JPWO2007032252A1 - 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器 - Google Patents

軟磁性フィルムとそれを用いた電磁波対策部品および電子機器 Download PDF

Info

Publication number
JPWO2007032252A1
JPWO2007032252A1 JP2007535433A JP2007535433A JPWO2007032252A1 JP WO2007032252 A1 JPWO2007032252 A1 JP WO2007032252A1 JP 2007535433 A JP2007535433 A JP 2007535433A JP 2007535433 A JP2007535433 A JP 2007535433A JP WO2007032252 A1 JPWO2007032252 A1 JP WO2007032252A1
Authority
JP
Japan
Prior art keywords
soft magnetic
film
magnetic film
thin film
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007535433A
Other languages
English (en)
Other versions
JP4843612B2 (ja
Inventor
井上 哲夫
哲夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2007535433A priority Critical patent/JP4843612B2/ja
Publication of JPWO2007032252A1 publication Critical patent/JPWO2007032252A1/ja
Application granted granted Critical
Publication of JP4843612B2 publication Critical patent/JP4843612B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hard Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Thin Magnetic Films (AREA)

Abstract

軟磁性フィルム1は、複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルム3と、この基材フィルム3の少なくとも凸部4の頂面および凹部5の底面に形成された軟磁性薄膜2とを具備する。軟磁性薄膜2は透磁率μ′と膜厚Tとの積が不連続な部分を有する。軟磁性フィルム1は電磁波対策部品として用いられる。

Description

本発明は軟磁性フィルムとそれを用いた電磁波対策部品および電子機器に関する。
近年、携帯型通信機器の発展には目覚ましいものがあり、とりわけ携帯電話機の小型軽量化や薄型化が急速に進められている。これらに伴って、携帯電話機等におけるアンテナの設置位置は、より人体頭部や他のノイズに弱い電子機器に接近するようになってきている。このため、アンテナと人体頭部や他の電子機器との相互作用が問題となっている。
携帯電話機において、アンテナから放射された電波はその一部が最も近接する人体頭部に吸収され、残りが空間に放射される。人体頭部による電磁エネルギーの吸収に基づいて、アンテナの放射効率や通信特性が低下する。さらに、携帯電話機の使用時にはアンテナが頭部に近接するため、頭部が局所的に強い電磁界に曝されることになり、電力局所吸収量の増加による人体への影響が懸念されている。このため、携帯電話機を対象とした電波の局所吸収指針(単位体重当りの電力局所吸収量:SAR(Specific Absorption Rate))が米国、欧州、日本で相次いで設定されている。
こうした背景から、携帯電話機に代表される携帯型通信機器においては、人体による電磁エネルギーの吸収量(例えば人体頭部の電磁エネルギー被爆量)を低減することが望まれている。さらに、携帯型通信機器の多機能化に伴って、送受信信号の複数周波数化や多方式化が進められている。このため、複数のアンテナで同時に送受信を行う場合が生じている。複数のアンテナを同時に使用する場合には、隣接するアンテナ間の干渉が問題となる。さらに、携帯型通信機器の分野に限らず、電磁波吸収体の必要性が各種の分野で高まっている(例えば特許文献1参照)。
アンテナ近傍で生じる電磁界レベルを低減する技術としては、携帯電話機のアンテナ基部等に軟磁性体粉末と有機結合剤とを含む複合磁性体を配置することが知られている(例えば特許文献2,3参照)。ここでは、複合磁性体の透磁率μ″(複素透磁率μの虚数成分)が使用周波数近傍で急瞬に立上ることを利用して、電磁波を熱ロスとして消費している。しかし、この場合にはアンテナ近傍の電磁界レベル自体が低下するため、発信信号の信号強度まで低下してしまうという問題がある。
このような点に対して、高周波領域における複素透磁率μの実数成分μ′を大きくした軟磁性膜によれば、発信信号強度の低下を抑制しつつ、放射される電磁波の不要方向への電磁界強度を効果的に低減することができる。高周波領域で大きなμ′を実現するためには、例えば軟磁性膜の材料固有の異方性に形状異方性を加えることによって、強磁性共鳴周波数を高周波化することが有効である。軟磁性膜に形状異方性を付与する方法としては、凹部と凸部を設けた基台上に軟磁性膜を形成する方法が知られている。また、高分子フィルムにスリット状の溝を設け、その上に軟磁性膜を形成することによって、軟磁性膜の磁区を制御する方法が知られている(特許文献4参照)。
しかしながら、凹部と凸部を有する基台を用いる方法は、形状自由度が低くかつある程度の体積を有する基台が必須となるため、携帯電話機のような小型の機器内に自由に設置することが可能な電磁波対策部品を得ることはできない。スリット状の溝を有する高分子フィルムを用いる方法は、溝で磁性体を平面的に分離しているため、磁性体間に隙間が生じて電磁波の漏洩が起こる。これでは電磁波対策部品として効果的に使用することができない。さらに、高分子フィルムに溝加工する際に、エッジ部分に欠けやチッピングが生じやすいという問題がある。これらは磁区の制御性を低下させる要因となる。
真空蒸着法やスパッタリング法等の気相成長法で形成した磁性薄膜を、所定の寸法並びに形状に打ち抜いたり、あるいはエッチングする方法も知られている。しかしながら、打ち抜き加工を適用した場合にはひずみ組織が残留し、またエッチング法では腐食組織が残留する。これらによって、磁性薄膜内部に組織の乱れが生じ、軟磁気特性が低下するという問題がある。さらに、磁性膜と絶縁膜の積層膜の場合、成膜後に加工を施すと膜断面が露出し、磁性膜の酸化や劣化が発生して磁区に乱れが生じやすいという問題がある。
特開2002−076681公報 特開2002−158484公報 特開2001−200305公報 特開2004−015038公報
本発明の目的は、形状自由度の低下や体積の増加、さらには平面的な磁性体の分離等を招くことなく、軟磁性薄膜に形状異方性を有効に付与することを可能にした軟磁性フィルムとそれを用いた電磁波対策部品および電子機器を提供することにある。
本発明の一態様に係る軟磁性フィルムは、複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルムと、少なくとも前記基材フィルムの凸部頂面および凹部底面に形成された軟磁性薄膜であって、透磁率μ′と膜厚Tとの積が不連続な部分を有する軟磁性薄膜とを具備することを特徴としている。
本発明の他の態様に係る電磁波対策部品は、本発明の態様に係る軟磁性フィルムを具備することを特徴としている。本発明のさらに他の態様に係る電子機器は、電磁波送信部を有する電子機器本体と、本発明の態様に係る軟磁性フィルムを備える電磁波対策部品であって、前記電磁波送信部から放射される電磁波の不要方向に対する電磁界強度を選択的に低減するように配置された電磁波対策部品とを具備することを特徴としている。
本発明の実施形態による軟磁性フィルムの構成を示す断面図である。 図1に示す軟磁性フィルムの基材フィルムの構成例を示す斜視図である。 本発明の実施形態による軟磁性フィルムに適用する軟磁性薄膜の構成例を示す断面図である。 図1に示す軟磁性フィルムの変形例を示す断面図である。 本発明の実施形態による軟磁性フィルムの作製に適用されるコリメーションスパッタを説明するための図である。 コリメーションスパッタを適用して形成した軟磁性薄膜の構成例を示す断面図である。 図1に示す軟磁性フィルムのさらに他の変形例を示す断面図である。 本発明の実施形態による携帯電話機の概略構成を示す正面図である。 図7に示す携帯電話機の裏面図である。
符号の説明
1…軟磁性フィルム、2…軟磁性薄膜、3…基材フィルム、4…凸部、5…凹部、10…携帯電話機、16…アンテナ、18…電磁波対策部品。
発明を実施するための形態
以下、本発明を実施するための形態について説明する。図1は本発明の一実施形態による軟磁性フィルムの構成を示す断面図である。同図に示す軟磁性フィルム1は、軟磁性薄膜2の形成基材となる基材フィルム3を有している。この基材フィルム3は図2に示すように、複数の凹凸部を繰り返し設けた折り曲げ形状を有している。例えば、基材フィルム3を一方の面(A面/図中上面)側から見た場合、凸部4Aと凹部5Aとが順に繰り返して形成されるように、平板状の樹脂フィルムを折り曲げた形状を有している。
基材フィルム3は軟磁性薄膜2の形成基材として用いられるものである。軟磁性薄膜2の形成面は、基材フィルム3の両面(A面(図中上面)およびB面(図中下面))としてもよいし、またいずれか一方の面(A面またはB面)のみとしてもよい。軟磁性薄膜2を基材フィルム3の両面に形成する場合、基材フィルム3の他方の面(B面/図中下面)側にも、A面側の凸部4Aおよび凹部5Aとは逆となるように、凸部4Bと凹部5Bとが順に繰り返して形成されている。
基材フィルム3に付与する凹凸部の形状については、凹凸部の段差d(凸部4A、4Bの高さおよび凹部5A、5Bの深さ)を1μm以上とすることが好ましい。凹凸部の段差dが1μm未満であると、基材フィルム3上に形成する軟磁性薄膜2の形状異方性を十分に高めることができない。凹凸部の段差dは3μm以上とすることがより好ましい。ただし、凹凸部の段差dを高くしすぎても軟磁性薄膜2の形成性等が低下するため、凹凸部の段差dは100μm以下とすることが好ましい。
凹凸部の繰り返し周期pは1000μm以下とすることが好ましい。凸部4A、4Bの頂面の幅w1および凹部5A、5Bの底面の幅w2はそれぞれ500μm以下とすることが好ましい。幅w1、w2は同じでなければならないものではなく、部分的に幅w1、w2が異なっていてもよい。凹凸部の繰り返し周期pが1000μmを超えると、軟磁性薄膜2の形状異方性を十分に高めることができない。幅w1、w2が500μmを超える場合も同様である。ただし、凹凸部の繰り返し周期pが小さすぎると軟磁性薄膜2の形成性が低下するため、凹凸部の繰り返し周期pは5μm以上とすることが好ましい。幅w1、w2は2μm以上とすることが好ましい。
このような折り曲げ形状を有する基材フィルム3は、例えば熱可塑性の樹脂フィルムを所望の凹凸部に応じた形状を有する上下一対の型で挟み込み、加熱圧縮成形することにより得ることができる。基材フィルム3には、機械的強度や耐熱性に優れる熱可塑性樹脂フィルムを適用することが好ましい。このような樹脂フィルムとしては、熱可塑性のポリイミド系樹脂(例えばポリアミドイミド樹脂やポリエーテルイミド樹脂等)、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、ポリカーボネード樹脂等が挙げられる。
基材フィルム3に適用する樹脂フィルムの厚さは、例えば加熱圧縮成形で所望の凹凸部を形成することができ、かつ軟磁性薄膜2の形成に耐え得る強度を維持することが可能であればよい。具体的には、平均厚さが7〜200μmの樹脂フィルムを使用することが好ましい。樹脂フィルムの厚さが7μm未満であると、材料強度にもよるが軟磁性薄膜2の形成時に変形しやすくなり、軟磁性薄膜2の形状が不安定になる。一方、樹脂フィルムの厚さが200μmを超えると、軟磁性フィルム1としての厚さが増大し、設置体積の増大や形状自由度の低下を招きやすくなる。樹脂フィルムの加熱圧縮成形性も低下する。
軟磁性薄膜2は折り曲げ形状を有する基材フィルム3の両面(もしくは片面)に形成されている。軟磁性薄膜2としては、CoZrNb系アモルファス合金膜、CoZrNbTa系アモルファス合金膜、FeBN系へテロアモルファス膜、CoFeB−SiO系高電気抵抗膜、CoFeAlO系ナノグラニュラー膜、CoAlPdO系高電気抵抗膜、CoFeMn系微結晶膜、CoFeN系軟磁性膜、FeNi系軟磁性膜等、各種のCo基もしくはFe基軟磁性合金膜を使用することができる。軟磁性膜の微構造は特に限定されるものではなく、アモルファス構造、ヘテロアモルファス構造、グラニュラー構造、微結晶構造、結晶構造等のいずれであってもよい。
軟磁性薄膜2の膜厚Tは3μm以下とすることが好ましい。軟磁性薄膜2の膜厚Tが3μmを超えると凹凸部の段差dにもよるが、形状異方性を良好に付与することができないおそれがあり、また高周波磁気特性も低下する。軟磁性薄膜2は単層膜に限らず、例えば図3に示すような積層膜であってもよい。図3に示す軟磁性薄膜2は非磁性絶縁層6を介して複数の磁性層7を積層した積層膜を有している。積層型の軟磁性薄膜2によれば、高周波磁気特性の向上を図ることができる。積層構造を適用した場合、各磁性層7の単層としての膜厚Tは0.1〜1μmの範囲とすることが望ましい。
軟磁性薄膜2をスパッタ法や蒸着法等の指向性を有する成膜方法を適用して形成すると、基材フィルム3の凸部4の頂面と凹部5底面に形成された部分の膜厚と凸部4と凹部5とを繋ぐ壁面上に形成された部分の膜厚との間に差が生じる。このため、軟磁性薄膜2は膜形状としては連続していたとしても、磁気的には不連続になる。具体的には、軟磁性薄膜2はその透磁率μ′(複素透磁率μの実数成分)と膜厚Tとの積(P値)が不連続な部分を有することになる。なお、軟磁性薄膜2の形成方法はスパッタ法や蒸着法等の気相成長法(PVD法)に限らず、膜厚に差を生じさせることが可能な成膜法であればよい。軟磁性薄膜2はCVD法、溶射法、メッキ法等を適用して形成してもよい。
上述したように、軟磁性薄膜2は基材フィルム3の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とが磁気的に分断された状態となる。このような軟磁性薄膜2によれば、凸部4の頂面と凹部5の底面に軟磁性薄膜を個々に形成した場合と同様な形状異方性を得ることが可能となる。従って、軟磁性薄膜2に形状異方性を有効に付与することができる。ここで、図1および図2では凹凸部を形成するための折り曲げ角θを約90°(例えば85°以上95°以下)とした基材フィルム3を示したが、折り曲げ角θはこれに限られるものではない。
基材フィルム3の凹凸部の折り曲げ角θは、例えば図4に示すように鋭角としてもよい。この場合の折り曲げ角θは10°以上90°未満とすることが好ましく、さらに好ましくは30°以上70°以下である。折り曲げ角θが10°未満であると、凹部5の底面に対する軟磁性薄膜2の形成性が低下し、軟磁性薄膜2の平面的な連続性が低下するおそれがある。また、基材フィルム3の形状安定性等も低下する。凹凸部の折り曲げ角θが鋭角の基材フィルム3は、折り曲げ角θを約90°として形成したフィルムを凹凸部の繰り返し方向に圧縮することにより得ることができる。
折り曲げ角θを鋭角とした基材フィルム3によれば、軟磁性薄膜2をスパッタ法等で形成する際に成膜粒子の飛来方向に対して影ができるため、軟磁性薄膜2の凸部頂面に形成された部分と凹部底面に形成された部分との分離性が高まる。これによって、軟磁性薄膜2の形状異方性が大きくなる。図4に示すように、軟磁性薄膜2は基材フィルム3の少なくとも凸部4の頂面と凹部5の底面に形成されていればよく、凸部4と凹部5との間は分離されていてもよい。すなわち、凸部4と凹部5とを繋ぐ壁面上には、軟磁性薄膜2が連続した膜として堆積していなくてもよい。
軟磁性薄膜2の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とが分離されていても、平面的に見た場合にはおおよそ一様な膜となる。従って、電磁波対策部品として有効に機能させることができる。なお、図4では軟磁性薄膜2を基材フィルムの一方の面のみに形成した場合を示しているが、両面に形成した場合の軟磁性薄膜2の形状、それに基づく作用・効果等は同様である。以下に示す図6および図7も同様である。
上述したように、凹凸部の折り曲げ角θを鋭角とした基材フィルム3は、軟磁性薄膜2の凸部4の頂面に形成された部分と凹部5の底面に形成された部分とを分離させる上で有効である。ただし、軟磁性フィルム1を電磁波対策部品として使用するにあたって、基材フィルム3の形状安定性等を考慮して、折り曲げ角θを約90°(例えば85°以上95°以下)とすることが好ましい場合がある。このような点に対しては、スパッタターゲットと被成膜材料(ここでは基材フィルム3)との間にスリット(ソーラースリット)を配置したコリメーションスパッタを適用することが有効である。
図5はコリメーションスパッタを適用した軟磁性薄膜2の形成状態を模式的に示している。図5において、Tはスパッタターゲット、Mは被成膜材料(基材フィルム3)、CはスパッタターゲットTと被成膜材料Mとの間に配置したコリメータである。コリメータCはスパッタターゲットTからスパッタされたスパッタ粒子の飛翔方向に対して平行に配置された複数のスリットSを有している。スパッタ粒子は飛翔角度がコリメータCで制限されるため、被成膜材料Mに対してより垂直に近い状態で飛翔して堆積することになる。すなわち、スパッタ粒子の直進性を高めることができる。
図6に示すように、折り曲げ角θを約90°(例えば85°以上95°以下)とした基材フィルム3を用いた場合においても、コリメーションスパッタを適用して軟磁性薄膜2を形成することによって、凸部4の頂面に形成された部分と凹部5の底面に形成された部分とを分離することができる。すなわち、凸部4と凹部5とを繋ぐ壁面上に軟磁性薄膜2を連続した膜として堆積させないようにすることができる。このような軟磁性薄膜2によれば、よりきれいに形状異方性を高めることが可能となる。軟磁性薄膜2の分離性はスリットSの形状(スリット長さDに対するスリット幅sの比)で制御することができる。
基材フィルム3の凹凸部の折り曲げ角θは、例えば図7に示すように鈍角であってもよい。この場合の折り曲げ角θは90°を超えて135°未満とすることが好ましい。折り曲げ角θが135°を超えると、軟磁性薄膜2の連続性が強くなって形状異方性が低下する。このような基材フィルム3は、折り曲げ角θを約90°として形成したフィルムを凹凸部の繰り返し方向に拡張したり、あるいはフィルム成形時やフィルム加工時の型の角度を鈍角にすることで得ることができる。
折り曲げ角θを鈍角とした基材フィルム3上に軟磁性薄膜2を形成した場合においても、軟磁性薄膜2の凸部4の頂面と凹部5の底面に形成された部分の膜厚は、凸部4と凹部5とを繋ぐ壁面上に形成された部分より厚くなるため、磁気的に不連続な軟磁性薄膜2を得ることができる。さらに、軟磁性薄膜2の膜形状としての連続性は向上するため、軟磁性薄膜2の磁気特性の劣化等を抑制することができる。
ただし、凹凸部の折り曲げ角θが大きすぎると軟磁性薄膜2の磁気的な連続性が強くなって形状異方性が低下する。軟磁性薄膜2の磁気的な不連続性に基づく形状異方性を得るためには、軟磁性薄膜2の凸部4の頂面に形成された部分の透磁率μ′と膜厚Tとの積(P1値)に対する凸部4と凹部5とを繋ぐ壁面上に形成された部分の透磁率μ′と膜厚Tとの積(P2値)の比(P2/P1)が0.7以下となるように、凹凸部の折り曲げ角θを設定することが好ましい。軟磁性薄膜2のP2/P1比が0.7を超えると磁気的な連続性が強まり、軟磁性薄膜2の形状異方性が低下する。
軟磁性薄膜2のP2/P1比は、凹凸部の折り曲げ角θを鈍角にした場合に限らず、折り曲げ角θを約90°(例えば85°以上95°以下)とした場合や鋭角(例えば10°以上90°未満)とした場合にも当て嵌まる。従って、凹凸部の折り曲げ角θによらずに、軟磁性薄膜2の凸部4の頂面に形成された部分の透磁率μ′と膜厚Tとの積(P1値)に対する凸部4と凹部5とを繋ぐ壁面上に形成された部分の透磁率μ′と膜厚Tとの積(P2値)は0.7以下とすることが好ましく、さらに好ましくは0.5以下である。
上述したように、基材フィルム3の凹凸部の折り曲げ角θは、典型的には約90°(例えば85°以上95°以下)とされる。折り曲げ角θは90°に限らず、鋭角であっても鈍角であってもよい。基材フィルム3の折り曲げ角θは、具体的には10°以上135°以下の範囲とすることが好ましい。折り曲げ角θは30°以上120°以下の範囲とすることがさらに好ましい。
複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルム3を用いることによって、軟磁性薄膜2を平面的に見た場合に隙間を生じさせることなく、形状異方性を付与した軟磁性薄膜2を有する軟磁性フィルム1を得ることが可能となる。さらに、軟磁性薄膜2の端部の加工やそれに基づく組織、磁区の乱れ等を生じさせることない。このような軟磁性フィルム1は、電磁波対策部品として有効に使用することができる。
この実施形態の軟磁性フィルム1においては、軟磁性薄膜2の凸部4の頂面と凹部5の底面に形成された部分で形状異方性を得ているため、平面的に見た場合には軟磁性薄膜2に隙間が生じさせることがない。従って、電磁波の漏洩を抑制することができる。さらに、軟磁性薄膜2の端部形状や加工状態等に基づく軟磁気特性の低下を招くこともない。すなわち、健全な軟磁性薄膜2に対して形状異方性を有効に付与することが可能となる。軟磁性フィルム1自体は柔軟でかつ薄型化が可能であるため、設置自由度の向上や設置体積の低減を図ることができる。軟磁性フィルム1を具備する電磁波対策部品によれば、放射される電磁波の不要方向への電磁界強度を効果的に低減することが可能となる。
電磁波対策部品による不要方向への電磁界強度の低減効果について詳述する。この実施形態の軟磁性薄膜2によれば、その材料固有の異方性に加えて、複数の凹凸部を有する基材フィルム3に基づいて形状異方性を付与している。これら軟磁性薄膜2の材料固有の異方性と形状異方性とに基づいて強磁性共鳴周波数frを高めることができる。
ここで、強磁性共鳴周波数frは次式で表される。
fr=r/2π(Hkeff・Ndz・M/μ01/2
keff=Hkmat+Hext.+(Ndy−Ndx)・M/μ0
(式中、rはジャイロ磁気定数(=μ・e/2・me)、Ndzは試料厚さ方向の反磁界係数、Ndxは試料長手方向の反磁界係数、Ndyは試料幅方向の反磁界係数、Hkmatは材料組成および残留応力に依存する異方性、Hext.は試料に印加される外部磁界、μ0=4π×10-7、me=9.1091×10-31[kg]、e=1.60210×10-19[C]である)
上述した強磁性共鳴周波数frを高めることによって、低周波領域における大きな透磁率μ′(複素透磁率μの実数成分)を高周波領域まで維持することができる。すなわち、高周波領域で大きなμ′を得ることが可能となる。一方、複素透磁率μの虚数成分μ″は高周波領域においても極めて小さくなる。軟磁性薄膜2の強磁性共鳴周波数frは送信帯周波数の1.5倍以上、さらには2倍以上であることが好ましい。このような軟磁性薄膜2を電磁波対策部品として使用することによって、放射された電磁波を軟磁性薄膜2による磁気回路を介して所望方向に導くことができる。これによって、放射される電磁波の不要方向への電磁界強度を効果的に低減することが可能となる。
ここで、携帯電話機等の周波数帯域は多岐にわたっているが、人体に吸収される電磁波強度(SAR)で特に問題となる送信帯は824MHz〜1980MHzの範囲である。このような高周波領域(2GHzまでの領域)において、従来の電磁波吸収体は十分なμ′を有していないのに対して、この実施形態の軟磁性フィルム1は軟磁性薄膜2の形状異方性を大きくして強磁性共鳴周波数frを高めているため、低周波領域における大きなμ′を高周波領域においても実現することができる。従って、電磁波を軟磁性薄膜2による磁気回路で所望方向に導くことができる。
さらに、軟磁性薄膜2の強磁性共鳴周波数frを高めることによって、高周波領域におけるμ″が小さくなる。従って、電磁波の熱ロスによる損失を低減することができる。従来の電磁波吸収体は、高周波領域における大きなμ″に基づいて電磁波を熱ロスとして消費している。この実施形態の軟磁性フィルム1は、電磁波の熱ロスによる損失を低減しているため、例えば電磁波の信号強度自体の低下等を抑制することが可能となる。
上述した実施形態の軟磁性フィルム1は、例えば電磁波対策部品として有効に利用されるものである。本発明の実施形態による電磁波対策部品は、上述した実施形態の軟磁性フィルム1を具備している。このような電磁波対策部品を適用した電子機器の実施形態について、図8および図9を参照して説明する。図8は本発明の電子機器を携帯電話機に適用した実施形態の構成を示す正面図、図9はその裏面図である。これらの図に示す折り畳みタイプの携帯電話機10は、下筐体11と上筐体12とがヒンジ部13を介して回転自在に連結された構造を有している。
下筐体11は送信回路、受信回路、切替回路、制御回路等が搭載された回路基板14を収納しており、その表面には入力用のキーパッド15が配置されている。さらに、下筐体11は電磁波送信部としてアンテナ16を備えており、このアンテナ16から音声データ、文字データ、画像データ等の各種データを含む無線信号(電磁波)が送受信される。アンテナ16は回路基板14に設けられたアンテナ配線等を介して送信回路と受信回路に接続されている。上筐体12は液晶表示装置等による表示部17を有している。
電磁波送信部としてのアンテナ16の近傍には、軟磁性フィルム1からなる電磁波対策部品18が配置されている。具体的には、回路基板14によるアンテナ配線と下筐体11の人体側に向けられる表面(キーパッド15等を有する表面)との間に電磁波対策部品18が配置されている。すなわち、人体頭部とアンテナ16並びにその近傍のアンテナ配線との間には、下筐体11に配置された電磁波対策部品18が介在される。電磁波対策部品18は前述した実施形態の軟磁性フィルム1で構成されている。
この実施形態における電磁波対策部品18は、軟磁性薄膜2の強磁性共鳴周波数frが高く(例えば送信帯周波数の1.5倍以上)、これにより携帯電話機10の送信帯周波数における透磁率μ′が大きい。このような軟磁性薄膜2を有する電磁波対策部品18によれば、アンテナ16やアンテナ配線から人体頭部側に放射される電磁波を、軟磁性薄膜2による磁気回路を介して上方もしくは下方に導くことができる。すなわち、人体頭部が配置される空間の電磁界強度が低減される。基材フィルム3の凹凸部の繰り返し周期pは使用周波数と軟磁性薄膜2の材料固有の異方性とに基づいて設定することが好ましい。
このように、携帯電話機10の周波数帯域(例えば2GHzまでの領域)で大きなμ′を示す軟磁性薄膜2を具備する電磁波対策部品18を使用することによって、人体頭部側に放射される不要な電磁波の強度を低減することが可能となる。さらに、軟磁性薄膜2の強磁性共鳴周波数frを高めることで高周波領域におけるμ″が小さくなるため、熱ロスによる損失を低減することができる。これらによって、携帯電話機10から送信される信号強度の低下を抑制しつつ、不要な方向に放射される電磁波の強度、言い換えると人体頭部等が配置される空間の電磁界強度を効果的に低減することが可能となる。
なお、上述した実施形態においては、本発明の電子機器を携帯電話機に適用した例について説明したが、本発明はこれに限られるものではなく、各種の携帯型通信機器に適用可能である。さらに、電磁界強度を低減する空間は人体頭部が配置される空間に限られるものではない。本発明の電磁波対策部品は、ノイズに弱い他の電子機器(例えば携帯電話機であればカメラ部品等)が配置される空間の電磁界強度の低減、送受信信号の周波数や方式が異なる複数のアンテナ間の干渉抑制等に対しても有効に機能する。従って、本発明は電磁波送信機能を有する各種の電子機器に適用可能である。
次に、本発明の具体的な実施例およびその評価結果について述べる。
(実施例1)
まず、厚さ25μmのポリイミド樹脂フィルムを用意し、これを型に挟み込んで加熱圧縮成形(例えばアイトリックス社製のナノインプリント装置を使用)することによって、図2に示したような折り曲げ形状を有する基材フィルムを作製した。基材フィルムの凹凸部の長手方向に平行な長さLは20mmとした。また、基材フィルムの凹凸部の形状は、凸部頂面の幅w1および凹部底面の幅w2がそれぞれ100μm、凹凸部の繰り返し周期pが200μm、段差dが4μmとした。凹凸部の折り曲げ角度θは90°とした。
上述したポリイミド樹脂製の基材フィルムをアセトン洗浄した後に、以下にようにして基材フィルムの両面に積層型軟磁性薄膜を形成した。まず、基材フィルム上に厚さ0.03μmのSiO2膜と厚さ0.01μmのTi膜をRFスパッタおよびDCスパッタで順に成膜した。このような下地膜上に厚さ0.5μmのFeCoZrSiO膜と厚さ0.05μmのSiO2膜とを交互に積層することによって、基材フィルムの両面に積層型軟磁性薄膜を形成した。これらの積層数は両面とも4回とした。
FeCoZrSiO膜の成膜には、RFマグネトロンスパッタ装置を使用した。スパッタターゲットとしては、Fe68Co17Zr15組成(原子%)を有する直径125mm×厚さ3mmの円板状合金ターゲットのエロージョンパターン上に、20個のSiO2チップ(10mm×10mm×2.3mm)を均等に載置したターゲットを用いた。このようなスパッタターゲットを用いて、4層のFeCoZrSiO膜(厚さ0.5μm)をSiO2膜(厚さ0.05μm)を介して順に積層した。軟磁性膜の成膜時の投入電力は3.3W/cm2、ターゲット−基板間距離は75mm、アルゴン圧は3.2Pa(500SCCM)とした。成膜時に凹凸部の長手方向に1.6×103A/mの磁界が印加されるように永久磁石を配置した。
このようにして、複数の凹凸部を有する基材フィルムの両面に積層型軟磁性薄膜を形成して軟磁性フィルムを作製した。軟磁性フィルムの構成は、[(SiO2膜(0.05μm)/FeCoZrSiO膜(0.5μm))/Ti膜(0.01μm)/SiO2膜(0.03μm)//ポリイミド樹脂製基材フィルム(25μm)//SiO2膜(0.03μm)/Ti膜(0.01μm)/(FeCoZrSiO膜(0.5μm)SiO2膜(0.05μm))]である。
この軟磁性フィルムの磁気特性を測定したところ、強磁性共鳴周波数frは3GHz以上であった。2GHzにおけるμ′/μ″は十分に大きく、高周波領域で良好な特性を示すことが確認された。なお、軟磁性薄膜の凸部の頂面に形成された部分のμ′・T(P1値)に対する凸部と凹部とを繋ぐ壁面上に形成された部分のμ′・T(P2値)の比(P2/P1)は0.09であった。
(実施例2〜9)
上述した実施例1において、基材フィルムの凹凸部の形状や軟磁性薄膜の積層数等を変える以外は、それぞれ実施例1と同様にして軟磁性フィルムを作製した。各軟磁性フィルムの詳細条件は表1に示す通りである。表中の参考例は凹凸部の形状等を本発明の好ましい範囲外に設定したものである。これらの軟磁性フィルムについても、実施例1と同様にして磁気特性を測定した。それらの結果を表2に示す。
表2において、frは5.5GHz以上の場合をA、3.5GHz以上の場合をB、3.5GHz未満の場合をCとして示した。μ′/μ″は2GHzにおける値が3以上である場合をA、3未満である場合をCとして示した。総合評価はfr、2GHzにおけるμ′/μ″に基づくものであり、両項目がAである場合をA、いずれかの項目がBである場合をB、いずれかの項目がCである場合をCとして示した。
Figure 2007032252
Figure 2007032252
表2から明らかなように、実施例2〜9による軟磁性フィルムはいずれも強磁性共鳴周波数frが高く、良好に形状異方性が付与されていることが分かる。さらに、軟磁性フィルムの強磁性共鳴周波数frを再現性よく高めるためには、基材フィルムの凹凸部の段差dを1μm以上、繰り返し周期pを1000μm以下、軟磁性薄膜の膜厚Tを3μm以下とすることが好ましいことが分かる。
(実施例10)
実施例1と同一素材および同一形状の基材フィルムを用意し、この基材フィルムの両面に積層型軟磁性薄膜を以下のようにして形成した。まず、基材フィルムをアセトン洗浄した後に、厚さ0.03μmのSiO2膜と厚さ0.01μmのTi膜をRFスパッタおよびDCスパッタで順に成膜した。この下地膜上に厚さ0.5μmのFeCoBSiO膜と厚さ0.05μmのSiO2膜とを交互に積層することによって、基材フィルムの両面に積層型軟磁性薄膜を形成した。これらの積層数は両面とも4回とした。
FeCoBSiO膜の成膜には、RFマグネトロンスパッタ装置を使用した。スパッタターゲットとしては、(Fe0.80Co0.208515組成(原子%)を有する直径125mm×厚さ3mmの円板状合金ターゲットとSiO2ターゲットを用いた。これらのスパッタターゲットを用いて、4層のFeCoBSiO膜(厚さ0.5μm)をSiO2膜(厚さ0.05μm)を介して順に積層した。軟磁性膜の成膜時の投入電力は3.3W/cm2、ターゲット−基板間距離は75mm、アルゴン圧は1.6Pa(500SCCM)とした。
このようにして、複数の凹凸部を有する基材フィルムの両面に積層型軟磁性薄膜を形成して軟磁性フィルムを作製した。軟磁性フィルムの構成は、[(SiO2膜(0.05μm)/FeCoBSiO膜(0.5μm))/Ti膜(0.01μm)/SiO2膜(0.03μm)//ポリイミド樹脂製基材フィルム(25μm)//SiO2膜(0.03μm)/Ti膜(0.01μm)/(FeCoBSiO膜(0.5μm)/SiO2膜(0.05μm))]である。
この軟磁性フィルムの磁気特性を測定したところ、強磁性共鳴周波数frは3GHz以上であった。μ′およびμ″の周波数依存性を測定したところ、軟磁性薄膜のμ′は低周波領域のみならず高周波領域まで大きく、かつ高周波領域においてもμ″の値が小さいことが確認された。2GHzにおけるμ′/μ″は十分に大きく、高周波領域で良好な特性を示すことが確認された。なお、軟磁性薄膜の凸部の頂面に形成された部分のμ′・T(P1値)に対する凸部と凹部とを繋ぐ壁面上に形成された部分のμ′・T(P2値)の比(P2/P1)は0.10であった。
(実施例11)
上述した実施例10において、樹脂フィルムを凹凸部の繰り返し方向に圧縮することによって、凹凸部の折り曲げ角θを70°とした基材フィルムを使用する以外は、実施例10と同様にして軟磁性フィルムを作製した。軟磁性フィルムの詳細条件は表3に示す通りである。この軟磁性フィルムについても、実施例10と同様にして磁気特性を測定した。それらの結果を表4に示す。
(実施例12)
上述した実施例10において、樹脂フィルムを凹凸部の繰り返し方向に拡張することによって、凹凸部の折り曲げ角θを110°とした基材フィルムを使用する以外は、実施例10と同様にして軟磁性フィルムを作製した。軟磁性フィルムの詳細条件は表3に示す通りである。なお、表中の参考例4は凹凸部の折り曲げ角θを150°としたものである。これらの軟磁性フィルムについても、実施例10と同様にして磁気特性を測定した。それらの結果を表4に示す。
Figure 2007032252
Figure 2007032252
表4から明らかなように、実施例10〜12による軟磁性フィルムはいずれも強磁性共鳴周波数frが高く、良好に形状異方性が付与されていることが分かる。軟磁性薄膜のP2/P1比が大きくなりすぎると強磁性共鳴周波数frが低下するため、P2/P1比は0.7以下とすることが好ましいことが分かる。
(実施例13〜15)
軟磁性薄膜の成膜に図5に示したようなコリメーションスパッタを適用する以外は、実施例1と同様にして軟磁性フィルムを作製した。コリメーションスパッタ時のスリットの形状(スリット長さDに対するスリット幅sの比(s/D比))は、実施例13では1、実施例14では0.2、実施例15では0.1とした。軟磁性フィルムの詳細条件は表5に示す通りである。これらの軟磁性フィルムについても、実施例1と同様にして磁気特性を測定した。それらの結果を表6に示す。なお、表5における側面膜厚は、凸部と凹部とを繋ぐ壁面上の軟磁性薄膜の1層あたりの膜厚である。
Figure 2007032252
Figure 2007032252
表5および表6から明らかなように、コリメーションスパッタを適用することでP2/P1比を低減することができる。このことは軟磁性薄膜の形状異方性をよりきれいに高めることが可能であることを意味する。さらに、コリメーションスパッタにおけるスリットのs/D比を小さくすることによって、凸部と凹部とを繋ぐ壁面上おける軟磁性薄膜の堆積量を減少させることができる。スリットのs/D比を0.1とした実施例15においては、SEM観察(5万倍)したときに凸部と凹部とを繋ぐ壁面(側面)上に軟磁性薄膜を連続した膜として観察することができなかった。
(実施例16)
実施例1の軟磁性フィルムを用いた電磁波対策部品18を、20mm×5mmの形状と40mm×5mmの形状に切断した。これらを図8および図9に示したように携帯電話機10のアンテナ16近傍のアンテナ配線上に、軟磁性薄膜の磁化容易軸方向が基板配線パターンと平行となるように貼り付けた。このような携帯電話機10について、SAMファントムを用いた均一模擬組織モデル内部に励起される電界強度分布を、電界プローブを用いて測定した。
その結果、2GHzの送信周波数においてSAMファントム内部の電磁波強度は2.3dB低減されていた。同様に電界プローブを用いて空間の電磁強度を測定した結果、SAMファントム以外の空間において、アンテナ効率が2dB向上していた。この測定結果から、強磁性共鳴周波数frが高い軟磁性薄膜を具備する電磁波対策部品を使用することによって、携帯電話機10から送信される信号強度の低下を抑制しつつ、人体頭部等が配置される空間の電磁界強度を効果的に低減できることが分かる。
電磁波対策部品として使用する軟磁性薄膜(軟磁性フィルム)は、高周波領域でμ′が大きければそれ以外の例えば直流磁界測定で得られる保磁力等の特性にはあまり影響されない。従って、(Co35.6Fe5014.4)と(SiO2)の2元スパッタによる磁性膜、(Co20Fe80)と(SiO2)の2元スパッタによる軟磁性膜等を適用してもよく、これらの軟磁性膜によっても同様の効果を得ることができる。さらに、軟磁性膜はスパッタ法に限らず蒸着法等を適用して成膜してもよい。
本発明の態様に係る軟磁性フィルムは、形状自由度の低下や体積の増加、さらには平面的な磁性体の分離を招くことなく、軟磁性薄膜に形状異方性を有効に付与したものである。従って、そのような軟磁性フィルムは電磁波対策部品に有効に利用される。さらに、本発明の態様に係る電磁波対策部品によれば、発信信号強度の低下を抑制しつつ、放射される電磁波の不要方向に対する電磁界強度を低減することができる。そのような電磁波対策部品を用いた電子機器によれば、電磁波による通信特性等を良好に保った上で、例えば人体や他の電子部品や電子機器に対する電磁波の影響を低減することが可能となる。

Claims (20)

  1. 複数の凹凸部を繰り返し設けた折り曲げ形状を有する基材フィルムと、
    少なくとも前記基材フィルムの前記凸部の頂面および前記凹部の底面に形成された軟磁性薄膜であって、透磁率μ′と膜厚Tとの積が不連続な部分を有する軟磁性薄膜と
    を具備することを特徴とする軟磁性フィルム。
  2. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の段差が1μm以上であることを特徴とする軟磁性フィルム。
  3. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の段差が3μm以上100μm以下であることを特徴とする軟磁性フィルム。
  4. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の繰り返し周期が1000μm以下であることを特徴とする軟磁性フィルム。
  5. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凸部頂面の幅および前記凹部底面の幅がそれぞれ500μm以下であることを特徴とする軟磁性フィルム。
  6. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは平均厚さが200μm以下の樹脂フィルムを備えることを特徴とする軟磁性フィルム。
  7. 請求項1記載の軟磁性フィルムにおいて、
    前記軟磁性薄膜は膜厚Tが3μm以下であることを特徴とする軟磁性フィルム。
  8. 請求項1記載の軟磁性フィルムにおいて、
    前記軟磁性薄膜は非磁性絶縁層を介して複数の磁性層を積層した積層膜を有することを特徴とする軟磁性フィルム。
  9. 請求項8記載の軟磁性フィルムにおいて、
    前記複数の磁性層の単層としての膜厚はそれぞれ1μm以下であることを特徴とする電子機器。
  10. 請求項1記載の軟磁性フィルムにおいて、
    前記軟磁性薄膜は前記基材フィルムの両面に形成されていることを特徴とする軟磁性フィルム。
  11. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の折り曲げ角が10°以上135°以下の範囲である折り曲げ形状を有することを特徴とする軟磁性フィルム。
  12. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の折り曲げ角が85°以上95°以下の範囲である折り曲げ形状を有することを特徴とする軟磁性フィルム。
  13. 請求項1記載の軟磁性フィルムにおいて、
    前記基材フィルムは前記凹凸部の折り曲げ角が鋭角となる折り曲げ形状を有することを特徴とする軟磁性フィルム。
  14. 請求項13記載の軟磁性フィルムにおいて、
    前記凹凸部の折り曲げ角が10°以上90°未満の範囲であることを特徴とする軟磁性フィルム。
  15. 請求項1記載の軟磁性フィルムにおいて、
    前記凸部の頂面に形成された前記軟磁性薄膜の前記透磁率μ′と膜厚Tとの積(P1値)に対する前記凸部と前記凹部とを繋ぐ壁面上に形成された前記軟磁性薄膜の前記透磁率μ′と膜厚Tとの積(P2値)の比(P2/P1)が0.7以下であることを特徴とする軟磁性フィルム。
  16. 請求項1記載の軟磁性フィルムにおいて、
    前記軟磁性薄膜は前記凸部の頂面に形成された部分と前記凹部の底面に形成された部分とが分離されていることを特徴とする軟磁性フィルム。
  17. 請求項1記載の軟磁性フィルムを具備することを特徴とする電磁波対策部品。
  18. 電磁波送信部を有する電子機器本体と、
    請求項1記載の軟磁性フィルムを備える電磁波対策部品であって、前記電磁波送信部から放射される電磁波の不要方向に対する電磁界強度を選択的に低減するように配置された電磁波対策部品と
    を具備することを特徴とする電子機器。
  19. 請求項18記載の電子機器において、
    前記軟磁性フィルムにおける軟磁性薄膜は前記電子機器本体の送信帯周波数の1.5倍以上の強磁性共鳴周波数を有することを特徴とする電子機器。
  20. 請求項18記載の電子機器において、
    前記電子機器は携帯型通信機器であることを特徴とする電子機器。

JP2007535433A 2005-09-12 2006-09-07 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器 Active JP4843612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535433A JP4843612B2 (ja) 2005-09-12 2006-09-07 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005264151 2005-09-12
JP2005264151 2005-09-12
JP2007535433A JP4843612B2 (ja) 2005-09-12 2006-09-07 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器
PCT/JP2006/317754 WO2007032252A1 (ja) 2005-09-12 2006-09-07 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器

Publications (2)

Publication Number Publication Date
JPWO2007032252A1 true JPWO2007032252A1 (ja) 2009-03-19
JP4843612B2 JP4843612B2 (ja) 2011-12-21

Family

ID=37864848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535433A Active JP4843612B2 (ja) 2005-09-12 2006-09-07 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器

Country Status (3)

Country Link
JP (1) JP4843612B2 (ja)
KR (1) KR100993969B1 (ja)
WO (1) WO2007032252A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665781B2 (ja) 2014-08-21 2020-03-13 ソニー株式会社 筐体部品、電子機器、筐体部品の製造方法
JP7325964B2 (ja) * 2019-01-11 2023-08-15 株式会社東芝 電磁波減衰体及び電子装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458301A (en) * 1977-10-19 1979-05-11 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave absorbing body
JPS6233413A (ja) * 1985-08-06 1987-02-13 Nec Corp 軟磁性薄膜コアの製造方法
JPH0328881A (ja) * 1989-02-07 1991-02-07 Teruo Suzuki 広告装置
JP2530682Y2 (ja) * 1989-07-31 1997-03-26 株式会社 リケン カラーテレビ用磁気シールドボックス
JPH08288684A (ja) * 1995-04-20 1996-11-01 K Lab:Kk 電磁波吸収体
JPH09186486A (ja) * 1995-12-28 1997-07-15 Tosoh Corp 電磁波吸収体
JPH11274787A (ja) * 1998-03-20 1999-10-08 Tdk Corp フェライト電波吸収体
JP2002232184A (ja) * 2001-02-07 2002-08-16 Nisshin Steel Co Ltd 電磁波シールド材
JP4431302B2 (ja) * 2002-06-05 2010-03-10 財団法人電気磁気材料研究所 磁区制御された軟磁性薄膜フィルムおよびその製造方法ならびに高周波磁気デバイス
US6818291B2 (en) * 2002-08-17 2004-11-16 3M Innovative Properties Company Durable transparent EMI shielding film

Also Published As

Publication number Publication date
KR100993969B1 (ko) 2010-11-11
KR20080049103A (ko) 2008-06-03
JP4843612B2 (ja) 2011-12-21
WO2007032252A1 (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
KR100955992B1 (ko) 전자파 대책 부품과 그것을 이용한 전자 기기
Kondo et al. Conducted noise suppression effect up to 3 GHz by NiZn ferrite film plated at 90° C directly onto printed circuit board
KR101903540B1 (ko) 근방계 노이즈 억제 시트
JP7325964B2 (ja) 電磁波減衰体及び電子装置
US10587049B2 (en) Magnetic isolator, method of making the same, and device containing the same
JP2012038807A (ja) 電磁シールドシート
US10364511B1 (en) Magneto dielectric composite materials and microwave applications thereof
JP2010206182A (ja) 電磁シールドシート
JP4281858B2 (ja) 磁性膜
JP4843612B2 (ja) 軟磁性フィルムとそれを用いた電磁波対策部品および電子機器
US8043727B2 (en) Electromagnetic wave-absorption multilayer substrate
Sun et al. Electronically tunable magnetic patch antennas with metal magnetic films
Peng et al. Performance enhanced miniaturized and electrically tunable patch antenna with patterned permalloy based magneto-dielectric substrate
US20040185309A1 (en) Soft magnetic member, electromagnetic wave controlling sheet and method of manufacturing soft magnetic member
WO2009145130A1 (ja) 磁性シート及びその製造方法
Grimes EMI shielding characteristics of permalloy multilayer thin films
US11005149B2 (en) Metaconductor skins for low loss RF conductors
Matsushita et al. Ni-Zn ferrite films synthesized from aqueous solution usable for sheet-type conducted noise suppressors in GHz range
Abu et al. An analysis of dual-band octagonal ring metamaterial absorber
JP2007073551A (ja) 磁性多層膜及びその製造方法
WO2022247465A1 (zh) 磁性薄膜及其制备方法、半导体封装模组和电子设备
JP2006135037A (ja) Rfid用磁性シート
Osipov et al. Multi-layered Fe films for microwave applications
KR20050100714A (ko) 유연성을 갖는 적층형 전자파 흡수체
JP2004172909A (ja) 携帯通信機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3