JPWO2006072980A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
JPWO2006072980A1
JPWO2006072980A1 JP2006550557A JP2006550557A JPWO2006072980A1 JP WO2006072980 A1 JPWO2006072980 A1 JP WO2006072980A1 JP 2006550557 A JP2006550557 A JP 2006550557A JP 2006550557 A JP2006550557 A JP 2006550557A JP WO2006072980 A1 JPWO2006072980 A1 JP WO2006072980A1
Authority
JP
Japan
Prior art keywords
band
radio
wireless communication
frequency
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006550557A
Other languages
English (en)
Other versions
JP4805169B2 (ja
Inventor
古川 秀人
秀人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2006072980A1 publication Critical patent/JPWO2006072980A1/ja
Application granted granted Critical
Publication of JP4805169B2 publication Critical patent/JP4805169B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

マルチバンドまたは異なる複数の無線周波数を使用する無線通信システムにおいて、各バンドまたは無線周波数毎に異なる無線伝送方式を用いる。たとえば、各バンドまたは無線周波数毎に異なる無線フォーマットでデータを送信することにより、各バンドまたは無線周波数毎に前記無線伝送方式を異ならせる。無線フォーマットを異ならせるには、(1) 無線周波数毎にパイロット長を異ならせる、(2)無線周波数毎にパイロット間隔を異ならせる、(3)各バンドまたは無線周波数毎にガードインターバル長を異ならせる、(4)各バンドにおいてマルチキャリア変調で無線通信する場合、各バンドにおけるマルチキャリアのサブキャリア間隔を異ならせる。

Description

本発明はマルチバンドまたは異なる複数の無線周波数を使用する無線通信システムに係わり、特に、各バンドまたは無線周波数毎に異なる無線伝送方式(無線伝送パラメータ)を用いる無線通信システムおよび送信装置、受信装置に関する。
第2世代携帯電話システムでは800MHz帯、1.5GHz帯など複数の周波数帯を使用している。また、第3世代携帯電話システムIMT-2000では現在2GHz帯が使用されているが近い将来800MHz帯の使用も検討されている。このように1つの携帯電話システムにおいて複数の周波数帯を使用することは周知の事実となっている。
マルチバンドの無線通信システム、すなわち、複数の帯域幅(バンド)を用いた無線通信システム、あるいは、複数の異なる無線周波数を使用するマルチキャリア無線通信システムにおいて、従来はすべて同じ無線パラメータ(無線フォーマット)を用いていた。すなわち、無線フォーマットとして、(1)チャネル推定に必要な内挿パイロットの長さ、(2)シンボル間干渉を防止するためのガードインターバルGIの長さ、(3)マルチキャリアにおけるサブキャリア数あるいはサブキャリア間隔等があるが、従来はこれら無線パラメータ(フォーマット)は無線周波数やバンドに関係なく同じであった。しかし、使用する周波数帯が異なれば、伝播特性が変わり、受信性能もそれに応じて異なる。図15はマルチバンドの説明図であり、説明を簡素化するために周波数帯を1GHz帯と2GHz帯としているが、この周波数帯に限定するものではなく、また、2つのバンドに限定するものでもない。
(1) パイロットを内挿する無線伝送システム
周波数帯が1GHzと2GHzを用いた無線伝送システムでは移動速度が同じでも、使用する周波数帯によってフェージング速度が倍異なる。このため、チャネル推定ために同じ長さの内挿パイロットを用いるとチャネル推定精度が1GHzと2GHzで異なり、2GHz帯では1GHz帯に比べ受信性能が劣化する。しかし、従来は図16に示すように、周波数帯に関係なくデータDT1,DT2に内挿するパイロットPL1、PL2の長を同一長にしており、チャネル推定精度が2GHz帯において劣化する問題があった。
図17はかかる従来のパイロット長を周波数帯に関係なく一定にした場合の送信装置の構成図、図18は受信装置の構成図である。
送信装置において、変調部1aは、送信データにたとえばQPSK変調を施し、パイロット挿入部1bはQPSKの同相成分、直交成分にパイロット信号PLを挿入し、1GHz用送信機1cは該パイロットPLが挿入された信号の周波数を1GHzにアップコンバートして送信し、2GHz用送信機1dは該パイロットPLが挿入された信号の周波数を2GHzにアップコンバートして送信する。なお、パイロットの挿入はQPSK変調前でも良い。
受信装置において、1GHz用受信機2aは1GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部2cに入力し、2GHz用受信機2bは同様に2GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部2cに入力する。選択部2cは図示しない制御部から出力された1GHz/2GHz選択信号SELが指示する受信機から出力するべースバンド信号を選択し、パイロット抽出部2dと復調部2eに入力する。パイロット抽出部2dは入力信号よりパイロットを抽出し、チャネル推定部2fは抽出したパイロット信号と既知のパイロット信号とを用いてチャネル(パスの伝搬特性)を推定する。復調部2eは該チャネル推定値に基づいてデータ信号にチャネル補償を施し、しかる後、送信データを復調する。
以上のように、送信装置は1GHz/2GHz ともに同じ長さのパイロット信号を挿入し、同一の無線フォーマットで無線信号として送信する。このため、2GHzで送信されたデータを復調する際、チャネル推定精度が劣化するため高精度のデータ復調ができない。
(2) ガードインターバルを挿入する無線伝送システム
シンボル間干渉を防止するためにガードインターバルGIを挿入する無線伝送システムでは、基地局と移動局の位置関係によって必要なガードインターバル長が異なる。例えば1GHzと2GHzでは伝播損失が異なり、1GHzの方が遠くへ到達することが知られており、1GHz帯の遅延スプレッドの方が長くなる。ガードインターバル長は最大遅延スプレッドの長さに合わせて決めるのが一般的である。すなわち、バンド毎に同じガードインターバル長(同じ無線フォーマット)の場合、遅延スプレッドが最長となる基地局と移動局の位置関係を想定してガードインターバル長を決める必要がある。図19は従来の無線フォーマットの例であり、1GHzの遅延スプレッドに基づいて1GHZ/2GHzのガードインターバルGIの長さを決めている。以上より、2GHz帯ではガードインターバルが長くなりすぎ、すなわち、無用なガードインターバル長を用意することになり伝送効率が悪くなる問題がある。
図20はガードインターバルGIを同一にした場合の無線伝送システムにおける送信装置、図21は受信装置の構成図であり、直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)方式によりマルチキャリア伝送する例であり、1GHZ/2GHzともに同じ長さのガードインターバルが挿入されたデータを送信機から送信する。
送信装置において、マルチキャリア変調部3aのシリアル/パラレル変換部3a1は送信データをN個の並列データに変換し、IFFT部3a2は各並列データをN個のサブキャリア成分としてIFFT演算処理し、パラレル/シリアル変換部3a3はNシンボルのIFFT演算処理結果を直列に変換して出力する。ガードインターバル付加部3bは予め設定されている一定長のガードインターバルをNシンボルの先頭に付加し、1GHz用送信機3cは該ガードインターバルが挿入された信号の周波数を1GHzにアップコンバートして送信し、2GHz用送信機3dは該ガードインターバルが挿入された信号の周波数を2GHzにアップコンバートして送信する。
受信機において、1GHz用受信機4aは1GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部4cに入力し、2GHz用受信機4bは同様に2GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部4cに入力する。選択部4cは図示しない制御部から出力された1GHz/2GHz選択信号SELが指示する受信機から出力するべースバンド信号を選択し、ガードインターバル除去部4dに入力する。ガードインターバル除去部4dは入力信号よりガードインターバルを除去してFFT部4eに入力する。FFT部4eは入力信号をNシンボルにパラレル変換し、ついで、NポイントFFT演算処理を行ない、FFT演算結果をシリアルに変換して復調部4fに入力する。復調部4fは、入力信号より送信データを復調する。
以上のように、送信機は1GHz/2GHz ともに同じ長さのガードインターバルを挿入して同一の無線フォーマットで無線信号として送信する。このため、2GHzではガードインターバルが長くなりすぎ伝送効率が悪くなる。
(3)マルチバンドにおけるマルチキャリア伝送システム
図22に示すようにマルチバンド(1GHz帯および2GHz帯)のそれぞれでOFDM方式によりマルチキャリア伝送する無線通信システムでは、フェージングにより周波数変動が生じると、隣り合うサブキャリア間の直交性が崩れる。この直交性の崩れ度合は、使用する周波数帯によって異なる。すなわち、移動速度が同じでも2GHz帯では1GHz帯に比べて周波数変動量が2倍になるため、1GHz帯に比べて劣化量も大きくなる。
OFDMでは送信信号をシリアル/パラレル変換(N個の並列信号に変換)して信号速度を低くし、各サブキャリアにN個の各送信信号を割り当て伝送する方式である。シリアル/パラレル変換後の信号速度(=1/T Hz)によってサブキャリア間隔または帯域幅が決まる。サブキャリア間隔は周波数軸上で直交するように1/2T間隔で並べられる。このOFDM伝送方式では前述のようにマルチパスフェージングによって周波数がふらつき、各サブキャリ間の直交性が崩れると性能が劣化する。そのため、予め周波数間隔はそのふらつきを予想してバンド毎に劣化が生じない間隔にする必要がる。しかし、従来のマルチバンドの無線伝送システムにおいて各バンドにおけるサブキャリア間隔は1GHzと2GHzで同じである。なお、マルチバンド(1GHz帯および2GHz帯)のそれぞれでOFDM方式によりマルチキャリア
伝送する無線通信システムは図20、図21と同一の構成になる。
周波数により信号劣化の度合が異なる場合、受信状態の良い周波数チャネルの信号を選択受信する技術がある(特許文献1)。この従来技術では、複数の送信局が異なる周波数で同一の内容の送信を行なう多周波数ネットワークにおいて、受信局が、周波数が異なる2つのチャネルにて送られてくる信号の受信レベルを検出し、受信レベルの大きなチャネルの信号を用いて復元する。
また、同一周波数帯を使用する様々な方式の無線通信装置が存在する場合、無線通信の干渉が発生すると予想される周波数、時間または方向を求め、これを避けて無線通信する技術がある(特許文献2)。
しかし、これらの従来技術はマルチバンドの無線通信システムおよびマルチキャリア無線通信システムにおいて、各バンドあるいは各周波数における受信性能をそれぞれ向上するものではない。
以上から本発明の目的は、マルチバンドの無線通信システムおよびマルチキャリア無線通信システムにおいて、各バンドあるいは各周波数における受信性能をそれぞれ向上し、かつ、伝送効率を向上することである。
本発明の別の目的は、各周波数において内挿するパイロットの長さを変えることにより、各周波数におけるチャネル推定精度を向上して受信性能を向上し、伝送効率を改善することである。
本発明の別の目的は、各バンドあるいは各周波数において挿入するガードインターバルの長さを変えることにより、各バンドあるいは各周波数におけるシンボル間干渉を低減して受信性能を向上し、伝送効率を改善することである。
本発明の別の目的は、各バンドにおけるマルチキャリアのサブキャリア数、またはサブキャリア間隔を異ならせることにより、各バンドにおいて周波数変動による影響を低減して受信性能を向上し、伝送効率を改善することである。
特開2002−64458号公報 特開2002−300172号公報
本発明は、マルチバンドまたは複数の異なる無線周波数(例えば、非連続2つのバンド、離間した2つのバンド、異なる周波数帯に属する2つの無線周波数等)を使用する無線通信システムであり、この無線通信システムでは各バンドまたは無線周波数毎に異なる無線伝送パラメータ(伝送方式)を用いる。すなわち、各バンドまたは無線周波数毎に異なる無線パラメータ(フォーマット)でデータを送信することにより、各バンドまたは無線周波数毎に前記無線伝送パラメ−タ(伝送方式)を異ならせる。
尚、ここで、3以上のバンドを使用する場合に、そのうちの2つのバンドについて各バンド毎に異なる無線パラメータ(フォーマット)でデータを送信する場合であっても、2つのバンド(マルチバンド)を使用することには変わりがなく、使用する2つのバンドの各バンド毎に異なる無線伝送パラメータを用いていると解することができる。
もちろん、使用するバンドの全てについて異なる無線伝送パラメータを用いることもできる。
また、パラメータ(フォーマット)を異ならせる際に、各バンドを利用する無線通信装置(無線送信装置又は無線受信装置)に共通的に異ならせることが好ましい。
例えば、第1のバンドを利用して通信する無線通信装置は一律に、第1のパラメータが適用された第1のバンドを使用し、第2のバンドを利用して通信する無線通信装置は一律に、第2のパラメータが適用された第2のバンドを使用するのである。
また、そのパラメータの設定は、無線通信装置が第1のバンド及び第2のバンドを使用することを外部入力等により指示された場合に、各バンドについてそれぞれ対応するパラメータを記憶部から読み出し、制御部は、読み出したパラメータに従って、各部の制御を行うようにすることで行うことが望ましい。
もちろん、1つの無線通信装置が1つのバンドしか対応していない場合は、他の無線通
信装置が異なる他の1つのバンドを使用し、それぞれ第1のバンドに適合したパラメータ、第2のバンドに適合したパラメータを使用することが望ましい。尚、この際、やはり無線通信装置の各々は、いずれのバンドにも対応可能なように、記憶部に、各バンドに応じた無線パラメータを記憶しておき,指定されたバンドに応じた無線パラメータを制御部が、読み出して制御に用いることが望ましい。
また、異なる3つのバンドである、第1、第2、第3のバンド(第1のバンドと第2のバンドの周波数間隔より第2のバンドと第3のバンドの周波数間隔の方が広いものとする)を使用する場合に、第1と第2では同じ無線パラメータを利用し、第2と第3のバンド間では異なる無線パラメータを使用することもできる。
これにより、周波数が異なることに起因する問題が顕著に生ずる部分を狙い撃ちして対応することができるからである。
また、第1のバンド、第2のバンドを使用する無線通信装置は、1つの無線通信装置(無線基地局)であることが望ましいが、異なる無線通信装置であってもよい。
異なる無線通信装置である場合に、好ましくは、同じ通信事業者に属するか、又は、後述するパラメータ以外は同じ無線通信方式(例えばOFDM)を採用するか、又は、同じ無線通信システム(例えば第4世代移動通信システム)に属するか、又は、コアネットワークを共通とすることが望ましい。
もちろん、後述するような無線パラメータを異ならせるのであれば、第1のバンドは第1の通信事業者、第2のバンドは第2の通信事業者に属するようにしても差し支えない。
また、第1のバンド、第2のバンドを使用する無線通信装置は、1つの無線通信装置であろうが、異なる無線通信装置であろうが、符号化方式、復号化方式、変復調方式は同じ方式を採用するが、無線区間において送受信される無線フォーマット(例えば、後述する各フォーマット)が異なる様にされていることが望ましい。 無線パラメータ(フォーマット)を異ならせる第1の具体方法は、各バンドまたは無線周波数毎にパイロット長を異ならせることである。これにより、各周波数におけるチャネル推定精度が向上して受信性能および伝送効率を改善することができる。
無線パラメータ(フォーマット)を異ならせる第2の具体方法は、各バンドまたは無線周波数毎にパイロット間隔を異ならせることである。これにより、各周波数におけるチャネル推定精度が向上して受信性能および伝送効率を改善することができる。
無線パラメータ(フォーマット)を異ならせる第3の具体方法は、各バンドまたは無線周波数毎にガードインターバル長を異ならせることである。これにより、各バンドあるいは各周波数におけるシンボル間干渉を低減して受信性能および伝送効率を改善することができる。
無線パラメータ(フォーマット)を異ならせる第4の具体方法は、各バンドにおいてマルチキャリア変調で無線通信する場合、各バンドにおけるマルチキャリアのサブキャリア数を異ならせ、またはサブキャリア間隔を異ならせることである。これにより、各バンドにおける周波数変動による影響を低減して受信性能および伝送効率を改善することができる。
複数の異なる無線周波数を使用する無線通信システムにおいて、無線周波数毎にパイロット長を異ならせる第1実施例の第1の原理説明図である。 複数の異なる無線周波数を使用する無線通信システムにおいて、無線周波数毎にパイロット長を異ならせる第1実施例の第2の原理説明である。 各バンドまたは無線周波数毎にガードインターバル長を異ならせる第2実施例の原理説明図である。 各バンドにおいてマルチキャリア変調で無線通信する場合、各バンドにおけるマルチキャリアのサブキャリア数を異ならせ、またはサブキャリア間隔を異ならせる第4実施例の原理説明図である。 サブキャリア間隔を大きくすることにより周波数変動による影響を低減できることを説明する図である。 複数の異なる無線周波数を使用する無線通信システムにおいて、無線周波数毎にパイロット長を異ならせる第1実施例の送信装置の構成図である。 第1実施例の受信装置の構成図である。 第1実施例の受信装置の別の構成図である。 マルチバンドのバンド毎にOFDM送信する無線通信システムにおいて、バンド毎にガードインターバル長を異ならせる第2実施例の送信装置の構成図である。 第2実施例の受信装置の構成図である。 第2実施例の送信装置の別の構成図である。 第2実施例の送信装置の更に別の構成図である。 マルチバンドのバンド毎にOFDM送信する無線通信システムにおいて、バンド毎にサブキャリア数を異ならせてサブキャリア間隔を異ならせる第3実施例の送信装置の構成図である。 第3実施例の受信装置の構成図である。 マルチバンドの説明図である。 周波数帯に関係なくデータに内挿するパイロットPL1、PL2の長を同一長にする従来例説明図である。 従来の周波数帯に関係なくパイロット長を一定にした場合の送信装置の構成図である。 従来の周波数帯に関係なくパイロット長を一定にした場合の受信装置の構成図である。 ガードインターバル長を周波数帯に関係なく一定にした場合の従来例説明図である。 ガードインターバル長を周波数帯に関係なく一定にした場合の送信装置の構成図である。 ガードインターバル長を周波数帯に関係なく一定にした場合の受信装置の構成図である。 直交性の崩れ度合が周波数により異なることを説明する図である。
(A)本発明の概略
本発明の原理は、マルチバンドの各バンド、あるいはマルチキャリアの各周波数の無線パラメータ(フォーマット)をその周波数帯に合ったものにすることである。
もちろん、先に説明したように、使用する全てのバンドについてこのようなパラメータ(フォーマット)の適合化を図るのではなく、少なくとも2つのバンドについてパラメータの適合化が図られればよい。
但し、好ましくは使用する全てのバンドの各々について無線パラメータを適合化させることが望ましい。
無線フォーマットを一致させる第1の方法は、マルチバンド(例えば、2つの離間したバンド、非連続のバンド等)または複数の異なる無線周波数(例えば、異なるバンドに属する2つの無線周波数等)を使用する無線通信システムにおいて、バンド毎に、あるいは無線周波数毎にパイロット長を異ならせることである。これにより、各バンドあるいは各周波数におけるチャネル推定精度が向上して受信性能を向上できる。パイロット長を異ならせるには、図1に示すように1GHz帯の内挿パイロットPL1の挿入間隔yに対し2GHz帯の内挿パイロットPL2の挿入間隔をy/2にする。伝播路推定を行う場合、内挿パイロットを用いるが、挿入間隔が密になることで推定精度を上げることができる。
パイロット長を異ならせる別の方法は、図2に示すように2GHz帯の内挿パイロットの長さを1GHz帯の内挿パイロット長xの2倍にすることである。これにより、図1の場合と同様に推定精度を上げることができる。
無線フォーマットを一致させる第2の方法は、各バンドまたは無線周波数毎にガードインターバル長を異ならせることである。これにより、各バンドあるいは各周波数におけるシンボル間干渉が低減して受信性能を向上できる。すなわち、図3に示すようにバンド毎にあるいは周波数毎に異なるガードインターバル長を用意し、最も周波数の高いバンド(2GHz)には最も短いガードインターバル長を、最も周波数の低いバンド(1GHz)には最も長いガードインターバル長を割り当てる。これは、周波数が高いほど伝播距離が短くなり、遅延スプレッドも短くなるためである。遅延スプレッドが短い位置にいる移動局はガードインターバル長の短い無線フォーマット(バンド)を用いることで伝送効率を上げることができる。
無線フォーマットを一致させる第3の方法は、各バンドにおいてマルチキャリア変調で無線通信する場合、各バンドにおけるマルチキャリアのサブキャリア数を異ならせ、またはサブキャリア間隔を異ならせることである。これにより、各バンドにおける周波数変動による影響を低減して受信性能を向上し、伝送効率を改善することができる。すなわち、図4に示すように2GHz帯のサブキャリア数Mを1GHz帯のサブキャリア数サブキャリア数Nより少なくすることにより(M<N)、サブキャリア間隔を2GHz帯では1GHz帯より大きくする。これにより、各バンドにおける周波数変動による影響を低減して受信性能を向上し、伝送効率を改善することができる。
図5はサブキャリア間隔を大きくすることにより周波数変動による影響を低減できることを説明する図である。
1GHz帯のシンボル数Nのサブキャリア間隔1/2Taは
1/2Ta=1/N
2GHz帯のシンボル数Mのサブキャリア間隔1/2Tbは
1/2Tb=1/M
である。N>Mであるから、図示するように2GHz帯のサブキャリア間隔1/2Tbの方が1GHz帯のサブキャリア間隔1/2Taより大きい。ここで周波数Δfの周波数変動が発生した場合を考察すると、2GHz帯における隣接周波数に対する漏れCT2はサブキャリア間隔を広くしたことにより1GHz帯における隣接周波数に対する漏れCT1より小さくなっており、周波数変動による影響を低減することができる。
(B)第1実施例
図6は複数の異なる無線周波数を使用する無線通信システムにおいて、無線周波数毎にパイロット長を異ならせる第1実施例の送信装置の構成図、図7は受信装置の構成図である。
送信装置において、変調部11は、送信データにたとえばQPSK変調を施し、第1のパイロット挿入部12はパイロット発生部13から発生する1GHz用のパイロット信号PL1(図1、図2参照)をQPSKの同相成分、直交成分に挿入し、1GHz用送信機14は該パイロットPL1が挿入された信号の周波数を1GHzにアップコンバートして送信してアンテナ15より送信する。また、第2のパイロット挿入部16はパイロット発生部13から発生する2GHz用のパイロット信号PL2(図1、図2参照)をQPSKの同相成分、直交成分に挿入し、2GHz用送信機17は該パイロットPL2が挿入された信号の周波数を2GHzにアップコンバートして送信してアンテナ18より送信する。
受信装置において、1GHz用受信機21はアンテナ20により受信された1GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部22に入力し、2GHz用受信機24はアンテナ23により受信された2GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部22に入力する。選択部22は図示しない制御部から出力された1GHz/2GHz選択信号SELが指示する受信機から出力するべースバンド信号を選択し、パイロット抽出部25と復調部27に入力する。パイロット抽出部25は1GHz/2GHz選択信号SELに基づいて入力信号よりパイロット(複素信号)を抽出し、その平均結果をチャネル推定部26に入力する。チャネル推定部26は入力されたパイロット信号と既知のパイロット信号を用いてチャネル(パスの伝搬特性)を推定する。復調部27は該チャネル推定値に基づいてデータ信号にチャネル補償を施し、しかる後、送信データを復調する。
図6では同一の送信データに1GHz/2GHz用のパイロットPL1,PL2を挿入して1GHz用送信機14、2GHz用送信機17でそれぞれ送信した場合であるが、図8に示すように、別々の送信データ1,2を変調器11,11′で個々に変調し、それぞれの変調結果に1GHz/2GHz用のパイロットPL1,PL2を挿入して1GHz用送信機14、2GHz用送信機17でそれぞれ送信するように構成することもできる。この場合、パイロットの挿入を変調前に行なうことができる。又、以上では無線周波数毎にパイロット長を変えた場合であるが、バンド毎にパイロット長を変更するように構成することもできる。
以上、第1実施例によれば、バンド毎にあるいは無線周波数毎にパイロット長あるいはパイロット間隔を異ならせるようにしたから、各バンドあるいは各周波数におけるチャネル推定精度を向上して受信性能を向上でき、また伝送効率を改善することができる。
(C)第2実施例
図9はマルチバンドのバンド毎にOFDM送信する無線通信システムにおいて、バンド毎にガードインターバル長を異ならせる第2実施例の送信装置の構成図、図10は受信装置の構成図である。
送信装置において、マルチキャリア変調部31のシリアル/パラレル変換部31aは送信データをN個の並列データに変換し、IFFT部31bは各並列データをN個のサブキャリア成分としてIFFT演算処理し、パラレル/シリアル変換部31cはNシンボルのIFFT演算処理結果(OFDMシンボル)を直列に変換して出力する。第1のガードインターバル付加部32は、GI長指示部33から指示されている1GHz用の長さのガードインターバル(図3参照)をNシンボル(OFDMシンボル)の先頭に付加し、1GHz用送信機34は該ガードインターバルが挿入された信号の周波数を1GHzにアップコンバートしてアンテナ35から送信する。また、第2のガードインターバル付加部36は、GI長指示部33から指示されている2GHz用の長さのガードインターバル(図3参照)をNシンボル(OFDMシンボル)の先頭に付加し、2GHz用送信機34は該ガードインターバルが挿入された信号の周波数を2GHzにアップコンバートしてアンテナ38から送信する
受信機において、1GHz用受信機41はアンテナ40で受信した1GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部44に入力し、2GHz用受信機43はアンテナ42で受信した2GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部44に入力する。選択部44は図示しない制御部から出力された1GHz/2GHz選択信号SELが指示する受信機から出力するべースバンド信号を選択し、ガードインターバル除去部45に入力する。ガードインターバル除去部45は1GHz/2GHz選択信号SELの指示にしたがって、入力信号より1GHzあるいは2GHzのガードインターバルを除去
してFFT部46に入力する。FFT部46は入力信号をNシンボルにパラレル変換し、ついで、NポイントFFT演算処理を行ない、FFT演算結果をシリアルに変換して復調部47に入力する。復調部47は、入力信号より送信データを復調する。
図9では同一のOFDMシンボルに1GHz/2GHz用のガードインターバルG1,G2を挿入して1GHz用送信機14、2GHz用送信機17で送信した場合であるが、図11に示すように、別々の送信データ1,2にマルチキャリア変調器31,31′でそれぞれマルチキャリア変調し、それぞれの変調結果であるOFDMシンボルに1GHz/2GHz用のガードインターバルを挿入して1GHz用送信機35、2GHz用送信機38で送信するように構成することもできる。
また、以上ではマルチバンドのバンド毎にガードインターバル長を変更した場合であるが、マルチキャリアのキャリア周波数毎にガードインターバル長を変更するようにもできる。図12はかかるマルチキャリア伝送システムにおいて、周波数毎にガードインターバル長を変更する送信装置の構成図である。マルチキャリア変調部51を構成する各シングルキャリア変調部51a〜51nは送信データDATA1〜DATAnに対して所定の変調(たとえばQPSK変調)を施し、第1〜第nガードインターバル付加部52a〜52nは、GI長指示部53から指示されているガードインターバル長に基づいてN個のデータの先頭に所定の長さのガードインターバルG1〜Gnをそれぞれ変調データに挿入し、第1〜第n送信機54a〜54nは該ガードインターバルが挿入されたデータをアンテナ54a〜54nを介して送信する。
以上、第2実施例によれば、各バンドあるいは各周波数において挿入するガードインターバルの長さを変えることにより、各バンドあるいは各周波数におけるシンボル間干渉を低減して受信性能を向上し、伝送効率を改善することができる。
(D)第3実施例
図13はマルチバンドのバンド毎にOFDM送信する無線通信システムにおいて、バンド毎にサブキャリア数を異ならせてサブキャリア間隔を異ならせる第32実施例の送信装置の構成図、図14は受信装置の構成図である。
変調部61は例えば送信データにQPSK変調を施して複素データにして出力する。第1のマルチキャリア変調部62において、シリアル/パラレル変換部62aは送信データをN個の並列データに変換し、IFFT部62bは各並列データをN個のサブキャリア成分としてIFFT演算処理し、図示しないパラレル/シリアル変換部はNシンボルのIFFT演算処理結果(OFDMシンボル)を直列に変換して出力する。第1のガードインターバル付加部63は所定長のガードインターバルをNシンボル(OFDMシンボル)の先頭に付加し、1GHz用送信機64は該ガードインターバルが挿入された信号の周波数を1GHzにアップコンバートしてアンテナ65から送信する。なお、ガードインターバル付加部63は1GHz用の長さのガードインターバルを挿入することもできる。
また、第2のマルチキャリア変調部66において、シリアル/パラレル変換部66aは送信データをM個(M<N)の並列データに変換し、IFFT部66bは各並列データをM個のサブキャリア成分としてIFFT演算処理し、図示しないパラレル/シリアル変換部はMシンボルのIFFT演算処理結果(OFDMシンボル)を直列に変換して出力する。第2のガードインターバル付加部67は所定長のガードインターバルをMシンボル(OFDMシンボル)の先頭に付加し、2GHz用送信機68は該ガードインターバルが挿入された信号の周波数を2GHzにアップコンバートしてアンテナ69から送信する。なお、ガードインターバル付加部67は2GHz用の長さのガードインターバルを挿入することもできる。
受信機において、1GHz用受信機71はアンテナ70で受信した1GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部74に入力し、2GHz用受信機73はアンテナ72で受信した2GHzの高周波受信信号をべースバンド信号にダウンコンバートして選択部74に入力する。選択部74は図示しない制御部から出力された1GHz/2GHz選択信号SELが指示する受信機から出力するべースバンド信号を選択し、ガードインターバル除去部75に入力する。ガードインターバル除去部75は所定長のガードインターバルを入力信号から削除してFFT部76に入力する。FFT部76は1GHz/2GHz選択
信号SELが1GHzを指示している場合には、NポイントのFFT処理を行ない、2GHzを指示している場合には、MポイントのFFT処理を行ない、FFT演算結果をシリアルに変換して復調部77に入力する。復調部77は、入力信号より送信データを復調する。
以上、第3実施例によれば、各バンドにおけるマルチキャリアのサブキャリア数(N,M)、またはサブキャリア間隔を異ならせることにより、周波数帯域が高いバンドにおける周波数変動による影響を低減して受信性能を向上し、伝送効率を改善することができる。
以上の実施例では、パイロット長、ガードインターバル長、サブキャリア間隔の1つをバンド毎に、あるいは周波数毎に変えた場合であるが、同時に2以上変更するように構成することもできる。即ち、これらの3つのパラメータの2つの変更を行う全ての組み合わせ、また、3つ変更を行う全ての組み合わせについても採用することができる。

Claims (13)

  1. マルチバンドまたは異なる複数の無線周波数を使用する無線通信システムにおいて、
    各バンドまたは無線周波数毎に異なる無線パラメータを用いる、
    ことを特徴とする無線通信システム。
  2. 各バンドまたは無線周波数毎に異なる無線パラメータでデータを送信することにより、各バンドまたは無線周波数毎に前記無線伝送方式を異ならせる、
    ことを特徴とする請求項1記載の無線通信システム。
  3. 各バンドまたは無線周波数毎にパイロット長を異ならせることにより前記無線フォーマットを異ならせる、
    ことを特徴とする請求項2記載の無線通信システム。
  4. 各バンドまたは無線周波数毎にパイロット間隔を異ならせることにより前記無線フォーマットを異ならせる、
    ことを特徴とする請求項2記載の無線通信システム。
  5. 各バンドまたは無線周波数毎にガードインターバル長を異ならせることにより前記無線フォーマット異ならせる、
    ことを特徴とする請求項2記載の無線通信システム。
  6. 各バンドにおいてマルチキャリア変調で無線通信する場合、各バンドにおけるマルチキャリアのサブキャリア数を異ならせ、またはサブキャリア間隔を異ならせることにより前記無線伝送方式を異ならせる、
    ことを特徴とする請求項1記載の無線通信システム。
  7. 異なる複数の無線周波数を使用する無線通信システムの送信装置において、
    送信信号の無線フォーマットを各送信周波数毎に個別に設定する無線フォーマット設定部、
    前記各送信周波数で信号を送信する送信機、
    を備えたことを特徴とする無線通信システムにおける送信装置。
  8. 前記無線フォーマット設定部は、送信信号のパイロット長を各送信周波数毎に個別に設定する、
    ことを特徴とする請求項7記載の送信装置。
  9. 前記無線フォーマット設定部は、送信信号のパイロット挿入間隔を各送信周波数毎に個別に設定する、
    ことを特徴とする請求項7記載の送信装置。
  10. 前記無線フォーマット設定部は、ガードインターバル長を各送信周波数毎に個別に設定する、
    ことを特徴とする請求項7記載の送信装置。
  11. マルチバンドを使用する無線通信システムの送信装置において、
    各バンドにおいてマルチキャリア変調する変調部、
    各バンドのマルチキャリアを構成するサブキャリアの数、またはサブキャリア間隔をバ
    ンド毎に個別に設定する無線フォーマット設定部、
    各バンドにおいて前記マルチキャリア変調された信号をバンド毎の送信周波数で送信する送信機、
    を備えたことを特徴とする無線通信システムにおける送信装置。
  12. マルチバンドを使用する無線通信システムの送信装置において、
    各バンドにおいてマルチキャリア変調する変調部、
    各バンドのガードインターバル長をバンド毎に個別に設定する無線フォーマット設定部、
    マルチキャリア変調された信号に前記バンドに応じた長さのガードインターバル長を挿入するガードインターバル挿入部、
    各バンドに応じた長さのガードインターバルが挿入された信号をバンド毎の送信周波数で送信する送信機、
    を備えたことを特徴とする無線通信システムにおける送信装置。
  13. マルチバンドまたは異なる複数の無線周波数を使用する無線通信システムの受信装置において、
    マルチバンドまたは無線周波数毎に設けられた受信機、
    所定のバンドまたは無線周波数に応じた受信機から出力する信号を選択する選択部、
    該選択信号の無線フォーマットに基づいて該選択信号より送信データを復調する復調部、
    を備えたことを特徴とする無線通信システムにおける受信装置。

JP2006550557A 2005-01-06 2005-01-06 無線通信システム Expired - Fee Related JP4805169B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000057 WO2006072980A1 (ja) 2005-01-06 2005-01-06 無線通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010001281A Division JP5345074B2 (ja) 2010-01-06 2010-01-06 無線通信システム、送信装置及び受信装置

Publications (2)

Publication Number Publication Date
JPWO2006072980A1 true JPWO2006072980A1 (ja) 2008-06-12
JP4805169B2 JP4805169B2 (ja) 2011-11-02

Family

ID=36647468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006550557A Expired - Fee Related JP4805169B2 (ja) 2005-01-06 2005-01-06 無線通信システム

Country Status (6)

Country Link
US (2) US8447253B2 (ja)
EP (1) EP1838022A4 (ja)
JP (1) JP4805169B2 (ja)
KR (1) KR100983411B1 (ja)
CN (1) CN101091342A (ja)
WO (1) WO2006072980A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860556B2 (ja) 2003-04-04 2006-12-20 松下電器産業株式会社 基地局装置及び通信方法
US7725074B2 (en) * 2005-02-18 2010-05-25 Panasonic Corporation Wireless communication method, relay station apparatus, and wireless transmitting apparatus
JP4519817B2 (ja) * 2006-08-22 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 基地局および移動局
US8630223B2 (en) * 2006-09-18 2014-01-14 Availink, Inc. Efficient frame structure for digital satellite communication
KR100969771B1 (ko) * 2007-01-31 2010-07-13 삼성전자주식회사 통신 시스템에서 신호 송수신 장치 및 방법
GB2450363B (en) * 2007-06-21 2009-07-08 Motorola Inc Communication units, communication system and methods for modulation and demodulation
US8588147B2 (en) * 2007-11-21 2013-11-19 Samsung Electronics Co., Ltd. Method and system for subcarrier division duplexing
KR101450197B1 (ko) * 2008-03-17 2014-10-14 삼성전자주식회사 이동통신 시스템에서 기지국의 파일롯 비콘 발생 장치
JP5295666B2 (ja) * 2008-07-09 2013-09-18 株式会社東芝 通信機、通信方法
US10141984B2 (en) 2008-07-14 2018-11-27 Marvell World Trade Ltd. Multi-band transmission system
ES2349515B2 (es) 2008-07-14 2011-07-15 Marvell Hispania, S.L. (Sociedad Unipersonal) Procedimiento de transmision de datos multibanda.
CN102273113A (zh) * 2009-01-08 2011-12-07 夏普株式会社 发送装置、发送方法、通信系统以及通信方法
CN102638433B (zh) * 2011-02-15 2015-01-28 中兴通讯股份有限公司 信号处理方法、装置及系统
US9008159B2 (en) * 2013-01-10 2015-04-14 Qualcomm Incorporated Rate adaptation for data communication
US9071390B2 (en) 2013-01-10 2015-06-30 Qualcomm Incorporated Adjusting physical layer transmission properties
US9166853B2 (en) 2013-01-10 2015-10-20 Qualcomm Incorporated Rate adaptation for data communication
US9865783B2 (en) 2013-09-09 2018-01-09 Luminus, Inc. Distributed Bragg reflector on an aluminum package for an LED
US11050503B2 (en) * 2015-03-31 2021-06-29 Huawei Technologies Co., Ltd. System and method of waveform design for operation bandwidth extension
US9998315B2 (en) * 2016-03-08 2018-06-12 Blackberry Limited Method and apparatus for I-Q decoupled OFDM modulation and demodulation
CN107295649B (zh) * 2016-03-31 2023-11-10 华为技术有限公司 信息的传输方法及相关装置
KR102331796B1 (ko) 2017-01-06 2021-11-25 텔레폰악티에볼라겟엘엠에릭슨(펍) 멀티캐리어 동작을 위한 뉴머롤로지 조합 세트

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274652B1 (en) * 2000-06-02 2007-09-25 Conexant, Inc. Dual packet configuration for wireless communications
US5381449A (en) * 1990-06-12 1995-01-10 Motorola, Inc. Peak to average power ratio reduction methodology for QAM communications systems
US5802241A (en) * 1992-03-26 1998-09-01 Matsushita Electric Industrial Co., Ltd. Communication system
JP2802255B2 (ja) * 1995-09-06 1998-09-24 株式会社次世代デジタルテレビジョン放送システム研究所 直交周波数分割多重伝送方式及びそれを用いる送信装置と受信装置
JP3394877B2 (ja) 1995-12-22 2003-04-07 株式会社東芝 ターミナルモジュール、無線端末装置及び無線通信システム
JP3681230B2 (ja) * 1996-07-30 2005-08-10 松下電器産業株式会社 スペクトル拡散通信装置
JP3798549B2 (ja) * 1998-03-18 2006-07-19 富士通株式会社 無線基地局のマルチビームアンテナシステム
US6411649B1 (en) * 1998-10-20 2002-06-25 Ericsson Inc. Adaptive channel tracking using pilot sequences
EP1006668B1 (en) * 1998-11-30 2011-01-05 Sony Deutschland GmbH Dual frequency band transceiver
JP3491549B2 (ja) 1999-01-28 2004-01-26 松下電器産業株式会社 ディジタル無線通信システム
JP3598030B2 (ja) * 1999-11-09 2004-12-08 シャープ株式会社 デジタル放送受信装置、及びデジタル放送受信方法
JP3651340B2 (ja) * 1999-12-28 2005-05-25 ソニー株式会社 無線伝送方法および無線伝送装置
AU2001257133A1 (en) * 2000-04-22 2001-11-07 Atheros Communications, Inc. Multi-carrier communication systems employing variable symbol rates and number of carriers
JP3639511B2 (ja) 2000-08-23 2005-04-20 株式会社ケンウッド 直交周波数分割多重信号受信装置及び直交周波数分割多重信号受信方法
FR2820574B1 (fr) * 2001-02-08 2005-08-05 Wavecom Sa Procede d'extraction d'un motif de symboles de reference servant a estimer la fonction de transfert d'un canal de transmission, signal, dispositif et procedes correspondants
JP3607632B2 (ja) 2001-03-29 2005-01-05 株式会社東芝 無線通信装置及び無線通信制御方法
JP2003158499A (ja) * 2001-11-20 2003-05-30 Mitsubishi Electric Corp 通信方法および通信装置
CN100596044C (zh) * 2002-01-10 2010-03-24 富士通株式会社 Ofdm系统中的导频复用方法和ofdm接收方法
JP2003264528A (ja) * 2002-03-12 2003-09-19 Mega Chips Corp 信号検出装置、モード検出装置およびそのモード検出装置を搭載した受信装置、並びに信号検出方法およびモード検出方法
US20040047284A1 (en) * 2002-03-13 2004-03-11 Eidson Donald Brian Transmit diversity framing structure for multipath channels
GB2391137B (en) * 2002-07-19 2004-09-01 Synad Technologies Ltd Method of controlling access to a communications medium
JP2004140648A (ja) * 2002-10-18 2004-05-13 Toshiba Corp Ofdm受信装置
US7170342B2 (en) * 2002-12-10 2007-01-30 Ntt Docomo, Inc. Linear power amplification method and linear power amplifier
SE527445C2 (sv) * 2003-03-25 2006-03-07 Telia Ab Lägesanpassat skyddsintervall för OFDM-kommunikation
JP2005005762A (ja) * 2003-06-09 2005-01-06 Fujitsu Ltd 送信電力制御方法及び装置
DE10338053B4 (de) * 2003-08-19 2005-12-15 Siemens Ag Verfahren zur Zuweisung von Funkressourcen und Netzeinrichtung in einem Mehrträgerfunkkommunikationssystem
US20050249266A1 (en) * 2004-05-04 2005-11-10 Colin Brown Multi-subband frequency hopping communication system and method
JP4444294B2 (ja) * 2004-12-14 2010-03-31 富士通株式会社 無線通信装置および通信方法

Also Published As

Publication number Publication date
US8447253B2 (en) 2013-05-21
EP1838022A4 (en) 2012-12-12
EP1838022A1 (en) 2007-09-26
CN101091342A (zh) 2007-12-19
KR100983411B1 (ko) 2010-09-20
US20130136206A1 (en) 2013-05-30
WO2006072980A1 (ja) 2006-07-13
KR20070085651A (ko) 2007-08-27
JP4805169B2 (ja) 2011-11-02
US20070254693A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4805169B2 (ja) 無線通信システム
KR100956042B1 (ko) 무선 통신 시스템에서의 제한된 호핑
EP2296329B1 (en) Resource allocation including a DC sub-carrier in a wireless communication system
US8223737B2 (en) Adaptive DC sub-carrier handling in a receiver
JP5123368B2 (ja) Ofdm送信装置
KR101139170B1 (ko) 직교주파수분할다중접속 방식의 무선통신 시스템에서 패킷데이터 제어 채널의 송수신 장치 및 방법
JP2009505566A (ja) パイロット信号を送信するための方法および装置
EP2281378A1 (en) Wireless communication methods and receivers for receiving and processing multiple component carrier signals
EP1742400A1 (en) Multicarrier transmitter apparatus, multicarrier receiver apparatus, multicarrier transmitting method, and multicarrier receiving method
JP5345074B2 (ja) 無線通信システム、送信装置及び受信装置
CN101895335A (zh) 无线通信系统及其发送和接收装置、无线通信方法
JP4425811B2 (ja) Ofdm送信方法、ofdm送信装置及びofdm送信プログラム
JP3962008B2 (ja) 無線通信システム及び無線通信装置ならびに無線通信方法
JP2012085084A (ja) Ofdm信号送信装置
KR100913871B1 (ko) 직교주파수다중접속 방식의 이동통신 시스템에서 파일럿 배치 방법 및 장치
JP2010035212A (ja) Ofdm送信方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees