JPWO2008013313A1 - Automatic lathe with multiple turrets - Google Patents

Automatic lathe with multiple turrets Download PDF

Info

Publication number
JPWO2008013313A1
JPWO2008013313A1 JP2008526851A JP2008526851A JPWO2008013313A1 JP WO2008013313 A1 JPWO2008013313 A1 JP WO2008013313A1 JP 2008526851 A JP2008526851 A JP 2008526851A JP 2008526851 A JP2008526851 A JP 2008526851A JP WO2008013313 A1 JPWO2008013313 A1 JP WO2008013313A1
Authority
JP
Japan
Prior art keywords
axis
tool
swivel
spindle
lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008526851A
Other languages
Japanese (ja)
Other versions
JP4997240B2 (en
Inventor
渡辺 雅彦
雅彦 渡辺
青柳 厚志
厚志 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2008526851A priority Critical patent/JP4997240B2/en
Publication of JPWO2008013313A1 publication Critical patent/JPWO2008013313A1/en
Application granted granted Critical
Publication of JP4997240B2 publication Critical patent/JP4997240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/06Turning-machines or devices characterised only by the special arrangement of constructional units
    • B23B3/065Arrangements for performing other machining operations, e.g. milling, drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B7/00Automatic or semi-automatic turning-machines with a single working-spindle, e.g. controlled by cams; Equipment therefor; Features common to automatic and semi-automatic turning-machines with one or more working-spindles
    • B23B7/02Automatic or semi-automatic machines for turning of stock
    • B23B7/06Automatic or semi-automatic machines for turning of stock with sliding headstock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4804Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single rotating pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/025Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder
    • B23Q39/026Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder simultaneous working of toolheads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • B23Q39/048Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps the work holder of a work station transfers directly its workpiece to the work holder of a following work station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q2039/008Machines of the lathe type

Abstract

自動旋盤(10)は、旋盤機台(12)と、主軸(14)と、主軸に対して個々に移動可能に旋盤機台に搭載される複数の刃物台(18、20)と、複数の刃物台を、互いに異なる送り制御軸の制御下で独立して直線動作可能に支持する旋回台(36)とを備える。旋回台は、複数の刃物台のそれぞれの直線動作方向に交差する軸線(36a)を中心として、旋回制御軸(B)の制御下で旋回可能に旋盤機台に設置される。The automatic lathe (10) includes a lathe machine base (12), a spindle (14), a plurality of tool rests (18, 20) mounted on the lathe machine base so as to be individually movable with respect to the spindle, A swivel (36) that supports the tool post so as to be capable of independent linear movement under the control of different feed control axes. The swivel base is installed on the lathe machine base so as to be turnable under the control of the swivel control axis (B) around the axis (36a) intersecting each linear motion direction of the plurality of tool rests.

Description

本発明は、主軸に対して個々に移動可能な複数の刃物台を備える多機能型の自動旋盤に関する。   The present invention relates to a multifunctional automatic lathe provided with a plurality of tool rests that can be individually moved with respect to a spindle.

数値制御(NC)旋盤に代表される自動旋盤において、旋盤機台に複数の刃物台を集約的に搭載し、それら刃物台の動作を個々に制御して、同一の被加工素材(すなわちワーク)に対し異なる種類の自動加工(例えば外丸削りと中ぐり)を同時に又は任意順序で遂行できるようにした、多機能型の自動旋盤が知られている。この種の多機能型自動旋盤では、複数の刃物台に、バイト、ドリル、フライス等の多種類の工具を交換可能に装着し、主軸に把持したワークに対して、旋削、穴あけ、フライス削り等の多様な加工工程を遂行可能として、複雑かつ多彩な形状の工作品を自動加工できるようにしたものが、種々提案されている。
例えば欧州特許出願公開第1270145号(EP1270145)は、多機能型自動旋盤において、一般的なタレット刃物台に加えて、複数の工具を並列配置で装着可能な刃物台を備え、この刃物台を、それ自体に工具選択動作を遂行させるための送り制御軸(例えばY軸と称する)に平行な軸線を中心として、旋回動作可能に旋盤機台に搭載した機械構成を開示する。この自動旋盤では、旋回可能な刃物台の旋回角度を適宜選択することにより、刃物台に装着した回転工具を用いて、主軸に把持したワークに対し、その軸線方向端面や外周面への切削だけでなく、ワーク軸線に斜交する方向への穴あけを遂行することができる。なお、旋回可能な刃物台は、複数の工具を、旋回制御軸(例えばB軸と称する)に平行な軸線を中心として外方へ刃先を向ける放射状配置で、複数の旋回割出位置にそれぞれ装着できるようになっている。
EP1270145に記載される自動旋盤では、旋回可能な刃物台の旋回軸線が、刃先を外向きにした工具群の放射状配置の略中心に位置するので、個々の工具によるワーク加工点から刃物台の旋回中心までの距離が比較的長く、結果として、加工作業中の切削抵抗により刃物台駆動部へ負荷されるモーメントトルクが大きくなる傾向がある。したがって、加工精度を向上させるべく刃物台(すなわち工具)を高精度に位置決め保持するためには、駆動部の出力を増強したり減速機やブレーキ等の付属機器を装備したりする必要があり、その結果、自動旋盤の全体寸法の削減が困難になることが懸念される。
また、上記自動旋盤では、旋回可能な刃物台に装着した個々の工具の刃先が、刃物台の旋回軸線から見て径方向外方へ離れて位置するので、旋盤機台上で刃物台を旋回可能に担持する送り台と、刃物台上の個々の工具によるワーク加工点との位置関係が、刃物台の旋回角度に対応して大きく変化することになる。したがって、加工工程の進行に伴い刃物台を旋回させる都度、使用工具をワーク加工点に移動させるための刃物台(すなわち送り台)の送り動作ストロークが比較的大きくなり、結果として、自動旋盤の全体寸法の削減が困難になることが懸念される。
さらに、上記自動旋盤では、旋回可能な刃物台が、主軸の回転軸線に平行な制御軸(例えばZ軸と称する)と同回転軸線に直交する制御軸(例えばX軸と称する)との合成制御の下で、ワークに斜め穴加工を遂行する構成となっている。したがって、刃物台の送り動作制御が比較的複雑になり、異なる2つの制御軸に配備した送り機構を個々に動作させることから、工具の高水準の位置決め精度を確保することが困難になる危惧がある。
In an automatic lathe represented by a numerical control (NC) lathe, a plurality of turrets are centrally mounted on a lathe table, and the operations of these turrets are individually controlled to produce the same workpiece material (that is, workpiece). On the other hand, there is known a multi-function automatic lathe capable of performing different types of automatic machining (for example, external rounding and boring) simultaneously or in any order. In this type of multi-function automatic lathe, multiple types of tools such as tools, drills, and milling tools are interchangeably mounted on multiple turrets, and turning, drilling, milling, etc. are performed on workpieces held on the spindle. A variety of proposals have been made to enable the automatic processing of complex and diverse shapes of work pieces that can perform various processing steps.
For example, European Patent Application Publication No. 1270145 (EP1270145) includes a turret capable of mounting a plurality of tools in a parallel arrangement in addition to a general turret turret in a multi-function automatic lathe. Disclosed is a machine configuration that is mounted on a lathe machine stand so as to be capable of swiveling around an axis parallel to a feed control axis (for example, referred to as a Y-axis) for causing the tool to perform a tool selecting operation. In this automatic lathe, by appropriately selecting the turning angle of the turret that can be turned, the rotary tool mounted on the turret can be used to cut only the axial end face and outer peripheral surface of the work held on the spindle. Instead, drilling in a direction oblique to the workpiece axis can be performed. The swivelable tool post is equipped with a plurality of tools at a plurality of swivel index positions, with a plurality of tools arranged in a radial direction with the cutting edge directed outward about an axis parallel to the swivel control axis (for example, B axis). It can be done.
In the automatic lathe described in EP1270145, the turning axis of the turnable tool post is located at the approximate center of the radial arrangement of the tool group with the cutting edges facing outward, so the tool post turns from the workpiece machining point by each tool. The distance to the center is relatively long, and as a result, there is a tendency that the moment torque applied to the tool post driving unit due to the cutting resistance during the machining operation increases. Therefore, in order to position and hold the tool post (that is, the tool) with high accuracy in order to improve the processing accuracy, it is necessary to increase the output of the drive unit or to equip with attached devices such as a reducer and a brake, As a result, there is a concern that it is difficult to reduce the overall dimensions of the automatic lathe.
Moreover, in the above automatic lathe, the cutting edge of each tool mounted on the turret which can be turned is located radially outward as viewed from the turning axis of the turret, so that the turret can be turned on the lathe. The positional relationship between the feed table that can be carried and the workpiece machining points of the individual tools on the tool rest changes greatly in accordance with the turning angle of the tool rest. Therefore, each time the turret is turned as the machining process progresses, the feed operation stroke of the turret for moving the tool to be used to the workpiece machining point (that is, the feed table) becomes relatively large, resulting in the entire automatic lathe. There is concern that it will be difficult to reduce dimensions.
Further, in the automatic lathe, the turnable tool post is combined with a control axis (for example, referred to as Z axis) parallel to the rotation axis of the main shaft and a control axis (for example, referred to as X axis) orthogonal to the rotation axis. Under the construction, it is configured to carry out oblique hole machining on the workpiece. Therefore, the feed operation control of the tool post becomes relatively complicated, and the feed mechanisms arranged on two different control shafts are individually operated, which may make it difficult to ensure a high level of positioning accuracy of the tool. is there.

本発明の目的は、主軸に対して個々に移動可能な複数の刃物台を備える多機能型の自動旋盤において、多種類の工具を用いた多彩な加工能力を低下させることなく、自動旋盤の全体寸法を削減でき、しかも工具の高水準の位置決め精度を確保できる、高性能の自動旋盤を提供することにある。
上記目的を達成するために、本発明は、旋盤機台と、主軸と、前記主軸に対して個々に移動可能に前記旋盤機台に搭載される複数の刃物台と、前記複数の刃物台を、互いに異なる送り制御軸の制御下で独立して直線動作可能に支持する旋回台とを具備し、前記旋回台は、前記複数の刃物台のそれぞれの直線動作方向に交差する軸線を中心として、旋回制御軸の制御下で旋回可能に前記旋盤機台に設置される、自動旋盤を提供する。
上記構成を有する自動旋盤によれば、主軸に把持したワークに対し、主軸回転軸線に斜交する方向への穴あけ加工を施す場合に、旋回制御軸の制御下で旋回台を軸線に関して指定角度に配置した状態で、指定工具を装着した刃物台を、それ自体の送り制御軸の制御下で直線送り動作させるだけで、指定の斜め穴を形成できる。したがって、この種の加工作業に際し、複数の刃物台の送り動作制御が容易になり、いずれか1つの制御軸に配備した送り機構のみを動作させればよいので、工具の高水準の位置決め精度を容易に確保することができる。また、旋回台の軸線に対する複数の刃物台の配置を適宜選択することで、加工中に旋回台の駆動機構へ負荷されるモーメントトルクを減少させたり、使用工具をワーク加工点に移動させるための旋回台上での各刃物台の送り動作ストロークを削減したりすることができるから、多種類の工具を用いた多彩な加工能力を低下させることなく、自動旋盤の全体寸法を削減できる。
上記自動旋盤においては、旋回台の軸線を、複数の刃物台に装着される複数の工具の刃先の、実質的前方に配置することができる。
この構成によれば、個々の工具によるワーク加工点を、複数の刃物台に共通する旋回台の旋回軸線に、可及的に近接して設定することができる。したがって、加工作業中の切削抵抗により旋回台の駆動機構へ負荷されるモーメントトルクが減少し、駆動機構の出力増加や減速機、ブレーキ等の付属機器の追加装備を要することなく、個々の刃物台(すなわち工具)を高精度に位置決め保持して加工精度を向上させることができる。さらに、旋回台を介して複数の刃物台を旋回可能に担持する旋盤機台上の基準点と、各刃物台上の個々の工具によるワーク加工点との位置関係は、旋回台が旋回しても実質的に変化しないので、加工工程の進行に伴い旋回台を旋回させたときに、使用工具をワーク加工点に移動させるための旋回台上での各刃物台の送り動作ストロークは、退避位置から前進させるだけの必要最小限の移動量とすることができる。その結果、自動旋盤の全体寸法を効果的に削減することができる。
上記自動旋盤においては、旋回台の軸線が、主軸の回転軸線に直交する構成とすることもできる。
また、複数の刃物台は、旋回台に、軸線を実質的中心として放射状に互いに異なる方向へ直線動作可能に支持されることができる。
また、複数の刃物台は、複数の工具が並列配置で装着されるくし歯刃物台を含むことができる。この場合、それら刃物台の各々の直線動作方向は、旋回台の軸線に直交するとともに複数の工具の並列方向に直交することができる。
上記自動旋盤は、旋回台を旋盤機台上で旋回可能に支持する送り台をさらに具備することができる。この場合、送り台は、旋回台の軸線に平行な方向へ、複数の刃物台の送り制御軸とは異なる送り制御軸の制御下で直線動作可能に旋盤機台に設置されることができる。
主軸は、主軸の回転軸線に平行で旋回台の軸線に直交する方向へ、複数の刃物台の送り制御軸とは異なる送り制御軸の制御下で直線動作可能に、旋盤機台に設置されることができる。
上記自動旋盤は、主軸と複数の刃物台との間に位置するガイドブッシュをさらに具備することができる。この場合、旋回台の軸線を、ガイドブッシュのワーク送出端面に近接して配置することができる。
旋回台は、主軸の回転軸線に平行で旋回台の軸線に直交する方向へ、複数の刃物台の送り制御軸とは異なる送り制御軸の制御下で直線動作可能に、旋盤機台に設置されることができる。
上記自動旋盤は、主軸に対向配置可能な背面主軸をさらに具備することができる。この場合、旋回台に支持される複数の刃物台は、背面主軸に対して加工動作する背面刃物台を含むことができる。
It is an object of the present invention to provide a multi-function automatic lathe having a plurality of tool posts that can be individually moved with respect to a main spindle, without reducing a variety of machining capabilities using various types of tools, and the entire automatic lathe. The object is to provide a high-performance automatic lathe capable of reducing dimensions and ensuring a high level of positioning accuracy of a tool.
To achieve the above object, the present invention comprises a lathe machine base, a main spindle, a plurality of tool rests mounted on the lathe machine base so as to be individually movable with respect to the main spindle, and the plurality of tool rests. And a swivel that is supported so as to be capable of independent linear movement under the control of mutually different feed control axes, the swivel being centered on an axis that intersects each linear movement direction of the plurality of tool rests, Provided is an automatic lathe that is installed on the lathe table so as to be capable of turning under the control of a turning control axis.
According to the automatic lathe having the above-described configuration, when the workpiece gripped by the spindle is drilled in a direction oblique to the spindle rotation axis, the swivel base is set at a specified angle with respect to the axis under the control of the turning control axis. In the arranged state, a specified oblique hole can be formed by simply performing a linear feed operation of the tool post on which the designated tool is mounted under the control of its own feed control axis. Therefore, during this type of machining operation, it becomes easy to control the feed operation of the plurality of tool rests, and it is only necessary to operate the feed mechanism provided on any one of the control shafts. It can be secured easily. In addition, by appropriately selecting the arrangement of a plurality of tool rests with respect to the axis of the swivel base, the moment torque applied to the drive mechanism of the swivel base during machining can be reduced, or the tool used can be moved to the workpiece machining point. Since the feed operation stroke of each tool post on the swivel can be reduced, the overall dimensions of the automatic lathe can be reduced without deteriorating various machining capabilities using various types of tools.
In the automatic lathe, the axis of the swivel base can be disposed substantially in front of the cutting edges of a plurality of tools mounted on the plurality of tool rests.
According to this configuration, the workpiece machining point by each tool can be set as close as possible to the swivel axis of the swivel common to the plurality of tool rests. Therefore, the moment torque applied to the drive mechanism of the swivel base is reduced due to the cutting resistance during the machining operation, and the individual tool rests are not required without increasing the output of the drive mechanism and additional equipment such as a reducer and a brake. (That is, the tool) can be positioned and held with high accuracy to improve the processing accuracy. Furthermore, the positional relationship between the reference point on the lathe machine that supports a plurality of turrets via a swivel and the workpiece machining points by individual tools on each turret is determined by the swivel being swiveled. However, when the swivel is swung as the machining process progresses, the feed operation stroke of each tool post on the swivel to move the tool used to the workpiece machining point is the retracted position. The minimum amount of movement required to move forward is possible. As a result, the overall dimensions of the automatic lathe can be effectively reduced.
The automatic lathe may be configured such that the axis of the swivel base is orthogonal to the rotation axis of the main shaft.
In addition, the plurality of tool rests can be supported on the swivel base so as to be linearly movable in different directions radially about the axis line.
The plurality of tool rests may include a comb tooth tool rest on which a plurality of tools are mounted in a parallel arrangement. In this case, the linear movement direction of each of the tool rests can be orthogonal to the axis of the swivel and to the orthogonal direction of the plurality of tools.
The automatic lathe may further include a feed base that supports the swivel base so as to be turnable on the lathe machine base. In this case, the feed base can be installed on the lathe machine base so as to be capable of linear operation in a direction parallel to the axis of the swivel base under the control of a feed control axis different from the feed control axes of the plurality of tool rests.
The spindle is installed on the lathe machine base so that it can be linearly operated under the control of the feed control axis different from the feed control axes of the plurality of tool posts in a direction parallel to the rotation axis of the spindle and perpendicular to the axis of the swivel base. be able to.
The automatic lathe may further include a guide bush positioned between the main shaft and the plurality of tool rests. In this case, the axis of the swivel base can be arranged close to the work sending end face of the guide bush.
The swivel base is installed on the lathe machine base so that it can operate linearly under the control of a feed control axis that is different from the feed control axes of the plurality of tool rests in a direction parallel to the rotation axis of the spindle and perpendicular to the axis of the swivel base. Can.
The automatic lathe may further include a back main spindle that can be disposed opposite to the main spindle. In this case, the plurality of tool rests supported by the swivel base may include a back tool rest that performs a machining operation on the back spindle.

本発明の上記並びに他の目的、特徴及び利点は、添付図面に関連した以下の好適な実施形態の説明により一層明らかになろう。同添付図面において、
図1は、本発明の一実施形態による自動旋盤の全体構成を概略で示す斜視図、
図2は、図1の自動旋盤の概略正面図、
図3は、図1の自動旋盤の概略平面図、
図4は、図1の自動旋盤の主要部の拡大斜視図、
図5は、図1の自動旋盤で遂行可能な加工作業の一例を模式図的に示す図、
図6は、図1の自動旋盤で遂行可能な加工作業の他の例を模式図的に示す図、
図7は、図1の自動旋盤で遂行可能な加工作業のさらに他の例を模式図的に示す図、
図8は、図1の自動旋盤で遂行可能な加工作業のさらに他の例を模式図的に示す図、
図9は、図1の自動旋盤で遂行可能な加工作業のさらに他の例を模式図的に示す図、
図10は、図1の自動旋盤で遂行可能な加工作業のさらに他の例を模式図的に示す図、
図11は、本発明の他の実施形態による自動旋盤の全体構成を概略で示す斜視図、及び
図12は、本発明のさらに他の実施形態による自動旋盤の全体構成を概略で示す斜視図である。
The above and other objects, features and advantages of the present invention will become more apparent from the following description of preferred embodiments with reference to the accompanying drawings. In the attached drawing,
FIG. 1 is a perspective view schematically showing the overall configuration of an automatic lathe according to an embodiment of the present invention.
2 is a schematic front view of the automatic lathe of FIG.
FIG. 3 is a schematic plan view of the automatic lathe of FIG.
4 is an enlarged perspective view of the main part of the automatic lathe of FIG.
FIG. 5 is a diagram schematically showing an example of processing work that can be performed by the automatic lathe of FIG.
FIG. 6 is a diagram schematically showing another example of the machining work that can be performed by the automatic lathe of FIG.
FIG. 7 is a diagram schematically showing still another example of the machining work that can be performed by the automatic lathe of FIG.
FIG. 8 is a diagram schematically showing still another example of the machining work that can be performed by the automatic lathe of FIG.
FIG. 9 is a diagram schematically showing still another example of the machining work that can be performed by the automatic lathe of FIG.
FIG. 10 is a diagram schematically showing still another example of the machining work that can be performed by the automatic lathe of FIG.
FIG. 11 is a perspective view schematically showing the overall configuration of an automatic lathe according to another embodiment of the present invention, and FIG. 12 is a perspective view schematically showing the overall configuration of an automatic lathe according to still another embodiment of the present invention. is there.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。図面において、同一又は類似の構成要素には共通の参照符号を付す。
図面を参照すると、図1〜図4は、本発明の一実施形態による自動旋盤10を示す図、図5〜図10は、自動旋盤10で実行可能な種々の加工作業例を示す図である。自動旋盤10は、1つの旋盤機台に複数の刃物台を集約的に搭載し、各刃物台に装着したバイト、ドリル、フライス等の種々の工具により、主軸に把持したワークに対し異なる種類の自動加工(例えば外丸削りと中ぐり)を同時に又は任意順序で遂行できるようにした、多機能構造を有するものである。このような多機能型の自動旋盤10は、例えば数値制御(NC)旋盤としての制御構成を有することができる。なお、本発明に係る自動旋盤が有する主軸及び刃物台の個数、配置、形式等は、図示実施形態の構成に限定されない。
図1〜図3に示すように、自動旋盤10は、旋盤機台12と、旋盤機台12に搭載され、回転軸線14aを有する主軸14と、主軸14に対して個々に移動可能に旋盤機台12に搭載され、それぞれに複数の工具16が装着される第1及び第2の刃物台18、20とを備える。自動旋盤10はさらに、任意の追加機構として、主軸14の回転軸線14aに平行な回転軸線22aを有して、主軸14に対向配置可能に旋盤機台12に搭載される背面主軸22と、背面主軸22に対して移動可能に旋盤機台12に搭載され、複数の工具16が装着される背面刃物台24とを備える。旋盤機台12は、主軸14、第1及び第2刃物台18、20、背面主軸22並びに背面刃物台24を、予め定めた直交3軸座標系における複数の制御軸による制御下で、移動可能に担持する。
主軸14は、旋盤外部から供給された棒状のワークWを把持して回転する主要な(又は正面側の)主軸であり、その回転軸線14aを旋盤機台12の設置床面から見て水平に配置して、図示しない軸受装置を介して主軸台26に回転可能に内蔵される。主軸14は、中空筒状の構造を有し、その前端(図で右端)領域に、後端側から送給されたワークWを強固に把持可能なチャック(例えばコレットチャック)(図示せず)が設置される。
主軸台26は、旋盤機台12の長手方向一端領域に設けられた主軸搭載部28に搭載される。主軸搭載部28には、主軸台26を、所定の直交3軸座標系において、主軸14の回転軸線14aに平行な送り制御軸(Z1軸と称する)に沿った制御下で直線移動させる主軸駆動機構(図示せず)が設置される。主軸駆動機構は、Z1軸駆動源(例えばACサーボモータ)、Z1軸案内部材(例えばスライドガイド)、送りねじ装置(例えばボールねじ)等を含んで構成される。したがって主軸14は、それ自体の回転軸線14aに平行なZ1軸の制御下で、主軸駆動機構の作動により、所定の送り動作ストロークに渡って、主軸台26と共に直線往復動作する。
主軸台26にはさらに、主軸14を回転駆動する回転駆動源(例えばビルトイン型ACサーボモータ)(図示せず)が内蔵される。また主軸14は、回転軸線14aの周りの回転制御軸(C軸と称する)を有することができる。その場合、主軸回転駆動源を制御して得られるC軸の位置決め割出動作により、チャックに把持したワークWの端面や外周面の所望位置に、所望の刃物台18、20に装備した回転工具を用いて多様な加工を施すことが可能になる。
旋盤機台12の長手方向略中央には、主軸搭載部28に隣接して、主軸14の回転軸線14aから側方へずれた位置に、コラム30が立設される。コラム30は、主軸14に近接する側の前面(鉛直面)30aに、主軸回転軸線14aに直交する鉛直方向へ直線移動可能に、送り台32を担持する。送り台32は、所定の直交3軸座標系において、上記Z1軸に直交する送り制御軸(Y1軸と称する)の制御下で、コラム30に設置される送り台駆動機構(図示せず)の作動により、所定の送り動作ストロークに渡って直線往復動作する。なお、送り台駆動機構は、Y1軸駆動源(例えばACサーボモータ)、Y1軸案内部材(例えばスライドガイド)、送りねじ装置(例えばボールねじ)等を含んで構成される。
送り台32は、コラム30の前面30aから主軸回転軸線14aに接近する方向へ水平に延長される一対のアーム34を備える。それらアーム34は、送り台32上で鉛直方向へ互いに十分に離間して固定的に配置される。両アーム34の先端には、第1及び第2刃物台18、20の共通の支持部材である旋回台36が、主軸回転軸線14aに直交する鉛直軸線36aを中心として旋回可能に担持される。
旋回台36は、所定の直交3軸座標系において、上記Y1軸に平行な旋回制御軸(B軸と称する)の制御下で、送り台32に設置される旋回台駆動機構(図示せず)の作動により、予め定めた角度範囲に渡って旋回往復動作する。なお、旋回台駆動機構は、B軸駆動源(例えばACサーボモータ)、動力伝達装置(例えば歯車列)等を含んで構成される。
旋回台36は、略直角三角形の断面形状を有する角柱状部材であり、互いに直交する一対の側面のそれぞれに、略平坦な刃物台支持面38、40が形成される。旋回台36は、それら刃物台支持面38、40の交線を越える方向へ固定的に延設される一対のアーム42を介して、両刃物台支持面38、40を、旋回軸線36aに平行な鉛直姿勢に配置した状態で、送り台32の一対のアーム34に旋回可能に支持される。
旋回台36の一方の刃物台支持面38には、第1刃物台18が、旋回軸線36aに直交する水平方向へ直線移動可能に支持される。第1刃物台18は、所定の直交3軸座標系において、上記Y1軸に直交する送り制御軸(X1軸と称する)の制御下で、旋回台36に設置される第1刃物台駆動機構(図示せず)の作動により、所定の送り動作ストロークに渡って直線往復動作する。なお、第1刃物台駆動機構は、X1軸駆動源(例えばACサーボモータ)、X1軸案内部材(例えばスライドガイド)、送りねじ装置(例えばボールねじ)等を含んで構成される。また図示実施形態では、第1刃物台18は、第1刃物台駆動機構を介して旋回台36に可動支持される刃物台テーブル44に、固定して設置される。
第1刃物台18は、複数の工具16が並列配置で装着されるくし歯刃物台の構成を有する。くし歯構造の第1刃物台18には、バイト、ドリル、フライス等の種々の工具16が、旋回台36の旋回軸線36aに平行な鉛直方向へ並列して、それぞれの刃先を旋回軸線36aに近接対向させる水平姿勢で、固定的に保持される。なお図示実施形態では、第1刃物台18は、バイト等の複数の旋削工具16Aを並列配置で保持できる第1保持部18Aと、フライス等の複数の回転工具16Bを並列配置で保持できる第2保持部18Bとを備えている(図2及び図4参照)。
旋回台36の他方の刃物台支持面40には、第2刃物台20が、旋回軸線36aに直交する水平方向へ直線移動可能に支持される。第2刃物台20は、所定の直交3軸座標系において、上記Y1軸及びX1軸の双方に直交する送り制御軸(X2軸と称する)の制御下で、旋回台36に設置される第2刃物台駆動機構(図示せず)の作動により、所定の送り動作ストロークに渡って直線往復動作する。なお、第2刃物台駆動機構は、X2軸駆動源(例えばACサーボモータ)、X2軸案内部材(例えばスライドガイド)、送りねじ装置(例えばボールねじ)等を含んで構成される。また図示実施形態では、第2刃物台20は、第2刃物台駆動機構を介して旋回台36に可動支持される刃物台テーブル46に、固定して設置される。
第2刃物台20は、複数の工具16が並列配置で装着されるくし歯刃物台の構成を有する。くし歯構造の第2刃物台20には、バイト、ドリル、フライス等の種々の工具16が、旋回台36の旋回軸線36aに平行な鉛直方向へ並列して、それぞれの刃先を旋回軸線36aに近接対向させる水平姿勢で、固定的に保持される。なお図示実施形態では、第2刃物台20は、第1刃物台18と同様に、バイト等の複数の旋削工具16Aを並列配置で保持できる第1保持部20Aと、フライス等の複数の回転工具16Bを並列配置で保持できる第2保持部20Bとを備えている(図2及び図4参照)。
上記構成により、自動旋盤10においては、第1及び第2刃物台18、20は、旋回台36上で、互いに異なる送り制御軸(X1軸及びX2軸)の制御下で独立して直線動作でき、旋回台36は、送り台32上で、第1及び第2刃物台18、20のそれぞれの直線動作方向に交差する軸線36aを中心として旋回制御軸(B軸)の制御下で旋回動作でき、送り台32は、旋盤機台12上で、旋回台36の軸線36aに平行な方向へ、第1及び第2刃物台18、20の送り制御軸(X1軸及びX2軸)とは異なる送り制御軸(Y1軸)の制御下で直線動作できる。
したがって、第1刃物台18は、送り台32のY1軸送り動作によって第1刃物台18上で割出選択した所望の工具16を、送り台32上での旋回台36のB軸旋回動作により、主軸14に把持したワークWに対し所望の対向角度に配置し、その状態で、当該工具16の刃先を、旋回台36上での第1刃物台18自体のX1軸送り動作と前述した主軸14のZ1軸送り動作との協働により、ワークWに対し加工動作させることができる。同様に、第2刃物台20は、送り台32のY1軸送り動作によって第2刃物台20上で割出選択した所望の工具16を、送り台32上での旋回台36のB軸旋回動作により、主軸14に把持したワークWに対し所望の対向角度に配置し、その状態で、当該工具16の刃先を、旋回台36上での第2刃物台20自体のX2軸送り動作と前述した主軸14のZ1軸送り動作との協働により、ワークWに対し加工動作させることができる。このようにして、主軸14に把持したワークWを、第1刃物台18上の所望の工具16と第2刃物台20上の所望の工具16との同時又は選択的(或いは交互的)使用により、所望形状に加工することができる。
このように、自動旋盤10では、旋盤機台12上で軸線36aを中心として旋回動作する旋回台36に、軸線36aに交差する方向へ直線送り動作可能に第1及び第2刃物台18、20を設置している。それにより、例えば、主軸14に把持したワークWに対し、主軸回転軸線14aに斜交する方向への穴あけ加工を施す場合に、B軸制御下で旋回台36を軸線36aに関して指定角度に配置した状態で、指定工具16を装着した第1又は第2刃物台18、20を、それ自体の送り制御軸(X1軸又はX2軸)の制御下で直線送り動作させるだけで、指定の斜め穴を形成できる。したがって、この種の加工作業に際し、第1及び第2刃物台18、20の送り動作制御が容易になり、いずれか1つの制御軸に配備した送り機構(刃物台駆動機構)のみを動作させればよいので、工具16の高水準の位置決め精度を容易に確保することができる。
また、自動旋盤10では、図示のように、旋回台36の旋回軸線36aを、第1及び第2刃物台18、20に装着される複数の工具16の刃先の、実質的前方に配置する機械構成を、容易に実現できる。このような構成によれば、個々の工具16によるワーク加工点を、第1及び第2刃物台18、20の共通の旋回軸線36aに、可及的に近接して設定することができる。したがって、加工作業中の切削抵抗により旋回台36の駆動機構へ負荷されるモーメントトルクが減少し、駆動機構の出力増加や減速機、ブレーキ等の付属機器の追加装備を要することなく、第1及び第2刃物台18、20(すなわち工具16)を高精度に位置決め保持して加工精度を向上させることができる。その結果、自動旋盤10の全体寸法を効果的に削減することができる。
さらに、工具16によるワーク加工点を第1及び第2刃物台18、20の旋回軸線36aに可及的に近接して設定できることから、旋盤機台12上で旋回台36を介して両刃物台18、20を旋回可能に担持する送り台32と、各刃物台18、20上の個々の工具16によるワーク加工点との位置関係は、旋回台36が旋回しても実質的に変化しないことになる。したがって、加工工程の進行に伴い旋回台36を旋回させたときに、使用工具16をワーク加工点に移動させるための旋回台36上での各刃物台18、20の送り動作ストロークは、退避位置から前進させるだけの必要最小限の移動量とすることができる。その結果、自動旋盤10の全体寸法を効果的に削減することができる。
このように、本発明に係る自動旋盤10は、主軸14に対して個々に移動可能な第1及び第2刃物台18、20上の多種類の工具16により、ワークWに多彩な加工を施す多機能性を維持しつつ、自動旋盤10の全体寸法を効果的に削減でき、しかも工具16の高水準の位置決め精度を確保できる、高性能のものとなる。
図示実施形態による自動旋盤10は、旋回台36の旋回軸線36aが、主軸14の回転軸線14aに直交する構成を採用している。したがって、第1及び第2刃物台18、20の少なくとも一方において、回転工具16Bを、それ自体の回転軸線(すなわち工具軸線)が旋回台36の旋回軸線36aに直交する位置に装着することにより、後述するように、主軸14に把持したワークWの軸線方向端面の中心に、穴あけ加工を施すことができる。
また、図示実施形態による自動旋盤10は、第1刃物台18と第2刃物台20とが、旋回台36に、旋回軸線36aを実質的中心として放射状に互いに異なる方向(X1軸及びX2軸)へ直線動作可能に支持される構成を採用している。したがって、後述するように、旋回台36上で2つの刃物台18、20を個々に送り動作させることで、主軸14に把持したワークWに対し、異なる種類の自動加工(例えば外丸削りと中ぐり)を同時に又は任意順序で遂行できる。
さらに、図示実施形態による自動旋盤10では、第1及び第2刃物台18、20の各々を、複数の工具16が並列配置で装着されるくし歯刃物台として構成し、旋回台36上での各刃物台18、20の直線動作方向を、旋回軸線36aに直交するとともに複数の工具16の並列方向に直交する方向に設定している。したがって、加工プログラムで必要とされる多種類の工具16を予め第1及び第2刃物台18、20に装着しておき、加工プログラムに従い各刃物台18、20から所望の工具16を迅速に選択して加工作業を遂行できるので、サイクルタイムを効果的に削減することができる。
さらに、図示実施形態による自動旋盤10は、旋回台36を旋盤機台12上で旋回可能に支持する送り台32を、旋回軸線36aに平行な方向へ、第1及び第2刃物台18、20の送り制御軸(X1軸、X2軸)とは異なる送り制御軸(Y1軸)の制御下で直線動作可能に旋盤機台12に設置している。したがって、送り台32のY1軸送り動作により、第1及び第2刃物台18、20から所望の工具16を容易に選択することができる。
図示実施形態による自動旋盤10では、主軸14が、主軸回転軸線14aに平行で旋回台36の旋回軸線36aに直交する方向へ、第1及び第2刃物台18、20の送り制御軸(X1軸、X2軸)とは異なる送り制御軸(Z1軸)の制御下で直線動作可能に、旋盤機台12に設置される構成を採用している。したがって、主軸14のZ1軸送り動作と、第1又は第2刃物台18、20のX1軸又はX2軸送り動作との協働により、ワークWに多彩な加工を施すことができる。
上記構成においては、図示のように、主軸14と第1及び第2刃物台18、20との間に位置するガイドブッシュ48をさらに装備することが有利である。ガイドブッシュ48は、主軸台26を担持する主軸搭載部28から、送り台32の両アーム34の間に介入するように延設される第2コラム50に支持されて、主軸14の回転軸線14aに対し同軸に配置される。ガイドブッシュ48は、主軸14に把持されたワークWの先端の被加工領域を、加工作業中に振れが生じないように心出し支持する。ガイドブッシュ48は、固定型ガイドブッシュと回転型ガイドブッシュとのいずれかの、公知の構造を有することができる。この場合、旋回台36の旋回軸線36aは、ガイドブッシュ48のワーク送出端面48a(図3)に近接して配置される。
また、図示実施形態による自動旋盤10は、前述したように、主軸14に対向配置可能な背面主軸22と、背面主軸22に対して加工動作する背面刃物台24とを備えている。背面主軸22は、正面側の主軸14から受け渡された一部加工済みのワーク(図示せず)を把持して回転する補助的な主軸であり、その回転軸線22aを旋盤機台12の設置床面から見て水平に配置して、図示しない軸受装置を介して背面主軸台52に回転自在に内蔵される。背面主軸22は、中空筒状の構造を有し、その前端領域に、対向する主軸14(又はガイドブッシュ48)から送出されたワークを強固に把持可能なチャック(例えばコレットチャック)(図示せず)が設置される。
背面主軸台52は、旋盤機台12上で主軸搭載部28の反対側に設けられた背面主軸搭載部54に搭載される。背面主軸搭載部54は、背面主軸22の回転軸線22aに直交する鉛直方向へ直線移動可能に送り台56を担持し、この送り台56に、背面主軸台52が、背面主軸回転軸線22aに平行な水平方向へ直線移動可能に担持される。背面主軸搭載部54及び送り台56には、背面主軸台52を、所定の直交3軸座標系において、背面主軸回転軸線22aに直交する送り制御軸(Y2軸と称する)に沿った制御下で直線移動させるとともに、背面主軸回転軸線22aに平行な送り制御軸(Z2軸と称する)に沿った制御下で直線移動させる背面主軸駆動機構(図示せず)が設置される。背面主軸駆動機構は、Y2軸駆動源(例えばACサーボモータ)、Z2軸駆動源(例えばACサーボモータ)、Y2軸案内部材(例えばスライドガイド)、Z2軸案内部材(例えばスライドガイド)、送りねじ装置(例えばボールねじ)等を含んで構成される。したがって背面主軸22は、それ自体の回転軸線22aに直交するY2軸及び平行なZ2軸の制御下で、背面主軸駆動機構の作動により、所定の送り動作ストロークに渡って、背面主軸台52と共に直線往復動作する。
背面刃物台24は、旋回台36の一方の刃物台支持面38に可動支持される刃物台テーブル44に、第1刃物台18と共に固定して、第1刃物台18の後背側に設置される。したがって、背面刃物台24は、所定の直交3軸座標系におけるX1軸の制御下で、第1刃物台18の送り動作に同期して、所定の送り動作ストロークに渡って直線往復動作する。背面刃物台24は、複数の工具16が並列配置で装着されるくし歯刃物台の構成を有する。図示実施形態では、背面刃物台24には、フライス等の種々の回転工具16Bが、旋回台36の旋回軸線36aに平行な鉛直方向へ並列して、それぞれの刃先を旋回軸線36aから離反させる水平姿勢で、固定的に保持される(図2及び図4参照)。
したがって、背面刃物台24は、送り台32のY1軸送り動作及び背面主軸22用の送り台56のY2軸送り動作24の少なくとも一方によって背面刃物台24上で割出選択した所望の工具16を、送り台32上での旋回台36のB軸旋回動作により、背面主軸22に把持したワークに対し、ワーク軸線に平行な対向角度に配置し、その状態で、当該工具16の刃先を、旋回台36上での背面刃物台24自体のX1軸送り動作と背面主軸22のY2軸及びZ2軸送り動作との協働により、ワークに対し加工動作させることができる。それにより、背面主軸22に把持したワークを、背面刃物台24上の所望の工具16により、所望形状に加工することができる。この背面加工は、第1及び第2刃物台18、20上の所望の工具16で、主軸14に把持したワークWを加工する間に、同時に遂行することができる。なお、背面刃物台24を、旋回台36の他方の刃物台支持面40に可動支持される刃物台テーブル46に、第2刃物台20と共に固定して設置することもできる。
次に、図5〜図10を参照して、上記構成を有する自動旋盤10におけるワークWに対する加工作業の幾つかの例を説明する。
例えば図5に示すように、ワークWに対し、第1刃物台18上の回転工具16Bを用いた端面二次加工(端面穴あけ等)と、第2刃物台20上の旋削工具16Aを用いた外径旋削加工(外丸削り等)とを、同時に遂行できる。また、旋回台36を図5に示す位置と同じ旋回位置に配置した状態で、第1刃物台18上の旋削工具16A(図4)を用いた内径旋削加工(中ぐり等)と、第2刃物台20上の回転工具16A(図4)を用いた側面二次加工(クロス穴あけ等)とを、同時に遂行することもできる。
また、図6に示すように、旋回台36を、図5の旋回位置に対し90°異なる位置に配置して、ワークWに対し、第1刃物台18上の旋削工具16Aを用いた外径旋削加工(外丸削り等)と、第2刃物台20上の回転工具16Bを用いた端面二次加工(端面穴あけ等)とを、同時に遂行できる。同じ旋回位置で、第1刃物台18上の回転工具16Bを用いた側面二次加工(クロス穴あけ等)と、第2刃物台20上の旋削工具16Aを用いた内径旋削加工(中ぐり等)とを、同時に遂行することもできる。さらに、図7に示すように、旋回台36を、図6の旋回位置と同じ位置に配置して、ワークWに対し、第1刃物台18上の回転工具16Bを用いた側面二次加工(クロス穴あけ等)と、第2刃物台20上の回転工具16Bを用いた端面二次加工(端面穴あけ等)とを、同時に遂行できる。
また、図8に示すように、旋回台36を、図5及び図6のそれぞれの旋回位置の中間位置に配置して、ワークWに対し、第1刃物台18上の旋削工具16Aを用いた外径旋削加工(外丸削り等)と、第2刃物台20上の旋削工具16Aを用いた外径旋削加工(外丸削り等)とを、同時に遂行できる。この同時加工は、2つの旋削工具16Aのワーク加工点をワーク軸線方向へ僅かにずらすことで、一方の旋削工具16Aによりワーク外周面を粗加工し、他方の旋削工具16Aによりワーク外周面を仕上げ加工するもの(例えばバランスカットと称する)であって、サイクルタイムの短縮に有効である。
また、図9に示すように、旋回台36を、指定の旋回角度に配置して、ワークWに対し、第1又は第2刃物台18、20上の回転工具16Bを用いた斜め穴加工を遂行することができる。さらに、図10に示すように、旋回台36を、B軸制御下で旋回送り動作させることにより、ワークWに対し、第1又は第2刃物台18、20上の回転工具16Bを用いた面取り加工又は丸み付け加工を遂行することもできる。
上記した種々のワーク加工例は、いずれも、旋回台36上で第1及び第2刃物台18、20を互いに独立して送り動作させることで、2つの工具16の加工動作が互いに影響を及ぼすことなく、円滑に遂行されるものである。また、前述したように、図5〜図7に示すような旋回台36の旋回位置では、ワークWに対する上記した加工作業に並行して、背面刃物台24上の工具16により、背面主軸22に把持したワークに所望の背面加工を施すことができる。
以上、本発明の好適な実施形態による自動旋盤10の構成を説明したが、本発明に係る自動旋盤は、上記実施形態に限定されず、種々の修正や変形を採用することができる。
例えば図11に示すように、主軸14を内蔵する主軸台26を、旋盤機台12に固定的に設置して、ガイドブッシュ48を省略した機械構成を採用できる。また、図12に示すように、図11の構成に加えて、第1及び第2刃物台18、20を担持する旋回台36を、送り台32及びコラム30ごと、主軸14の回転軸線14aに平行で旋回台36の軸線36aに直交する方向へ、第1及び第2刃物台18、20の送り制御軸(X1軸、X2軸)とは異なる送り制御軸(例えばZ3軸)の制御下で直線動作可能に、旋盤機台12に設置することもできる。
また、旋回台36の刃物台支持面38、40が互いに直交する図示実施形態の構成に代えて、様々な角度で交差する刃物台支持面を備えた旋回台を採用し、複数の刃物台がそれら刃物台支持面上で、様々な角度で交差する方向へ送り動作できるように構成することもできる。なお、旋回台に設置される刃物台の個数、工具保持形式等は、任意である。さらに、旋盤機台12に、タレット刃物台等の他の刃物台、NC装置等の制御装置、操作盤、工具マガジン、自動工具交換装置等を併設することもできる。
以上、本発明をその好適な実施形態に関連して説明したが、後述する請求の範囲の開示から逸脱することなく様々な修正及び変更を為し得ることは、当業者に理解されよう。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the drawings, the same or similar components are denoted by common reference numerals.
Referring to the drawings, FIGS. 1 to 4 are diagrams illustrating an automatic lathe 10 according to an embodiment of the present invention, and FIGS. 5 to 10 are diagrams illustrating various machining operations that can be performed by the automatic lathe 10. . The automatic lathe 10 has a plurality of turrets intensively mounted on a single lathe table, and different types of workpieces gripped on the spindle by various tools such as tools, drills, and millers mounted on each turret. It has a multi-functional structure that allows automatic processing (for example, external rounding and boring) to be performed simultaneously or in any order. Such a multifunctional automatic lathe 10 can have a control configuration as a numerical control (NC) lathe, for example. Note that the number, arrangement, type, and the like of the main spindle and the tool post included in the automatic lathe according to the present invention are not limited to the configuration of the illustrated embodiment.
As shown in FIG. 1 to FIG. 3, the automatic lathe 10 is a lathe machine base 12, a lathe machine 12 mounted on the lathe machine base 12, a main spindle 14 having a rotation axis 14 a, and a lathe machine that is individually movable with respect to the main spindle 14. First and second tool rests 18 and 20 are mounted on the base 12 and each of which is equipped with a plurality of tools 16. The automatic lathe 10 further includes, as an optional additional mechanism, a back spindle 22 that is mounted on a lathe machine base 12 so as to have a rotation axis 22a parallel to the rotation axis 14a of the spindle 14 and that can be disposed opposite to the spindle 14. A back tool rest 24 is mounted on the lathe machine base 12 so as to be movable with respect to the main shaft 22 and on which a plurality of tools 16 are mounted. The lathe machine base 12 can move the main spindle 14, the first and second tool rests 18, 20, the rear main spindle 22, and the rear tool rest 24 under the control of a plurality of control axes in a predetermined orthogonal three-axis coordinate system. To carry.
The main shaft 14 is a main (or front side) main shaft that grips and rotates the rod-shaped workpiece W supplied from the outside of the lathe, and the rotation axis 14 a is horizontal when viewed from the installation floor of the lathe machine base 12. Arranged and rotatably incorporated in the head stock 26 via a bearing device (not shown). The main shaft 14 has a hollow cylindrical structure, and a chuck (for example, a collet chuck) (not shown) capable of firmly gripping the workpiece W fed from the rear end side in the front end (right end in the drawing) region. Is installed.
The spindle stock 26 is mounted on a spindle mounting portion 28 provided in one end region in the longitudinal direction of the lathe machine base 12. The spindle mounting section 28 is a spindle drive that linearly moves the spindle stock 26 under control along a feed control axis (referred to as Z1 axis) parallel to the rotation axis 14a of the spindle 14 in a predetermined orthogonal triaxial coordinate system. A mechanism (not shown) is installed. The main shaft drive mechanism includes a Z1 axis drive source (for example, an AC servo motor), a Z1 axis guide member (for example, a slide guide), a feed screw device (for example, a ball screw), and the like. Therefore, the spindle 14 reciprocates linearly with the spindle stock 26 over a predetermined feed operation stroke by the operation of the spindle drive mechanism under the control of the Z1 axis parallel to the rotation axis 14a of itself.
The spindle stock 26 further incorporates a rotation drive source (for example, a built-in AC servo motor) (not shown) that rotationally drives the spindle 14. The main shaft 14 can have a rotation control axis (referred to as a C axis) around the rotation axis 14a. In this case, the rotary tool mounted on the desired tool post 18 or 20 at a desired position on the end surface or outer peripheral surface of the workpiece W gripped by the chuck by the positioning and indexing operation of the C-axis obtained by controlling the spindle rotation drive source. It becomes possible to perform various processing using.
A column 30 is erected in the center of the lathe machine base 12 in the longitudinal direction adjacent to the spindle mounting portion 28 at a position shifted laterally from the rotation axis 14 a of the spindle 14. The column 30 carries a feed base 32 on a front surface (vertical surface) 30a on the side close to the main shaft 14 so as to be linearly movable in a vertical direction perpendicular to the main shaft rotation axis 14a. The feed base 32 is a control of a feed base drive mechanism (not shown) installed in the column 30 under the control of a feed control axis (referred to as Y1 axis) orthogonal to the Z1 axis in a predetermined orthogonal three-axis coordinate system. By the operation, the linear reciprocation is performed over a predetermined feed operation stroke. The feed base drive mechanism includes a Y1-axis drive source (for example, an AC servo motor), a Y1-axis guide member (for example, a slide guide), a feed screw device (for example, a ball screw), and the like.
The feed base 32 includes a pair of arms 34 that extend horizontally from the front surface 30a of the column 30 in a direction approaching the spindle rotation axis 14a. The arms 34 are fixedly arranged on the feed base 32 so as to be sufficiently separated from each other in the vertical direction. A swivel base 36 that is a common support member for the first and second tool rests 18 and 20 is supported at the distal ends of both arms 34 so as to be pivotable about a vertical axis 36a orthogonal to the main spindle rotation axis 14a.
The swivel base 36 is a swivel base drive mechanism (not shown) installed on the feed base 32 under the control of a swivel control axis (referred to as B axis) parallel to the Y1 axis in a predetermined orthogonal three-axis coordinate system. By this operation, the reciprocating operation is performed over a predetermined angle range. The swivel base drive mechanism includes a B-axis drive source (for example, an AC servo motor), a power transmission device (for example, a gear train), and the like.
The swivel base 36 is a prismatic member having a substantially right-angled triangular cross section, and substantially flat tool rest support surfaces 38 and 40 are formed on a pair of side surfaces orthogonal to each other. The swivel base 36 has both tool rest support surfaces 38, 40 parallel to the swivel axis 36a via a pair of arms 42 that are fixedly extended in a direction beyond the line of intersection of the tool rest support faces 38, 40. In a state of being arranged in a vertical posture, the pair of arms 34 of the feed base 32 are supported so as to be able to turn.
The first tool rest 18 is supported on one tool rest supporting surface 38 of the swivel base 36 so as to be linearly movable in a horizontal direction perpendicular to the swivel axis 36a. The first tool post 18 is a first tool post drive mechanism (installed on the swivel base 36 under the control of a feed control axis (referred to as X1 axis) orthogonal to the Y1 axis in a predetermined orthogonal three-axis coordinate system. (Not shown) causes a linear reciprocating operation over a predetermined feed operation stroke. The first tool post driving mechanism includes an X1-axis drive source (for example, an AC servo motor), an X1-axis guide member (for example, a slide guide), a feed screw device (for example, a ball screw), and the like. In the illustrated embodiment, the first tool rest 18 is fixedly installed on a tool rest table 44 that is movably supported by the swivel base 36 via a first tool rest driving mechanism.
The first tool post 18 has a configuration of a comb tooth tool post on which a plurality of tools 16 are mounted in a parallel arrangement. Various tools 16 such as a cutting tool, a drill, and a milling cutter are arranged in parallel in the vertical direction parallel to the swivel axis 36a of the swivel 36, and the respective cutting edges are placed on the swivel axis 36a. It is held in a fixed position in a horizontal posture that is closely opposed. In the illustrated embodiment, the first tool post 18 has a first holding portion 18A that can hold a plurality of turning tools 16A such as a cutting tool in a parallel arrangement, and a second holder that can hold a plurality of rotary tools 16B such as a milling cutter in a parallel arrangement. And a holding portion 18B (see FIGS. 2 and 4).
The second tool rest 20 is supported on the other tool rest support surface 40 of the swivel base 36 so as to be linearly movable in a horizontal direction orthogonal to the swivel axis 36a. The second tool post 20 is installed on the swivel base 36 under the control of a feed control axis (referred to as X2 axis) orthogonal to both the Y1 axis and the X1 axis in a predetermined orthogonal three-axis coordinate system. By the operation of a tool post driving mechanism (not shown), a linear reciprocation is performed over a predetermined feed operation stroke. The second tool post driving mechanism includes an X2 axis drive source (for example, an AC servo motor), an X2 axis guide member (for example, a slide guide), a feed screw device (for example, a ball screw), and the like. In the illustrated embodiment, the second tool post 20 is fixedly installed on a tool post table 46 that is movably supported by the swivel base 36 via a second tool post drive mechanism.
The second tool post 20 has a configuration of a comb tooth tool post on which a plurality of tools 16 are mounted in a parallel arrangement. Various tools 16 such as a bite, a drill, and a milling tool are arranged in parallel in the vertical direction parallel to the swivel axis 36a of the swivel base 36, and the respective cutting edges are placed on the swivel axis 36a. It is held in a fixed position in a horizontal posture that is closely opposed. In the illustrated embodiment, the second tool post 20 includes a first holding unit 20A that can hold a plurality of turning tools 16A such as a cutting tool in a parallel arrangement, and a plurality of rotary tools such as a milling cutter, like the first tool post 18. And a second holding portion 20B that can hold 16B in a parallel arrangement (see FIGS. 2 and 4).
With the above-described configuration, in the automatic lathe 10, the first and second tool rests 18 and 20 can be independently linearly operated on the swivel base 36 under the control of different feed control axes (X1 axis and X2 axis). The swivel base 36 can swivel on the feed base 32 under the control of the swivel control axis (B axis) about the axis 36a that intersects the linear motion direction of each of the first and second tool rests 18 and 20. The feed base 32 is different from the feed control axes (X1 axis and X2 axis) of the first and second tool rests 18 and 20 in the direction parallel to the axis 36a of the swivel base 36 on the lathe machine base 12. A linear operation can be performed under the control of the control axis (Y1 axis).
Therefore, the first tool rest 18 is configured to apply the desired tool 16 indexed and selected on the first tool rest 18 by the Y1-axis feed operation of the feed base 32 by the B-axis turning operation of the turntable 36 on the feed base 32. In this state, the tool tip of the tool 16 is placed at a desired facing angle with respect to the workpiece W gripped by the spindle 14, and the X1 axis feed operation of the first tool post 18 itself on the turntable 36 and the spindle described above. The machining operation can be performed on the workpiece W in cooperation with the 14 Z1-axis feed operation. Similarly, the second tool post 20 performs the B-axis swiveling operation of the swivel base 36 on the feed base 32 with the desired tool 16 indexed and selected on the second tool rest 20 by the Y1-axis feed operation of the feed base 32. Thus, it is arranged at a desired facing angle with respect to the workpiece W gripped by the spindle 14, and in this state, the cutting edge of the tool 16 is the X2-axis feed operation of the second tool post 20 itself on the swivel base 36 as described above. By cooperating with the Z1-axis feed operation of the spindle 14, the workpiece W can be processed. In this way, the workpiece W gripped by the spindle 14 is used simultaneously or selectively (or alternately) with the desired tool 16 on the first tool rest 18 and the desired tool 16 on the second tool rest 20. Can be processed into a desired shape.
Thus, in the automatic lathe 10, the first and second tool rests 18, 20 can be linearly moved in the direction intersecting the axis 36 a to the swivel 36 that rotates on the lathe machine base 12 around the axis 36 a. Is installed. Thereby, for example, when drilling the workpiece W gripped by the spindle 14 in a direction oblique to the spindle rotation axis 14a, the swivel base 36 is arranged at a specified angle with respect to the axis 36a under the B axis control. In this state, the first or second tool post 18 or 20 equipped with the designated tool 16 is linearly moved under the control of its own feed control axis (X1 axis or X2 axis), and a specified oblique hole is formed. Can be formed. Therefore, during this type of machining operation, the feed operation control of the first and second tool rests 18 and 20 is facilitated, and only the feed mechanism (turret drive mechanism) provided on any one control shaft can be operated. Therefore, a high level of positioning accuracy of the tool 16 can be easily ensured.
Further, in the automatic lathe 10, as shown in the drawing, a turning axis line 36a of the swivel base 36 is disposed substantially in front of the cutting edges of the plurality of tools 16 mounted on the first and second tool rests 18 and 20. The configuration can be easily realized. According to such a configuration, the workpiece machining point by each tool 16 can be set as close as possible to the common pivot axis 36a of the first and second tool rests 18 and 20. Accordingly, the moment torque applied to the drive mechanism of the swivel base 36 due to the cutting resistance during the machining operation is reduced, and the output of the drive mechanism and the additional equipment such as the reducer and the brake are not required. The second tool rests 18 and 20 (that is, the tool 16) can be positioned and held with high accuracy to improve processing accuracy. As a result, the overall dimensions of the automatic lathe 10 can be effectively reduced.
Furthermore, since the workpiece machining point by the tool 16 can be set as close as possible to the swivel axis 36a of the first and second tool rests 18 and 20, the both tool rests on the lathe machine base 12 via the swivel base 36. The positional relationship between the feed base 32 that supports the oscillating members 18 and 20 and the workpiece machining points of the individual tools 16 on the tool rests 18 and 20 is not substantially changed even when the slewing table 36 is turned. become. Therefore, when the swivel base 36 is swung with the progress of the machining process, the feed operation stroke of the tool rests 18 and 20 on the swivel base 36 for moving the tool 16 used to the workpiece machining point is the retracted position. The minimum amount of movement required to move forward is possible. As a result, the overall dimensions of the automatic lathe 10 can be effectively reduced.
As described above, the automatic lathe 10 according to the present invention performs various processes on the workpiece W by the various types of tools 16 on the first and second tool rests 18 and 20 that are individually movable with respect to the spindle 14. While maintaining the multi-functionality, the overall size of the automatic lathe 10 can be effectively reduced, and a high level of positioning accuracy of the tool 16 can be secured.
The automatic lathe 10 according to the illustrated embodiment employs a configuration in which the turning axis 36 a of the turntable 36 is orthogonal to the rotational axis 14 a of the main shaft 14. Therefore, by mounting the rotary tool 16B on at least one of the first and second tool rests 18 and 20 at a position where its own rotation axis (that is, the tool axis) is orthogonal to the turning axis 36a of the turntable 36, As will be described later, drilling can be performed at the center of the axial end surface of the workpiece W gripped by the main shaft 14.
Further, in the automatic lathe 10 according to the illustrated embodiment, the first tool post 18 and the second tool post 20 are radially different from each other on the swivel base 36 about the swivel axis 36a (X1 axis and X2 axis). A configuration that is supported so as to be linearly movable is adopted. Therefore, as will be described later, different types of automatic machining (for example, external rounding and boring) are performed on the workpiece W gripped by the spindle 14 by individually feeding the two tool rests 18 and 20 on the swivel base 36. ) Can be performed simultaneously or in any order.
Furthermore, in the automatic lathe 10 according to the illustrated embodiment, each of the first and second tool rests 18 and 20 is configured as a comb tooth tool rest on which a plurality of tools 16 are mounted in a parallel arrangement. The linear operation direction of each tool post 18, 20 is set to a direction orthogonal to the turning axis 36 a and orthogonal to the parallel direction of the plurality of tools 16. Therefore, various types of tools 16 required by the machining program are mounted in advance on the first and second tool rests 18 and 20, and a desired tool 16 is quickly selected from the tool rests 18 and 20 according to the machining program. Since the machining operation can be performed, the cycle time can be effectively reduced.
Further, in the automatic lathe 10 according to the illustrated embodiment, the first and second tool rests 18 and 20 are arranged in a direction parallel to the swivel axis 36a with the feed base 32 that supports the swivel base 36 so as to be turnable on the lathe machine base 12. Are installed on a lathe machine base 12 so as to be capable of linear operation under the control of a feed control axis (Y1 axis) different from the feed control axes (X1 axis, X2 axis). Therefore, the desired tool 16 can be easily selected from the first and second tool rests 18 and 20 by the Y1-axis feed operation of the feed base 32.
In the automatic lathe 10 according to the illustrated embodiment, the main shaft 14 is parallel to the main shaft rotation axis 14a and is orthogonal to the swivel axis 36a of the swivel base 36. The feed control axes (X1 axes) of the first and second tool rests 18, 20 , X2 axis) is adopted to be installed on the lathe machine base 12 so as to be capable of linear operation under the control of the feed control axis (Z1 axis). Therefore, the workpiece W can be variously processed by the cooperation of the Z1 axis feed operation of the main spindle 14 and the X1 axis or X2 axis feed operation of the first or second tool post 18 or 20.
In the above configuration, as shown in the drawing, it is advantageous to further provide a guide bush 48 positioned between the main shaft 14 and the first and second tool rests 18 and 20. The guide bush 48 is supported by a second column 50 extending so as to intervene between both arms 34 of the feed base 32 from the main spindle mounting portion 28 that carries the main spindle 26, and the rotation axis 14 a of the main spindle 14. Are arranged coaxially. The guide bush 48 centers and supports the region to be processed at the tip of the workpiece W gripped by the main shaft 14 so as not to cause vibration during the processing operation. The guide bush 48 can have a known structure of either a fixed guide bush or a rotary guide bush. In this case, the swivel axis 36a of the swivel base 36 is disposed close to the work sending end surface 48a (FIG. 3) of the guide bush 48.
Further, as described above, the automatic lathe 10 according to the illustrated embodiment includes the back main shaft 22 that can be disposed opposite to the main shaft 14 and the back tool post 24 that performs a machining operation on the back main shaft 22. The rear main spindle 22 is an auxiliary main spindle that grips and rotates a partially processed workpiece (not shown) delivered from the main spindle 14 on the front side, and the rotation axis 22 a is installed on the lathe machine base 12. It is arranged horizontally when viewed from the floor, and is rotatably incorporated in the rear spindle stock 52 via a bearing device (not shown). The back main shaft 22 has a hollow cylindrical structure, and a chuck (for example, a collet chuck) (not shown) capable of firmly gripping a work fed from the main shaft 14 (or the guide bush 48) opposed to the front end region thereof. ) Is installed.
The back spindle stock 52 is mounted on a back spindle mounting portion 54 provided on the lathe machine base 12 on the opposite side of the spindle mounting portion 28. The back spindle mounting portion 54 carries a feed base 56 so as to be linearly movable in a vertical direction perpendicular to the rotation axis 22a of the back spindle 22, and the back spindle base 52 is parallel to the back spindle rotation axis 22a. It is supported so that it can move linearly in the horizontal direction. In the back spindle mounting portion 54 and the feed base 56, the back spindle base 52 is controlled under a control along a feed control axis (referred to as Y2 axis) orthogonal to the back spindle rotation axis 22a in a predetermined orthogonal triaxial coordinate system. A back spindle drive mechanism (not shown) that moves linearly and moves linearly under control along a feed control axis (referred to as Z2 axis) parallel to the back spindle rotation axis 22a is installed. The back spindle drive mechanism includes a Y2 axis drive source (for example, AC servomotor), a Z2 axis drive source (for example, AC servomotor), a Y2 axis guide member (for example, slide guide), a Z2 axis guide member (for example, slide guide), and a feed screw A device (for example, a ball screw) is included. Therefore, the back spindle 22 is linear with the back spindle base 52 over a predetermined feed operation stroke by the operation of the back spindle drive mechanism under the control of the Y2 axis orthogonal to the rotation axis 22a of itself and the parallel Z2 axis. Reciprocates.
The back tool post 24 is fixed to a tool post table 44 that is movably supported on one of the tool post support surfaces 38 of the swivel base 36 together with the first tool post 18, and is installed on the rear side of the first tool post 18. . Therefore, the back tool post 24 linearly reciprocates over a predetermined feed operation stroke in synchronization with the feed operation of the first tool post 18 under the control of the X1 axis in a predetermined orthogonal three-axis coordinate system. The back tool post 24 has a configuration of a comb tooth tool post on which a plurality of tools 16 are mounted in a parallel arrangement. In the illustrated embodiment, on the back tool post 24, various rotary tools 16B such as a milling cutter are arranged in parallel in a vertical direction parallel to the swivel axis 36a of the swivel 36, and the respective cutting edges are separated from the swivel axis 36a. The posture is fixedly held (see FIGS. 2 and 4).
Therefore, the back tool post 24 selects the desired tool 16 indexed and selected on the back tool post 24 by at least one of the Y1 axis feed operation of the feed base 32 and the Y2 axis feed operation 24 of the feed base 56 for the back spindle 22. By the B-axis turning operation of the turntable 36 on the feed table 32, the work gripped on the back spindle 22 is arranged at an opposing angle parallel to the work axis, and in this state, the cutting edge of the tool 16 is turned. By cooperating the X1-axis feed operation of the back tool post 24 itself on the table 36 and the Y2-axis and Z2-axis feed operations of the back spindle 22, the workpiece can be processed. As a result, the workpiece gripped by the back spindle 22 can be processed into a desired shape by the desired tool 16 on the back tool post 24. This back surface processing can be performed simultaneously while processing the workpiece W gripped by the spindle 14 with the desired tool 16 on the first and second tool rests 18 and 20. The back tool post 24 can be fixed and installed together with the second tool post 20 on a tool post table 46 that is movably supported by the other tool post support surface 40 of the swivel base 36.
Next, with reference to FIGS. 5 to 10, some examples of machining operations on the workpiece W in the automatic lathe 10 having the above-described configuration will be described.
For example, as shown in FIG. 5, for the work W, the end surface secondary processing (end surface drilling or the like) using the rotary tool 16B on the first tool post 18 and the turning tool 16A on the second tool post 20 are used. External turning (external rounding, etc.) can be performed simultaneously. Further, in a state where the swivel base 36 is disposed at the same swivel position as shown in FIG. 5, internal turning (boring or the like) using the turning tool 16 </ b> A (FIG. 4) on the first tool rest 18, Side surface secondary processing (cross-drilling or the like) using the rotary tool 16A (FIG. 4) on the tool post 20 can be performed simultaneously.
Further, as shown in FIG. 6, the swivel base 36 is arranged at a position different from the swivel position of FIG. 5 by 90 °, and the outer diameter of the work W using the turning tool 16 </ b> A on the first tool post 18 is used. Turning (outer rounding, etc.) and end face secondary processing (end face drilling, etc.) using the rotary tool 16B on the second tool post 20 can be performed simultaneously. Side surface secondary machining (cross drilling etc.) using the rotary tool 16B on the first tool post 18 and inner diameter turning machining (boring etc.) using the turning tool 16A on the second tool post 20 at the same turning position. Can be performed simultaneously. Further, as shown in FIG. 7, the swivel base 36 is arranged at the same position as the swivel position of FIG. 6, and the workpiece is subjected to side surface secondary machining using the rotary tool 16 </ b> B on the first tool rest 18 ( Cross drilling and the like) and end face secondary processing (end face drilling and the like) using the rotary tool 16B on the second tool post 20 can be performed simultaneously.
Further, as shown in FIG. 8, the turning table 36 is arranged at an intermediate position between the respective turning positions in FIGS. 5 and 6, and the turning tool 16 </ b> A on the first tool post 18 is used for the workpiece W. Outer diameter turning (outer rounding, etc.) and outer diameter turning (outer rounding, etc.) using the turning tool 16A on the second tool post 20 can be performed simultaneously. In this simultaneous machining, by slightly shifting the workpiece machining point of the two turning tools 16A in the workpiece axis direction, the workpiece outer peripheral surface is roughly machined by one turning tool 16A, and the workpiece outer circumferential surface is finished by the other turning tool 16A. It is an object to be processed (for example, called a balance cut), and is effective for shortening the cycle time.
Further, as shown in FIG. 9, the swivel base 36 is arranged at a specified swivel angle, and the workpiece W is subjected to oblique hole machining using the rotary tool 16 </ b> B on the first or second tool rest 18, 20. Can be carried out. Furthermore, as shown in FIG. 10, the chamfering using the rotary tool 16B on the first or second tool post 18, 20 is performed on the work W by rotating the swivel base 36 under the B-axis control. Processing or rounding can also be performed.
In each of the various workpiece machining examples described above, the first and second tool rests 18 and 20 are fed independently of each other on the swivel base 36, so that the machining operations of the two tools 16 influence each other. Without any problems. Further, as described above, at the turning position of the turntable 36 as shown in FIGS. 5 to 7, the tool 16 on the back tool post 24 is moved to the back spindle 22 in parallel with the above-described machining operation on the workpiece W. Desired back surface processing can be performed on the gripped workpiece.
The configuration of the automatic lathe 10 according to the preferred embodiment of the present invention has been described above, but the automatic lathe according to the present invention is not limited to the above embodiment, and various modifications and variations can be adopted.
For example, as shown in FIG. 11, it is possible to adopt a machine configuration in which a headstock 26 containing the main spindle 14 is fixedly installed on the lathe machine base 12 and the guide bush 48 is omitted. Further, as shown in FIG. 12, in addition to the configuration of FIG. 11, a swivel base 36 carrying the first and second tool rests 18 and 20 is arranged on the rotation axis 14a of the main shaft 14 along with the feed base 32 and the column 30. In a direction parallel and perpendicular to the axis 36a of the swivel base 36, under the control of a feed control axis (for example, Z3 axis) different from the feed control axes (X1 axis, X2 axis) of the first and second tool rests 18, 20. It can also be installed on the lathe machine base 12 so that it can be linearly operated.
Further, instead of the configuration of the illustrated embodiment in which the tool post support surfaces 38 and 40 of the swivel base 36 are orthogonal to each other, a swivel base having a tool post support surface that intersects at various angles is adopted, and a plurality of tool rests are provided. It can also comprise so that it can feed in the direction which cross | intersects at various angles on those turret support surfaces. In addition, the number of the tool rests installed on the swivel base, the tool holding type, and the like are arbitrary. Further, the lathe machine base 12 may be provided with other tool rests such as a turret tool rest, a control device such as an NC device, an operation panel, a tool magazine, an automatic tool changer, and the like.
While the invention has been described in connection with preferred embodiments thereof, those skilled in the art will recognize that various modifications and changes can be made without departing from the claims disclosed below.

Claims (10)

旋盤機台と、
主軸と、
前記主軸に対して個々に移動可能に前記旋盤機台に搭載される複数の刃物台と、
前記複数の刃物台を、互いに異なる送り制御軸の制御下で独立して直線動作可能に支持する旋回台とを具備し、
前記旋回台は、前記複数の刃物台のそれぞれの直線動作方向に交差する軸線を中心として、旋回制御軸の制御下で旋回可能に前記旋盤機台に設置される、
自動旋盤。
A lathe machine base,
The spindle,
A plurality of tool rests mounted on the lathe table so as to be individually movable with respect to the spindle;
A swivel for supporting the plurality of tool rests so that they can be independently linearly operated under the control of different feed control axes;
The swivel base is installed on the lathe machine base so as to be capable of swiveling under the control of a swivel control axis around an axis that intersects each linear motion direction of the plurality of tool rests.
Automatic lathe.
前記旋回台の前記軸線は、前記複数の刃物台に装着される複数の工具の刃先の、実質的前方に配置される、請求項1に記載の自動旋盤。 2. The automatic lathe according to claim 1, wherein the axis of the swivel is disposed substantially in front of a cutting edge of a plurality of tools mounted on the plurality of tool rests. 前記旋回台の前記軸線が、前記主軸の回転軸線に直交する、請求項1に記載の自動旋盤。 The automatic lathe according to claim 1, wherein the axis of the swivel base is orthogonal to a rotation axis of the main shaft. 前記複数の刃物台は、前記旋回台に、前記軸線を実質的中心として放射状に互いに異なる方向へ直線動作可能に支持される、請求項1に記載の自動旋盤。 2. The automatic lathe according to claim 1, wherein the plurality of tool rests are supported on the swivel so as to be linearly movable in different directions radially about the axis. 3. 前記複数の刃物台は、複数の工具が並列配置で装着されるくし歯刃物台を含み、該刃物台の各々の前記直線動作方向は、前記旋回台の前記軸線に直交するとともに該複数の工具の並列方向に直交する、請求項1に記載の自動旋盤。 The plurality of tool rests include comb tooth tool rests on which a plurality of tools are mounted in a parallel arrangement, and the linear motion direction of each of the tool rests is orthogonal to the axis of the swivel base and the plurality of tools. The automatic lathe according to claim 1, which is orthogonal to the parallel direction. 前記旋回台を前記旋盤機台上で旋回可能に支持する送り台をさらに具備し、該送り台は、前記旋回台の前記軸線に平行な方向へ、前記複数の刃物台の前記送り制御軸とは異なる送り制御軸の制御下で直線動作可能に該旋盤機台に設置される、請求項1に記載の自動旋盤。 The turntable further includes a feed base that supports the turntable so as to be turnable on the lathe machine base, and the feedtable is arranged in a direction parallel to the axis of the turntable and the feed control axes of the plurality of tool rests. The automatic lathe according to claim 1, wherein the lathe is installed on the lathe table so as to be capable of linear operation under the control of different feed control axes. 前記主軸は、該主軸の回転軸線に平行で前記旋回台の前記軸線に直交する方向へ、前記複数の刃物台の前記送り制御軸とは異なる送り制御軸の制御下で直線動作可能に、前記旋盤機台に設置される、請求項1に記載の自動旋盤。 The spindle is capable of linear operation in a direction parallel to the axis of rotation of the spindle and perpendicular to the axis of the swivel base, under the control of a feed control axis different from the feed control axes of the plurality of tool rests, The automatic lathe according to claim 1, which is installed on a lathe machine base. 前記主軸と前記複数の刃物台との間に位置するガイドブッシュをさらに具備し、前記旋回台の前記軸線は、該ガイドブッシュのワーク送出端面に近接して配置される、請求項1に記載の自動旋盤。 The guide bush according to claim 1, further comprising a guide bush positioned between the main shaft and the plurality of tool rests, wherein the axis of the swivel base is disposed close to a work sending end surface of the guide bush. Automatic lathe. 前記旋回台は、前記主軸の回転軸線に平行で該旋回台の前記軸線に直交する方向へ、前記複数の刃物台の前記送り制御軸とは異なる送り制御軸の制御下で直線動作可能に、前記旋盤機台に設置される、請求項1に記載の自動旋盤。 The swivel base can be linearly operated under control of a feed control axis different from the feed control axes of the plurality of tool rests in a direction perpendicular to the axis of the swivel base and parallel to the rotation axis of the spindle. The automatic lathe according to claim 1, which is installed on the lathe machine base. 前記主軸に対向配置可能な背面主軸をさらに具備し、前記旋回台に支持される前記複数の刃物台は、該背面主軸に対して加工動作する背面刃物台を含む、請求項1に記載の自動旋盤。 2. The automatic tool according to claim 1, further comprising a back spindle that can be disposed opposite to the spindle, wherein the plurality of tool rests supported by the swivel includes a back tool rest that performs a machining operation on the back spindle. lathe.
JP2008526851A 2006-07-27 2007-07-26 Automatic lathe with multiple turrets Expired - Fee Related JP4997240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526851A JP4997240B2 (en) 2006-07-27 2007-07-26 Automatic lathe with multiple turrets

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006204758 2006-07-27
JP2006204758 2006-07-27
JP2008526851A JP4997240B2 (en) 2006-07-27 2007-07-26 Automatic lathe with multiple turrets
PCT/JP2007/065110 WO2008013313A1 (en) 2006-07-27 2007-07-26 Automatic lathe having a plurality of tool rests

Publications (2)

Publication Number Publication Date
JPWO2008013313A1 true JPWO2008013313A1 (en) 2009-12-17
JP4997240B2 JP4997240B2 (en) 2012-08-08

Family

ID=38981620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008526851A Expired - Fee Related JP4997240B2 (en) 2006-07-27 2007-07-26 Automatic lathe with multiple turrets

Country Status (2)

Country Link
JP (1) JP4997240B2 (en)
WO (1) WO2008013313A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448643B (en) * 2009-06-30 2013-12-11 山崎马扎克公司 Composite working lathe
DE102010054099A1 (en) * 2010-12-10 2012-06-14 Marina Deitert Processing device for processing work pieces, has processing center, which is arranged on rotary plate, where tool carrier is provided for retaining of processing tools
JP2013139066A (en) * 2012-01-04 2013-07-18 Ihi Corp Method and apparatus for manufacturing impeller
TWI555606B (en) * 2012-03-26 2016-11-01 Citizen Holdings Co Ltd Working machine
JP6011150B2 (en) * 2012-08-20 2016-10-19 スター精密株式会社 Machine tool with turret
CN105643712B (en) * 2014-11-10 2017-06-23 佛山道格科技有限公司 A kind of plastic bottle punch device
EP3064297A1 (en) 2015-03-03 2016-09-07 Tornos SA Device with removable accessory and assembly for machining lathe, and machining lathe with digital control
CN105108494B (en) * 2015-09-12 2017-06-16 浙江特普机床制造有限公司 Wheel hub processes special purpose lathe
CN105904216B (en) * 2016-05-25 2017-10-20 张玲玲 A kind of high-precision multi-axis NC Machine Tools
WO2018042832A1 (en) 2016-08-31 2018-03-08 シチズン時計株式会社 Machine tool
JP6807192B2 (en) 2016-08-31 2021-01-06 シチズン時計株式会社 Machine Tools
CN108526892A (en) * 2018-04-09 2018-09-14 广东赛纳德智能装备有限公司 A kind of double acting balance process equipment
ES2886180T3 (en) * 2018-09-03 2021-12-16 Afw Holding Gmbh Machining equipment for chip removal machining of a workpiece
CN108817970A (en) * 2018-09-14 2018-11-16 山东瀚业机械有限公司 A kind of Machining of Shaft-type Parts center
JP7140651B2 (en) * 2018-11-28 2022-09-21 シチズン時計株式会社 Machine Tools
CN112935809A (en) * 2021-01-18 2021-06-11 深圳市正工精密五金塑胶有限公司 Combined type automatic lathe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240201A (en) * 1988-03-19 1989-09-25 Star Micronics Co Ltd Secondary machining device for automatic lathe
JPH07102481B2 (en) * 1991-07-03 1995-11-08 社団法人日本工作機械工業会 Machine tool spindle drive
JPH0639663A (en) * 1991-07-05 1994-02-15 Eisuke Yokoyama Three-dimensional work machine
BR9912900A (en) * 1998-08-11 2001-05-08 Junker Erwin Maschf Gmbh Grinding machine with device for turning hard material
CN1299867C (en) * 2001-05-15 2007-02-14 时至准钟表股份有限公司 Numerically controlled lath and method of machining work by this numerically controlled lath
FR2825940B1 (en) * 2001-06-15 2003-12-05 Mach Outils Wirth & Gruffat MULTI-POST ROTARY TRANSFER MACHINE FOR MACHINING PARTS
JP2003080403A (en) * 2001-09-11 2003-03-18 Star Micronics Co Ltd Machine tool

Also Published As

Publication number Publication date
JP4997240B2 (en) 2012-08-08
WO2008013313A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4997240B2 (en) Automatic lathe with multiple turrets
JP4619620B2 (en) Automatic lathe
JP5026599B2 (en) Combined lathe
US6904652B2 (en) Universal machine tool
JP5831349B2 (en) Machine tools that can be fitted with rotating tool units
US10518337B2 (en) Machine tool for machining a workpiece and spindle carrier assembly for use on such a machine tool
JP2008272889A (en) Machine tool
JP2007000966A (en) Machine tool
JP2007075995A (en) Machine tool
JP2005125482A (en) Lathe
JPWO2008016076A1 (en) Combined lathe and its tool post
JP2001198702A (en) Composite working machine
JP2008093808A (en) Lathe
JP2008023611A (en) Composite nc lathe
JPWO2002091090A1 (en) Automatic lathe, its control method and its control device
JP2007075922A (en) Multispindle lathe
JP4259653B2 (en) Automatic lathe
JPH0716805B2 (en) Numerical control compound lathe
JP6823900B2 (en) 5-axis control machine tool
JP2005125483A (en) Lathe
JP6829675B2 (en) Tool holder for lathes and lathes equipped with this tool holder
JPH1015703A (en) Multifunctional lathe
JP2007061937A (en) Two-spindle three-turret lathe
WO2023067805A1 (en) Forward-facing two-spindle lathe
JPH10328901A (en) Opposed spindle lathe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4997240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees