20A下の層間絶縁膜18、15の総残厚が、前述の相対的に薄い層間絶縁膜15、18の総膜厚T4と同程度となる時点でそのドライエッチングは停止する。
次に、図18に示すように、上記フォトレジスト膜R2を除去した後、改めてフォトリソグラフィ技術によってパターニングされたフォトレジスト膜R3を表面保護膜19上に形成する。このフォトレジスト膜R3をマスクとして、まず層間絶縁膜15、18の層膜厚が相対的に薄いT4(図16参照)の領域(第2の領域)の表面保護膜19をドライエッチングし、開口部20Bを形成する。この時、開口部20A下の層間絶縁膜15もドライエッチング雰囲気に曝されることになるが、エッチング選択比が表面保護膜19と層間絶縁膜15とで異なることから、表面保護膜19のみを選択的にエッチングすることができる。
続いて、フォトレジスト膜R3および開口部20A、20Bが形成された表面保護膜19をマスクとして層間絶縁膜18、15をドライエッチングし、開口部20A、20Bを下方へ拡張する。前記実施の形態1でも説明したように、層間絶縁膜15の下層のエッチングストッパ膜14は、上層および下層の層間絶縁膜とエッチング選択比が異なるように材質が選択されている。そのため、層間絶縁膜18、15のドライエッチング工程時には、エッチングストッパ膜14でドライエッチングを停止することができる。
次に、図19に示すように、開口部20A、20B下のエッチングストッパ膜14をドライエッチングして、開口部20A、20Bを下方へ拡張する。前記実施の形態1でも説明したように、エッチングストッパ膜14は、下層の層間絶縁膜13とエッチング選択比が異なるように材質が選択されているため、エッチングストッパ膜14のドライエッチング工程時には、層間絶縁膜13でドライエッチングを停止することができる。
次に、図20に示すように、フォトレジスト膜R3を除去した後に、開口部20A、20B下の層間絶縁膜13をウエットエッチングし、開口部20A、20B下のセンサ膜12を露出させる。これら開口部20A、20Bの底部に露出したセンサ膜12がpHセンサとして機能する。
なお、層間絶縁膜18、15のドライエッチングに当たっては、エッチングストッパ膜14でエッチングの進行を止められることからオーバーエッチングが可能であることから、開口部20Aと開口部20Bとを同時に開口する工程とし、層間絶縁膜15、18の総膜厚が相対的に薄いT4の領域ではオーバーエッチングさせつつ、総膜厚が相対的に厚いT3の領域では層間絶縁膜15のエッチングを進めてもよい。それにより、本実施の形態2のpHイメージセンサの製造工程数を減らし、TAT(Turn Around Time)を短縮化することができる。
ここで、図21は、エッチングストッパ膜14を形成していない場合の例を示す断面図である。エッチングストッパ膜14を形成していない場合には、前記実施の形態1でも説明したように、層間絶縁膜15、18のドライエッチング時には、層間絶縁膜15の残厚に余裕を持たせてドライエッチングを停止することが求められる。しかしながら、上記のように開口部20Aを先に開口した後で開口部20Bの開口を行う場合には、ウエットエッチング前に開口部20B下でも層間絶縁膜15の残厚に余裕を持たせてドライエッチングを停止することが求められることから、ドライエッチング工程終了時点での開口部20A、20Bそれぞれの下部での層間絶縁膜15の残厚のばらつきが大きくなることが懸念される。また、開口部20A、20B下の層間絶縁膜15の残厚が大きいと、後のウエットエッチング量も大きくなってしまうことから、ウエットエッチング時のサイドエッチング量も大きくなり、配線17が露出してしまう虞がある。また、開口部20A、20Bそれぞれの下部での層間絶縁膜15の残厚のばらつきが大きい場合には、たとえば層間絶縁膜15のウエットエッチング時に、開口部20B下での層間絶縁膜15は除去されても、開口部20A下の層間絶縁膜15がまだ残っているという状況が発生し、その残った開口部20A下の層間絶縁膜15を除去するためにウエットエッチングを続行すると、開口部20Bではゲート電極9までがセンサ膜12に覆われた状態で露出し、さらにそのゲート電極9の反対側まで露出してしまう虞がある。
一方、上記のエッチングストッパ膜14を備えた本実施の形態2によれば、エッチングストッパ膜14によって層間絶縁膜15、18のドライエッチングを確実に停止でき、エッチングストッパ膜14下の層間絶縁膜13の膜厚を開口部20A下と開口部20B下とで揃えることができる。また、エッチングストッパ膜14下の層間絶縁膜13の膜厚を薄くしておくことにより、層間絶縁膜13のウエットエッチング時における層間絶縁膜15、18のサイドエッチング量(T1)を極力小さく抑えることができる。それにより、層間絶縁膜15、18の総膜厚が異なる複数個所に開口部20A、20Bを形成する場合でも、開口部20A、20Bを精度よく加工することが可能となる。もちろん開口部20A、20Bを微細に加工することも可能である。
(実施の形態3)
本実施の形態3は、前記実施の形態1で説明した開口部20の平面(開口)形状が複雑な場合の例であり、図22は、開口部20の形成前の要部平面図であり、図23は、開口部20の形成後の要部平面図である。
開口部20の平面形状が単純な矩形や円形でなく、入り組んだ構造等を有している場合には、その入り組んだ場所にゲート電極9や配線17等が配置される場合がある。前記実施の形態1でも説明したように、エッチングストッパ膜14を用いて開口部20を形成した場合には、層間絶縁膜13(図8参照)のウエットエッチング時における層間絶縁膜15、18(図8参照)のサイドエッチング量を極力小さく押さえることができる。それにより、開口部20の平面形状が複雑な場合でも開口部20を寸法精度良くレイアウトパターンに沿った形状で形成することができる。
一方、エッチングストッパ膜14を省略して開口部20を形成した場合には、前記実施の形態1でも説明したように、層間絶縁膜13のウエットエッチング時における層間絶縁膜15、18のサイドエッチング量が大きくなり、所望の平面形状が得られなくなってしまう虞がある。前述したように、開口部20の入り組んだ場所(図24中に符号CAで図示)にゲート電極9や配線17等が配置されている場合には、それらゲート電極9や配線17等がサイドエッチングにより露出してしまう不具合が懸念される(図24参照)。
(実施の形態4)
本実施の形態4は、前記実施の形態1で説明した開口部20の形成後に残ったエッチングストッパ膜14を電極として用いる例である。
図25および図26は、開口部20をセンサ膜12に達するまで形成した時点のそれぞれ要部断面図および要部平面図である。図25および図26に示すように、本実施の形態4では、配線17と同じ配線層で配線(第2の電極)17Aが形成され、この配線17Aがコンタクトホール16Aを通じてエッチングストッパ膜14に接続されている。本実施の形態4においては、エッチングストッパ膜14は電極としても用いるので、多結晶シリコン以外の材料から形成する場合でも導電性材料を選択する。
上記のような構造を有する本実施の形態4のpHイメージセンサによれば、試液21(図10参照)のpH計測時において、配線17Aを通じて電極22とエッチングストッパ膜14との間に電圧を印加することによって、試液21とエッチングストッパ膜14との間に電位勾配を発生することができる。このような電位勾配を発生させることにより、試液21のpH計測中にセンサ膜12に集まる物質を任意に選択することが可能となる。すなわち、前記電位勾配によってpH計測時に影響を及ぼす不要な物質をエッチングストッパ膜14に吸着させることができるので、試液21のpH値の計測精度を向上することができる。また、pH計測時に影響を及ぼす不要な物質をエッチングストッパ膜14に吸着させることができることから、試液21を濾す等して不要物を除去してから計測を開始する等の手間を省くことができるので、pH計測の効率を向上することが可能となる。
また、試液21中のイオン化の程度、正負の電荷および中性特性等の特性によっては、上記電位勾配を発生させることにより、本実施の形態4のpHイメージセンサのセンシング感度を変えることもできる。
また、エッチングストッパ膜14を電極22の代わりとして用いることができる。電極として用いる場合には、以下のような方法でエッチングストッパ膜14からの電界分布を制御することができる。すなわち、エッチングストッパ膜14下の層間絶縁膜13の膜厚を厚くすることによって、センサ膜12とエッチングストッパ膜14との間隔が開くので、エッチングストッパ膜14から試液21中に均一に電界がかかるようにすることができる。また、エッチングストッパ膜14下の層間絶縁膜13の膜厚を薄くすることによって、センサ膜12とエッチングストッパ膜14との間隔が狭まるので、エッチングストッパ膜14から試液21中にかかる電界に勾配を設けることができる。
(実施の形態5)
図27は、本実施の形態5の半導体装置であるpHイメージセンサの要部断面図であり、図28〜図30は、そのイメージセンサの要部平面図である。
図27〜図30に示すように、本実施の形態5のpHイメージセンサは、前記実施の形態1のpHイメージセンサの構造において、層間絶縁膜13と層間絶縁膜15との間に平面ネット状(第1のパターン)にパターニングされたネット膜(第3の薄膜)14Aと層間絶縁膜13Aとを下層から順次配置したものである。なお、層間絶縁膜13Aについては省略しても良い。
ネット膜14Aとしては、層間絶縁膜13、13A、15、18とはエッチング選択比が異なる材料を用いるものであり、センサ膜12と同様の窒化シリコン膜、あるいはTi膜、TiW膜およびW膜等の導電性膜あるいは絶縁膜を用い、層間絶縁膜13Aを省略している場合には、エッチングストッパ膜14ともエッチング選択比が異なる材料を用いる。ネット膜14Aは、層間絶縁膜13の成膜後に層間絶縁膜13上に堆積し、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとしたエッチングによりパターニングする。このパターニングにより、開口部20(pHセンサ)が形成される領域のネット膜14Aにおいては、図28〜図30に示すような所望の平面形状の複数の開口部14Bが形成され、この領域においてネット膜14Aは平面ネット状のパターンとなる。ネット膜14Aは、層間絶縁膜13、15、18(層間絶縁膜13Aを省略している場合にはエッチングストッパ膜も含まれる)とはエッチング選択比が異なる材料を用いているので、開口部20がセンサ膜12まで拡張された後でも、平面ネット状のパターンが形成されたネット膜14Aを開口部20内に残すことができる。
層間絶縁膜13Aとしては、層間絶縁膜13、15、18と同様の酸化シリコン膜を用いることができ、上記ネット膜14Aのパターニング後に堆積する。このような層間絶縁膜13Aは、前記実施の形態1でも説明した開口部20形成時における層間絶縁膜13のウエットエッチング工程にて、層間絶縁膜13と共に等方的にエッチングすることができる。
また、図27に示したように、ネット膜14Aとセンサ膜12との間には、層間絶縁膜13がエッチングされたことによる隙間が形成される。試液21(図10参照)のpHを計測する際には、試液21がそのネット膜14Aとセンサ膜12との間の隙間に入り込むので、本実施の形態5のpHイメージセンサは機能することができる。
上記のような開口部14Bを備えたネット膜14Aを設けることにより、試液21のpH計測時にセンサ膜12に到達する物質を大きさで選別することができるようになり、大きな物質は、センサ膜12に到達できないようすることが可能となる。
また、上記のような開口部14Bを備えたネット膜14Aを設けることにより、試液21のpH計測時にセンサ膜12に到達する物質を大きさだけでなく形状でも選別することができるようになる。すなわち、開口部14Bの形状を通したい物質の形状に合わせて形成することにより、たとえば試液21中のたんぱく質等の有機物で、ある形状の分子(細長い分子)は通過できるようになる一方で、別の形状の分子(短くて太い分子)は濾し取ることができるようになるといった利用方法が可能となる。
また、上記ネット膜14Aの材質を適当に選択することにより、ネット膜14Aによって試液21中の特定の物質を吸着することも可能となる。たとえば、試液21中に同程度の大きさおよび形状を有する2種類の酵素Aと酵素Bとが存在し、酵素Bはセンサ膜12に吸着させたくない場合、ネット膜14Aとして酵素Bを吸着し、酵素Aは吸着しない材料を選択することにより、酵素Aだけを選択してセンサ膜12まで到達させられるようになる。なお、センサ膜12としては窒化シリコン膜を用いているが、他の薄膜を用いて酵素Aの吸着した酵素Aの密度を計測するセンサの場合には、酵素Bのみを選択して吸着するネット膜14Aを設けたことにより、センサ膜12による酵素Aの吸着を感度よく検出することが可能となり、ネット膜14Aが完全に酵素Bを吸着できない場合でも、程度の差こそあれ酵素Aの検出感度は向上できるようになる。
また、試液21のpH計測時にネット膜14Aにより不要な物質を濾し取ることを目的とする場合には、エッチングストッパ膜14を省略した構造としてもよい。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
たとえば前記実施の形態では、pHセンサがMOSトランジスタ動作をし、その特性を基にpH値を計測する場合について説明したが、MOSトランジスタの代わりに、ダイオード、抵抗および容量等の構造を形成し、それらの特性を基にpH値を計測しても良い。
また、前記実施の形態では、センサ膜として窒化シリコン膜を用い、試液のpH値を計測する場合について説明したが、計測する対象(要素)によっては、酸化シリコン膜、多結晶シリコン膜、Pt(白金)化合物膜、STO(Strontium-Titanium-Oxide)膜、アモルファス(非晶質)シリコン膜、Ti膜、TiW膜および有機膜等の他の薄膜を用いても良い。たとえば、酸化シリコン膜を用いた場合にはDNAのような蛋白質の計測を行えるようになり、STO膜を用いた場合にはガスの計測を行えるようになる。また、有機膜を用いた場合には、バイオセンサを形成することができる。
また、前記実施の形態においては、単結晶シリコン基板からpHイメージセンサを形成する場合について説明したが、計測する対象(要素)に合わせてGaAs(ガリウムヒ素)やSiGe(シリコンゲルマニウム)等の他の基板を用いてセンサを形成してもよい。
本発明の半導体装置およびその製造方法は、ドライエッチング法およびウエットエッチング法を併用する工程を含む半導体装置の製造工程、およびそれにより製造される半導体装置に適用できる。

Claims (23)

  1. 半導体基板の主面に形成されたセンサ素子と、
    前記センサ素子が形成された前記半導体基板の前記主面上に形成された第1の薄膜と、
    前記第1の薄膜を含む前記半導体基板の前記主面上に形成された第1の絶縁膜と、
    前記第1の絶縁膜上に形成された第2の絶縁膜と、
    前記半導体基板の前記主面の第1の領域上の前記第1の絶縁膜と前記第2の絶縁膜との間でパターニングされ前記第1の絶縁膜および前記第2の絶縁膜に対してエッチング選択比を有する第2の薄膜と、
    前記第1の絶縁膜、前記第2の絶縁膜および前記第2の薄膜に形成され、前記第1の薄膜に達する開口部とを有し、
    前記センサ素子は、前記半導体基板の前記主面上にてパターニングされた第1の電極を備え、前記開口部を介して前記半導体基板に達する被計測物質を検知し、
    前記第1の薄膜は、前記第1の電極の上面および側面と、前記開口部の底部と、前記開口部の側面の少なくとも一部とを覆い、
    前記第2の薄膜は、前記第1の電極の上面を覆い、
    前記開口部の前記底部および前記開口部の前記側面の少なくとも一部における前記第1の薄膜の表面は、露出され、
    前記第1の薄膜は、前記被計測物質により前記センサ素子を電気的に作用させる薄膜であることを特徴とする半導体装置。
  2. 請求項1記載の半導体装置において、
    前記第1の絶縁膜は、前記第2の絶縁膜より薄いことを特徴とする半導体装置。
  3. 請求項2記載の半導体装置において、
    前記第2の薄膜は、前記第1の電極より厚いことを特徴とする半導体装置。
  4. 請求項2記載の半導体装置において、
    前記第2の薄膜は、前記第1の電極より薄いことを特徴とする半導体装置。
  5. 請求項1記載の半導体装置において、
    前記開口部は、入り組んだ平面形状を有していることを特徴とする半導体装置。
  6. 請求項1記載の半導体装置において、
    前記第2の薄膜には、任意の電位を印加できる第2の電極が電気的に接続されていることを特徴とする半導体装置。
  7. 請求項1記載の半導体装置において、
    前記第2の薄膜は導電材料から形成され、前記第2の薄膜の電位を任意に設定できることを特徴とする半導体装置。
  8. 請求項1記載の半導体装置において、
    前記第1の薄膜は窒化シリコン膜であり、試液中の水素イオンを吸着し、前記水素イオンの吸着密度に対応する前記センサ素子の特性から前記試液のpHを計測することを特徴とする半導体装置。
  9. 請求項8記載の半導体装置において、
    前記センサ素子および前記開口部は複数配列されてアレイが形成され、各々の前記開口部に対応した前記pHのイメージが配列されたpHイメージ図を形成することを特徴とする半導体装置。
  10. 半導体基板の主面に形成されたセンサ素子と、
    前記センサ素子が形成された前記半導体基板の前記主面上に形成された第1の薄膜と、
    前記第1の薄膜を含む前記半導体基板の前記主面上に形成された第1の絶縁膜と、
    前記第1の絶縁膜上に形成された第2の絶縁膜と、
    前記半導体基板の前記主面の第1の領域上の前記第1の絶縁膜と前記第2の絶縁膜との間で第1のパターンでパターニングされ、前記第1の絶縁膜および前記第2の絶縁膜に対してエッチング選択比を有する第3の薄膜と、
    前記第1の絶縁膜および前記第2の絶縁膜に開口され、前記第1の薄膜に達する開口部とを有し、
    前記センサ素子は、前記半導体基板の前記主面上にてパターニングされた第1の電極を備え、前記開口部を介して前記半導体基板に達する被計測物質を検知し、
    前記第1の薄膜は、前記第1の電極の上面および側面と、前記開口部の底部と、前記開口部の側面の少なくとも一部とを覆い、
    前記開口部の前記底部および前記開口部の前記側面の少なくとも一部における前記第1の薄膜の表面は、露出され、
    前記第1の薄膜は、前記被計測物質により前記センサ素子を電気的に作用させる薄膜であることを特徴とする半導体装置。
  11. 請求項10記載の半導体装置において、
    前記第3の薄膜の前記第1のパターンは、試液中の所望の形状の物質を前記第1の薄膜に向かって透過させるパターンであることを特徴とする半導体装置。
  12. 請求項10記載の半導体装置において、
    前記第1の領域上の前記第3の薄膜と前記第2の絶縁膜との間でパターニングされて前記第1の電極の上面を覆い、前記第1の絶縁膜および前記第2の絶縁膜に対してエッチング選択比を有する第2の薄膜を有し、
    前記開口部は前記第2の薄膜にも形成されていることを特徴とする半導体装置。
  13. 請求項12記載の半導体装置において、
    前記第1の絶縁膜は、前記第2の絶縁膜より薄いことを特徴とする半導体装置。
  14. (a)半導体基板の主面にセンサ素子を形成する工程、
    (b)前記センサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
    (c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
    (d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記半導体基板の前記主面の第1の領域上にて前記第2の薄膜をパターニングする工程、
    (e)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有する第2の絶縁膜を形成する工程、
    (f)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域上の前記第2の絶縁膜を第1の平面形状で異方的にドライエッチングし、前記第2の薄膜に達する開口部を形成する工程、
    (g)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を前記第1の絶縁膜に達するように拡張する工程、
    (h)前記(g)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
    を含むことを特徴とする半導体装置の製造方法。
  15. 請求項14記載の半導体装置の製造方法において、
    前記(a)工程は、前記半導体基板の前記主面上にて第1の電極をパターニングする工程を含み、
    前記第1の電極は、前記センサ素子に含まれ、
    前記(h)工程では、前記開口部の底部および前記開口部の側面の少なくとも一部における前記第1の薄膜の表面を露出することを特徴とする半導体装置の製造方法。
  16. 請求項14記載の半導体装置の製造方法において、
    前記第1の絶縁膜は、前記第2の絶縁膜より薄いことを特徴とする半導体装置の製造方法。
  17. 請求項14記載の半導体装置の製造方法において、
    前記第1の平面形状は、入り組んだ平面形状であることを特徴とする半導体装置の製造方法。
  18. (a)半導体基板の主面に第1のセンサ素子および第2のセンサ素子を形成する工程、
    (b)前記第1のセンサ素子および前記第2のセンサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
    (c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
    (d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記半導体基板の前記主面の第1の領域上および第2の領域上にて前記第2の薄膜をパターニングする工程、
    (e)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有し、前記第1の領域上と前記第2の領域上とで膜厚が異なる第2の絶縁膜を形成する工程、
    (f)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域および前記第2の領域上の前記第2の絶縁膜をそれぞれ第1の平面形状で異方的にドライエッチングし、前記第1の領域および前記第2の領域のそれぞれに前記第2の薄膜に達する開口部を形成する工程、
    (g)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を前記第1の絶縁膜に達するように拡張する工程、
    (h)前記(g)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
    を含むことを特徴とする半導体装置の製造方法。
  19. 請求項18記載の半導体装置の製造方法において、
    前記(a)工程は、前記半導体基板の前記主面上にて複数の第1の電極をパターニングする工程を含み、
    前記複数の第1の電極は、前記第1のセンサ素子および前記第2のセンサ素子に含まれ、
    前記(h)工程では、前記開口部の底部および前記開口部の側面の少なくとも一部における前記第1の薄膜の表面を露出することを特徴とする半導体装置の製造方法。
  20. 請求項18記載の半導体装置の製造方法において、
    前記第1の絶縁膜は、前記第2の絶縁膜より薄いことを特徴とする半導体装置の製造方法。
  21. (a)半導体基板の主面にセンサ素子を形成する工程、
    (b)前記センサ素子の存在下で前記半導体基板の前記主面上に第1の薄膜を形成する工程、
    (c)前記第1の薄膜を含む前記半導体基板の前記主面上に第1の絶縁膜を形成する工程、
    (d)前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第3の薄膜を形成し、前記半導体基板の前記主面の第1の領域上にて前記第3の薄膜を第1のパターンでパターニングする工程、
    (e)前記第3の薄膜を含む前記第1の絶縁膜上に前記第1の絶縁膜に対してエッチング選択比を有する第2の薄膜を形成し、前記第1の領域上にて前記第2の薄膜をパターニングする工程、
    (f)前記第2の薄膜を含む前記第1の絶縁膜上に、前記第2の薄膜に対してエッチング選択比を有する第2の絶縁膜を形成する工程、
    (g)前記第2の絶縁膜上に第1のマスキング層を形成し、前記第1のマスキング層をマスクとして前記第1の領域上の前記第2の絶縁膜を第1の平面形状で異方的にドライエッチングし、前記第2の薄膜に達する開口部を形成する工程、
    (h)前記第1のマスキング層をマスクとして前記開口部下の前記第2の薄膜を前記第1の平面形状で異方的にドライエッチングし、前記開口部を拡張する工程、
    (i)前記(h)工程後、前記開口部下の前記第1の絶縁膜を等方的にウエットエッチングし、前記開口部を前記第1の薄膜に達するように拡張する工程、
    を含むことを特徴とする半導体装置の製造方法。
  22. 請求項21記載の半導体装置の製造方法において、
    前記(a)工程は、前記半導体基板の前記主面上にて複数の第1の電極をパターニングする工程を含み、
    前記複数の第1の電極は、前記センサ素子に含まれ、
    前記(i)工程では、前記開口部の底部および前記開口部の側面の少なくとも一部における前記第1の薄膜の表面を露出することを特徴とする半導体装置の製造方法。
  23. 請求項21記載の半導体装置の製造方法において、
    前記第1の絶縁膜は、前記第2の絶縁膜より薄いことを特徴とする半導体装置の製造方法。
JP2009523564A 2007-07-19 2008-05-20 半導体装置およびその製造方法 Pending JPWO2009011164A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007188083 2007-07-19
JP2007188083 2007-07-19
PCT/JP2008/059221 WO2009011164A1 (ja) 2007-07-19 2008-05-20 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JPWO2009011164A1 true JPWO2009011164A1 (ja) 2010-09-16

Family

ID=40259507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009523564A Pending JPWO2009011164A1 (ja) 2007-07-19 2008-05-20 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US20100176463A1 (ja)
JP (1) JPWO2009011164A1 (ja)
WO (1) WO2009011164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032209A (ja) * 2013-10-18 2014-02-20 Seiko Epson Corp センサ素子及び半導体装置の製造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677308B1 (en) 2006-12-14 2017-04-26 Life Technologies Corporation Method for fabricating large scale FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
CN103080739B (zh) 2010-06-30 2016-12-21 生命科技公司 用于测试isfet阵列的方法和装置
TWI580955B (zh) 2010-06-30 2017-05-01 生命技術公司 離子感測電荷累積電路及方法
US8432149B2 (en) 2010-06-30 2013-04-30 Life Technologies Corporation Array column integrator
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
JP5876044B2 (ja) 2010-07-03 2016-03-02 ライフ テクノロジーズ コーポレーション 低濃度ドープドレインを有する化学的感応性センサ
WO2012036679A1 (en) 2010-09-15 2012-03-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
GB2508582A (en) * 2012-10-12 2014-06-11 Dna Electronics Ltd ISFET with Titanium Nitride layer
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
EP2762865A1 (en) * 2013-01-31 2014-08-06 Sensirion Holding AG Chemical sensor and method for manufacturing such a chemical sensor
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
CN105264366B (zh) 2013-03-15 2019-04-16 生命科技公司 具有一致传感器表面区域的化学传感器
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
CN105051525B (zh) 2013-03-15 2019-07-26 生命科技公司 具有薄导电元件的化学设备
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
TWI832669B (zh) 2014-12-18 2024-02-11 美商生命技術公司 具有傳輸器組態的高資料速率積體電路
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US10429342B2 (en) 2014-12-18 2019-10-01 Edico Genome Corporation Chemically-sensitive field effect transistor
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
EP3308153A4 (en) * 2015-06-14 2019-02-20 Agilome, Inc. GRAPHENE FET DEVICES, SYSTEMS AND METHODS OF USING THE SAME FOR NUCLEIC ACID SEQUENCING
CN107923869B (zh) * 2015-08-25 2021-10-08 生命技术公司 深微阱设计及其制造方法
JP6569901B2 (ja) * 2015-08-28 2019-09-04 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
WO2017201081A1 (en) 2016-05-16 2017-11-23 Agilome, Inc. Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids
CN111293041B (zh) * 2018-12-06 2024-07-23 东京毅力科创株式会社 蚀刻处理方法和基板处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237347A (ja) * 1986-04-08 1987-10-17 Tokuyama Soda Co Ltd 電界効果トランジスタ型ガスセンサ−
JPH1084145A (ja) * 1996-05-31 1998-03-31 Siemens Ag 圧力センサおよび電気化学的センサを組み合わせたセンサの製造方法
JP2003501657A (ja) * 1999-06-04 2003-01-14 アプライドセンサー スウェーデン アーベー 低消費電力センサ
JP2007017312A (ja) * 2005-07-08 2007-01-25 Hitachi Ltd 半導体ガスセンサとその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671243B2 (ja) * 1996-09-03 2005-07-13 株式会社日立製作所 共振型電力変換装置
JP3313696B2 (ja) * 2000-03-27 2002-08-12 科学技術振興事業団 電界効果トランジスタ
JP4195859B2 (ja) * 2001-11-16 2008-12-17 株式会社バイオエックス Fet型センサと、そのセンサを用いたイオン濃度検出方法及び塩基配列検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237347A (ja) * 1986-04-08 1987-10-17 Tokuyama Soda Co Ltd 電界効果トランジスタ型ガスセンサ−
JPH1084145A (ja) * 1996-05-31 1998-03-31 Siemens Ag 圧力センサおよび電気化学的センサを組み合わせたセンサの製造方法
JP2003501657A (ja) * 1999-06-04 2003-01-14 アプライドセンサー スウェーデン アーベー 低消費電力センサ
JP2007017312A (ja) * 2005-07-08 2007-01-25 Hitachi Ltd 半導体ガスセンサとその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032209A (ja) * 2013-10-18 2014-02-20 Seiko Epson Corp センサ素子及び半導体装置の製造方法

Also Published As

Publication number Publication date
WO2009011164A1 (ja) 2009-01-22
US20100176463A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JPWO2009011164A1 (ja) 半導体装置およびその製造方法
EP2807478B1 (en) Isfet sensor array comprising titanium nitride as a sensing layer located on the bottom of a microwell structure
US8962366B2 (en) Self-aligned well structures for low-noise chemical sensors
US9151740B2 (en) Nanopore device with improved sensitivity and method of fabricating the same
TWI557409B (zh) 生物場效電晶體及其製造方法與生物晶片
US8871549B2 (en) Biological and chemical sensors
JP4212667B2 (ja) 圧力センサおよび電気化学的センサを組み合わせたセンサの製造方法
JP2020042034A (ja) 一貫性のあるセンサ表面積を有する化学センサ
EP3063791B1 (en) Method of forming a metal oxide semiconductor sensor using atomic layer deposition and corresponding metal oxide semiconductor sensor
TW201721873A (zh) 半導體裝置及其製造方法
US20120024700A1 (en) Sensor device and manufacturing method
US9796584B2 (en) Method for fabricating a micro-well of a biosensor
US9395318B2 (en) Electrochemical sensor device
US9935283B2 (en) Thin film device with protective layer
CN104049021B (zh) 具有增大的感测面积的biofet
WO2019023945A1 (zh) 流道结构器件及其制造方法
JP2011133234A (ja) センサ及びその測定方法
US10788446B1 (en) Ion-sensitive field-effect transistor with micro-pillar well to enhance sensitivity
US20240053244A1 (en) Multi-point capacitive motion sensing structure
JP6375629B2 (ja) ガスセンサ及びその製造方法
JP2013187512A (ja) 半導体装置
CN101667558A (zh) 半导体装置的制造方法
TWI384566B (zh) 半導體生物感測器及其製造方法
US20240324463A1 (en) Piezoelectric biosensor and related method of formation
JP2009231592A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120105