JPWO2008133050A1 - 燃料改質方法及び装置 - Google Patents

燃料改質方法及び装置 Download PDF

Info

Publication number
JPWO2008133050A1
JPWO2008133050A1 JP2009511782A JP2009511782A JPWO2008133050A1 JP WO2008133050 A1 JPWO2008133050 A1 JP WO2008133050A1 JP 2009511782 A JP2009511782 A JP 2009511782A JP 2009511782 A JP2009511782 A JP 2009511782A JP WO2008133050 A1 JPWO2008133050 A1 JP WO2008133050A1
Authority
JP
Japan
Prior art keywords
pipe
fuel
liquid fuel
far
far infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009511782A
Other languages
English (en)
Other versions
JP4787357B2 (ja
Inventor
薫 成田
薫 成田
慎一郎 成田
慎一郎 成田
一徳 清家
一徳 清家
Original Assignee
八代工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八代工業株式会社 filed Critical 八代工業株式会社
Priority to JP2009511782A priority Critical patent/JP4787357B2/ja
Publication of JPWO2008133050A1 publication Critical patent/JPWO2008133050A1/ja
Application granted granted Critical
Publication of JP4787357B2 publication Critical patent/JP4787357B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/06Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by rays, e.g. infrared and ultraviolet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本発明は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質することにより燃費低減を可能にした燃料改質装置及び装置を提供する。燃料改質装置は、液体燃料を充満させた状態で軸方向に流す管路を形成するパイプ手段と、該パイプ手段の外周に所定空間を形成した状態で該パイプ手段の全周を包囲する筒手段と、管路の内部に遠赤外線を照射する遠赤外線照射手段により構成されている。これにより、パイプ手段の外側の周囲から該パイプ手段の全周を加熱する加熱工程と、前記管路の全周から液体燃料に遠赤外線を照射する遠赤外線照射工程が行われる。管路には流束生成手段が設けられている。これにより、管路を流れる液体燃料は、管路の軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成し、管路の中心部に位置する液体燃料と外周側に位置する液体燃料を混合させられる。

