JPWO2004007576A1 - 含フッ素共重合体製造方法、含フッ素共重合体及び成形体 - Google Patents

含フッ素共重合体製造方法、含フッ素共重合体及び成形体 Download PDF

Info

Publication number
JPWO2004007576A1
JPWO2004007576A1 JP2004521135A JP2004521135A JPWO2004007576A1 JP WO2004007576 A1 JPWO2004007576 A1 JP WO2004007576A1 JP 2004521135 A JP2004521135 A JP 2004521135A JP 2004521135 A JP2004521135 A JP 2004521135A JP WO2004007576 A1 JPWO2004007576 A1 JP WO2004007576A1
Authority
JP
Japan
Prior art keywords
fluorine
containing copolymer
atom
copolymer
ether derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004521135A
Other languages
English (en)
Inventor
荒瀬 琢也
琢也 荒瀬
昌宏 近藤
昌宏 近藤
石井 健二
健二 石井
忠晴 井坂
忠晴 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2004007576A1 publication Critical patent/JPWO2004007576A1/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/182Monomers containing fluorine not covered by the groups C08F214/20 - C08F214/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

含フッ素エチレン性単量体と、下記一般式(I)CF2=CF−O−[CF2CF(CF3)O]n−(CF2)m−A (I)(式中、nは、0〜3の整数を示す、mは、1〜5の整数を示す。Aは、−SO2X又は−COOYを示す。Xは、ハロゲン原子又は−NR1R2を示す。R1及びR2は、同一又は異なって、水素原子、アルカリ金属、若しくはアルキル基又はスルホニル含有基を示す。Yは、水素原子又は炭素数1〜4のアルキル基を示す。)で表されるフルオロビニルエーテル誘導体との重合反応を、パーフルオロ飽和炭化水素中で行うものであり、上記含フッ素エチレン性単量体と上記フルオロビニルエーテル誘導体とを追加仕込みしながら行うものであることを特徴とする含フッ素共重合体製造方法

Description

本発明は、含フッ素共重合体製造方法、含フッ素共重合体及び成形体に関する。
CF=CF等の含フッ素エチレン性単量体とハロスルホニル基等の官能基を含有するモノマーとを共重合してイオン交換容量の高い含フッ素ポリマーを製造する方法として、塊状重合、溶液重合等が知られており、特に溶液重合が一般的によく用いられている。
溶液重合の一例として、特開平6−234816号公報には、重合溶媒として、ハイドロクロロフルオロカーボンを用いる重合法が開示されている。しかしながら、この方法で重合を行うと、反応系内の粘度が上昇するので、反応開始後充分な収率が得られないまま反応を停止する必要が生じ、逆に高収率で得ようとすると、組成分布が広くなり成形性に劣るという問題があった。
特開平6−211933号公報には、重合溶媒として、パーフルオロシクロブタンを用いる重合法が開示されている。しかし、ハロスルホニル基等の官能基を含有するモノマーを重合することについての記載はない。
特開平6−322034号公報には、ハロスルホニル基を有するモノマーを、非テロゲン性溶媒としてパーフルオロヘプタン、パーフルオロジメチルシクロブタン等のパーフルオロアルカン又はパーフルオロシクロアルカン中で重合する方法が開示されている。しかしながら、この方法は、重合開始時に重合させるモノマーを全量反応槽内に仕込むものと考えられ、ハロスルホニル基を有するモノマーの含有率が小さいものでは組成分布が広くなりやすいという問題があった。
発明の要約
本発明の目的は、上記現状に鑑み、組成や分子量のばらつきを抑えた含フッ素共重合体を高収率で得ることができる含フッ素共重合体製造方法を提供することにある。
本発明は、含フッ素エチレン性単量体と、下記一般式(I)
CF=CF−O−〔CFCF(CF)O〕−(CF−A (I)
(式中、nは、0〜3の整数を示す。mは、1〜5の整数を示す。Aは、−SOX又は−COOYを示す。Xは、ハロゲン原子又は−NRを示す。R及びRは、同一又は異なって、水素原子、アルカリ金属、アルキル基若しくはスルホニル含有基を示す。Yは、水素原子又は炭素数1〜4のアルキル基を示す。)で表されるフルオロビニルエーテル誘導体との重合反応により含フッ素共重合体を得ることよりなる含フッ素共重合体製造方法であって、上記含フッ素エチレン性単量体は、下記一般式(II)
CF=CF−R (II)
(式中、R 、フッ素原子、塩素原子、R 又はOR を示し、R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表されるパーハロエチレン性単量体、及び/又は、下記一般式(III)
CHX=CFX (III)
(式中、Xは、水素原子又はフッ素原子を示し、Xは、水素原子、フッ素原子、塩素原子、R 又はOR を示す。R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表される水素含有フルオロエチレン性単量体であり、上記重合反応は、パーフルオロ飽和炭化水素中で行うものであり、上記含フッ素エチレン性単量体と上記フルオロビニルエーテル誘導体とを追加仕込みしながら行うものであることを特徴とする含フッ素共重合体製造方法である。
以下に本発明を詳細に説明する。
発明の詳細な開示
本発明の含フッ素共重合体製造方法は、上記一般式(I)で表されるフルオロビニルエーテル誘導体の重合反応により含フッ素共重合体を得ることよりなるものである。
上記一般式(I)におけるAは、−SOX又は−COOYを示す。
上記Xは、ハロゲン原子又は−NRを示す。上記ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子の何れであってもよいが、フッ素原子であることが好ましい。R及びRは、同一又は異なって、水素原子、アルカリ金属、アルキル基若しくはスルホニル含有基を示す。上記アルキル基としては特に限定されず、例えば、炭素数1〜4の直鎖状又は分岐状のアルキル基であってよく、このようなアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。上記Xは、好ましくは、フッ素原子である。上記Yは、水素原子又は炭素数1〜4のアルキル基を示す。上記Yにおけるアルキル基としては、上述のR及びRにおけるアルキル基と同様のものが挙げられる。上記スルホニル含有基は、スルホニル基を有する含フッ素アルキル基であり、末端に置換基を有していてもよい含フッ素アルキルスルホニル基等が挙げられ、このようなものとしては、−SO Z(R :含フッ素アルキレン基、Z:1価の有機基)等が挙げられる。上記Zとしては、SOF、SO(NHSO SONHSOF(R は上記の通り)等が挙げられる。
上記一般式(I)におけるnは、0〜3の整数を示す。上記nは、0であることが好ましい。上記一般式(I)におけるmは、1〜5の整数を示す。上記mは、2であることが好ましい。
上記フルオロビニルエーテル誘導体は、上記一般式(I)におけるnが0であり、mが2であり、Aが−SOFであるものを用いることが好ましい。
上記含フッ素共重合体は、上記フルオロビニルエーテル誘導体と、好ましくは含フッ素エチレン性単量体とを重合して得られるものである。
上記含フッ素エチレン性単量体は、上記フルオロビニルエーテル誘導体と重合可能なものであって、フッ素原子を有しビニル基を有するものであれば特に限定されない。
上記含フッ素エチレン性単量体としては特に限定されず、例えば、下記一般式(II)
CF=CF−R (II)
(式中、R 、フッ素原子、塩素原子、R 又はOR を示し、R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表されるパーハロエチレン性単量体、下記一般式(III)
CHX=CFX (III)
(式中、Xは、水素原子又はフッ素原子を示し、Xは、水素原子、フッ素原子、塩素原子、R 又はOR を示す。R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表される水素含有フルオロエチレン性単量体等が挙げられる。
上記含フッ素エチレン性単量体は、1種又は2種以上用いてもよい。
上記含フッ素エチレン性単量体は、CF=CF、CH=CF、CF=CFCl、CF=CFH、CH=CFH、CF=CFCF、及び、CF=CF−O−R (式中、R は、炭素数1〜9のフルオロアルキル基又は炭素数1〜9のフルオロポリエーテル基を示す。)で表されるフルオロビニルエーテルからなる群より選ばれる少なくとも1つであることが好ましい。この場合、上記フルオロビニルエーテルは1種又は2種以上用いてもよい。上記フルオロビニルエーテルは、R の炭素数が1〜3のフルオロアルキル基であることが好ましい。
上記含フッ素エチレン性単量体は、パーハロエチレン性単量体、特にパーフルオロエチレン性単量体が好ましく、CF=CFであることがより好ましい。
上記含フッ素共重合体は、上記含フッ素エチレン性単量体として、CF=CFを用い、上記フルオロビニルエーテル誘導体として、nが0であり、mが2であり、Aが−SOFであるものを用いることが好ましい。
上記含フッ素共重合体は、上記含フッ素エチレン性単量体以外にも、エチレン、プロピレン、1−ブテン、2−ブテン、モノクロロエチレン、ジクロロエチレン等のフッ素原子を有しないフッ素非含有オレフィンを重合して得られるものであってもよい。
上記含フッ素共重合体は、上記フッ素非含有オレフィン以外にも、上記含フッ素共重合体に種々の機能を付与するために、その他の共重合可能なモノマーを重合してもよい。上記その他の共重合可能なモノマーとしては特に限定されず、例えば、重合速度の制御、ポリマー組成の制御、弾性率等の機械的物性の制御、架橋サイトの導入等の目的に応じて共重合可能なモノマーのなかから適宜選択され、ジビニルベンゼン等の不飽和結合を2つ以上有するモノマー、シアノ基を含有するモノマー、ハロゲン末端を含有するモノマー等が挙げられる。
上記含フッ素共重合体は、上記フルオロビニルエーテル誘導体と、好ましくは、上記含フッ素エチレン性単量体との重合反応により得られるものである。
上記重合反応は、パーフルオロ飽和炭化水素中で行うものである。
上記パーフルオロ飽和炭化水素は、飽和炭化水素の水素原子のすべてがフッ素原子に置換されたものである。
上記パーフルオロ飽和炭化水素は、炭素数が20以下であることが好ましい。より好ましい上限は、10であり、更に好ましい上限は、7であり、好ましい下限は、3である。
上記パーフルオロ飽和炭化水素は、環状構造及び/又は直鎖構造を有するものであってよく、パーフルオロアルカン、パーフルオロシクロアルカンであることが好ましい。環状構造及び/又は直鎖構造を有するパーフルオロ飽和炭化水素は、更に分岐構造を有していてもよいが、分岐構造はない方が好ましい。上記パーフルオロ飽和炭化水素としては、炭素数20以下であり、環状構造又は直鎖構造を有するものが、より好ましい。
上記パーフルオロ飽和炭化水素は、通常、上記含フッ素共重合体との親和性が高いものではない。この低親和性は、上記パーフルオロ飽和炭化水素が、一般に非極性であるのに対して、上記含フッ素共重合体がスルホン酸基若しくはカルボキシル基又はこれら親水性基の誘導体を有することに起因する。
上記パーフルオロ飽和炭化水素は、上記含フッ素共重合体の溶解性又は膨潤性が低いものが好ましい。このようなパーフルオロ飽和炭化水素としては特に限定されず、例えば、パーフルオロヘキサン、パーフルオロヘプタン、パーフルオロシクロブタン、パーフルオロジメチルシクロブタン等が挙げられる。上記パーフルオロ飽和炭化水素は、パーフルオロヘキサン又はパーフルオロシクロブタンであることが好ましい。
上記重合反応は、上記フルオロビニルエーテル誘導体を追加仕込みしながら行うものである。
本明細書において、上記「追加仕込み」とは、重合反応に用いる単量体を重合開始時に反応系に全量存在させておくのではなく、添加量の少なくとも一部分を重合開始後に断続的又は連続的に反応系に投入することを意味する。
上記重合反応は、通常、上記フルオロビニルエーテル誘導体と上記含フッ素エチレン性単量体とを追加仕込みしながら行う。
上記追加仕込みを行うことにより、反応系内の上記含フッ素エチレン性単量体と上記フルオロビニルエーテル誘導体との濃度比(以下、「モノマー濃度比」という。)を一定又はほぼ一定に保つことができる。モノマー濃度比を一定又はほぼ一定に保つことにより、後述の反応場が1つであれば、ポリマー鎖1本1本が同様若しくは近似した組成及び/又は分子量を有する含フッ素共重合体を製造することができる。
上記重合反応は、上述のように追加仕込みを行うこと以外は、通常の方法を用いることができる。上記重合反応は、上記パーフルオロ飽和炭化水素の含フッ素共重合体に対する低親和性による本発明の効果を充分に活かすことができる点で、溶液重合により行うことが好ましい。
上記含フッ素共重合体製造方法により製造されたものであることを特徴とする含フッ素共重合体もまた、本発明の一つである。
上記含フッ素共重合体は、示差走査熱量計〔DSC〕を用いて測定した315〜325℃に出現する融解熱量ΔH(単位:J/g)と、含フッ素共重合体におけるフルオロビニルエーテル誘導体単位の含有率C(単位:モル%)とが下記式(a1)及び下記式(b)を満たすものであることが好ましい。
0≦ΔH≦6.4−0.48C(5≦C≦13) (a1)
0≦ΔH≦0.2(13<C≦18) (b)
上記式(a1)としては、
0≦ΔH≦6.375−0.475C(5≦C≦13) (a)
であることが、より好ましい。
本明細書において、上記「フルオロビニルエーテル誘導体単位の含有率C」とは、含フッ素共重合体の分子における全単量体単位が由来する単量体のモル数〔N〕に占める、フルオロビニルエーテル誘導体単位が由来するフルオロビニルエーテル誘導体のモル数〔N〕の割合であって、下記式
(%)=(N/N)×100
で表される含有率Cの平均値を意味する。
上記フルオロビニルエーテル誘導体単位の含有率Cは、赤外吸収分光〔IR〕、又は、300℃における溶融NMRを用いて得られる値である。
本明細書において、上記「単量体単位」とは、上記含フッ素共重合体の分子構造上の一部分であって、単量体に由来する部分を意味する。上記「全単量体単位」は、上記含フッ素共重合体の分子構造上、単量体に由来する部分の全てである。上記「全単量体単位が由来する単量体」は、従って、上記含フッ素共重合体をなすこととなった単量体全量である。
本明細書において、上記「フルオロビニルエーテル誘導体単位」とは、上記含フッ素共重合体の分子構造上の一部分であって、フルオロビニルエーテル誘導体に由来する部分を意味する。上記フルオロビニルエーテル誘導体単位は、上記含フッ素共重合体において、上記一般式(I)におけるAが重合前の単量体におけるものと同じものであってもよいし、このAが変化したものであってもよい。上記Aが変化したものとしては、例えば、電離し得る官能基に変化したもの等が挙げられる。上記電離し得る官能基としては、例えば、Aとしての−SO(Xはハロゲン原子を示す。)がアルカリにより−SO又は−SO 1/2(Mは、アルカリ金属を示し、Mは、アルカリ土類金属を示す。)に変化したもの、更に酸により−SOHに変化したもの等が挙げられる。
上記融解熱量ΔHは、得られた含フッ素共重合体が、均一重合体であるか、不均一重合体であるかを判断する指標とすることができる。
本明細書において、上記均一重合体における「均一」とは、▲1▼1本のポリマー鎖においてフルオロビニルエーテル誘導体単位が偏って分布している部位がないか少ない状態、並びに/又は、▲2▼ポリマー鎖間でフルオロビニルエーテル誘導体単位の含有率C及び/若しくは分子量のばらつきが小さい状態を意味する。
また、本明細書において、上記不均一重合体における「不均一」とは、▲3▼1本のポリマー鎖においてフルオロビニルエーテル誘導体単位の少ない部位と多い部位とが存在する状態、並びに/又は、▲4▼ポリマー鎖間でフルオロビニルエーテル誘導体単位の含有率C及び/若しくは分子量にばらつきが生じた状態、を意味する。単に「不均一」であるという場合、特に断りのない限り、上記▲3▼及び上記▲4▼を包含する概念である。
上記不均一重合体では、フルオロビニルエーテル誘導体単位の少ない部位、又は、フルオロビニルエーテル誘導体単位の含有率Cが低いポリマー鎖が結晶化の原因となりやすい。上記結晶化が起きた部位(以下、「結晶化部位」という。)は、融解に多くの熱量を要することから、上記融解熱量ΔHは、上記式(a)及び上記式(b)で示される範囲よりも大きくなるものと考えられる。一方、上記均一重合体の場合、1本のポリマー鎖中にフルオロビニルエーテル誘導体単位が均一又はほぼ均一に分散していることから、上記結晶化部位は生じにくく、融解に要する熱量は、上記式(a)及び上記式(b)で示される範囲に入るものと考えられる。
上記含フッ素共重合体は、上記融解熱量ΔHが上記範囲内であれば、含フッ素共重合体の1本のポリマー鎖中についてみれば、上記フルオロビニルエーテル誘導体と上記含フッ素エチレン性単量体とが均一又はほぼ均一に重合されているものであると推定され、含フッ素共重合体の各ポリマー鎖間についてみれば、フルオロビニルエーテル誘導体単位の含有率Cや分子量にばらつきが少なく、組成分布や分子量分布が狭いものであると推定される。
上記融解熱量ΔHは、上記フルオロビニルエーテル誘導体単位の含有率Cが、上記式(a)及び上記式(b)において示したように、5〜18モル%の範囲で測定したものであることが好ましい。上記含フッ素共重合体は、上記フルオロビニルエーテル誘導体単位の含有率Cが18モル%を超えるものを製造する場合、反応系における上記フルオロビニルエーテル誘導体の濃度を大きくする必要があるので、フルオロビニルエーテル誘導体単位の含有率Cにばらつきは生じにくく、上述の不均一重合体にはなりにくいが、得られる成形体が機械的強度に劣る。上記含フッ素共重合体は、均一重合体として得られやすく、機械的強度を保ち、かつ、電解質膜やイオン交換膜として使用する際の機能性を低下させないためにも、上記フルオロビニルエーテル誘導体単位の含有率Cは5モル%以上であることが好ましい。
上記含フッ素共重合体を上述のように均一に重合することができる機構としては必ずしも明確ではないが以下のように考えられる。即ち、従来法では、上記フルオロビニルエーテル誘導体を重合してなるポリマー鎖が溶解又は膨潤するような溶媒を用いていたので、上記含フッ素共重合体は反応溶液中で析出することなく重合が進行し粘度が上昇する。粘度の上昇は、重合トルクの増大による攪拌の停止による収率の低下のみならず、反応溶液中でモノマー、重合開始剤、連鎖移動剤等の濃度、重合途中のラジカル等の拡散係数、熱伝導率、放熱速度等の物性等の不均一化をもたらす。このような濃度や物性等の環境の不均一性により、反応場が少なくとも2つ生成し、1つの反応場と他の反応場との間で共重合体分子の組成や分子量のばらつきが大きくなっていたものと考えられる。従来法は、更に、重合開始時に原料全量を加えるものである場合、重合反応が進行するにつれ、モノマー濃度比が変化し、この変化も組成や分子量のばらつきの大きい共重合体が生成する原因の一つとなっていたと考えられる。
本発明の含フッ素共重合体製造方法においては、フルオロビニルエーテル誘導体との親和性が低いパーフルオロ飽和炭化水素中で重合反応を行っていることから、得られる含フッ素共重合体は溶解性又は膨潤性が低く、析出しやすいので、反応溶液の粘度は高くならない。従って、反応溶液中でモノマー、重合開始剤、連鎖移動剤等の濃度、熱伝導率や放熱速度等は、均一又はほぼ均一に保たれ、1つの重合場で重合反応が進行すると考えられ、モノマー濃度比が変化しにくいように追加仕込みを行う効果も加わる結果、組成分布や分子量のばらつきを抑えた含フッ素共重合体を高収率で得ることができるものと考えられる。
本発明の含フッ素共重合体製造方法における重合反応は、重合溶液体積(1リットル)に対する含フッ素共重合体の質量(以下、「ポリマー収量」ということがある。)を30g/L以上にすることができるものである。上記重合反応は、上述のように、反応溶液の粘度が高くならないものであるので、ポリマー収量が30g/L以上という高い値にすることができ、このように高いポリマー収量を示すこととなっても、上記含フッ素共重合体の組成分布や分子量のばらつきを抑えることができる。本発明の効果が発揮されるのは、特に、ポリマー収量が30g/L以上になった状態以降の重合過程においてである。
本明細書において、上記「重合溶液」とは、上記重合反応における溶液であって、上記重合反応が行われている最中の溶液又は上記重合反応が終了した後の溶液を意味する。上記重合溶液は、上記含フッ素共重合体を含まないものであり、上記パーフルオロ飽和炭化水素のほか、含フッ素エチレン性単量体、フルオロビニルエーテル誘導体、重合開始剤等の添加剤を含むものである。
本発明の含フッ素共重合体は、上記融解熱量ΔHが上記範囲内であれば、含フッ素樹脂の一般的な成形温度である300℃以下の温度で成形しても、未溶融物が残存したり、得られる成形体の外観を損ねたりすることが少ないので、成形性に優れているといえる。
上記含フッ素共重合体を用いて形成されたものであることを特徴とする成形体もまた、本発明の一つである。
本明細書において、上記「成形体」は、例えば、溶融成形法、キャスト法、含浸法等により得られるものであって、薄膜を含む膜、コーティング等をも含む概念である。
上記溶融成形法は、上記含フッ素共重合体を融点以上の温度に加熱し、プレス、押し出し等の手段により成形加工する方法である。上記キャスト法は、通常、上記含フッ素共重合体を含フッ素溶媒、又は、アルコール/水混合溶媒等の溶媒に溶解させてなる溶液に必要に応じて造膜補助剤を添加して、ガラス等の基板に塗布し、乾燥させて、得られる皮膜を基板から剥離する方法である。上記含浸法は、ガラス繊維、炭素繊維等の繊維状物質又はその織布、多孔性物質等の基材を、含フッ素溶媒又は、アルコール/水混合溶媒等の溶媒に上記含フッ素共重合体を溶解してなる溶液に含浸し、乾燥させる方法である。上記成形体は、特に自立性の膜を製造する場合、上記含浸法により得られたものであることが好ましい。
上記成形体は、膜であることが好ましい。上記膜は、厚さが薄い部分に応力が集中し破れやすくなるので、厚さが均一又はほぼ均一であることが好ましい。上記膜の厚さとしては、10〜200μmであることが好ましい。上記成形体は、また外観や風合いを向上する点で、平滑性を有するものであることが好ましい。
上記成形体は、所望により上記一般式(I)におけるAを電離し得る官能基に変換したものを用いてもよい。上記電離し得る官能基としては、フルオロビニルエーテル誘導体単位について上述したもの等が挙げられる。このような電離し得る官能基を有する成形体は、特に膜の場合、電解質膜、イオン交換膜等として用いることができる。本発明の成形体は、電解質膜又はイオン交換膜として、例えば、電解質用膜、リチウム電池用膜、食塩電解用膜、水電解用膜、ハロゲン化水素酸電解用膜、酸素濃縮器用膜、湿度センサー用膜、ガスセンサー用膜等に用いることができる。
上記成形体は、使用条件が通常過酷な固体高分子電解質型燃料電池においても長期間好適に用いることができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
以下の実施例1〜4及び比較例1〜3において、示差走査熱量測定は、以下の条件で行った。
測定機器:島津製作所製DSC−50
昇温速度:10℃/分
測定温度範囲:130〜350℃
試料質量:約10mg
内容積500mlのSUS製オートクレーブへ、溶媒としてパーフルオロシクロブタン227.5g及びパーフルオロ(エチルビニルエーテル)スルホン酸フルオライド(PFSF,CF=CFOCFCFSOF)を168.2g仕込み、脱気を行った。800rpmで攪拌しながら、温度を30℃の条件で、テトラフルオロエチレン〔TFE〕を全圧0.33MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液3.56gを圧入して重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また、反応で消費されたPFSFを断続的に合計7.0g圧入した。2時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は87g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、21.8gの共重合体aを得た。
得られた共重合体aの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは、16.2モル%であり、270℃、荷重0.21MPaにおけるメルトフローレート〔MFR〕は、6g/10分であり、320℃付近に観測されるDSCの融解ピーク面積は、0.0J/gであった。
内容積500mlのSUS製オートクレーブへ、溶媒としてパーフルオロヘキサン266.4g及びPFSFを166.4g仕込み、脱気を行った。800rpmで攪拌しながら、温度を30℃の条件で、TFEを全圧0.38MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液3.56gを圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また、反応で消費されたPFSFを断続的に合計7.7g圧入した。2.3時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は、84g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、20.9gの共重合体bを得た。
得られた共重合体bの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは、15.9モル%であり、270℃、荷重0.21MPaにおけるMFRは、14.4g/10分であり、320℃付近に観測されるDSCの融解ピーク面積は、0.0J/gであった。
内容積500mlのSUS製オートクレーブへ、溶媒としてパーフルオロジメチルシクロブタン148.3g及びPFSFを100.3g仕込み、脱気を行った。800rpmで攪拌しながら、温度を30℃の条件で、TFEを全圧0.39MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの6.8質量%パーフルオロヘキサン溶液2.15gを圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また、反応で消費されたPFSFを断続的に合計4.3g圧入した。1.5時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は89g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、22.3gの共重合体cを得た。
得られた共重合体cの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは、15.5モル%であり、270℃、荷重0.21MPaにおけるMFRは、8g/10分であり、320℃付近に観測されるDSCの融解ピーク面積は、0.0J/gであった。
内容積100mlのSUS製オートクレーブへ、溶媒としてパーフルオロシクロブタン43g及びPFSFを11.4g仕込み、脱気を行った。1000rpmで攪拌しながら、温度30℃の条件でTFEを全圧0.71MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液1.0gを圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また、反応で消費されたPFSFを断続的に合計0.5g圧入した。3.2時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は124g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、4.4gの共重合体dを得た。
得られた共重合体dの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは5.5モル%であり、320℃付近に観測されるDSCピークの融解熱量は2.7J/gであった。
比較例1
内容積500mlのSUS製オートクレーブへ、溶媒としてCFCClFCClFCFとCClFCClFCFCFとの混合物 257.8g及びPFSFを167.4g仕込み、脱気を行った。800rpmで攪拌しながら、温度を30℃の条件で、TFEを全圧0.39MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液3.56gを圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また反応で消費されたPFSFを断続的に7.6g圧入した。1時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は79g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、パーフルオロヘキサンを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にパーフルオロヘキサンを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留パーフルオロヘキサンを除去し、19.8gの共重合体eを得た。
得られた共重合体eの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは、14.6モル%であり、270℃、荷重0.21MPaにおけるMFRは、0.95g/10分であり、320℃付近に観測されるDSCの融解ピーク面積は、0.30J/gであった。
比較例2
内容積500mlのSUS製オートクレーブへ、溶媒としてCHFCFCFCFCFCFCl 255.5g及びPFSFを166.4g仕込み、脱気を行った。800rpmで攪拌しながら、温度を30℃の条件で、TFEを全圧0.39MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液3.56g圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また反応で消費されたPFSFを断続的に7.5g圧入した。1.2時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は91g/Lであり、系内の攪拌状態は良好であった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、22.7gの共重合体fを得た。
得られた共重合体fの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは、13.7モル%であり、270℃、荷重0.21MPaにおけるMFRは、1.3g/10分であり、320℃付近に観測されるDSCの融解ピーク面積は、0.35J/gであった。
比較例3
内容積100mlのSUS製オートクレーブへ、溶媒としてCFCClFCClFCFとCClFCClFCFCFの混合液 43g及びPFSFを11.4g仕込み、脱気を行った。1000rpmで攪拌しながら、温度30℃の条件でTFEを全圧0.47MPaまで圧入して、開始剤ジ(ω−ヒドロパーフルオロヘキサノイル)パーオキサイドの8質量%パーフルオロヘキサン溶液1.0gを圧入して、重合反応を開始した。反応中は系外よりTFEを導入し、圧力を一定に保持させ、また、反応で消費されたPFSFを断続的に合計0.5g圧入した。2.2時間後に未反応のTFEを系外に排出し、重合反応を停止させた。得られた反応液中の重合体濃度は、152g/Lであった。重合反応終了後、クロロホルムを250ml投入し、30分間攪拌させた。次に、遠心分離器を用いて固液分離し、その固形分にクロロホルムを250ml投入し、30分間攪拌させた。この操作を3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを120℃真空下で残留クロロホルムを除去し、4.9gの共重合体hを得た。
得られた共重合体hの300℃溶融NMRから推定されるフルオロビニルエーテル誘導体の含有率Cは6.5モル%であり、320℃付近に観測されるDSCピークの融解熱量は3.8J/gであった。
本発明の含フッ素共重合体製造方法は、上述の構成を有するので、組成及び/又は分子量のばらつきを抑えた含フッ素共重合体を高収率で製造することができる。

Claims (10)

  1. 含フッ素エチレン性単量体と、下記一般式(I)
    CF=CF−O−〔CFCF(CF)O〕−(CF−A (I)
    (式中、nは、0〜3の整数を示す。mは、1〜5の整数を示す。Aは、−SOX又は−COOYを示す。Xは、ハロゲン原子又は−NRを示す。R及びRは、同一又は異なって、水素原子、アルカリ金属、アルキル基若しくはスルホニル含有基を示す。Yは、水素原子又は炭素数1〜4のアルキル基を示す。)で表される少なくとも1種類のフルオロビニルエーテル誘導体との重合反応により含フッ素共重合体を得ることよりなる含フッ素共重合体製造方法であって、前記含フッ素エチレン性単量体は、下記一般式(II)
    CF=CF−R (II)
    (式中、R は、フッ素原子、塩素原子、R 又はOR を示し、R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表されるパーハロエチレン性単量体、及び/又は、下記一般式(III)
    CHX=CFX (III)
    (式中、Xは、水素原子又はフッ素原子を示し、Xは、水素原子、フッ素原子、塩素原子、R 又はOR を示す。R は、炭素数1〜9のエーテル酸素を有していてもよい直鎖状又は分岐状のパーフルオロアルキル基を示す。)で表される水素含有フルオロエチレン性単量体であり、
    前記重合反応は、パーフルオロ飽和炭化水素中で行うものであり、前記含フッ素エチレン性単量体と前記フルオロビニルエーテル誘導体とを追加仕込みしながら行う
    ことを特徴とする含フッ素共重合体製造方法。
  2. 重合反応は、重合溶液体積に対する含フッ素共重合体の質量を30g/L以上にすることができるものである請求の範囲第1項記載の含フッ素共重合体製造方法。
  3. パーフルオロ飽和炭化水素は、炭素数20以下であり、環状構造又は直鎖構造を有し、分岐構造を有していてもよい請求の範囲第1又は2項記載の含フッ素共重合体製造方法。
  4. パーフルオロ飽和炭化水素は、パーフルオロヘキサン又はパーフルオロシクロブタンである請求の範囲第1項記載の含フッ素共重合体製造方法。
  5. 含フッ素エチレン性単量体は、CF=CFであり、nは、0であり、mは、2であり、Aは、−SOFである請求の範囲第1、2、3又は4項記載の含フッ素共重合体製造方法。
  6. 請求の範囲第1、2、3、4又は5項記載の含フッ素共重合体製造方法により製造されたものである
    ことを特徴とする含フッ素共重合体。
  7. 示差走査熱量計で測定した315〜325℃に出現する融解熱量ΔH(単位:J/g)と、含フッ素共重合体におけるフルオロビニルエーテル誘導体単位の含有率C(単位:モル%)とが下記式(a)及び下記式(b)を満たすものである請求の範囲第6項記載の含フッ素共重合体。
    0≦ΔH≦6.375−0.475C(5≦C≦13) (a)
    0≦ΔH≦0.2(13<C≦18) (b)
  8. 請求の範囲第6又は7項記載の含フッ素共重合体を用いて形成されたものである
    ことを特徴とする成形体。
  9. 膜である請求の範囲第8項記載の成形体。
  10. 請求の範囲第8又は9項記載の成形体を有する
    ことを特徴とする固体高分子電解質型燃料電池。
JP2004521135A 2002-06-14 2003-06-16 含フッ素共重合体製造方法、含フッ素共重合体及び成形体 Withdrawn JPWO2004007576A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002210257 2002-06-14
JP2002210257 2002-06-14
PCT/JP2003/007615 WO2004007576A1 (ja) 2002-06-14 2003-06-16 含フッ素共重合体製造方法、含フッ素共重合体及び成形体

Publications (1)

Publication Number Publication Date
JPWO2004007576A1 true JPWO2004007576A1 (ja) 2005-11-10

Family

ID=30112867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004521135A Withdrawn JPWO2004007576A1 (ja) 2002-06-14 2003-06-16 含フッ素共重合体製造方法、含フッ素共重合体及び成形体

Country Status (5)

Country Link
US (1) US7348386B2 (ja)
EP (1) EP1553111A4 (ja)
JP (1) JPWO2004007576A1 (ja)
AU (1) AU2003241677A1 (ja)
WO (1) WO2004007576A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003241677A1 (en) * 2002-06-14 2004-02-02 Daikin Industries, Ltd. Process for producing fluorocopolymer, fluorocopolymer, and molded object
JP4946009B2 (ja) * 2004-11-19 2012-06-06 旭硝子株式会社 固体高分子型燃料電池用電解質材料、固体高分子型燃料電池用膜・電極接合体の製造方法
CN101613431B (zh) * 2009-07-24 2011-05-04 上海三爱富新材料股份有限公司 全氟磺酰树脂的制备方法
EP2511311B1 (en) 2009-12-11 2013-11-27 Shandong Huaxia Shenzhou New Material Co., Ltd. Perfluorinated ion exchange resin, preparation method and use thereof
CA2784539C (en) 2009-12-15 2015-06-30 Shandong Huaxia Shenzhou New Material Co., Ltd High exchange capacity perfluorinated ion exchange resin, preparation method and use thereof
CN102229687B (zh) * 2011-05-17 2013-02-13 杭州纳琪达纳米科技有限公司 表面疏水疏油防护处理剂的制备方法
WO2018235911A1 (ja) * 2017-06-21 2018-12-27 Agc株式会社 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
GB1034197A (en) 1963-09-13 1966-06-29 Du Pont Sulphonic acid derivatives of fluorocarbon vinyl ethers, and polymers thereof
US4329435A (en) * 1979-05-31 1982-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Novel fluorinated copolymer with tridihydro fluorosulfonyl fluoride pendant groups and preparation thereof
US5185414A (en) * 1991-01-18 1993-02-09 Ici Americas Inc. Drying temperature independent polytetrafluoroethylene
JPH06157609A (ja) * 1992-11-18 1994-06-07 Asahi Glass Co Ltd エチレン−テトラフルオロエチレン共重合体の製造方法
JPH06157675A (ja) * 1992-11-25 1994-06-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体の製造方法
JP2780590B2 (ja) * 1992-12-18 1998-07-30 旭硝子株式会社 スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
US5281680A (en) * 1993-01-14 1994-01-25 E. I. Du Pont De Nemours And Company Polymerization of fluorinated copolymers
JPH06211933A (ja) 1993-01-19 1994-08-02 Daikin Ind Ltd 含フッ素重合体の製造方法
JPH11302394A (ja) * 1998-04-16 1999-11-02 Asahi Glass Co Ltd 架橋含フッ素重合体の成形体及びその製造方法
EP1196465A4 (en) * 1999-11-12 2004-12-29 Atofina Chem Inc ORGANO-SILANE-CONTAINING FLUOROPOLYMERS AND METHODS OF MAKING SAME
IT1318594B1 (it) * 2000-06-23 2003-08-27 Ausimont Spa Processo di polimerizzazione di monomeri solfonici.
AU2003241677A1 (en) * 2002-06-14 2004-02-02 Daikin Industries, Ltd. Process for producing fluorocopolymer, fluorocopolymer, and molded object

Also Published As

Publication number Publication date
EP1553111A4 (en) 2008-09-24
US7348386B2 (en) 2008-03-25
AU2003241677A1 (en) 2004-02-02
WO2004007576A1 (ja) 2004-01-22
US20050245707A1 (en) 2005-11-03
EP1553111A1 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
CA1336222C (en) Low equivalent weight sulfonic fluoropolymers
US6610789B2 (en) Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
EP0633274B1 (en) Thermoprocessable copolymers of tetrafluoroethylene
US11254638B2 (en) Nitrileoxide compound
US3642742A (en) Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
JP3980649B2 (ja) パーフルオロ(エチルビニルエーテル)を含有する非晶質フルオロポリマー
JPH06322034A (ja) フツ素化共重合体の重合
RU2441883C2 (ru) Способ получения формуемого из расплава тетрафторэтиленового сополимера
JP3383872B2 (ja) ハロ・パーフルオロおよびパーフルオロエーテルのポリマー
Valade et al. Synthesis and modification of alternating copolymers based on vinyl ethers, chlorotrifluoroethylene, and hexafluoropropylene
CA2856827A1 (en) Crosslinkable vinylidene fluoride and trifluoroethylene polymers
KR20140107428A (ko) 비닐리덴 플루오라이드-트리플루오로에틸렌 중합체에 기반한 가교성 조성물
JP2023158062A (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
WO1999005179A1 (fr) Procede de production d'un polymere fluore
JPWO2004007576A1 (ja) 含フッ素共重合体製造方法、含フッ素共重合体及び成形体
JPWO2003106515A1 (ja) スルホン酸官能基含有フッ素化単量体、それを含有する含フッ素共重合体、およびイオン交換膜
JP5486693B2 (ja) 高交換容量過フッ化イオン交換樹脂、その調製方法、及び使用
JPH0641494B2 (ja) 架橋可能な含フツ素共重合体
JP4449278B2 (ja) 含フッ素成形体、含フッ素成形体製造方法、含フッ素ポリマー及び含フッ素ポリマー製造方法
JP2002212246A (ja) ブロックポリマー、重合体の製造方法及びブロックポリマーを含む液状組成物
JP2002216804A (ja) 固体高分子型燃料電池
JPH06345824A (ja) 含フッ素共重合体の製造方法
JPH03234753A (ja) 高弾性率フッ素樹脂の製造法
JP2003246906A (ja) フッ素系共重合体含有組成物
JP2780590B2 (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090526