JPWO2005085620A1 - 亜音速機推進用可変サイクルエンジン - Google Patents

亜音速機推進用可変サイクルエンジン Download PDF

Info

Publication number
JPWO2005085620A1
JPWO2005085620A1 JP2006510622A JP2006510622A JPWO2005085620A1 JP WO2005085620 A1 JPWO2005085620 A1 JP WO2005085620A1 JP 2006510622 A JP2006510622 A JP 2006510622A JP 2006510622 A JP2006510622 A JP 2006510622A JP WO2005085620 A1 JPWO2005085620 A1 JP WO2005085620A1
Authority
JP
Japan
Prior art keywords
fan
ratio
thrust
vjn
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006510622A
Other languages
English (en)
Inventor
根本 勇
勇 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2005085620A1 publication Critical patent/JPWO2005085620A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/08Varying effective area of jet pipe or nozzle by axially moving or transversely deforming an internal member, e.g. the exhaust cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/075Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type controlling flow ratio between flows

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明は、コアのジェットノズル及びバイパスノズルを可変機構にしたターボファン・エンジンである。現在実用されている高バイパス比エンジンは、高バイパス比化が限界に達し、減速機を用いずにファン径をこれ以上増すのは困難である。本発明は、熱サイクルを改良することによって、ファン径を増さずに巡航時の推進効率を高めるものであって、コアの可変ジェットノズル(VJN)の制御によってファンジェット速度とコアジェット速度の比を高め、コアジェットの排気残留エネルギを有効エネルギに変換し、可変バイパスノズル(VBN)の制御によって推進効率の向上に伴う推力の低下を防ぐ、亜音速機推進用の可変サイクルエンジンである。

Description

この発明は、ターボファンエンジンのコアのジェットノズル及びバイパスノズルを可変機構にして、離陸と上空でサイクルを変更するエンジンに関し、亜音速機に搭載されるターボファンエンジンの、巡航時における燃料消費率(SFC)の低減を、新しいサイクルによって実現する亜音速機推進用可変サイクルエンジンに関する。
記 号
A:流路断面積 BPR:バイパス比
COMB:燃焼器 Cp:定圧比熱
CPR:サイクル圧力比 FAN:ファン
Fn:正味推力 FPR:ファン圧力比
f:燃料空気混合比 HPC:圧縮機
HPR:圧縮機圧力比 HPT:高圧タービン
LPC:低圧圧縮機 LPR:低圧圧縮機圧力比
LPT:低圧タービン M:マッハ数
MFP:質量流束パラメータ m:質量流量、或いはファン空気量
Nc:設計点に対する相対修正回転数(百分比)
P:全圧力 Ps:標準圧力
p:静圧力 SB:凸形の傾斜面をもつ円筒
SFC:燃料消費率 SLS或いはS:海面上静止状態
T:全温度 TC:テールコーン
TIT:タービン入口温度 Ts:標準温度
V:流速 VBN:可変バイパスノズル
VJN:可変ジェットノズル W:機関が発生するエネルギ
Wf:燃料流量 Wp:推進仕事
γ:比熱比 δ:P/Ps
η:効率 θ:T/Ts
添え字
数字:エンジンの各断面位置を表す
B:バイパス C:ガス発生機 F:ファン
JB:ファンジェット JC:コアジェット T或いはt:タービン
()choke:チョーク値 ()des:設計値
ターボジェットでジェットとなるべきエネルギの一部でファン駆動タービンを駆動し、低速のファンジェットを噴出するターボファンは、平均排気速度が飛行速度に近付くため推進効率が向上しSFCが低減される。故に燃料経済性の観点から航空用エンジンとして広く用いられている。先ずバイパス比BPRを式(1)で定義する。
Figure 2005085620
ターボファンの正味推力Fnは式(2)で、推力がなす仕事(推進仕事)Wpは式(3)で、ファンエンジンが作り出すエネルギWは式(4)で与えられる。
Figure 2005085620
Figure 2005085620
エンジンが作り出すエネルギWは式(4)に示すように、推進仕事Wpと排気残留エネルギの和として表される。式(4)第2等号右辺の第2項はコアジェットの排気残留エネルギであり、第3項はファンジェットの排気残留エネルギである。この運動エネルギは使われず損失となる。次に推進効率ηを式(5)で定義する。
Figure 2005085620
式(5)から明らかなように、エンジンが発生するエネルギWに占める推進仕事Wpの割合を増し、排気残留エネルギの割合を減らすと推進効率ηが向上する。Wに占めるWpの割合を増す方法として、従来はBPRを高めることによってコアのジェット速度VJCを減少させる方法が取られて来た。式(2)からVJCを低下させてもBPRを高めバイパス流量mを増せば推力を維持できる。このことから燃費節減が厳しく要求される民間航空機用エンジンでは、高バイパス比化が進められてきた。
しかしながら現在の高バイパス比エンジンは、減速機なしでファンを駆動するターボファンの限界までBPRが高くなっており、これ以上のファン径の増大は困難である。また小型エンジンの場合は、圧縮機およびタービンの翼が小さいため圧力比を高めることが難しく、最適なサイクル圧力比とバイパス比は大型エンジンに比べて低い。
以上の観点から、本発明はBPRを高めずに、巡航時の推進効率を高める新しいサイクルを提案するものである。
ファンのジェット速度VJBとコアのジェット速度VJCの比の最適値は、式(6)に示すようにファン断熱効率ηとタービン断熱効率ηの積であることが知られている。
Figure 2005085620
ここでは式(6)の証明は省略するが、VJBがVJCとη及びηの積に等しくあるべきだということは、ファン駆動タービンの出力を高めコアの排気残留エネルギからより多くの有効エネルギを取り出すことを意味する。
しかしながら実際のターボファンでは、重量及び価格の上昇や騒音発生を抑えるため、一般に単段のファンを使っており、VJBとVJCの比は式(6)よりずっと小さく、従来のターボファンはファンのジェット速度VJBに対しコアのジェット速度VJCが大き過ぎた。そこでファン直径を増さずとも、巡航時にファン駆動タービンの吸収エネルギを増し、ファン回転数一定でファン圧力比を上昇させることができれば、VJBが上昇し、速度が大きいVJCが低下する。よって式(4)からエンジンが作り出すエネルギWに占める排気残留エネルギの割合が減少し、式(5)からBPRを高めずとも推進効率ηを向上させることができる。
本発明は巡航時にVJB/VJCを式(6)の最適値に近付けることによって、ファン径を増さずに巡航経済性を高める可変サイクル・ターボファンエンジンを提供することを目的としている。
推進効率を高めるための新しい方法、即ちファン径を増さずにVJBとVJCの比を最適値に近付ける方法を、第1図に示す本発明の概念図に基づいて説明する。
本発明はコアのジェットノズル及びバイパスノズルを可変機構にしたターボファンである。第1図においてVJNは可変ジェットノズル、TCはテールコーン、VBNは可変バイパスノズル、SBはバイパスノズル出口に設けた凸形の傾斜面をもつ円筒である。その他の各要素の記号は、記号の項に記述したとおりである。
離陸時は可変ジェットノズルVJNのテールコーンTCを後方に押し出してノズルスロート断積を狭め推力を増す。部分負荷である巡航時は、TCを前方に引き込みスロート断面積を広げ、LPT膨張比を上昇させてVJBとVJCの比を高める。可変バイパスノズルVBNは、凸形の傾斜面をもつ円筒SBを前後に移動することによって、バイパスノズルのスロート断面積を変えBPRを制御して、VJCの減少による推力の低下を防ぐ。
ファン径固定の場合、推力と推進効率は相反する。従ってファン径を増さずに推進効率を改善するための最重要課題は、推力を低下させずに推進効率を向上させるという矛盾をサイクル的に克服することである。
本発明と従来型ターボファンのサイクル上の根本的な違いは、エンジン空気流量と推力の関係である。通常のターボ・エンジンでは、推力はエンジンを流れる空気の流量に比例する。本サイクルでは両者は比例しない。部分負荷において空気流量をできるだけ一定に保ち、高圧側と低圧側の仕事の配分を変えるとマッチング温度Tが変化する。よって推力を制御できる。推力を低下させずに推進効率を高めるには、空気流量のみでなくTIT(T)もできるだけ一定に維持し、高圧側と低圧側の仕事の配分を変えてVJB/VJCを高める。ファン空気量を一定に保ち高/低両圧タービンの仕事の配分を変える役割をVJNが、BPRを制御してTITの低下を防ぐ役割をVBNが担う。
作用(原理説明)
原理説明の項では低圧圧縮機LPCは省略し、ファンの出口が高圧圧縮機HPCの入口で、その位置番号を2とする。また回転要素の断熱効率は一定と仮定する。
本サイクルは次の条件に従うものとする。コアのジェットノズルは離陸時、巡航時ともにチョークし、バイパスノズルは地上ではチョークしないが高空ではチョークする。またHPTは段負荷が大きいのでチョークするが、LPTは段負荷を抑えるため多段化するのでチョークしないものとする。
先ず可変バイパスノズルVBNは操作せずノズルスロート断面積A一定で、コアの可変ジェットノズルVJNのみを作動させた場合から説明する。低圧軸系のパワーバランスは式(7)で与えられる。
Figure 2005085620
ここでηは回転系の機械効率である。式(7)の中括弧内の量は第1近似では定数として扱えるので、これを定数Cと置いて式(7)を書き直すと、
Figure 2005085620
以下、式(8)の5つの変数について順次説明する。
1)T/T
高空ではファン入口温度が低下するので修正回転数が上昇し、ファン作動線が特性図の大流量側によりサージマージンに余裕が生じるため、T/Tを高めることによって修正回転数一定でファン温度比T/Tを上昇させることができる。
2)T/T
質量流束パラメータmass flux parameter(MFP)を式(9)で定義する。
Figure 2005085620
式(9)を用いてLPTの質量流束パラメータMFPは式(10)で、主ジェットノズルのMFPは式(11)で表される。
Figure 2005085620
LPTとVJNの流量は等しいので、式(10)と(11)から質量流量を消去すると式(12)を得る。
Figure 2005085620
ここでP=P、T=Tである。ηを用いて膨張比P/Pと温度比T/Tの関係を式(13)で示す。
Figure 2005085620
チョークしないLPTは膨張比を高めると修正流量が増し、式(10)のMFPが増加する。式(12)においてLPTノズル面積Aは固定であり、VJNチョークの条件からMFPは一定である。VJNを開いてAを広げると、Aの増加がMFPの増加を凌ぐため、式(12)(13)から膨脹比P/Pが上昇し、温度比T/Tが減少する。よってT/Tを高めることができる。
3)BPR
式(8)のBPRは、式(14)によってHPC修正流量と関係づけられる。バイパスノズルは高空ではチョークを条件とするのでMFPは一定、またAも今の段階では一定である。
Figure 2005085620
式(14)の最初の式から、P、Tを上昇させるとBPRが高まる。二番目の式からファン径固定でBPRが高まることは、HPC修正流量が減少することである。
4)T/T
HPT修正流量と、ファン修正流量及びHPC修正流量の関係は、それぞれ式(15)と式(16)で与えられる。
Figure 2005085620
HPTチョークの条件からHPT修正流量は一定である。ファン修正回転数一定で圧力比P/Pを高めるとファン修正流量は微減する。P、Tの上昇によるBPRの上昇、即ちHPC修正流量の減少は、式(15)(16)からマッチング温度Tを押し下げる。つまりVJNを開くと低いTでエンジン全要素が釣り合うことになる。
5)T/T
HPTの入口と出口(LPT入口)の関係は式(17)で与えられる。
Figure 2005085620
高空でLPTの膨張比P/Pを高めると、前述ようにHPT修正流量は一定だが、LPT修正流量(HPT出口修正流量)は増加する。よって式(17)からHPT膨張比P/Pは上昇し、温度比T/Tは減少する。但し、P/Pの上昇は僅かである。
ここで注意すべきはHPTの温度比T/TとHPC温度比T/Tの関係である。高圧軸系のパワーバランスは式(18)で与えられる。
Figure 2005085620
式(17)からHPT膨張比P/Pは僅かに上昇し、温度比T/Tは減少するが、Tが降下しTが上昇するためT/Tの減少が大きく、式(18)からHPC温度比T/Tは減少する。つまりVJNを開くと、HPT膨張比が上昇してもTが低下するため、その熱落差は小さくなりHPC圧力比は低下する。
/T、設計点を基準としたHPCの相対修正流量、P/P、T/T、VJNの設計点に対する面積比、これらの相関関係を第2図に示す。温度比T/Tに換えてP/Pを用いたのは、温度比T/Tは変化量が表れにくく変化の傾向を読み取りにくいからである。図において黒丸は本発明、白丸は従来型ターボファンの作動を表す。第2図において第1象限はT/TとHPC相対修正流量の関係、第2象限はHPC相対修正流量とP/Pの関係、第3象限はP/PとT/Tの関係、第4象限はT/Tと面積比Aの関係を示す。
HPC修正流量は式(16)から、HPCとHPTの釣り合い、即ち高圧軸系の運転状態を示すと言える。よって第2図はFAN、HPC、HPT、LPT、VJNの5つの要素と、TIT(T)の関係を示すものである。点線N3は本発明の或る作動点を結んだものであり、点線Tは従来型ターボファンの各要素の作動点を結んだものである。点線N3と点線Tは推力がほぼ同じになるよう選んである。
本サイクルでは、VJNを開くとLPTの膨張比が上昇し、ファン圧力比が高まってHPC修正流量が減少する。よって低いTでエンジン全要素のマッチングが行われる。一方、従来型ターボファンはコアのジェットノズルは固定だから、直列フリータービンの特性から部分負荷ではLPTの膨張仕事が減少する。図で白丸のT/Tは一定だが熱落差は右方へいくほど低くなる。従ってP/Pは低下するが、HPC修正流量は本発明の場合より多くなる。よって本サイクルより高いTでエンジン全体が釣り合う。
このことから本サイクルは部分負荷でVJNを開くと、高圧軸系の仕事が減少し、低圧軸系の仕事が増加するという従来のターボファン・サイクルと異なる特性を持つサイクルであることが分かる。
第4象限に示すように、VJNは推力が低下すると一旦広げたAを絞っている。その理由はVJNを最も広げた所でp≒pとなるからで、それ以降、ノズルでの膨張が過膨張にならないようVJNを制御しなければならないからである。このようにVJN出口静圧pが大気圧pに近くなるため、VJB/VJCが大きな値となり、本サイクルは推進効率が著しく向上する。
第2図の第1象限でTが低下することは、Pの低下をもたらす。T、Pの低下はサイクルの熱効率を悪化させる。しかし本サイクルは推進効率の向上が著しく、熱効率の悪化を凌駕するため、巡航時のSFCを低減することができる。
の低下よって起こる問題は、熱効率の悪化より寧ろ推力の低下である。次にTの低下を防ぎ推力を維持するための可変バイパスノズルVBNの作用を説明する。
式(14)のはじめの式から、可変バイパスノズルVBNを絞ってAを狭めると、BPRが低下し、式(15)からP、Tの低下が抑制される。VJNを開いたとき同時にVBNを絞った場合の各要素の変化を、第2図にプロットして第3図に示す。図でN2はVBNを絞ってBPRを一定に保った場合のマッチングを示すものである。
VJNとVBNのノズルスロート断面積A、A、及びTの3つの制御変数を整合させBPRをほぼ一定に保つと、VJNの開度はA一定の場合に比べて非常に小さくなる。従ってT/Tの上昇はA一定の時より僅かとなるが、高いTでエンジン全体がマッチングするため、LPTの膨張仕事は大きくなる。よってファン圧力比P/Pの上昇が大きくなるが、BPRの制御によりコア流量mがほぼ一定となるためHPC修正流量の減少は少なく、Tの低下が抑制される。よってTが僅かしか低下せずP/Pが上昇してファンジェットのエンタルピが増加するため、推力を維持してVJB/VJCを高めることができる。但し、その増加の量は大きくない(第10図参照)。
本サイクルでは、ファン圧力比を高めたとき、何故ファンが過回転にならないのかを第3図は示している。本サイクルでファン圧力比を高めると、その作動点は第2象限の左側下方に移動し、HPC修正流量は減少、Tは僅かではあるが降下する。一方、従来型ではファン圧力比を高めると、作動点は白丸を結んだ作動線上を左側上方に向かって上昇する。従ってHPC修正流量が増加し、Tが高まってファンはオーバースピードになってしまう。つまり従来型ターボファンでは、Tを高めることによってファン圧力比が上昇するのに対し、本サイクルではLPTの背圧を下げることによってファン圧力比を高める。この違いが本サイクルではファンが過回転にならず、修正回転数一定で圧力比を高めることができる理由である。
第1図は、既に述べたように本発明の構成を示す概念図である。
第2図は、可変ジェットノズルVJNを作動させた場合の、5つのエンジン構成要素とTの関係を示す図である。
第3図は、VJNと可変バイパスノズルVBNの双方を作動させた場合の、5つのエンジン構成要素とTの関係を示す図である。
第4図は、VJNスロート断面積Aの設計点に対する面積比と、設計点を基準にした相対推力の関係、及びTIT(T)と相対推力の関係を示す図である。即ちコアのジェットノズルスロート断面積Aの変化とマッチング温度Tの関係を表す図である。
第5図は、VBNスロート断面積Aの設計点に対する面積比と相対推力の関係、及びBPRと相対推力との関係を示す図である。即ちバイパスノズルのスロート断面積Aの変化とBPRの関係を表す図である。
第6図はFAN性能曲線図、第7図はLPC性能曲線図、第8図はHPC性能曲線図、第9図はHPT、LPTの特性を示す図である。
第10図は、VJB/VJC、η、ηthと相対推力の関係を示す図である。
第11図は、SFCと相対推力の関係、即ち巡航性能を示す図である。
尚、図において白丸は従来型ターボファンの作動点、黒丸は本発明の作動点、小さい黒丸はVBNを作動させない場合の作動点である。またSは設計点を示す。
発明を実施するための最良の形態(計算例)
本発明のサイクル特性及び従来のターボファンとの巡航性能の違いをより具体的に説述するために、要素の特性を表す性能曲線図を使った設計点外性能の推計を示す。先ず設計点(SLS:海面上静止状態)では、従来型のターボファンと本発明のファン空気流量、CPR、TIT、BPRを同一に設定する。SLSにおける設定値とエンジン性能を表1に示す。
Figure 2005085620
表1での単位は、流量(重量流量)はkg/s、温度はK、推力はkg、SFCはkg/h/kgfである。またFPRはファン圧力比、LPRはLPC圧力比、HPRはHPC圧力比である。本サイクルは巡航時にLPC作動線が大きくサージライン側に寄る(第7図参照)。そのためSLSにおけるLPRを低く設定し従来型とCPRを等しくするためHPRを高くした。このような設定で従来型と本発明のSLSでの推力及びSFCは、表1に示すようにほぼ同じとなる。巡航時の飛行高度は10km、飛行マッハ数は0.8とする。
巡航時の本発明の作動を1〜2,2〜3,3〜4の三つの過程に分けて説明する。先ず第4図〜第9図に基づいてVJN、VBN、Tの制御によって、回転要素がどのように作動するかについて説明する。
作動点1
設計点を基準としたファンの相対機械回転数100%、VJN、VBNとも操作せず、設計点と同じノズル面積を保った場合の巡航時における作動点である。
1→2 BPRほぼ一定の過程(ファン修正回転数一定)
VJNを開くと同時にVBNを絞ってBPRをほぼ一定に保つと(第5図)、VJNの開度は僅かとなり、Tの低下が抑えられる(第4図)。作動点2と3ではファンの修正回転数は同じなので、BPRをほぼ一定に保つことによって如何にTの低下を抑えられるかが第4図から分かる。この時ファンは修正回転数一定で圧力比が大きく上昇する(第6図)。VBNを絞ることによってバイパス流量が制御され、コア流量は減少しないので、LPCの圧力比の上昇は小さく(第7図)、HPC修正回転数の低下も小さい(第8図)。この過程ではVJNの開度が小さく、Tが高く維持されるためLPT膨張比の上昇は左程ではない(第9図)。
2→3 VJB/VJC増大の過程(ファン修正回転数一定)
VJNをより一層広げ、絞ったVBNを広げてAを元の面積に戻していくと、Tは大きく降下し、BPRは上昇する(第4図、第5図)。この過程ではTの低下が大きいためファンは修正回転数一定で圧力比が作動点2から作動点3まで低下する(第6図)。LPCはBPRが高まりコア流量が減少する上、ファンと同一回転数なので圧力比が大きく上昇する(第7図)。またHPC修正回転数の減速も大きくなる。VJNの開度が大きくなると,LPT膨張比は大幅に上昇する(第9図)。これはTの低下に伴いTも低下するためである。この大きな膨張比のため作動点3ではp≒pとなり、LPTによるコアの排気エネルギからの有効エネルギの吸収は限界となる。
3→4 p≒p一定の過程(ファン減速)
3〜4間ではVBNは作動させずA一定でTを下げVJNを絞る。A一定のためBPRは高まる(第4図、第5図)。ファン、LPC、HPCは何れも減速する。但し、HPCの減速は小さい(第6図、第7図、第8図)。またLPTの膨張比も作動点3から作動点4へ減少する(第9図)。
次に第10図、第11図に基づいて本発明の効果を説明する。
1→2 BPRほぼ一定の過程(推力ほぼ維持、SFC低減)
この過程ではTの減少が小さく、推力はほぼ保たれる。従ってVJB/VJCの増加は僅かであり、推進効率ηの向上も小さい。しかしTの低下が抑えられるので、熱効率ηthはほぼ一定に維持される。よってηの向上がそのままSFCに反映され、推力を維持してSFCを低減することができる。VBNを絞った場合の黒丸と、絞らない場合の小さい黒丸を比較すると、VBNの効果が歴然である。作動点2で如何程SFCを低減できるかは、第6図のファン圧力比をどれだけ高められるかに依存する。しかしP/Pが高くなるにつれ、SFC低減の割合が減少するので、無暗にP/Pを高めても意味がない。
2→3 VJB/VJC増大の過程(推力減少、SFC大幅に低減)
この過程ではVJB/VJCが著しく増加し、ηの向上が大きい、一方、TとPの大幅な減少によりηthは低下する。しかしηの向上がηthの低下に勝り、SFCは大幅に低減される。同時に推力が低下する。
3→4 p≒p一定の過程(推力減少、SFC上昇)
この過程ではTを下げてもp<pとならないようにVJNを絞るため、ηの上昇はなだらかになり、ηthは減少する。よってSFCは高まり従来型ターボファンのそれに近付きながら推力が低下する。
作動点4以降
進入・着陸に入る前に、VJNを絞りAを離陸時の面積に戻す。進入・着陸時はエンジンの運用が広範囲にわたり、着陸後もスラスト・リバーサにより大きな推力が使用される。また進入復行や離陸復行にも備えなければならない。よって推力の急激な変動に対応するため、VJNは離陸時の状態に戻し固定する。尚、第2図、第3図のN2、N3は作動点2及び作動点3のマッチングを示したものである。
以上から本発明は、巡航時にVJN、VBN、及びTを連動して制御することによってファン吸収動力が増大し、主ジェットの噴出ガスエネルギが減少するので、ファンコア推力比が大きくなり、ファン口径を増さずとも同一ナセルで巡航時の推進効率を向上させSFCを低減することができる。
現在の高バイパス比エンジンはBPRが9に達し、ファン径は3mにも及ぶ、そのためエンジン全重量に占めるファン部の重量は過大になり、ファン翼端周速は非常に高いレベルに達している。よって高バイパス比化は、減速機なしでファンを駆動する形式の限界に達していると云われている。
BPRを現在以上に11〜15程度に高め推進効率をより一層向上させることを目指してAdvanced Ducted Propが研究・開発されている。このエンジンは可変ピッチファンと大馬力の遊星歯車式減速機を採用しているのが特徴となっている。従って構造が複雑になり、高効率であっても大幅な価格上昇と重量増を免れない。この問題を解決するには、ターボファン・サイクル自体を根本的に改良すべきであると考える。
本発明は、従来にない新しい熱サイクルにより、ファン径を増さず低温部の比較的簡単な構造改良により、巡航時の推進効率を高めSFCを低減することができる。
ジェットエンジンは大量の化石燃料を消費し、大量の排気ガスを排出する。その燃料消費率を低減することは、有限である石油資源の節約に寄与し、温室効果ガスの主因とされる二酸化炭素の排出量を削減することができる。
以上から本発明は、省エネルギで地球環境保全に貢献する、小型・軽量(ADPに比べて)、高効率の航空用ガスタービンを世に提供するものである。
【0005】
その他の各要素の記号は、記号の項に記述したとおりである。
離陸時は可変ジェットノズルVJNのテールコーンTCを後方に押し出してノズルスロート面積を狭め推力を増す。部分負荷である巡航時は、TCを前方に引き込みスロート断面積を広げ、LPT膨張比を上昇させてVJBとVJCの比を高める。可変バイパスノズルVBNは、凸形の傾斜面をもつ円筒SBを前後に移動することによって、バイパスノズルのスロート断面積を変えBPRを制御して、VJCの減少による推力の低下を防ぐ。
ファン径固定の場合、推力と推進効率は相反する。従ってファン径を増さずに推進効率を改善するための最重要課題は、推力を低下させずに推進効率を向上させるという矛盾をサイクル的に克服することである。
本発明と従来型ターボファンのサイクル上の根本的な違いは、エンジン空気流量と推力の関係である。通常のターボ・エンジンでは、推力はエンジンを流れる空気の流量に比例する。本サイクルでは両者は比例しない。部分負荷において空気流量をできるだけ一定に保ち、高圧側と低圧側の仕事の配分を変えるとマッチング温度Tが変化する。よって推力を制御できる。推力を低下させずに推進効率を高めるには、空気流量のみでなくTIT(T)もできるだけ一定に維持し、高圧側と低圧側の仕事の配分を変えてVJB/VJCを高める。ファン空気量を一定に保ち高/低両圧タービンの仕事の配分を変える役割をVJNが、BPRを制御してTITの低下を防ぐ役割をVBNが担う。
作用(原理説明)
原理説明の項では低圧圧縮機LPCは省略し、ファンの出口が高圧圧縮機HPCの入口で、その位置番号を2とする。また回転要素の断熱効率は一定と仮定する。
本サイクルは次の条件に従うものとする。コアのジェットノズルは離陸時、巡航時ともにチョークし、バイパスノズルは地上ではチョークしないが高空ではチョークする。またHPTは段負荷が大きいのでチョークするが、LPTは段負荷を抑えるため多段化


【0009】
が降下しTが上昇するためT/Tの減少が大きく、式(18)からHPC温度比T/Tは減少する。つまりVJNを開くと、HPT膨張比が上昇してもTが低下するため、その熱落差は小さくなりHPC圧力比は低下する。
/T、設計点を基準としたHPCの相対修正流量、P/P、T/T、VJNの設計点に対する面積比、これらの相関関係を第2図に示す。温度比T/Tに換えてP/Pを用いたのは、温度比T/Tは変化量が表れにくく変化の傾向を読み取りにくいからである。図において黒丸は本発明、白丸は従来型ターボファンの作動を表す。第2図において第1象限はT/TとHPC相対修正流量の関係、第2象限はHPC相対修正流量とP/Pの関係、第3象限はP/PとT/Tの関係、第4象限はT/TとVJNスロート断面積Aの設計点に対する面積比の関係を示す。
HPC修正流量は式(16)から、HPCとHPTの釣り合い、即ち高圧軸系の運転状態を示すと言える。よって第2図はFAN、HPC、HPT、LPT、VJNの5つの要素と、TIT(T)の関係を示すものである。点線N3は本発明の或る作動点を結んだものであり、点線Tは従来型ターボファンの各要素の作動点を結んだものである。点線N3と点線Tは推力がほぼ同じになるよう選んである。
本サイクルでは、VJNを開くとLPTの膨張比が上昇し、ファン圧力比が高まってHPC修正流量が減少する。よって低いTでエンジン全要素のマッチングが行われる。一方、従来型ターボファンはコアのジェットノズルは固定だから、直列フリータービンの特性から部分負荷ではLPTの膨張仕事が減少する。図で白丸のT/Tは一定だが熱落差は右方へいくほど低くなる。従ってP/Pは低下するが、HPC修正流量は本発明の場合より多くなる。よって本サイクルより高いTでエンジン全体が釣り合う。
このことから本サイクルは部分負荷でVJNを開くと、高圧軸系の仕事が減少し、低圧軸系の仕事が増加するという従来のターボファン・サイクルと異なる特性を持つサイクルであることが分かる。


【0010】
第4象限に示すように、VJNは推力が低下すると一旦広げたAを絞っている。その理由はVJNを最も広げた所でp≒pとなるからで、それ以降T/Tが降下しても、式(9)(12)からノズルでの流出マッハ数をM=1に維持するため、VJNを制御しなければならないからである。このようにVJN出口静圧pが大気圧pに近くなるため、VJB/VJCが大きな値となり、本サイクルは推進効率が著しく向上する。
第2図の第1象限でTが低下することは、Pの低下をもたらす。T、Pの低下はサイクルの熱効率を悪化させる。しかし本サイクルは推進効率の向上が著しく、熱効率の悪化を凌駕するため、巡航時のSFCを低減することができる。
の低下よって起こる問題は、熱効率の悪化より寧ろ推力の低下である。次にTの低下を防ぎ推力を維持するための可変バイパスノズルVBNの作用を説明する。
式(14)のはじめの式から、可変バイパスノズルVBNを絞ってAを狭めると、BPRが低下し、式(15)からP、Tの低下が抑制される。VJNを開いたとき同時にVENを絞った場合の各要素の変化を、第2図にプロットして第3図に示す。図でN2はVBNを絞ってBPRを一定に保った場合のマッチングを示すものである。
VJNとVBNのノズルスロート断面積A、A、及びTの3つの制御変数を整合させBPRをほぼ一定に保つと、VJNの開度はA一定の場合に比べて非常に小さくなる。従ってT/Tの上昇はA一定の時より僅かとなるが、高いTでエンジン全体がマッチングするため、LPTの膨張仕事は大きくなる。よってファン圧力比P/Pの上昇が大きくなるが、BPRの制御によりコア流量mがほぼ一定となるためHPC修正流量の減少は少なく、Tの低下が抑制される。よってTが僅かしか低下せずP/Pが上昇してファンジェットのエンタルピが増加するため、推力を維持してVJB/VJCを高めることができる。但し、その増加の量は大きくない(第10図参照)。
本サイクルでは、ファン圧力比を高めたとき、何故ファンが過回転にならないのかを第3図は示している。本サイクルでファン圧力比を高めると、その作動点は第2象限の


10
【0014】
作動点4へ減少する(第9図)。
次に第10図、第11図に基づいて本発明の効果を説明する。
1→2 BPRほぼ一定の過程(推力ほぼ維持、SFC低減)
この過程ではTの減少が小さく、推力はほぼ保たれる。従ってVJB/VJCの増加は僅かであり、推進効率ηの向上も小さい。しかしTの低下が抑えられるので、熱効率ηthはほぼ一定に維持される。よってηの向上がそのままSFCに反映され、推力を維持してSFCを低減することができる。VBNを絞った場合の黒丸と、絞らない場合の小さい黒丸を比較すると、VBNの効果が歴然である。作動点2で如何程SFCを低減できるかは、第6図のファン圧力比をどれだけ高められるかに依存する。しかしP/Pが高くなるにつれ、SFC低減の割合が減少するので、無暗にP/Pを高めても意味がない。
2→3 VJB/VJC増大の過程(推力減少、SFC大幅に低減)
この過程ではVJB/VJCが著しく増加し、ηの向上が大きい、一方、TとPの大幅な減少によりηthは低下する。しかしηの向上がηthの低下に勝り、SFCは大幅に低減される。同時に推力が低下する。
3→4 p≒p一定の過程(推力減少、SFC上昇)
この過程ではTを下げてもコアのジェットノズルがチョーク状態を維持するようにVJNを絞るため、ηの上昇はなだらかになり、ηthは減少する。よってSFCは高まり従来型ターボファンのそれに近付きながら推力が低下する。
作動点4以降
進入・着陸に入る前に、VJNを絞りAを離陸時の面積に戻す。進入・着陸時はエンジンの運用が広範囲にわたり、着陸後もスラスト・リバーサにより大きな推力が使用される。また進入復行や離陸復行にも備えなければならない。よって推力の急激な変動に対応するため、VJNは離陸時の状態に戻し、固定する。尚、第2図、第3図のN2、


14

Claims (1)

  1. ターボファンエンジンのコアのジェットノズル及びバイパスノズルを可変機構にし、二つの可変排気ノズルと燃料流量の制御を連動させて、コアの可変ジェットノズル(VJN)の制御によりファンジェット速度とコアジェット速度の比を高めて、推進効率を向上させ、可変バイパスノズル(VBN)によりバイパス比を制御することによって、推進効率の向上に伴う推力の低下を防ぐことを特徴とする亜音速機推進用可変サイクルエンジン。
JP2006510622A 2004-03-02 2005-01-27 亜音速機推進用可変サイクルエンジン Pending JPWO2005085620A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004093725 2004-03-02
JP2004093725 2004-03-02
PCT/JP2005/001539 WO2005085620A1 (ja) 2004-03-02 2005-01-27 亜音速機推進用可変サイクルエンジン

Publications (1)

Publication Number Publication Date
JPWO2005085620A1 true JPWO2005085620A1 (ja) 2008-01-24

Family

ID=34918669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510622A Pending JPWO2005085620A1 (ja) 2004-03-02 2005-01-27 亜音速機推進用可変サイクルエンジン

Country Status (2)

Country Link
JP (1) JPWO2005085620A1 (ja)
WO (1) WO2005085620A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886518B2 (en) * 2006-11-14 2011-02-15 General Electric Company Turbofan engine cowl assembly and method of operating the same
CA2862597C (en) * 2013-10-03 2018-12-11 Karl L. Hasel Geared gas turbine engine architecture for enhanced efficiency
CA2996284A1 (en) 2015-09-02 2017-04-20 Jetoptera, Inc. Fluidic propulsive system
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
CN111727312B (zh) 2017-06-27 2023-07-14 杰拓普特拉股份有限公司 航空飞行器垂直起降系统的配置
GB201811861D0 (en) * 2018-07-20 2018-09-05 Rolls Royce Plc Supersonic aircraft turbofan engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165892B (en) * 1984-10-22 1988-10-26 Gen Electric Variable cycle engine
JPH09195853A (ja) * 1995-12-14 1997-07-29 United Technol Corp <Utc> 可変面積ファンエキゾーストノズル
JP2002054503A (ja) * 2000-08-10 2002-02-20 Isamu Nemoto 亜音速機用高バイパス比・可変サイクルエンジン
JP2002221092A (ja) * 2001-01-24 2002-08-09 Isamu Nemoto 可変ジェットノズル付き高バイパス比ターボファン・エンジン
JP4140049B2 (ja) * 2002-03-19 2008-08-27 株式会社Ihi 可変ファンノズル装置

Also Published As

Publication number Publication date
WO2005085620A1 (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
US5125597A (en) Gas turbine engine powered aircraft environmental control system and boundary layer bleed with energy recovery system
EP2587027B1 (en) Gas turbine engine with intercooling turbine section
US7788899B2 (en) Fixed nozzle thrust augmentation system
US9057328B2 (en) Gas turbine engine with intercooling turbine section
JPWO2005085620A1 (ja) 亜音速機推進用可変サイクルエンジン
CN101649781A (zh) 一种喷气式发动机
US11884414B2 (en) Supersonic aircraft turbofan engine
US11994089B2 (en) After-fan system for a gas turbine engine
Chapman A study of large scale power extraction and insertion on turbofan performance and stability
CN103726952B (zh) 分流式燃气涡轮发动机
JP2009057955A (ja) 超音速機用インタータービン・バイパス可変サイクルエンジン
Hultgren Core noise: implications of emerging N+ 3 designs and acoustic technology needs
JP2018059491A (ja) 超高バイパス比可変サイクルターボファンの流量制御法
JP2012251542A (ja) 可変サイクルエンジン
Jakubowski Study of bypass ratio increasing possibility for turbofan engine and turbofan with inter turbine burner
JP2002054503A (ja) 亜音速機用高バイパス比・可変サイクルエンジン
Li et al. Steady state calculation and performance analysis of variable cycle engine
CA1260277A (en) High mach number unducted fan engine
JP2002221092A (ja) 可変ジェットノズル付き高バイパス比ターボファン・エンジン
Colmenares et al. A preliminary parametric study for geared, intercooled and/or recuperated turbofan for short range civil aircrafts
Beitler et al. Fuel conservation through active control of rotor clearances
JPH07301150A (ja) クロスコンパウンド・ターボファン
JP3903270B2 (ja) ダブルバイパス・エンジン
JP2019065834A (ja) 超高バイパス比ダクテッド・ターボファンの流量制御法
Zhang et al. A Study of Two Variable Cycle Engine Concepts for High Speed Civil Aircraft