Description

本発明は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質方法及び装置に関する。
従来、燃料タンクに貯留された液体燃料は、ポンプにより燃料供給ラインを介して内燃機関に供給される。燃料は空気と混合され、その混合気が内燃機関のシリンダに供給され、ディーゼルエンジンの場合は自己着火により燃焼し、ガソリンエンジンの場合は点火により燃焼する。炭化水素系(石油系)の液体燃料は、高分子状態とされ、燃料分子が数個〜数十個の分子単位の塊状とされたクラスターを構成している。従って、燃料と空気の混合気がシリンダの内部で燃焼するとき、クラスターの外側部分は良好に燃焼するが、内側部分は良好に燃焼せず、炭素化する。このため、高い燃焼効率を得難く、特に、燃費が良くない。
しかも、ガソリンや軽油は、燃料分子の他に、硫黄や芳香族炭化水素化合物等の不純物質を含んでおり、これらが燃料分子と結合したクラスターを形成していると考えられている。これらの不純物質は、良好に燃焼せず、不完全燃焼で燃えかすを生じ、煤となってシリンダに付着し、内燃機関の耐用期間を短くする。更に、燃えかすは未燃ガス(NO・PM)と共に黒煙を含む排気ガスとして排出され、大気汚染の要因となる。
ところで、液体燃料に遠赤外線を照射することにより、液体燃料中のクラスターを細分化し、完全燃焼し易い低分子状態の燃料に改質できることが知られている。例えば、特許文献1に記載された装置は、燃料タンクと内燃機関の間の燃料供給ラインに接続され、装置の内部に設けた流路を液体燃料が通過するときに、装置の側面に設けたセラミックパウダが液体燃料に向けて遠赤外線を照射する。そこで、クラスターを微細化した燃料は、酸素と結合し易い状態となる。これにより、理論的には、内燃機関による燃料の完全燃焼が可能になり、燃費が向上し、大気汚染物質の排出が減少する。
特開2001−165007号公報
しかしながら、従来の燃料改質装置は、一応の燃費の向上は期待できるが、実際には、燃費の低減率がかなり低い。この装置の燃費低減率が低い理由は、次の点にあると考えられる。
(1)常温のセラミックから発生する遠赤外線は微量であり、十分でない。
(2)遠赤外線が燃料に対して均一に、かつ効率的に照射されない。
(3)燃料に含まれる気泡が細分化されない。
(4)遠赤外線の照射により燃料に含まれるクラスターが仮に微細化されたとしても、装置を通過した後、再び分子が結合してクラスターを形成してしまうので、燃料の改質状態が安定しない。
本発明者らの知見によれば、セラミックは、加熱ないし加温(以下単に「加熱」という)することにより遠赤外線の発生量を増加する。従って、セラミックを所定温度に加熱するのが良い。また、遠赤外線の照射と同時に、液体燃料自体を加熱すると、クラスターの微細化が促進される。しかしながら、単純に加熱すれば良いのではなく、加熱により上昇した温度とクラスターの微細化の間に特定の関係が発見された。従って、加熱温度の有効範囲を見極めることが重要である。
ところで、燃料供給ラインを流れる液体燃料は、内燃機関の回転数(rpm)を上げるとき、流量を増大して流速を上げるので、遠赤外線の照射時間が短くなる。この点に関して、本発明者らの知見によれば、燃料改質効果を得るためには、内燃機関の回転数(rpm)に応じて、液体燃料の外周囲の温度を制御することが重要である。
液体燃料の加熱と遠赤外線照射を良好に行うためには、液体燃料に複数の流束を生成させ、複数の流束を混合させることが好ましい。これにより、遠赤外線が液体燃料の全体にわたり照射される。しかも、液体燃料に含まれる気泡が微細化される。
上述した遠赤外線の照射と、液体燃料の加熱と、液体燃料の流束の制御は、同時に行うことが好ましく、これにより燃料の改質を相乗的に行うことができる。
更に、遠赤外線の照射によりクラスターを微細化した後、再び分子が結合して元のクラスター状態に戻るのを妨げるためには、液体燃料を通過させるパイプ手段を導電材料により形成し、該パイプ手段を電気的に接地することが好ましい。
本発明は、燃費の低減率を大幅に向上させた燃料改質方法及び燃料改質装置を提供する。
本発明は、次のように構成した燃料改質方法(請求項1)を提供する。即ち、本発明の燃料改質方法は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質方法において、前記燃料供給ラインの途中に設けたパイプ手段により形成される管路に液体燃料を充満させた状態で該管路の軸方向に流す燃料流動工程と、前記パイプ手段の外側の周囲から該パイプ手段の全周を加熱する加熱工程と、前記管路の全周から液体燃料に遠赤外線を照射する遠赤外線照射工程と、前記遠赤外線の照射環境を流れる液体燃料に関して、管路の軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成することにより、該管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成工程とから成る。
その結果、本発明の燃料改質方法によれば、管路の外周囲を加熱することにより、管路を流れる液体燃料の温度を上昇させると共に、例えばセラミックから成る遠赤外線発生手段から多量の遠赤外線を発生させて液体燃料に照射するので、液体燃料に含まれる分子のクラスターを好適に微細化することができる。しかも、このような遠赤外線照射工程と流束生成工程を同時に行うことにより、管路の中心部に位置する液体燃料部分と外周側に位置する液体燃料部分を混合させながら、管路を通過する液体燃料の全体に対して均一に、加熱と遠赤外線照射を行い、これにより燃料の全体にわたってクラスターの微細化を行い、燃焼効率を向上する。
前記加熱工程は、パイプ手段の全周を囲む外側領域で発生させた遠赤外線を該パイプ手段に照射することにより行われ、前記遠赤外線照射工程は、パイプ手段を透過した遠赤外線を管路に進入させることにより行われる(請求項2)。
遠赤外線の発生手段は、2つの発生手段により構成しても良い。この場合、パイプ手段の全周を囲む外側領域で発生させた第1の遠赤外線を該パイプ手段に照射し、パイプ手段の全内周面で発生させた第2の遠赤外線を管路の内部に照射する(請求項3)。
本発明者らの知見によれば、液体燃料に含まれるクラスターの微細化を良好に行うためには、パイプ手段の周囲の温度が重要であり、実験によれば、複数の実験例の何れにおいても、管路の外周温度を50〜65℃に保持したとき燃料改質の効果を確認したが、それ以外の温度では効果を確認できなかった。従って、前記加熱工程は、管路の外周温度を50〜65℃に保持するのが好ましい(請求項4)。
ところで、内燃機関の回転数(rpm)を上げるためには、液体燃料の流量を増大させる必要があり、その結果、管路を流れる燃料の流速が上がるので、管路を通過する燃料に対する加熱時間と遠赤外線の照射時間が短くなる。しかしながら、実験によれば、複数の実験例の何れにおいても、確認された燃費低減率は、管路の外周温度と内燃機関の回転数(rpm)の間に比例的関係は見られない。後述するように、内燃機関の回転数(rpm)がアイドリングの500(rpm)のときは、管路の外周温度を50℃に保持することにより良好な燃費低減効果が確認された。その一方において、1000(rpm)、1200(rpm)、1500(rpm)のときは、管路の外周温度を50℃又は65℃に保持した状態で良好な燃費低減効果を示すが、55℃に保持すると燃費低減効果が急激に低下することが確認された。その反対に、1800(rpm)のときは、管路の外周温度を55℃に保持した状態で良好な燃費低減効果を示すが、50℃又は65℃に保持すると燃費低減効果が低下することが確認された。更に、ほぼ最大回転の2000(rpm)のときは、管路の外周温度を50℃に保持した状態で良好な燃費低減効果を示すが、55℃又は65℃に保持すると燃費低減効果が低下することが確認された。従って、内燃機関の回転数(rpm)に応じて、管路の外周温度を50〜65℃の範囲で制御することが好ましい(請求項5)。特に、次のように制御することが好ましい。内燃機関の回転数(rpm)が500(rpm)のときは、管路の外周温度を50℃〜60℃の範囲で保持するように制御する。1000(rpm)、1200(rpm)、1500(rpm)のときは、管路の外周温度を50℃又は60℃で保持するように制御する(つまり55℃が除かれる)。1800(rpm)のときは、管路の外周温度を55℃で保持するように制御する(つまり50℃及び60℃が除かれる)。2000(rpm)のときは、管路の外周温度を50℃で保持するように制御する(つまり55℃及び60℃が除かれる)。
前記流束生成工程により成形された複数の流束は、管路の内部で互いに衝突させられる(請求項6)。この際、複数の流束は、管路の軸線に対して、相互に旋回方向を異にする及び/又は螺旋径を異にする複数の螺旋流束を形成するのが好ましい(請求項7)。その結果、液体燃料に含まれる気泡が細分化して燃料中に均一に分散され、完全燃焼し易いように燃料を改質する。しかも、このような撹拌により、液体燃料の全体にわたり、加熱と遠赤外線照射が行われる。
前記流束生成工程は、管路に上流側の流室と下流側の流室を形成し、上流側の流室で液体燃料の流動圧力を蓄積し、上流側の流室から下流側の流室に進入する液体燃料により複数の流束を生成し、該複数の流束を下流側の流室で混合させることにより行われる(請求項8)。その結果、内燃機関の回転数(rpm)を上げるために、液体燃料の流量を増加して流速を上げると、それに応じて撹拌効果が増大する。
また、本発明は、次のように構成した燃料改質装置(請求項9)を提供する。即ち、本発明の燃料改質装置は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質装置において、前記燃料供給ラインの上流側ラインと下流側ラインの間に接続され液体燃料を充満させた状態で軸方向に流す管路を形成するパイプ手段と、該パイプ手段の外周に所定空間を形成した状態で該パイプ手段の全周を包囲する筒手段と、管路の内部に遠赤外線を照射する遠赤外線照射手段とから成り、前記筒手段は、筒状の遠赤外線発生手段と、該遠赤外線発生手段を加熱するヒータを備え、該遠赤外線発生手段から発生する遠赤外線を前記所定空間を介して前記パイプ手段に照射することにより、該パイプ手段を加熱するように構成され、前記管路は、該管路を流れる液体燃料の流れに関して、軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成し、管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成手段を設けており、前記遠赤外線照射手段により、加熱されたパイプ手段の管路内で複数の流束を混合しつつ流れる液体燃料に向けて遠赤外線を照射するように構成されている。
前記パイプ手段は、遠赤外線の透過を許す金属製のパイプ部材により形成されると共に、該パイプ部材の外周面に遠赤外線吸収層を形成しており、前記遠赤外線照射手段は、前記筒手段に設けた筒状のセラミック層からなる遠赤外線発生手段により構成されており、該遠赤外線発生手段が発生する遠赤外線を前記所定空間を介して前記パイプ手段の遠赤外線吸収層に吸収させることによりパイプ部材を加熱し、該パイプ部材を透過した遠赤外線を管路の内部の液体燃料に照射するように構成されている(請求項10)。一般的に、金属表面の遠赤外線吸収率は、金属表面が地肌のままであると15%未満であるが、塗装等の表面処理により15%以上に向上し、黒色塗装であれば40%又はそれ以上に向上することが知られている。これにより、筒手段に設けられた遠赤外線発生手段から照射される遠赤外線は、パイプ手段の表面の吸収層に好適に吸収され、その放射伝熱によりパイプ手段を加熱し、しかも、吸収された遠赤外線は該パイプ手段を透過して管路に進入する。
前記遠赤外線照射手段は、2つの発生手段により構成しても良い。この場合、前記筒手段に設けられた遠赤外線発生手段により構成される第1の遠赤外線照射手段と、前記パイプ手段の内周面に設けられた遠赤外線発生手段により構成される第2の遠赤外線照射手段とから成る(請求項11)。
内燃機関の回転数(rpm)を測定する計測手段と、該計測手段の計測結果に基づいてヒータを制御する制御手段とを設け、管路の外周温度を50〜65℃の範囲で制御することが好ましい(請求項12)。
パイプ手段は、導電性のパイプ部材により形成され、該パイプ部材を電気的に接地している(請求項13)。実験によれば、電気的接地を解除すると、燃費低減効果が大幅に低下することが確認された。液体燃料に含まれる燃料分子のクラスターは、遠赤外線により微細化されることが知られているが、遠赤外線から解放した状態で放置すると再び分子が結合してクラスターに戻ることが知られている。この点に関して、管路を構成するパイプ部材を電気的に接地すると、これにより、燃料分子のクラスターを微細化する際に発生する電子e-を外部に逃がし、或いは微細化の際に必要となる電子e-を外部から取り込むので、クラスターを微細化した状態で分子が安定することにより、クラスターの復元を妨げると推測される。
前記流束生成手段は、生成した複数の流束を管路の内部で互いに衝突させるように構成されている(請求項14)。これにより、液体燃料が撹拌され、管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料が混合される。
前記流束生成手段は、管路を遮る隔壁に貫設した複数のオリフィスにより構成され、該オリフィスの軸線を管路の軸線に対し傾斜して相互に異なる方向に向かうように形成することにより、該オリフィスを通過する液体燃料が相互に異なる方向に向けて流れる複数の流束を生成するように構成されている(請求項15)。これにより、オリフィスを通過する液体燃料の複数の流束が下流側で相互に衝突し、液体燃料を好適に撹拌する。
この際、管路の内部に前記隔壁により区成された上流側の流室と下流側の流室の一対から成る流路室を構成し、上流側の流室で液体燃料の流動圧力を蓄積し、隔壁のオリフィスを通過することにより生成された複数の流束を下流側の流室で混合させることが好ましい(請求項16)。管路の内径は、燃料供給ラインの内径よりも大きく形成されているので、管路を流れる液体燃料の流速は、燃料供給ラインを流れる液体燃料の流速よりも遅いが、上流側の流室で流動圧力を蓄積した液体燃料がオリフィスを通過するときに流速を上げることにより、複数の流束が下流側の流室で好適に混合させられる。
また、前記流路室の複数を管路の上流側と下流側に配置し、上流側の流路室と下流側の流路室の間を規制板により遮り、該規制板に整流オリフィスを開設することが好ましい(請求項17)。これにより、上流側の流路室(該流路室に設けられた下流側の流室)で生成された複数の流束は、整流オリフィスを通過することにより管路の軸線方向に沿って流れるように整流され、下流側の流路室(該流路室に設けられた上流側の流室)に充填される。
図1は、本発明の燃料改質装置を内燃機関の燃料供給ラインに接続した状態を示す説明図である。 図2は、本発明の燃料改質装置の1実施形態の一部を破断して示す斜視図である。 図3は、本発明の燃料改質装置の1実施形態を示す縦断面図である。 図4は、本発明の燃料改質装置の本質的部分を断面で示す斜視図である。 図5は、オリフィスを設けた隔壁を示す正面図である。 図6は、本発明を使用した実験1の結果を示す表である。 図7は、実験1の結果を示すグラフである。 図8は、本発明を使用した実験2の結果を示す表である。 図9は、実験2の結果を示すグラフである。 図10は、本発明を使用した実験3の結果を示す表である。 図11は、実験3の結果を示すグラフである。 図12は、本発明の燃料改質装置の別の実施形態を示す縦断面図である。
以下図面に基づいて本発明の好ましい実施形態を詳述する。図1に示すように、舶用ディーゼルエンジンに代表される内燃機関1と、炭化水素系(石油系)の液体燃料2を貯留する燃料タンク3は、相互に燃料供給ライン4と燃料帰還ライン5により連絡されている。燃料供給ライン4にはポンプ6が設けられ、燃料タンク3の液体燃料2を内燃機関1に供給する。内燃機関1は、ガバナー1aにより燃料噴射量を制御し、余剰分の液体燃料を帰還ライン5に戻す。この場合、液体燃料は、日本国における税制上の「A重油」と称される軽油である。
本発明の燃料改質装置7は、前記燃料供給ライン4におけるポンプ6の上流側に設けられ、燃料供給ライン4の上流側ライン4aと下流側ライン4bの間に接続され、液体燃料2を充満状態で通過させる管路8を備えている。図1に示す例の場合、燃料改質装置7は、2本の管路8、8を並列に設けているが、1本でも良く、或いは3本以上でも良い。
図2ないし図4に示すように、燃料改質装置7は、ステンレス等の導電性の金属板により形成されたケーシング9と、該ケーシング9の内部に配置されたパイプ部材10及び筒部材11を設けている。
パイプ部材10は、内径D1を約85mmφ、軸方向の全長L1を約400mmとする鉄製のパイプであり、肉厚が薄く形成されており、実施例の場合、肉厚は約2mmである。これにより、パイプ部材10は、導電性を有し、しかも、遠赤外線の透過を許すものとされている。
筒部材11は、内径D2を約145mmφとするニッケル−クロム合金等の電気抵抗体から成る金属製のヒータ11aを構成し、前記パイプ部材10と同心状に配置され、該筒部材11とパイプ部材10の間に離間距離Sを約30mmとした空間13を形成する。尚、筒部材11は、半割状に分割された半円筒部材を対向させることにより全体として円筒状となるように形成することができる。
パイプ部材10と筒部材11は、同心状に配置した状態で、両端をフランジ12a、12bにより連結され、該フランジ12a、12bをケーシング9のエンドプレート9a、9bに固設している。前記フランジ12a、12bは、直接又は間接に、燃料供給ライン4の上流側ライン4aと下流側ライン4bのそれぞれに接続される。これにより、パイプ部材10は、上流側から下流側に向けて軸方向に液体燃料2を充満状態で流す管路8を構成する。図示のように、パイプ部材10の内径D1により形成される管路8の直径(図例の場合、約85mmφ)は、燃料供給ライン4a、4bの内径(図例の場合、約40mmφ)よりも相当に大きく、1.5〜2.5倍(図例の場合、約2倍)に形成されている。
前記ヒータ11aを構成する筒部材11は、内周面のほぼ全面に溶射形成されたセラミック層による遠赤外線発生手段14が形成されており、ヒータ11aに電流供給制御手段15が接続されている。ケーシング9の外部に電源ケーブル16が設けられ、該電源ケーブル16から供給される交流電流をフューズ付きの整流器17により直流電流に整流した後、電流供給制御手段15に供給される。電流供給制御手段15には、ケーシング9の外部から操作可能な設定温度調節手段18が設けられている。更に、ケーシング9の外側には、電源スイッチ19と、電源のオン・オフ状態を表示する電源ランプ20が設けられている。従って、電源スイッチ19をオンにすると、電流供給制御手段15から供給される電流によりヒータ11aが発熱し、これにより加熱された遠赤外線発生手段14から多量の遠赤外線を発生し、パイプ部材10に向けて照射する。これにより、前記空間13がヒータ11aにより加熱されるだけでなく、空間13を介して照射される遠赤外線の輻射熱によりパイプ部材10が加熱される。尚、離間距離Sを24mm以下にすると、遠赤外線発生手段14とパイプ部材10が近過ぎ、パイプ部材10が受ける遠赤外線の輻射熱が十分でなく、36mm以上にすると、遠赤外線がパイプ部材10を良好に透過しない。従って、離間距離Sは、25〜36mmの範囲となるように形成するのが好ましい。
筒部材11の内側のP点には、熱電対から成る温度センサー21が設けられており、測温信号を電流供給制御手段15に入力する。電流供給制御手段15は、温度センサー21からの測温信号を数秒の間隔、例えば2秒の間隔で監視し、P点の温度が50〜65℃の範囲で設定温度に維持されるようにヒータ11aに対する電流の供給を制御する。
図1に示すように、内燃機関1と燃料改質装置7の間には、内燃機関1の回転数(rpm)を測定する測定器22と、該測定器22の測定信号を受けて前記電流供給制御手段15を制御する制御器23が設けられている。これにより、内燃機関1の回転数(rpm)に応じて前記P点の温度が50〜65℃の範囲で制御される。制御器23には内燃機関1の情報がデータとして記録されており、当該内燃機関の回転数(rpm)に応じた最良の燃費低減率が得られる温度データに基づいて、P点の温度が50〜65℃の範囲で最適温度を維持するように電流供給制御手段15を制御する。
管路8を構成するパイプ部材10は、外周面の全面に耐熱性の黒色塗料を塗装することにより遠赤外線吸収層24を形成している。一般的に、金属表面の遠赤外線吸収率は、金属表面が地肌のままであると15%未満であるが、塗装等の表面処理により15%以上に向上し、黒色塗装であれば40%又はそれ以上に向上することが知られている。パイプ部材10を黒色塗装することにより、筒部材11に設けられた遠赤外線発生手段14から照射される遠赤外線は、パイプ部材10の表面でほとんど反射せず、吸収層24に好適に吸収され、その放射伝熱によりパイプ部材10を加熱する。しかも、パイプ部材10の肉厚を2mm以下に形成することにより、遠赤外線の透過を許すので、前記吸収層24に吸収された遠赤外線が該パイプ部材10を透過して管路8に進入する。
ケーシング9は、内面に断熱材(図示せず)を添設しており、ヒータ11aの熱がケーシング9の外部に漏れることを防止している。上述のように何れも導電性の金属により形成されたパイプ部材10とケーシング9は、相互に電気的に接続されており、更にケーシング9を外部で電気的に接地される。これにより、管路8を通過する液体燃料が電気的に接地される。
管路8の内部には、鉄等の金属板から成る隔壁25により区成された上流側の流室26と下流側の流室27の一対から成る流路室28が形成されており、このような流路室28、28の複数(図例の場合は第1流路室28aと第2流路室28bの2つ)を上流側と下流側に配置し、隣り合う第1流路室28aの流室27と第2流路室28bの流室26の間に鉄等の金属板から成る規制壁29を設けている。
前記隔壁25は、内径を約5〜10mmφとされた多数のオリフィス30を貫設しており、該オリフィス30の軸線を管路8の軸線に対して傾斜させると共に、複数のオリフィス30の軸線が相互に異なる方向に向かうように形成している。図例の場合、図5に示すように、隔壁25の直径方向に延びる中心線Cにより2分された左右の第1領域R1と第2領域R2の相互において、オフィス30a、30bの軸線が異なる方向に傾斜するように形成している。第1領域R1に形成されたオリフィス30aは、管路8の上流から下流に向かう軸線に対して時計針方向に傾斜する角度で形成され、反対に、第2領域R2に形成されたオリフィス30bは、前記軸線に対して反時計針方向に傾斜する角度で形成されている。従って、管路8を流れる液体燃料は、上流側の流室26で流動圧力を蓄積され、その状態でオリフィス30を通過することにより、下流側の流室27の内部において、オリフィス30aにより形成された時計針方向の渦流F1と、オフィス30bにより形成された反時計針方向の渦流F2を生成し、これらの渦流F1、F2を該流室27の下流側で相互に衝突させる。
前記規制壁29は、中央に内径を約20〜40mmφとされた整流オリフィス31を貫設している。従って、上流側の第1流路室28aの流室27で生成された複数の流束F1、F2は、整流オリフィス31を通過することにより管路8の軸線方向に沿って流れるように整流され、下流側の第2流路室28bの流室26に充填される。第2流路室28bに充満された状態で流れる液体燃料は、第1流路室28aについて上述したところと同様に、オリフィス30を通過することにより生成された渦流F1、F2を下流側の流室27の内部で衝突させる。
液体燃料が管路8を通過する間、ヒータ11aを制御することによりP点の温度が50〜60℃の範囲で最適温度に維持され、遠赤外線発生手段14から発生した遠赤外線が空間13を通してパイプ部材10に照射される。遠赤外線は、パイプ部材10の吸収層24に吸収され、該パイプ部材10を加熱すると共に、該パイプ部材10を透過して管路8に進入する。従って、液体燃料は、適度に加熱されると共に、遠赤外線の照射を受けることにより燃料分子のクラスターを微細化される。
パイプ部材10が電気的に接地されているので、遠赤外線の照射により燃料分子のクラスターが微細化される際に発生する電子e-は外部に逃がされる。或いは微細化される際に必要となる電子e-が外部から取り込まれる。その結果、クラスターを微細化した状態で分子が安定する。
上述のような加熱と遠赤外線照射の環境の中で、液体燃料は、流路室28の上流側の流室26で流動圧力を蓄積し、隔壁25のオリフィス30を通過して下流側の流室27に進入するとき、管路8の軸線に対して傾斜すると共に相互に異なる方向に向けて流れる複数の流束F1、F2を生成する。複数の流束F1、F2は、該流室27の下流側で相互に衝突させられ、これにより、管路8の中心部と外周側を流れる液体燃料を相互に混合する。このような作用は、第1流路室28aと第1流路室28bの複数の流路室で繰り返し行われる。その結果、管路8を流れる液体燃料の全体が均一に、加熱され、かつ遠赤外線の照射を受ける。更に、複数の流束F1、F2が衝突することにより、液体燃料に含まれる気泡が細分化され、液体燃料の全体に均一に分散される。
内燃機関の回転数(rpm)を上げるためにスロットルを開くと、液体燃料の流量が増大し、燃料供給ライン4を流れる燃料の流速が上がるので、液体燃料が管路8を直線的に通過するときは、燃料改質装置の内部において液体燃料に対する加熱時間と遠赤外線の照射時間が短くなる。この点に関して、本発明は、上述のように、管路8の内径を燃料供給ライン4の内径よりも相当に大きく形成し、オリフィス30を設けた隔壁25により区成された流室26、27から成る流路室28a、28bを設けている。従って、液体燃料の流量の増大に応じて、上流側の流室26における流動圧力を高め、オリフィス30a、30bの通過により生成される渦流F1、F2の勢いを増して強く衝突させることにより撹拌し、このようにして液体燃料に対する加熱と遠赤外線の照射を好適に行う。
本発明の燃料改質装置の実機と、漁船に搭載された船用ディーゼルエンジンを使用することにより、燃費比較実験を行ったので、その結果を報告する。漁船の右舷と左舷に同じ舶用ディーゼルエンジンを2機搭載し、一方のエンジンの燃料供給ラインには本発明の燃料改質装置を接続するが、他方のエンジンの燃料供給ラインには本発明の燃料改質装置を接続しない状態で、2機のエンジンを所定の同じ回転数(rpm)で駆動し、500(rpm)、1000(rpm)、1200(rpm)、1500(rpm)、1800(rpm)、2000(rpm)の6通りで駆動したときの、1時間あたりの燃料消費量(燃費)を計測し比較した。液体燃料は、1つの燃料タンクから2機のエンジンに供給される同じ軽油(A重油)とした。燃料消費量は、図1に“IN”で示す位置で流量計により計量した燃料供給量から、図1に“OUT”で示す位置で流量計により計量した燃料帰還量を差し引いた値を単位リットルで記録した。また、前記のエンジン回転数(rpm)の6通りについて、燃料改質装置1のP点の温度を50℃、55℃、60℃の3通りに保持した状態で、それぞれの燃費を計測した。
このような実験を形式の異なる3種類の船用ディーゼルエンジンに関して行った結果について、実験1を図6及び図7に示し、実験2を図8及び図9に示し、実験3を図10及び図11に示している。尚、図6、8、10の表における“A”は本発明の燃料改質装置を使用したエンジンの燃費を示し、“B”は本発明の燃料改質装置を使用していないエンジンの燃費を示しており、Bに対するAの燃費低減率を%で示している。
<実験1>図6及び図7に示す実験1は、コマツディーゼル社製の船用ディーゼルエンジン「6M125AP−3」(最大出力:463.4kw(630ps)2300rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃、55℃、60℃の何れに保持した場合でも、本発明の燃料改質装置を使用することにより、使用しない場合に比して、8〜9%以上の燃費低減率が確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は65℃に保持した状態で15〜25%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は65℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で12%以上の良好な燃費低減が確認されたが、50℃又は65℃に保持すると3%以下に低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で13%以上の良好な燃費低減が確認されたが、55℃又は65℃に保持すると3%以下に低下することが確認された。
図7からわかるように、実験1に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃(50℃が最適であるが55℃又は60℃でも良好である)、1000(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1200(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
<実験2>図8及び図9に示す実験2は、コマツディーゼル社製の船用ディーゼルエンジン「6M125A−3」(最大出力:434kw(590ps)2200rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃に保持した状態で10%以上の燃費低減率が確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は65℃に保持した状態で15〜25%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は65℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で4%以上の燃費低減が確認されたが、50℃又は65℃に保持すると低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で13%以上の良好な燃費低減が確認されたが、55℃又は65℃に保持すると低下することが確認された。
図9からわかるように、実験2に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃、1000(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1200(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。即ち、実験1のエンジンと同じ結果となる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
<実験3>図10及び図11に示す実験3は、コマツディーゼル社製の船用ディーゼルエンジン「6M122AP−1」(最大出力:441kw(600ps)2300rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃に保持した状態で約20%の優れた燃費低減率が確認されたが、55℃又は60℃では低下することが確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は65℃に保持した状態で15〜32%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は65℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で7%以上の燃費低減が確認されたが、50℃又は65℃に保持すると低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で12%以上の良好な燃費低減が確認されたが、55℃又は65℃に保持すると低下することが確認された。
図11からわかるように、実験3に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃、1000(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1200(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
図12は、本発明に係る燃料改質装置1の別の実施形態を示している。上述の実施形態と相違する部分だけを説明すると、筒部材11は、セラミックにより形成され、該筒部材11とパイプ部材10の間の空間13にヒータ11bを設けている。従って、ヒータ11bにより加熱される筒部材11が内周面から遠赤外線を発生する第1の遠赤外線発生手段14aを構成する。また、鉄製のパイプ部材10は、内周面のほぼ全面に溶射形成されたセラミック層により、第2の遠赤外線発生手段14bを構成している。従って、この実施形態によれば、第1の遠赤外線発生手段14aからパイプ部材10に向けて第1の遠赤外線が照射され、パイプ部材10を加熱すると共に、第1の遠赤外線の一部をパイプ部材10に透過させ管路8に進入させる。また、第2の遠赤外線発生手段14bから第2の遠赤外線が管路8の内部に照射される。その他の構成及び作用は、上述した実施形態と同様である。
本発明は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質方法及び装置に関する。
従来、燃料タンクに貯留された液体燃料は、ポンプにより燃料供給ラインを介して内燃機関に供給される。燃料は空気と混合され、その混合気が内燃機関のシリンダに供給され、ディーゼルエンジンの場合は自己着火により燃焼し、ガソリンエンジンの場合は点火により燃焼する。炭化水素系(石油系)の液体燃料は、高分子状態とされ、燃料分子が数個〜数十個の分子単位の塊状とされたクラスターを構成している。従って、燃料と空気の混合気がシリンダの内部で燃焼するとき、クラスターの外側部分は良好に燃焼するが、内側部分は良好に燃焼せず、炭素化する。このため、高い燃焼効率を得難く、特に、燃費が良くない。
しかも、ガソリンや軽油は、燃料分子の他に、硫黄や芳香族炭化水素化合物等の不純物質を含んでおり、これらが燃料分子と結合したクラスターを形成していると考えられている。これらの不純物質は、良好に燃焼せず、不完全燃焼で燃えかすを生じ、煤となってシリンダに付着し、内燃機関の耐用期間を短くする。更に、燃えかすは未燃ガス(NO・PM)と共に黒煙を含む排気ガスとして排出され、大気汚染の要因となる。
ところで、液体燃料に遠赤外線を照射することにより、液体燃料中のクラスターを細分化し、完全燃焼し易い低分子状態の燃料に改質できることが知られている。例えば、特許文献1に記載された装置は、燃料タンクと内燃機関の間の燃料供給ラインに接続され、装置の内部に設けた流路を液体燃料が通過するときに、装置の側面に設けたセラミックパウダが液体燃料に向けて遠赤外線を照射する。そこで、クラスターを微細化した燃料は、酸素と結合し易い状態となる。これにより、理論的には、内燃機関による燃料の完全燃焼が可能になり、燃費が向上し、大気汚染物質の排出が減少する。
特開2001−165007号公報
しかしながら、従来の燃料改質装置は、一応の燃費の向上は期待できるが、実際には、燃費の低減率がかなり低い。この装置の燃費低減率が低い理由は、次の点にあると考えられる。
(1)常温のセラミックから発生する遠赤外線は微量であり、十分でない。
(2)遠赤外線が燃料に対して均一に、かつ効率的に照射されない。
(3)燃料に含まれる気泡が細分化されない。
(4)遠赤外線の照射により燃料に含まれるクラスターが仮に微細化されたとしても、装置を通過した後、再び分子が結合してクラスターを形成してしまうので、燃料の改質状態が安定しない。
本発明者らの知見によれば、セラミックは、加熱ないし加温(以下単に「加熱」という)することにより遠赤外線の発生量を増加する。従って、セラミックを所定温度に加熱するのが良い。また、遠赤外線の照射と同時に、液体燃料自体を加熱すると、クラスターの微細化が促進される。しかしながら、単純に加熱すれば良いのではなく、加熱により上昇した温度とクラスターの微細化の間に特定の関係が発見された。従って、加熱温度の有効範囲を見極めることが重要である。
ところで、燃料供給ラインを流れる液体燃料は、内燃機関の回転数(rpm)を上げるとき、流量を増大して流速を上げるので、遠赤外線の照射時間が短くなる。この点に関して、本発明者らの知見によれば、燃料改質効果を得るためには、内燃機関の回転数(rpm)に応じて、液体燃料の外周囲の温度を制御することが重要である。
液体燃料の加熱と遠赤外線照射を良好に行うためには、液体燃料に複数の流束を生成させ、複数の流束を混合させることが好ましい。これにより、遠赤外線が液体燃料の全体にわたり照射される。しかも、液体燃料に含まれる気泡が微細化される。
上述した遠赤外線の照射と、液体燃料の加熱と、液体燃料の流束の制御は、同時に行うことが好ましく、これにより燃料の改質を相乗的に行うことができる。
更に、遠赤外線の照射によりクラスターを微細化した後、再び分子が結合して元のクラスター状態に戻るのを妨げるためには、液体燃料を通過させるパイプ手段を導電材料により形成し、該パイプ手段を電気的に接地することが好ましい。
本発明は、燃費の低減率を大幅に向上させた燃料改質方法及び燃料改質装置を提供する。
本発明は、次のように構成した燃料改質方法(請求項1)を提供する。即ち、本発明の燃料改質方法は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質方法において、前記燃料供給ラインの途中に設けたパイプ手段により形成される管路に液体燃料を充満させた状態で該管路の軸方向に流す燃料流動工程と、前記パイプ手段の外側の周囲から該パイプ手段の全周を加熱する加熱工程と、前記管路の全周から液体燃料に遠赤外線を照射する遠赤外線照射工程と、前記遠赤外線の照射環境を流れる液体燃料に関して、管路の軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成することにより、該管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成工程とから成る。
その結果、本発明の燃料改質方法によれば、管路の外周囲を加熱することにより、管路を流れる液体燃料の温度を上昇させると共に、例えばセラミックから成る遠赤外線発生手段から多量の遠赤外線を発生させて液体燃料に照射するので、液体燃料に含まれる分子のクラスターを好適に微細化することができる。しかも、このような遠赤外線照射工程と流束生成工程を同時に行うことにより、管路の中心部に位置する液体燃料部分と外周側に位置する液体燃料部分を混合させながら、管路を通過する液体燃料の全体に対して均一に、加熱と遠赤外線照射を行い、これにより燃料の全体にわたってクラスターの微細化を行い、燃焼効率を向上する。
前記加熱工程は、パイプ手段の全周を囲む外側領域で発生させた遠赤外線を該パイプ手段に照射することにより行われ、前記遠赤外線照射工程は、パイプ手段を透過した遠赤外線を管路に進入させることにより行われる(請求項2)。
遠赤外線の発生手段は、2つの発生手段により構成しても良い。この場合、パイプ手段の全周を囲む外側領域で発生させた第1の遠赤外線を該パイプ手段に照射し、パイプ手段の全内周面で発生させた第2の遠赤外線を管路の内部に照射する(請求項3)。
本発明者らの知見によれば、液体燃料に含まれるクラスターの微細化を良好に行うためには、パイプ手段の周囲の温度が重要であり、実験によれば、複数の実験例の何れにおいても、管路の外周温度を50〜60℃に保持したとき燃料改質の効果を確認したが、それ以外の温度では効果を確認できなかった。従って、前記加熱工程は、管路の外周温度を50〜60℃に保持するのが好ましい(請求項4)。
ところで、内燃機関の回転数(rpm)を上げるためには、液体燃料の流量を増大させる必要があり、その結果、管路を流れる燃料の流速が上がるので、管路を通過する燃料に対する加熱時間と遠赤外線の照射時間が短くなる。しかしながら、実験によれば、複数の実験例の何れにおいても、確認された燃費低減率は、管路の外周温度と内燃機関の回転数(rpm)の間に比例的関係は見られない。後述するように、内燃機関の回転数(rpm)がアイドリングの500(rpm)のときは、管路の外周温度を50℃に保持することにより良好な燃費低減効果が確認された。その一方において、1000(rpm)、1200(rpm)、1500(rpm)のときは、管路の外周温度を50℃又は60℃に保持した状態で良好な燃費低減効果を示すが、55℃に保持すると燃費低減効果が急激に低下することが確認された。その反対に、1800(rpm)のときは、管路の外周温度を55℃に保持した状態で良好な燃費低減効果を示すが、50℃又は60℃に保持すると燃費低減効果が低下することが確認された。更に、ほぼ最大回転の2000(rpm)のときは、管路の外周温度を50℃に保持した状態で良好な燃費低減効果を示すが、55℃又は60℃に保持すると燃費低減効果が低下することが確認された。従って、内燃機関の回転数(rpm)に応じて、管路の外周温度を50〜60℃の範囲で制御することが好ましい(請求項5)。特に、次のように制御することが好ましい。内燃機関の回転数(rpm)が500(rpm)のときは、管路の外周温度を50℃〜60℃の範囲で保持するように制御する。1000(rpm)、1200(rpm)、1500(rpm)のときは、管路の外周温度を50℃又は60℃で保持するように制御する(つまり55℃が除かれる)。1800(rpm)のときは、管路の外周温度を55℃で保持するように制御する(つまり50℃及び60℃が除かれる)。2000(rpm)のときは、管路の外周温度を50℃で保持するように制御する(つまり55℃及び60℃が除かれる)。
前記流束生成工程により成形された複数の流束は、管路の内部で互いに衝突させられる(請求項6)。この際、複数の流束は、管路の軸線に対して、相互に旋回方向を異にする及び/又は螺旋径を異にする複数の螺旋流束を形成するのが好ましい(請求項7)。その結果、液体燃料に含まれる気泡が細分化して燃料中に均一に分散され、完全燃焼し易いように燃料を改質する。しかも、このような撹拌により、液体燃料の全体にわたり、加熱と遠赤外線照射が行われる。
前記流束生成工程は、管路に上流側の流室と下流側の流室を形成し、上流側の流室で液体燃料の流動圧力を蓄積し、上流側の流室から下流側の流室に進入する液体燃料により複数の流束を生成し、該複数の流束を下流側の流室で混合させることにより行われる(請求項8)。その結果、内燃機関の回転数(rpm)を上げるために、液体燃料の流量を増加して流速を上げると、それに応じて撹拌効果が増大する。
また、本発明は、次のように構成した燃料改質装置(請求項9)を提供する。即ち、本発明の燃料改質装置は、燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質装置において、前記燃料供給ラインの上流側ラインと下流側ラインの間に接続され液体燃料を充満させた状態で軸方向に流す管路を形成するパイプ手段と、該パイプ手段の外周に所定空間を形成した状態で該パイプ手段の全周を包囲する筒手段と、管路の内部に遠赤外線を照射する遠赤外線照射手段とから成り、前記筒手段は、筒状の遠赤外線発生手段と、該遠赤外線発生手段を加熱するヒータを備え、該遠赤外線発生手段から発生する遠赤外線を前記所定空間を介して前記パイプ手段に照射することにより、該パイプ手段を加熱するように構成され、前記管路は、該管路を流れる液体燃料の流れに関して、軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成し、管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成手段を設けており、前記遠赤外線照射手段により、加熱されたパイプ手段の管路内で複数の流束を混合しつつ流れる液体燃料に向けて遠赤外線を照射するように構成されている。
前記パイプ手段は、遠赤外線の透過を許す金属製のパイプ部材により形成されると共に、該パイプ部材の外周面に遠赤外線吸収層を形成しており、前記遠赤外線照射手段は、前記筒手段に設けた筒状のセラミック層からなる遠赤外線発生手段により構成されており、該遠赤外線発生手段が発生する遠赤外線を前記所定空間を介して前記パイプ手段の遠赤外線吸収層に吸収させることによりパイプ部材を加熱し、該パイプ部材を透過した遠赤外線を管路の内部の液体燃料に照射するように構成されている(請求項10)。一般的に、金属表面の遠赤外線吸収率は、金属表面が地肌のままであると15%未満であるが、塗装等の表面処理により15%以上に向上し、黒色塗装であれば40%又はそれ以上に向上することが知られている。これにより、筒手段に設けられた遠赤外線発生手段から照射される遠赤外線は、パイプ手段の表面の吸収層に好適に吸収され、その放射伝熱によりパイプ手段を加熱し、しかも、吸収された遠赤外線は該パイプ手段を透過して管路に進入する。
前記遠赤外線照射手段は、2つの発生手段により構成しても良い。この場合、前記筒手段に設けられた遠赤外線発生手段により構成される第1の遠赤外線照射手段と、前記パイプ手段の内周面に設けられた遠赤外線発生手段により構成される第2の遠赤外線照射手段とから成る(請求項11)。
内燃機関の回転数(rpm)を測定する計測手段と、該計測手段の計測結果に基づいてヒータを制御する制御手段とを設け、管路の外周温度を50〜60℃の範囲で制御することが好ましい(請求項12)。
パイプ手段は、導電性のパイプ部材により形成され、該パイプ部材を電気的に接地している(請求項13)。実験によれば、電気的接地を解除すると、燃費低減効果が大幅に低下することが確認された。液体燃料に含まれる燃料分子のクラスターは、遠赤外線により微細化されることが知られているが、遠赤外線から解放した状態で放置すると再び分子が結合してクラスターに戻ることが知られている。この点に関して、管路を構成するパイプ部材を電気的に接地すると、これにより、燃料分子のクラスターを微細化する際に発生する電子e-を外部に逃がし、或いは微細化の際に必要となる電子e-を外部から取り込むので、クラスターを微細化した状態で分子が安定することにより、クラスターの復元を妨げると推測される。
前記流束生成手段は、生成した複数の流束を管路の内部で互いに衝突させるように構成されている(請求項14)。これにより、液体燃料が撹拌され、管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料が混合される。
前記流束生成手段は、管路を遮る隔壁に貫設した複数のオリフィスにより構成され、該オリフィスの軸線を管路の軸線に対し傾斜して相互に異なる方向に向かうように形成することにより、該オリフィスを通過する液体燃料が相互に異なる方向に向けて流れる複数の流束を生成するように構成されている(請求項15)。これにより、オリフィスを通過する液体燃料の複数の流束が下流側で相互に衝突し、液体燃料を好適に撹拌する。
この際、管路の内部に前記隔壁により区成された上流側の流室と下流側の流室の一対から成る流路室を構成し、上流側の流室で液体燃料の流動圧力を蓄積し、隔壁のオリフィスを通過することにより生成された複数の流束を下流側の流室で混合させることが好ましい(請求項16)。管路の内径は、燃料供給ラインの内径よりも大きく形成されているので、管路を流れる液体燃料の流速は、燃料供給ラインを流れる液体燃料の流速よりも遅いが、上流側の流室で流動圧力を蓄積した液体燃料がオリフィスを通過するときに流速を上げることにより、複数の流束が下流側の流室で好適に混合させられる。
また、前記流路室の複数を管路の上流側と下流側に配置し、上流側の流路室と下流側の流路室の間を規制板により遮り、該規制板に整流オリフィスを開設することが好ましい(請求項17)。これにより、上流側の流路室(該流路室に設けられた下流側の流室)で生成された複数の流束は、整流オリフィスを通過することにより管路の軸線方向に沿って流れるように整流され、下流側の流路室(該流路室に設けられた上流側の流室)に充填される。
図1は、本発明の燃料改質装置を内燃機関の燃料供給ラインに接続した状態を示す説明図である。
図2は、本発明の燃料改質装置の1実施形態の一部を破断して示す斜視図である。
図3は、本発明の燃料改質装置の1実施形態を示す縦断面図である。
図4は、本発明の燃料改質装置の本質的部分を断面で示す斜視図である。
図5は、オリフィスを設けた隔壁を示す正面図である。
図6は、本発明を使用した実験1の結果を示す表である。
図7は、実験1の結果を示すグラフである。
図8は、本発明を使用した実験2の結果を示す表である。
図9は、実験2の結果を示すグラフである。
図10は、本発明を使用した実験3の結果を示す表である。
図11は、実験3の結果を示すグラフである。
図12は、本発明の燃料改質装置の別の実施形態を示す縦断面図である。
以下図面に基づいて本発明の好ましい実施形態を詳述する。図1に示すように、舶用ディーゼルエンジンに代表される内燃機関1と、炭化水素系(石油系)の液体燃料2を貯留する燃料タンク3は、相互に燃料供給ライン4と燃料帰還ライン5により連絡されている。燃料供給ライン4にはポンプ6が設けられ、燃料タンク3の液体燃料2を内燃機関1に供給する。内燃機関1は、ガバナー1aにより燃料噴射量を制御し、余剰分の液体燃料を帰還ライン5に戻す。この場合、液体燃料は、日本国における税制上の「A重油」と称される軽油である。
本発明の燃料改質装置7は、前記燃料供給ライン4におけるポンプ6の上流側に設けられ、燃料供給ライン4の上流側ライン4aと下流側ライン4bの間に接続され、液体燃料2を充満状態で通過させる管路8を備えている。図1に示す例の場合、燃料改質装置7は、2本の管路8、8を並列に設けているが、1本でも良く、或いは3本以上でも良い。
図2ないし図4に示すように、燃料改質装置7は、ステンレス等の導電性の金属板により形成されたケーシング9と、該ケーシング9の内部に配置されたパイプ部材10及び筒部材11を設けている。
パイプ部材10は、内径D1を約85mmφ、軸方向の全長L1を約400mmとする鉄製のパイプであり、肉厚が薄く形成されており、実施例の場合、肉厚は約2mmである。これにより、パイプ部材10は、導電性を有し、しかも、遠赤外線の透過を許すものとされている。
筒部材11は、内径D2を約145mmφとするニッケル−クロム合金等の電気抵抗体から成る金属製のヒータ11aを構成し、前記パイプ部材10と同心状に配置され、該筒部材11とパイプ部材10の間に離間距離Sを約30mmとした空間13を形成する。尚、筒部材11は、半割状に分割された半円筒部材を対向させることにより全体として円筒状となるように形成することができる。
パイプ部材10と筒部材11は、同心状に配置した状態で、両端をフランジ12a、12bにより連結され、該フランジ12a、12bをケーシング9のエンドプレート9a、9bに固設している。前記フランジ12a、12bは、直接又は間接に、燃料供給ライン4の上流側ライン4aと下流側ライン4bのそれぞれに接続される。これにより、パイプ部材10は、上流側から下流側に向けて軸方向に液体燃料2を充満状態で流す管路8を構成する。図示のように、パイプ部材10の内径D1により形成される管路8の直径(図例の場合、約85mmφ)は、燃料供給ライン4a、4bの内径(図例の場合、約40mmφ)よりも相当に大きく、1.5〜2.5倍(図例の場合、約2倍)に形成されている。
前記ヒータ11aを構成する筒部材11は、内周面のほぼ全面に溶射形成されたセラミック層による遠赤外線発生手段14が形成されており、ヒータ11aに電流供給制御手段15が接続されている。ケーシング9の外部に電源ケーブル16が設けられ、該電源ケーブル16から供給される交流電流をフューズ付きの整流器17により直流電流に整流した後、電流供給制御手段15に供給される。電流供給制御手段15には、ケーシング9の外部から操作可能な設定温度調節手段18が設けられている。更に、ケーシング9の外側には、電源スイッチ19と、電源のオン・オフ状態を表示する電源ランプ20が設けられている。従って、電源スイッチ19をオンにすると、電流供給制御手段15から供給される電流によりヒータ11aが発熱し、これにより加熱された遠赤外線発生手段14から多量の遠赤外線を発生し、パイプ部材10に向けて照射する。これにより、前記空間13がヒータ11aにより加熱されるだけでなく、空間13を介して照射される遠赤外線の輻射熱によりパイプ部材10が加熱される。尚、離間距離Sを24mm以下にすると、遠赤外線発生手段14とパイプ部材10が近過ぎ、パイプ部材10が受ける遠赤外線の輻射熱が十分でなく、36mm以上にすると、遠赤外線がパイプ部材10を良好に透過しない。従って、離間距離Sは、25〜36mmの範囲となるように形成するのが好ましい。
筒部材11の内側のP点には、熱電対から成る温度センサー21が設けられており、測温信号を電流供給制御手段15に入力する。電流供給制御手段15は、温度センサー21からの測温信号を数秒の間隔、例えば2秒の間隔で監視し、P点の温度が50〜60℃の範囲で設定温度に維持されるようにヒータ11aに対する電流の供給を制御する。
図1に示すように、内燃機関1と燃料改質装置7の間には、内燃機関1の回転数(rpm)を測定する測定器22と、該測定器22の測定信号を受けて前記電流供給制御手段15を制御する制御器23が設けられている。これにより、内燃機関1の回転数(rpm)に応じて前記P点の温度が50〜60℃の範囲で制御される。制御器23には内燃機関1の情報がデータとして記録されており、当該内燃機関の回転数(rpm)に応じた最良の燃費低減率が得られる温度データに基づいて、P点の温度が50〜60℃の範囲で最適温度を維持するように電流供給制御手段15を制御する。
管路8を構成するパイプ部材10は、外周面の全面に耐熱性の黒色塗料を塗装することにより遠赤外線吸収層24を形成している。一般的に、金属表面の遠赤外線吸収率は、金属表面が地肌のままであると15%未満であるが、塗装等の表面処理により15%以上に向上し、黒色塗装であれば40%又はそれ以上に向上することが知られている。パイプ部材10を黒色塗装することにより、筒部材11に設けられた遠赤外線発生手段14から照射される遠赤外線は、パイプ部材10の表面でほとんど反射せず、吸収層24に好適に吸収され、その放射伝熱によりパイプ部材10を加熱する。しかも、パイプ部材10の肉厚を2mm以下に形成することにより、遠赤外線の透過を許すので、前記吸収層24に吸収された遠赤外線が該パイプ部材10を透過して管路8に進入する。
ケーシング9は、内面に断熱材(図示せず)を添設しており、ヒータ11aの熱がケーシング9の外部に漏れることを防止している。上述のように何れも導電性の金属により形成されたパイプ部材10とケーシング9は、相互に電気的に接続されており、更にケーシング9を外部で電気的に接地される。これにより、管路8を通過する液体燃料が電気的に接地される。
管路8の内部には、鉄等の金属板から成る隔壁25により区成された上流側の流室26と下流側の流室27の一対から成る流路室28が形成されており、このような流路室28、28の複数(図例の場合は第1流路室28aと第2流路室28bの2つ)を上流側と下流側に配置し、隣り合う第1流路室28aの流室27と第2流路室28bの流室26の間に鉄等の金属板から成る規制壁29を設けている。
前記隔壁25は、内径を約5〜10mmφとされた多数のオリフィス30を貫設しており、該オリフィス30の軸線を管路8の軸線に対して傾斜させると共に、複数のオリフィス30の軸線が相互に異なる方向に向かうように形成している。図例の場合、図5に示すように、隔壁25の直径方向に延びる中心線Cにより2分された左右の第1領域R1と第2領域R2の相互において、オフィス30a、30bの軸線が異なる方向に傾斜するように形成している。第1領域R1に形成されたオリフィス30aは、管路8の上流から下流に向かう軸線に対して時計針方向に傾斜する角度で形成され、反対に、第2領域R2に形成されたオリフィス30bは、前記軸線に対して反時計針方向に傾斜する角度で形成されている。従って、管路8を流れる液体燃料は、上流側の流室26で流動圧力を蓄積され、その状態でオリフィス30を通過することにより、下流側の流室27の内部において、オリフィス30aにより形成された時計針方向の渦流F1と、オフィス30bにより形成された反時計針方向の渦流F2を生成し、これらの渦流F1、F2を該流室27の下流側で相互に衝突させる。
前記規制壁29は、中央に内径を約20〜40mmφとされた整流オリフィス31を貫設している。従って、上流側の第1流路室28aの流室27で生成された複数の流束F1、F2は、整流オリフィス31を通過することにより管路8の軸線方向に沿って流れるように整流され、下流側の第2流路室28bの流室26に充填される。第2流路室28bに充満された状態で流れる液体燃料は、第1流路室28aについて上述したところと同様に、オリフィス30を通過することにより生成された渦流F1、F2を下流側の流室27の内部で衝突させる。
液体燃料が管路8を通過する間、ヒータ11aを制御することによりP点の温度が50〜60℃の範囲で最適温度に維持され、遠赤外線発生手段14から発生した遠赤外線が空間13を通してパイプ部材10に照射される。遠赤外線は、パイプ部材10の吸収層24に吸収され、該パイプ部材10を加熱すると共に、該パイプ部材10を透過して管路8に進入する。従って、液体燃料は、適度に加熱されると共に、遠赤外線の照射を受けることにより燃料分子のクラスターを微細化される。
パイプ部材10が電気的に接地されているので、遠赤外線の照射により燃料分子のクラスターが微細化される際に発生する電子e-は外部に逃がされる。或いは微細化される際に必要となる電子e-が外部から取り込まれる。その結果、クラスターを微細化した状態で分子が安定する。
上述のような加熱と遠赤外線照射の環境の中で、液体燃料は、流路室28の上流側の流室26で流動圧力を蓄積し、隔壁25のオリフィス30を通過して下流側の流室27に進入するとき、管路8の軸線に対して傾斜すると共に相互に異なる方向に向けて流れる複数の流束F1、F2を生成する。複数の流束F1、F2は、該流室27の下流側で相互に衝突させられ、これにより、管路8の中心部と外周側を流れる液体燃料を相互に混合する。このような作用は、第1流路室28aと第1流路室28bの複数の流路室で繰り返し行われる。その結果、管路8を流れる液体燃料の全体が均一に、加熱され、かつ遠赤外線の照射を受ける。更に、複数の流束F1、F2が衝突することにより、液体燃料に含まれる気泡が細分化され、液体燃料の全体に均一に分散される。
内燃機関の回転数(rpm)を上げるためにスロットルを開くと、液体燃料の流量が増大し、燃料供給ライン4を流れる燃料の流速が上がるので、液体燃料が管路8を直線的に通過するときは、燃料改質装置の内部において液体燃料に対する加熱時間と遠赤外線の照射時間が短くなる。この点に関して、本発明は、上述のように、管路8の内径を燃料供給ライン4の内径よりも相当に大きく形成し、オリフィス30を設けた隔壁25により区成された流室26、27から成る流路室28a、28bを設けている。従って、液体燃料の流量の増大に応じて、上流側の流室26における流動圧力を高め、オリフィス30a、30bの通過により生成される渦流F1、F2の勢いを増して強く衝突させることにより撹拌し、このようにして液体燃料に対する加熱と遠赤外線の照射を好適に行う。
本発明の燃料改質装置の実機と、漁船に搭載された船用ディーゼルエンジンを使用することにより、燃費比較実験を行ったので、その結果を報告する。漁船の右舷と左舷に同じ舶用ディーゼルエンジンを2機搭載し、一方のエンジンの燃料供給ラインには本発明の燃料改質装置を接続するが、他方のエンジンの燃料供給ラインには本発明の燃料改質装置を接続しない状態で、2機のエンジンを所定の同じ回転数(rpm)で駆動し、500(rpm)、1000(rpm)、1200(rpm)、1500(rpm)、1800(rpm)、2000(rpm)の6通りで駆動したときの、1時間あたりの燃料消費量(燃費)を計測し比較した。液体燃料は、1つの燃料タンクから2機のエンジンに供給される同じ軽油(A重油)とした。燃料消費量は、図1に“IN”で示す位置で流量計により計量した燃料供給量から、図1に“OUT”で示す位置で流量計により計量した燃料帰還量を差し引いた値を単位リットルで記録した。また、前記のエンジン回転数(rpm)の6通りについて、燃料改質装置1のP点の温度を50℃、55℃、60℃の3通りに保持した状態で、それぞれの燃費を計測した。
このような実験を形式の異なる3種類の船用ディーゼルエンジンに関して行った結果について、実験1を図6及び図7に示し、実験2を図8及び図9に示し、実験3を図10及び図11に示している。尚、図6、8、10の表における“A”は本発明の燃料改質装置を使用したエンジンの燃費を示し、“B”は本発明の燃料改質装置を使用していないエンジンの燃費を示しており、Bに対するAの燃費低減率を%で示している。
<実験1>図6及び図7に示す実験1は、コマツディーゼル社製の船用ディーゼルエンジン「6M125AP−3」(最大出力:463.4kw(630ps)2300rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃、55℃、60℃の何れに保持した場合でも、本発明の燃料改質装置を使用することにより、使用しない場合に比して、8〜9%以上の燃費低減率が確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は60℃に保持した状態で15〜25%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は60℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で12%以上の良好な燃費低減が確認されたが、50℃又は60℃に保持すると3%以下に低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で13%以上の良好な燃費低減が確認されたが、55℃又は60℃に保持すると3%以下に低下することが確認された。
図7からわかるように、実験1に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃(50℃が最適であるが55℃又は60℃でも良好である)、1000(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1200(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
<実験2>図8及び図9に示す実験2は、コマツディーゼル社製の船用ディーゼルエンジン「6M125A−3」(最大出力:434kw(590ps)2200rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃に保持した状態で10%以上の燃費低減率が確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は60℃に保持した状態で15〜25%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は60℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で4%以上の燃費低減が確認されたが、50℃又は60℃に保持すると低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で13%以上の良好な燃費低減が確認されたが、55℃又は60℃に保持すると低下することが確認された。
図9からわかるように、実験2に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃、1000(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1200(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。即ち、実験1のエンジンと同じ結果となる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
<実験3>図10及び図11に示す実験3は、コマツディーゼル社製の船用ディーゼルエンジン「6M122AP−1」(最大出力:441kw(600ps)2300rpm)に関して行った。その結果、漁業操業時の停泊中の回転数に相当するアイドリング500(rpm)では、P点の温度を50℃に保持した状態で約20%の優れた燃費低減率が確認されたが、55℃又は60℃では低下することが確認された。その一方において、巡行時速度の回転数に相当する1000(rpm)、1200(rpm)、1500(rpm)では、P点の温度を50℃又は60℃に保持した状態で15〜32%の良好な燃費低減が確認されたが、55℃に保持すると、燃費低減効果はあるが、50℃又は60℃に保持した場合に比して低下することが確認された。その反対に、1800(rpm)のときは、P点の温度を55℃に保持した状態で7%以上の燃費低減が確認されたが、50℃又は60℃に保持すると低下することが確認された。更に、最大回転に近い2000(rpm)のときは、P点の温度を50℃に保持した状態で12%以上の良好な燃費低減が確認されたが、55℃又は60℃に保持すると低下することが確認された。
図11からわかるように、実験3に使用した機種のエンジンの場合、P点の温度は、エンジン回転数が500(rpm)のときは50℃、1000(rpm)のときは50℃(50℃が最適であるが60℃でも良好である)、1200(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1500(rpm)のときは60℃(60℃が最適であるが50℃でも良好である)、1800(rpm)のときは55℃、2000(rpm)のときは50℃にそれぞれ保持することにより、最良の燃費低減率が得られる。従って、このようなデータに基づくプログラムを制御器23に組み込み、エンジンの回転数(rpm)に応じてP点を最適な温度に保持するように電流供給制御手段15に指令を与え、ヒータ11aを制御するように構成するのが良い。
図12は、本発明に係る燃料改質装置1の別の実施形態を示している。上述の実施形態と相違する部分だけを説明すると、筒部材11は、セラミックにより形成され、該筒部材11とパイプ部材10の間の空間13にヒータ11bを設けている。従って、ヒータ11bにより加熱される筒部材11が内周面から遠赤外線を発生する第1の遠赤外線発生手段14aを構成する。また、鉄製のパイプ部材10は、内周面のほぼ全面に溶射形成されたセラミック層により、第2の遠赤外線発生手段14bを構成している。従って、この実施形態によれば、第1の遠赤外線発生手段14aからパイプ部材10に向けて第1の遠赤外線が照射され、パイプ部材10を加熱すると共に、第1の遠赤外線の一部をパイプ部材10に透過させ管路8に進入させる。また、第2の遠赤外線発生手段14bから第2の遠赤外線が管路8の内部に照射される。その他の構成及び作用は、上述した実施形態と同様である。

Claims (17)

  1. 燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質方法において、
    前記燃料供給ラインの途中に設けたパイプ手段により形成される管路に液体燃料を充満させた状態で該管路の軸方向に流す燃料流動工程と、
    前記パイプ手段の外側の周囲から該パイプ手段の全周を加熱する加熱工程と、
    前記管路の全周から液体燃料に遠赤外線を照射する遠赤外線照射工程と、
    前記遠赤外線の照射環境を流れる液体燃料に関して、管路の軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成することにより、該管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成工程とから成ることを特徴とする燃料改質方法。
  2. パイプ手段の全周を囲む外側領域で発生させた遠赤外線を該パイプ手段に照射することにより前記加熱工程を行い、該パイプ手段を透過した遠赤外線を管路に進入させることにより前記遠赤外線照射工程を行うことを特徴とする請求項1に記載の燃料改質方法。
  3. パイプ手段の全周を囲む外側領域で発生させた第1の遠赤外線を該パイプ手段に照射し、パイプ手段の全内周面で発生させた第2の遠赤外線を管路の内部に照射することを特徴とする請求項1に記載の燃料改質方法。
  4. 前記加熱工程において、管路の外周温度を50〜65℃に保持することを特徴とする請求項1、2又は3に記載の燃料改質方法。
  5. 内燃機関の回転数(rpm)に応じて、管路の外周温度を50〜65℃の範囲で制御することを特徴とする請求項4に記載の燃料改質方法。
  6. 前記流束生成工程において、複数の流束を管路の内部で互いに衝突させることを特徴とする請求項1、2、3、4又は5に記載の燃料改質方法。
  7. 前記複数の流束は、管路の軸線に対して、相互に旋回方向及び/又は螺旋径を異にする複数の螺旋流束により構成されて成ることを特徴とする請求項6に記載の燃料改質方法。
  8. 管路に上流側の流室と下流側の流室を形成し、上流側の流室で液体燃料の流動圧力を蓄積し、上流側の流室から下流側の流室に進入する液体燃料により複数の流束を生成し、該複数の流束を下流側の流室で混合させることを特徴とする請求項6又は7に記載の燃料改質方法。
  9. 燃料供給ラインを経て内燃機関に供給される炭化水素系の液体燃料を完全燃焼し易い燃料に改質する燃料改質装置において、
    前記燃料供給ラインの上流側ラインと下流側ラインの間に接続され液体燃料を充満させた状態で軸方向に流す管路を形成するパイプ手段と、該パイプ手段の外周に所定空間を形成した状態で該パイプ手段の全周を包囲する筒手段と、管路の内部に遠赤外線を照射する遠赤外線照射手段とから成り、
    前記筒手段は、筒状の遠赤外線発生手段と、該遠赤外線発生手段を加熱するヒータを備え、該遠赤外線発生手段から発生する遠赤外線を前記所定空間を介して前記パイプ手段に照射することにより、該パイプ手段を加熱するように構成され、
    前記管路は、該管路を流れる液体燃料の流れに関して、軸線に対し傾斜して相互に異なる方向に向かう複数の流束を生成し、管路の中心部に位置する部分の液体燃料と外周側に位置する部分の液体燃料を混合させる流束生成手段を設けており、
    前記遠赤外線照射手段により、加熱されたパイプ手段の管路内で複数の流束を混合しつつ流れる液体燃料に向けて遠赤外線を照射するように構成して成ることを特徴とする燃料改質装置。
  10. 前記パイプ手段は、遠赤外線の透過を許す金属製のパイプ部材により形成されると共に、該パイプ部材の外周面に遠赤外線吸収層を形成しており、
    前記遠赤外線照射手段は、前記筒手段に設けた筒状のセラミック層から成る遠赤外線発生手段により構成されており、
    該遠赤外線発生手段が発生する遠赤外線を前記所定空間を介して前記パイプ手段の遠赤外線吸収層に吸収させることによりパイプ部材を加熱し、該パイプ部材を透過した遠赤外線を管路の内部の液体燃料に照射するように構成されて成ることを特徴とする請求項9に記載の燃料改質装置。
  11. 前記遠赤外線照射手段は、前記筒手段に設けられた遠赤外線発生手段により構成される第1の遠赤外線照射手段と、前記パイプ手段の内周面に設けられた遠赤外線発生手段により構成される第2の遠赤外線照射手段とから成ることを特徴とする請求項9に記載の燃料改質装置。
  12. 内燃機関の回転数(rpm)を測定する計測手段と、該計測手段の計測結果に基づいてヒータを制御する制御手段とを備え、管路の外周温度を50〜65℃の範囲で制御することを特徴とする請求項9、10又は11に記載の燃料改質装置。
  13. 前記パイプ手段を導電性のパイプ部材により構成し、該パイプ部材を電気的に接地して成ることを特徴とする請求項9、10、11又は12に記載の燃料改質装置。
  14. 前記流束生成手段は、生成した複数の流束を管路の内部で互いに衝突させるように構成されて成ることを特徴とする請求項9、10、11、12又は13に記載の燃料改質装置。
  15. 前記流束生成手段は、管路を遮る隔壁に貫設した複数のオリフィスにより構成され、該オリフィスの軸線を管路の軸線に対し傾斜して相互に異なる方向に向かうように形成することにより、該オリフィスを通過する液体燃料が相互に異なる方向に向けて流れる複数の流束を生成するように構成されて成ることを特徴とする請求項14に記載の燃料改質装置。
  16. 管路の内部に前記隔壁により区成された上流側の流室と下流側の流室の一対から成る流路室を構成し、上流側の流室で液体燃料の流動圧力を蓄積し、隔壁のオリフィスを通過することにより生成された複数の流束を下流側の流室で混合させることを特徴とする請求項14に記載の燃料改質装置。
  17. 前記流路室の複数を管路の上流側と下流側に配置し、上流側の流路室と下流側の流路室の間を規制板により遮り、該規制板に整流オリフィスを開設して成ることを特徴とする請求項16に記載の燃料改質装置。
JP2009511782A 2007-04-13 2008-04-11 燃料改質方法及び装置 Expired - Fee Related JP4787357B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009511782A JP4787357B2 (ja) 2007-04-13 2008-04-11 燃料改質方法及び装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007105602 2007-04-13
JP2007105602 2007-04-13
PCT/JP2008/057182 WO2008133050A1 (ja) 2007-04-13 2008-04-11 燃料改質方法及び装置
JP2009511782A JP4787357B2 (ja) 2007-04-13 2008-04-11 燃料改質方法及び装置

Publications (2)

Publication Number Publication Date
JPWO2008133050A1 true JPWO2008133050A1 (ja) 2010-07-22
JP4787357B2 JP4787357B2 (ja) 2011-10-05

Family

ID=39925509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009511782A Expired - Fee Related JP4787357B2 (ja) 2007-04-13 2008-04-11 燃料改質方法及び装置

Country Status (6)

Country Link
JP (1) JP4787357B2 (ja)
KR (1) KR101129775B1 (ja)
CN (1) CN101595204B (ja)
RU (1) RU2429280C2 (ja)
TW (1) TW200942689A (ja)
WO (1) WO2008133050A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412172B (zh) * 2010-11-05 2013-10-11 Ind Tech Res Inst 燃料重組裝置及其方法
CN105482855A (zh) * 2016-01-26 2016-04-13 四川复力环保科技有限公司 一种燃油处理方法及发生器
KR102276599B1 (ko) 2020-01-28 2021-07-14 (주)로우카본 황산화물 저감을 위한 연료유 및 탈황제의 에멀전화 방법
KR102276604B1 (ko) 2020-01-28 2021-07-14 (주)로우카본 항만용 연료유의 탈황제 혼합 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934059U (ja) * 1982-08-27 1984-03-02 株式会社日本自動車部品総合研究所 内燃機関の吸気加熱装置
JPH01199640A (ja) * 1988-02-03 1989-08-11 Fuji Electric Co Ltd 燃料改質器
JP2001304056A (ja) * 2000-04-19 2001-10-31 Kiyoshi Nozato 黒煙低減装置
JP3094225U (ja) * 2002-11-22 2003-06-13 恭助 佐々木 ディーゼル燃料状態改善装置
JP2003343366A (ja) * 2002-05-23 2003-12-03 Kazuhiko Uda 内燃機関の燃焼促進組成物及び燃焼促進部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206690A (ja) * 1989-02-06 1990-08-16 Hideyo Tada 燃料の活性化方法及び燃料の活性化装置
JPH0394225A (ja) * 1989-09-07 1991-04-19 Asahi Glass Co Ltd 投射型カラー液晶表示装置
JPH07279782A (ja) * 1994-03-31 1995-10-27 Yuji Hara 液体燃料の活性化装置及び方法。
JPH0949465A (ja) * 1995-08-07 1997-02-18 Shiyouitsu Uda エンジン排気ガスの有害物質低減方法及びエンジン排気ガスの有害物質低減装置
CN2871884Y (zh) * 2005-12-12 2007-02-21 佳鼎科技股份有限公司 远红外线省油器
CN2878696Y (zh) * 2006-04-03 2007-03-14 胡茜茜 节油系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934059U (ja) * 1982-08-27 1984-03-02 株式会社日本自動車部品総合研究所 内燃機関の吸気加熱装置
JPH01199640A (ja) * 1988-02-03 1989-08-11 Fuji Electric Co Ltd 燃料改質器
JP2001304056A (ja) * 2000-04-19 2001-10-31 Kiyoshi Nozato 黒煙低減装置
JP2003343366A (ja) * 2002-05-23 2003-12-03 Kazuhiko Uda 内燃機関の燃焼促進組成物及び燃焼促進部材
JP3094225U (ja) * 2002-11-22 2003-06-13 恭助 佐々木 ディーゼル燃料状態改善装置

Also Published As

Publication number Publication date
TWI361858B (ja) 2012-04-11
WO2008133050A1 (ja) 2008-11-06
TW200942689A (en) 2009-10-16
JP4787357B2 (ja) 2011-10-05
CN101595204A (zh) 2009-12-02
RU2009132710A (ru) 2011-05-20
KR101129775B1 (ko) 2012-03-26
KR20090094399A (ko) 2009-09-04
CN101595204B (zh) 2013-07-17
RU2429280C2 (ru) 2011-09-20

Similar Documents

Publication Publication Date Title
CA1070501A (en) Hydrogen-rich gas generator
CN104903672B (zh) 高效直接接触式热交换器
JP5563976B2 (ja) 燃料燃焼システム、燃焼方法及びバーナー
US11781747B2 (en) Method and apparatus for setting the ignition property of a fuel
US20060196483A1 (en) Fuel vaporization systems for vaporizing liquid fuel
JP4787357B2 (ja) 燃料改質方法及び装置
CN101929371A (zh) 用于再生柴油机微粒过滤器的燃烧器
JP2007524788A (ja) 空気・燃料調節
US20040191708A1 (en) Combustion method, combustion device and combustion system for burning water-fuel emulsion using electromagnetic wave heating
Shi et al. A novel combustion system for liquid fuel evaporating and burning
JP3146521U (ja) ブラウンガスジェネレータ
JPH0642734A (ja) イオン化エマルジョン製造装置とその燃焼システム
JP2008057441A (ja) 内燃機関の燃料供給装置
RU81786U1 (ru) Устройство для подачи топлива в топку
JP5153918B2 (ja) バーナユニット
US8714967B2 (en) High velocity burner apparatus and method
EP0698655B1 (en) Method and apparatus for generating fuel gas
KR101593806B1 (ko) 열분해를 이용한 pm 발생장치
DE2841385A1 (de) Brenner mit ultraschallzerstaeubung eines fluessigen brennstoffes
JPH07269810A (ja) 加熱装置
WO1999046035A1 (fr) Agitateur permettant de produire une densite d'energie de cisaillement homogene et mazout en emulsion produit au moyen de celui-ci
TW201708690A (zh) 改良的點火裝置
RU60676U1 (ru) Парогенератор
Lee et al. Surface Discharge-Assisted Injector for Partial Reforming of Liquefied Petroleum Gas to Reduce Engine Emissions
KR100650937B1 (ko) 폐가스 정화처리장치의 버너조립체

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees