JPWO2003010513A1 - 溶液濃度計測方法、これに用いるサンプルセルおよび溶液濃度計測装置 - Google Patents

溶液濃度計測方法、これに用いるサンプルセルおよび溶液濃度計測装置 Download PDF

Info

Publication number
JPWO2003010513A1
JPWO2003010513A1 JP2003515837A JP2003515837A JPWO2003010513A1 JP WO2003010513 A1 JPWO2003010513 A1 JP WO2003010513A1 JP 2003515837 A JP2003515837 A JP 2003515837A JP 2003515837 A JP2003515837 A JP 2003515837A JP WO2003010513 A1 JPWO2003010513 A1 JP WO2003010513A1
Authority
JP
Japan
Prior art keywords
liquid
solution
sample cell
injection
test solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003515837A
Other languages
English (en)
Inventor
河村 達朗
達朗 河村
亀井 明仁
明仁 亀井
湯川 系子
系子 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2003010513A1 publication Critical patent/JPWO2003010513A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1058General features of the devices using the transfer device for another function for mixing
    • G01N2035/106General features of the devices using the transfer device for another function for mixing by sucking and blowing

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

攪拌操作なくして被検液と試薬液の混合液を得ることによって、被検液の特定成分の濃度の計測をより効率化する。被検液に試薬液を注入することによって攪拌しながら、前記被検液と前記試薬液とを含む混合液を得、ついで、前記被検液に光を照射しながら、少なくとも前記試薬液を注入する前の前記被検液の第1の光学特性と、前記試薬液を注入した後の前記被検液の第2の光学特性とを計測し、前記第1の光学特性と前記第2の光学特性とから前記被検液中の特定成分濃度を計測する。

Description

技術分野
本発明は、溶液の攪拌方法に関する。また、本発明は、被検液と試薬液とを混合して被検液中の特定成分の濃度を計測する場合における溶液の攪拌方法に関する。さらに本発明は、これらに用いるサンプルセルにも関する。
特に本発明に係るサンプルセルは、被検液の光学特性を計測する際に使用する場合において、簡易性、高信頼性、小型および低価格などの特徴から高い実用性を発揮する。
背景技術
被検液の光学特性を計測して濃度を算出する場合、被検液中を光が伝搬する構造を有するサンプルセルに被検液を保持させる。このサンプルセルは、ガラスなどからなり直方体形状を有し、光を透過させる面は透明である。このため、光が被検試料中を伝搬することができる。
通常、このサンプルセルの上部は開放されており、この上部の開口部から、スポイト、ピペッタまたはシリンジなどで所定量の被検液をサンプルセルに導入する。つぎに、サンプルセルに所定量の試薬液を注入し、得られた混合液を攪拌棒で攪拌したり、またはサンプルセルを振動させたりすることにより、被検液と試薬液を均一に混ぜていた。そして、混合液の光学特性を計測して前記被検液中の特定成分の濃度を決定していた。
しかし、上記のような従来の方法のように、被検液と試薬液を混合した後に攪拌棒を用いて攪拌したりサンプルセルそのものを振動させたりすることは、操作を煩雑にするという問題があった。さらに、例えば攪拌棒が観測を妨害したり、サンプルセルを光学系から取り外すために混合後から観測を開始するまでに時間がかかったりするなどの問題があった。
これにより、被検液と試薬液との混合直後からの過渡現象を観測する場合、観測の空白時間が増加してしまう。これは、特に被検液と試薬液との反応速度が大きい場合、問題が大きかった。また、サンプルセルを計測光学系から取りはずすと、光学系の配置変化等が発生するため、試薬液との混合前後の光学特性の変化を計測する場合、精度が低下する。
上記の問題点に対し、本発明によると、攪拌棒を使用することもなく、また、サンプルセルを取りはずすこともなく、簡単に、被検液と試薬液を均一に混合することができる。これにより、本発明は、被検液と試薬液との混合直後からの過渡現象を観測する際に、有利である。
以上のように本発明によれば、実用的効果は極めて大きく、計測及び検査の高速化、高精度化、効率化と省力化が可能になる。
発明の開示
本発明は、被検液と試薬液とを混合して得た混合液の光学特性を計測し、前記被検液中の特定成分濃度を計測する溶液濃度計測方法であって、(a)被検液に試薬液を注入することによって攪拌しながら、前記被検液と前記試薬液とを含む混合液を得る工程、および(b)前記被検液に光を照射しながら、少なくとも前記試薬液を注入する前の前記被検液の第1の光学特性と、前記試薬液を注入した後の前記被検液の第2の光学特性とを計測し、前記第1の光学特性と前記第2の光学特性とから前記被検液中の特定成分濃度を計測する工程を含むことを特徴とする溶液濃度計測方法に関する。
前記工程(2)においては、前記第1の光学特性と前記第2の光学特性とを連続的に計測するのが好ましい。
また、前記被検液の体積Vと、前記試薬体の体積Vと、前記試薬液を注入する時間Tとを、所定の関係に設定するのが好ましい。
前記関係が、式(1):
T≦K×(V/V) (1)
(式中、Kは定数)を満たすのが好ましい。前記Kは10以下であるのが好ましい。
さらに、本発明は、液体を保持して前記液体に光を照射しながらその光学特性を計測することのできる液体保持部、および
第1の液体を第2の液体に注入することによって攪拌しながら、前記第1の液体と前記第2の液体とを含む混合液を得ることのできるように、前記液体保持部にあらかじめ保持した前記第1の液体に前記第2の液体を注入するための注入口を具備することを特徴とするサンプルセルにも関する。
あらかじめ保持した前記第1の液体の液面より下に前記注入口が位置し、前記第2の液体が外気に触れることなく前記第1の液体に注入されるのが好ましい。
また、前記注入口からの前記第2の液体の注入方向と、前記光の光軸方向とが、前記液体保持部内で交わるのが好ましい。
前記第1の液体に単一の渦を発生させるように前記第2の液体を注入することができるのが好ましい。
前記注入口からの前記第2の液体の注入方向が、前記液体保持部の一つの内壁面に対して垂直であるのが好ましい。
前記液体保持部が直方体形状を有し、前記注入口が前記液体保持部の一つの側面に位置し、前記注入口の一端が前記側面に垂直な側面に接するのが好ましい。換言すると、前記注入口が前記液体保持部の一つの側面に配置され、前記注入口の一端が、前記側面に垂直な別の側面に接することが好ましい。
前記液体保持部が有底円筒形状を有し、前記注入口からの前記第2の液体の注入方向が、前記注入口と前記液体保持部の内壁が接する地点において、前記内壁に対して平行であるのが好ましい。
また、前記注入口からの前記第2の液体の注入方向が、あらかじめ保持された前記第1の液体の液面に平行であるのが好ましい。
また、前記液体保持部の内周距離D、前記注入口の開口面積Sおよび前記第2の液体の体積Vが所定の関係を満たすのが好ましい。
前記関係が、式(2):
M×D≦V/S≦N×D (2)
(式中、MおよびNはそれぞれ独立した定数)を満たす関係であるのが好ましい。前記Mが1.7であり、前記Nが5であるのが好ましい。
さらに、本発明は、液体を保持して前記液体に光を照射しながらその光学特性を計測することのできる液体保持部、および
第1の液体を第2の液体に注入することによって攪拌しながら、前記第1の液体と前記第2の液体とを含む混合液を得ることのできるように、前記液体保持部にあらかじめ保持した前記第1の液体に前記第2の液体を注入するための注入口を具備することを特徴とするサンプルセルを具備することを特徴とする溶液濃度計測装置にも関する。
発明を実施するための最良の形態
本発明は、(a)被検液に試薬液を注入することによって攪拌しながら、前記被検液と前記試薬液とを含む混合液を得る工程、および(b)前記被検液に光を照射しながら、少なくとも前記試薬液を注入する前の前記被検液の第1の光学特性と、前記試薬液を注入した後の前記被検液の第2の光学特性とを計測し、前記第1の光学特性と前記第2の光学特性とから前記被検液中の特定成分濃度を計測する工程を含むことを特徴とする溶液濃度計測方法に関する。
本発明における被検液としては、尿および血液などの体液、ならびに各種の分散液および溶液などが挙げられる。
また、被検液に含まれる被検物質(特定成分)としては、例えばアルブミン、ヘモグロビンおよび各種ホルモンなどが挙げられる。
したがって、試薬液は被検液および被検物質の種類に応じて適宜選択すればよいが、例えばスルホサリチル酸、および被検物質に特異的に結合する抗体などが挙げられる。
本発明の実施の形態を、図1および2を用いて以下に詳細に説明する。図1は、本発明に係るサンプルセルを含む溶液濃度計測装置の概略上面図である。また、図2は、図1に示す溶液濃度計測装置の概略縦断面図である。
図1および2において、サンプルセル1は、上部に開放された開口部を有する直方体状のアルミニウム製の容器からなる。そして、略平行光4が通る光路の両端に対応して、2つの対向する側面に光学窓としてのガラス板が嵌め込まれている。これにより、略平行光4が、サンプルセル1の液体保持部に保持された被検液中を透過することができる。
ここで、サンプルセル1の溶液保持部内における光の伝搬方向距離、すなわち光学窓間の距離を、図1に示すようにAで表し、光の伝搬方向に対して垂直な方向における側面間の距離をBで表す。本実施の形態では、Aを0.8cm、Bを0.4cmとする。注入口2は、図1に示すように光学窓のない側面の端部に配置され、内径(直径)が0.1cmである。この注入口2の縦断面の中心はサンプルセル1の底面から距離x、光学窓から距離zに位置している。注入方向は、光学窓の面に平行で、後述する略平行光4の光軸と垂直である。このように配置することで、注入口2の断面の中心から注入方向に伸びる注入軸と略平行光4の光軸とが、前記サンプルセル1内の液体保持部において交点を有する。本実施の形態では、xを0.4cm、zを0.1cmとする。
光源3は、半導体レーザモジュールで、波長780nm、強度3.0mW、ビーム直径0.2cmの略平行光4を投射している。この略平行光4の光軸はサンプルセル1の液体保持部の底面に平行で、底面から高さ距離0.4cmに位置している。したがって、光軸と注入口2は、底面から同じ高さに位置している。
被検液を透過した光は光センサ5で検知される。また、ポンプ6から、試薬液を注入口2よりサンプルセル1内の被検液に注入する。光センサ5の出力信号はコンピュータ7によって解析され、コンピュータ7はポンプ6を制御する。なお、符号8で示される矢印は、注入口2より試薬液が注入された時に発生する渦を模式的に示している。
サンプルセル1の液体保持部内において、被検液の液面9の最下部は、液体保持部の底面より高さhに位置する。このサンプルセル1は、内壁の角にrを有するため、すなわち角部が厳密には直角でないため、hが0.8cmの時、約0.25mlの被検液を保持している。矢印10は、注入口2より注入される液体の注入方向を示す。なお、本発明では、液面9の最下部に接する面を液面と定義している。この定義に基づくと、本実施の形態では、注入方向が、液面に対して平行である。
本実施の形態では、まず、被検液としてサンプルセル1に平均直径が20nmのポリスチレン粒子を純水中に均一に分散した分散液を用いる。この被検液は全体が均一に混濁している。この被検液に試薬液として純水を注入する例を示す。純水にポリスチレン粒子を充分に均一に分散させた分散液は、比重が純水のものに近く、ポリスチレン粒子の粒径も小さいため、本発明で示す実験時間内においては、分離および沈殿などの現象は見られない。しかし、攪拌が不十分で均一に分散されなかった場合は、この限りではない。純水をこの被検液に注入すると、ポリスチレン粒子が全体に拡散して、ポリスチレン粒子濃度が低下するので、被検液全体の混濁度合い即ち濁度が低下する。この濁度を透過光強度として光センサ5の出力信号で計測する。
このように、微粒子を含んだ分散液の拡散による混濁の変化は、化学反応が伴わない。したがって、被検液全体の濁度は、ポリスチレン粒子の拡散度合いのみに依存しており、反応速度を勘案する必要がない。すなわち、濁度がある値で安定したことは、微粒子が分散液全体に充分に広がり、均一に分散していることを意味する。これらのことから、微粒子を含んだ分散液を試薬液として被検液に混合して濁度を観測すると、攪拌効果を検証する場合に便利である。
ここで、攪拌とは、液全体の分散状態が実質的に均一になることを意味する。すなわち、液中における特定物質(例えば微粒子)の濃度が、液のどの部分をとっても実質的に同一であることを意味する。
実施例1
まず、上述のポリスチレン粒子を含む被検液0.25mlをサンプルセル1へ導入した。ここで、サンプルセル1に略平行光4を照射しながら、コンピュータ7は光センサ5の出力信号の記録を開始した。この場合の光センサ5の出力信号の時間変化を図3に示した。図3において、横軸は出力信号の記録開始からの経過時間を示し、縦軸は光センサ5の出力信号を示す。記録開始後10秒経過した時点で、コンピュータ7がポンプ6を制御して、注入口2より2秒間で試薬液である純水を注入した。
このように純水を注入した場合における、光センサ5の出力信号の変化を図3の実線で示した。図3で、aは純水を0.1ml注入した場合、bは純水を0.07ml注入した場合、cは純水を0.05ml注入した場合、dは純水を0.03mlを注入した場合における光センサ5の出力信号の変化を示した。この図で、純水の注入を開始する10秒経過時点から2秒以上の期間は、注入された純水の流速(流れ)そのものが略平行光4の光路に侵入するため、透過光の強度および伝搬方向が乱れ、光センサ5の出力信号は激しく変化した。この変化の振幅を、図3でハッチングで示す領域で表した。
すなわち、透過光強度は0.6〜1.4Vの間で変化した。また、同じ体積の純水を用いて再度同じ操作を行った場合、変化の履歴は再現されなかったが、変化の振幅はこの領域で示された。純水の注入量に応じてポリスチレン粒子の濃度が低下するので、濁度も純水の注入量に応じて低下した。
注入量が0.1ml、0.07mlおよび0.05mlの場合は、それぞれ図3の実線a、bおよびcで示されるように、各注入量に応じた出力信号を示し、出力信号そのものも安定した。これは、純水を注入したことによって渦が発生し、充分均一になるまで被検液と純水の混合液を攪拌することができたからである。
一方、純水の注入量が0.03mlの場合は、図3の実線dで示されるように、出力信号が安定しなかった。これは、攪拌が不充分で、分散状態が均一になるまで混合液を攪拌できなかったからである。
このように純水を注入する前のポリスチレン分散液の体積は0.25mlであるので、少なくともその1/5以上、すなわち0.05ml以上の純水を注入することで、充分均一になるまで得られる混合液を攪拌することができた。そして、濁度より、被検液中の特定成分の濃度を計測する場合は、コンピュータ7により、この実線で示す注入後の光センサ5の出力信号を解析して、被検液の濃度を算出することができた。
以上のように、本実施の形態によれば、攪拌棒を使用することなく、かつサンプルセルを光学系から取り外すことなく、被検液および試薬液からなる混合液を溶液を攪拌することができる。したがって、この実施の形態は、液体を混合する前後の濁度を連続的に計測することができ、反応が伴う過渡的濁度変化を観測する場合や、液体を混合する前の被検液の濁度の違いを補償する場合に特に効果的である。また、工程を簡略化することができるとともに誤動作を発生しにくくすることができ、本発明の実用的効果は極めて大きく、計測および検査の効率化および省力化が可能となる。
実施例2
実施例1と同様のポリスチレン粒子を含んだ被検液0.25mlをサンプルセル1に導入した。ここで、略平行光4を照射しながら、コンピュータ7に光センサ5の出力信号の記録を開始させた。記録開始以後の光センサ5の出力信号の時間変化を図4および5の実線eおよびfで示した。図4および5において、横軸で出力信号の記録開始後の経過時間を示し、縦軸で光センサ5の出力信号を示した。10秒経過した時点で、コンピュータ7がポンプ6を制御し、注入口2より純水を0.05ml注入した。ここで、1秒間で注入した場合を図4の実線eで示し、また、2.8秒間で注入した場合を図5の実線fで示した。
図4で、純水の注入を開始する10秒経過時点から1秒間は、注入された純水の流れそのものが略平行光4の光路に侵入するので、透過光の強度および伝搬方向が乱れ、光センサ5の出力信号は激しく変化した。この変化の振幅を、図4でハッチングした領域で示した。すなわち、透過光強度は0.6〜1.42Vの間で変化した。また、同じ条件で操作をした場合に変化の履歴は再現されなかったが、変化の振幅はこの領域で示された。
図5で、純水の注入を開始する10秒経過時点から2.8秒間は、注入された純水の流れそのものが略平行光4の光路に侵入するので、透過光の強度および伝搬方向が乱れるため、光センサ5の出力信号は激しく変化した。この変化の振幅は、図5でハッチングした領域で示した。すなわち、透過光強度は0.6〜1.4Vの間で変化した。また、同じ条件で操作をした場合に、変化の履歴は再現されなかったが、変化の振幅はこの領域で示された。
本実施例では0.05mlの純水を注入した。これは、実施例1における図3のcの場合と同じであった。純水を1秒で注入した図4のeにおいては、図3のcと同様に、光センサ5の出力信号が約1.09Vにまで到達して安定した。一方、純水を2.8秒で注入した図5のfにおいては、図3のcと異なり、光センサ5の出力信号は安定しなかった。これは、攪拌が不充分で、混合液を均一になるまで攪拌できなかったからであった。
実施例1の結果も含めて考えるとわかるように、純水を注入する前のポリスチレン分散液の体積は0.25mlであるので、その1/5以上、すなわち0.05ml以上の純水を少なくとも2秒以内で注入することで、得られる混合液を充分均一になるまで攪拌することができた。
つぎに、注入する純水量が0.07mlの場合の光センサ5の出力信号の時間変化をそれぞれ図6および7の実線gおよびhで示した。図6のgは、2.8秒間で注入した場合を、図7のhは4秒間で注入した場合を示した。図6および7においても、ハッチングした領域は、図3、4および5と同様に、光センサ5の出力信号が激しく変化したことを示し、変化の振幅はこの領域にあった。また、同様に、変化の履歴は再現されなかった。図6のgにおいては、実施例1の図3のbと同様に、光センサ5の出力信号は約1.15Vにまで到達して安定した。
一方、純水を4秒で注入した図7のhにおいては、前記bおよびgと異なり、光センサ5の出力信号は安定しなかった。これは、攪拌が不充分で、均一になるまで混合液を攪拌することができなかったからである。
つぎに、注入する純水量が0.1mlの場合の光センサ5の出力信号の時間変化を図8、9および10の実線i、jおよびkで示した。図8のiは2.8秒間で注入した場合を、図9のjは4秒間で注入した場合を、図10のkは5秒間で注入した場合を示した。この図8、9および10においても、ハッチングした領域は、図3、4、5、6および7と同様に、光センサ5の出力信号は激しく変化していることを示した。また、変化の振幅はこの領域にあったが、変化の履歴は再現されなかった。
図8および9のiおよびjにおいては、実施例1の図3のaと同様に、光センサ5の出力信号は約1.22Vにまで到達して安定した。一方、純水を5秒で注入した図10のkにおいては、前記a、iおよびjと異なり、光センサ5の出力信号は安定しなかった。これは、攪拌が不充分で、均一になるまで混合液を攪拌することができなかったからである。
ここで、本実施例と実施例1のa〜kで示した各条件における攪拌特性を図11に示した。図11においては、横軸で純水を注入する以前の被検液の体積Vに対する、注入する純水の体積Vの比率R(=V/V)を示し、縦軸で純水を注入する時間T(秒)を示した。
図11中の●は、充分均一になるまで攪拌することができた場合を示し、×は攪拌が不充分で均一になるまで攪拌できなかった場合を示している。これらの●および×の右側のa〜kの文字はそれぞれ図3〜10までの各実線a〜kに相当することを示している。また図11の実線はT=10×Rの直線を示している。
この図11から分かるように、少なくともつぎの式(1)を満足する場合は、得られる混合液を充分均一になるまで攪拌することができた。ただし、Kは10(秒)以下である。
T≦K×R (1)
また、図11と式(1)から、注入される液体の体積比率Rが一定の場合は、注入時間Tが所定値以下であれば、充分均一になるまで得られる混合液を攪拌することができることが確認できた。同時に、注入時間Tが一定の場合は、Rが所定値以上であれば、充分均一になるまで攪拌することができることが確認できた。これらは、液体が注入されることによってサンプルセル内の液体に回転する運動エネルギーが与えられ、攪拌されるからである。
すなわち、注入する液体の注入速度(単位時間当たりの注入体積)および注入体積が大きいほど、液体の運動エネルギーが大きくなり、また、サンプルセル内で液体が回転することによって得られる運動エネルギーも大きくなり、攪拌効果が向上するからである。このように、注入体積と注入時間が攪拌効果に大きな影響を有するため、R=V/Vと、注入時間Tとの関係を所定の条件に設定することで、充分な攪拌効果を発生させることができる。特に、上記のような特性から式(1)の関係を満たすと合理的である。さらに上記の実験結果から、少なくともKが10秒以下であれば、充分に攪拌することができることが確認できた。
以上のように、本実施例によれば、攪拌棒を使用することなく、かつサンプルセルを光学系から取り外すことなく、溶液を攪拌することができる。これにより、液体を混合する前後の濁度を連続的に計測できる。したがって、反応が伴う過渡的濁度変化を観測する場合や、液体を混合する前の被検液の濁度の違いを補償する場合に、特に効果的である。また、工程を簡略化することができるとともに誤動作が発生しにくくなり、本発明の実用的効果は極めて大きく、計測および検査の効率化と省力化を可能にする。
実施例3
本発明の実施例3について、まず実施例1と同じ構成の図1および2を用いて以下に詳細に説明する。本実施例においても、被検液としてサンプルセルに平均直径が20nmのポリスチレン粒子を純水中に均一に分散させた分散液を用いた。そして、前記ポリスチレン粒子を含んだ被検液0.25mlをサンプルセル1へ導入した。
ここで、略平行光4を照射しながら、コンピュータ7に光センサ5の出力信号の記録を開始させ、実施例1および2と同様に10秒経過時点より純水を注入し、光センサ5の出力信号の変化を観測して充分均一になるまで攪拌できるかどうかを確認した。
攪拌度合いの判定については、実施例1および2と同様に、光センサ5の出力信号が、純水注入による希釈効果による濁度低下度合いと対応し、出力信号が観測時間内において一定になり、かつこれらが安定的に再現できれば充分な攪拌がなされたと判定した。
この際、比率Rおよび注入時間TがT≦10×Rの関係を満たすように、表1で示す組合わせに設定した。
Figure 2003010513
実施例4
つぎに、図1および2に示した注入口2の大きさを変えた場合、すなわち注入口の直径を0.2cmにした場合について説明する。ここでも実施例3と同様に攪拌度合いを判定した。この際、比率Rおよび注入時間TがT≦10×Rを満たすように、表2で示す組合わせに設定した。
Figure 2003010513
実施例5
つぎに、図1および2に示した注入口2の大きさを変えた場合、すなわち注入口の直径を0.05cmにした場合について説明する。ここでも実施例3と同様に攪拌度合いを判定した。この際、比率Rおよび注入時間TがT≦10×Rの関係を満たすように、表3で示す組合わせに設定した。
Figure 2003010513
表1、2および3において、●は十分攪拌できた場合を示し、×は十分攪拌できなかった場合を示す。なお、この×の場合は、図11のd、f、hおよびkのように、光センサ5の出力信号が充分攪拌されたときの大きさにまで到達しない場合だけでなく、所定時間内で安定しないこともあった。
表1、2および3の結果から、たとえT≦10×Rが満たされていても、×で示されたように充分に攪拌できなかった場合がある。Rに着目して、本発明の好ましい条件を以下のように整理する。
表1において、0.12≦R≦0.4を満たす場合に充分な攪拌がなされた。また、表2においては、0.48≦R≦1.6を満たす場合に充分な攪拌がなされた。表3においては、0.03≦R≦0.1を満たす場合に充分な攪拌がなされた。なお、注入される液体の体積比率Rが一定の場合、注入時間Tが所定値以下であれば、すなわちT≦10×R(式(1))を満足していれば、均一になるまで攪拌できる。そのため、上記Rの範囲と式(1)が同時に満たされれば、充分に攪拌がなされることは言うまでもない。
これら表1、2および3による条件の違いは、注入口の直径の違いであるため、本発明の好ましい条件は以下のようにして一般化することができる。
注入口の開口面積をSとする。注入口の直径が0.1cmの場合のSは約0.00785cmとなり、注入口の直径が0.2cmの場合のSは約0.0314cmとなる。また、注入口の直径が0.05cmの場合のSは約0.00196cmとなる。
つぎに、注入する液体(試薬液)の体積Vおよび注入口の開口面積Sから、V/SをCと定義する。このCは、図1から分かるように、注入口から注入された液体が帯状のまま(拡散せずに)進行したと仮定したときの、その液体の長さ(流束長)に相当する。
このCをRで表現するとCはR・V/Sである。これにV=0.25mlを代入してRをCで表すと、注入口の直径が0.1cmの場合Rは約0.031×C、注入口の直径が0.2cmの場合Rは約0.13×C、注入口の直径が0.05cmの場合Rは約0.0078×Cとなる。
ここで、上述した各Rの範囲からCの範囲を算出すると、注入口の直径が0.1cmの場合は3.9≦C≦13、注入口の直径が0.2cmの場合は3.7≦C≦12、また、注入口の直径が0.05cmの場合は3.8≦C≦13が得られる。すなわち、これらの範囲を満たす場合に充分な攪拌がなされる。そして、これら3つの範囲をすべて満たす範囲は、3.9≦C≦12である。
以上より、流束長Cが3.9〜12cmの範囲にあり、かつ式(1)が満たされれば、充分な攪拌が達成されることが分かる。
実施例6
つぎに、上記の流束長の条件をより一般化するために、図1に示すAおよびBの大きさが異なるサンプルセルを使用して、実施例1、2および5で行った実験を同様に行い、攪拌効果を同様に検証した。この結果を表4に示した。
この際、液体の注入方向を含む水平面に平行な面と前記サンプルセルの内壁とが交わる部分の距離、すなわちサンプルセルの液体保持部の側面の内周距離Dを測定した。例えば、Aが0.8cmでBが0.4cmの場合は、Dは2.4cmとなった(=2×(0.8+0.4))。また、Cの下限をL、上限をHと表現した。
Figure 2003010513
実施例7
また、図12および13に示す溶液濃度計測装置を用いて、上記実施例と同様の実験を行って攪拌効果を検証した。図12は、本発明に係る別のサンプルセルを含む溶液濃度計測装置の概略上面図である。また、図13は、図12に示した本発明に係るサンプルセルを含む溶液濃度計測装置の概略縦断面図である。
図12および13中の符号2〜10で示した構成要素は、図1および2中の符号2〜10と同じ構成要素を示し、その機能も同じである。図12および13において、サンプルセル11はガラス製であり、円筒形状を有する。このサンプルセル11の内径を図12においてφで表す。注入口2は、図12に示すように、注入口2とサンプルセル11の液体保持部の内壁とが接する地点で、注入する液体の注入方向が内壁面および水平面に対して平行になるように設置した。すなわち、注入方向は水平面に平行で、かつ前記地点における液体保持部の内円周の接線方向に平行とした。そして、上記と同様にサンプルセル11の内周距離Dも算出した。実験結果を表5に示した。
Figure 2003010513
表4および5に示す条件をすべて満たす条件は、L≧1.7×DおよびH≦5×Dである。これを式で表すと、式(2):
M×D≦C≦N×D (2)
(式中、Mは1.7、Nは5)が得られる。
少なくとも式(1)および式(2)を満足すると、得られる混合液を充分均一化するまで攪拌することができることになる。式(2)は、流束長Cが、サンプルセルの内周距離Dの1.7〜5倍の範囲にあれば充分な攪拌が実現されることを示している。
以上の結果は、注入する液体の体積および注入速度(単位時間当たりの注入体積)だけでなく、内周距離Dおよび発生させる流束の長さCの関係が攪拌効果に大きな影響を与えていることを意味している。したがって、DとCとを所定の関係に設定することで、充分な攪拌効果を発生させることができる。特に、この内周距離Dと流束の長さCとの比に、充分攪拌することができる適当な範囲が存在していることから式(2)を満たすように設定すると合理的である。さらに、上記の実験結果から、少なくともMが1.7で、Nが5であれば、充分に攪拌できることが確認できる。
以上のように本実施例によれば、攪拌棒を使用することなくかつサンプルセルを光学系から取り外すことなく、溶液を攪拌することができる。これにより、液体を混合する前後の濁度を連続的に計測できる。したがって、反応が伴う過渡的濁度変化を観測する場合や、液体を混合する前の被検液の濁度の違いを補償する場合に、特に効果的である。また、工程を簡略化することができるとともに誤動作が発生しにくくなり、本発明の実用的効果は極めて大きく、計測および検査の効率化と省力化が可能になる。
なお、実施例1〜7では、液体注入後50秒経過時点での光センサ5の出力信号の安定性に基づいて攪拌効果を判定したが、本発明の攪拌方法は、これに限定されるものではない。
また、これらの実施例のように、ポリスチレン粒子分散液に純水を注入しても反応が伴わない場合は、拡散による均一化および攪拌による均一化を区別できる程度の時間だけ光センサ5の出力信号を観測する必要がある。これらの実施例の場合、液体注入後の経過時間が短すぎると攪拌が完了しない。また、経過時間が長すぎると拡散により均一化が完了してしまったり、一旦均一化しても粒子成分が沈殿したり分離したりすることで不均一化することもあるので、攪拌効果を判定するには適さない。
さらに、試薬液の注入により何らかの反応が発生する場合は、反応が完了した時点で光センサ5の出力信号の安定性に基づいて攪拌効果を判定することができる。また、反応が未完了でも、反応による濁度変化を補償することができるのであれば、補償を行って光センサ5の出力信号から攪拌効果を判定することが可能である。
上記実施例においては、注入口2が、試薬液を注入する以前の被検液の液面以下に配置されており、注入される試薬液が雰囲気と接触することなく直接前記被検液に注入することができたので、充分な攪拌効果が得られた。注入口2の断面の中心から保持された被検液の注入方向10へ伸びる注入軸と略平行光4の光軸とが、前記サンプルセルの液体保持部で交点を有するように配置したため、泡などが光学窓に付着して略平行光4の光路を妨害する確率が低くなった。
さらに、注入方向が混合液中に唯一の渦を発生させるように注入口2を配置した場合、および注入方向がサンプルセルの内壁面に対して垂直になるように注入口2を配置した場合、装置全体の動作が安定した。
また、直方体状のサンプルセルを用い、注入口2を側面に配置し、注入口2の一端が前記側面と垂直な側面に接するように配置すると、動作が安定した。
また、円筒形状のサンプルセルにおいて、注入方向が注入口2とサンプルセルの内壁が接する地点で内壁に対して平行になるように、注入口2を配置すると、動作が安定した。
加えて、注入方向が液面に対して平行になるように注入口2を配置すると、動作が安定した。
実施例8
本実施例では、図1および2に示した装置を用い、かつ試薬液としてスルホサリチル酸試薬液(硫酸ナトリウムを2−ヒドロキシ−5−スルホ安息香酸水溶液に溶解した試薬)を用い、被検液中のタンパク質濃度を計測する例である。
本実施例においては、被検液とスルホサリチル酸試薬液とが混合されると、被検液中のタンパク質成分が凝集して、被検液全体が混濁するため、この混濁度合い、すなわち濁度を計測することで、タンパク質濃度を決定する。
ここでは、濁度を透過光強度、すなわち光センサ5の出力信号として計測する。タンパク質濃度が高いほど濁度が高いため、光センサ5の出力信号は小さくなる。なお、ここでは、実施例1〜7と異なり、濁度の生成速度、すなわち光センサ5の出力信号の変化速度には、攪拌効果だけでなく反応(凝集)速度も影響を与えている。また、本実施例では注入口2の直径を0.1cmとし、Aは0.8cm、Bは0.4cmとしている。
まず、タンパク質濃度が0.03mg/dl以下と確認された尿に、尿中の主たるタンパク質であるヒトアルブミンを溶解させ、アルブミン濃度が100mg/dlの被検液を調製した。この被検液0.25mlをサンプルセル1へ導入した。ここで、略平行光4を照射しながら、コンピュータ7に光センサ5の出力信号の記録を開始させた。この光センサ5の出力信号の時間変化を図14に示した。図14において、横軸で経過時間を示し、縦軸で光センサ5の出力信号を示した。
計測開始後60秒経過した時点で、コンピュータ7でポンプ6を制御し、スルホサリチル酸試薬液0.05mlを注入口2より2秒で注入した。このようにスルホサリチル酸試薬液を注入した場合の光センサ5の出力信号を図14の実線で示した。
そして、被検液中の特定成分の濃度を計測する場合は、コンピュータ7で、この実線で示す試薬液混合後の光センサ5の出力信号を解析し、被検液の濃度を算出した。図14の実線で示すように、透過光強度が試薬液注入時点付近で大きく変化するが、これは、注入された試薬液の流束そのものが略平行光7の光路中に侵入して光路が妨害されたためである。この透過光強度が大きく変化する領域をハッチングで示した。
また、図14に、スルホサリチル酸試薬液0.05mlを5秒で注入した場合の光センサ5の出力信号を点線で示した。この点線は、計測開始後から60秒経過するまでは、実線と重なっているが、これ以降は、実線と比較して光センサ5の出力信号の低下速度が小さかった。これは、攪拌作用がなかったためである。したがって、図14で示したように、試薬液混合後360秒経過時点で光センサ5の出力信号は約1.14Vを示し、信号はさらに低下し続け、安定しなかった。
一方、実線で示すように、2秒で注入した場合は、360秒経過時点で光センサ5の出力信号は約0.25Vを示し、信号低下が飽和して信号が充分に安定した。なお、アルブミン濃度が100mg/dlの被検液を攪拌棒などで充分に攪拌した場合でも、光センサ5の出力信号は約0.25Vで安定した。
また、被検液のアルブミン濃度を100mg/dlから0mg/dl、2.5mg/dl、5mg/dl、15mg/dl、30mg/dlまたは60mg/dlに変え、スルホサリチル酸試薬液を2秒間で注入し、上記と同様にして計測を行った。図15に、タンパク質濃度と、混合後360秒経過後の透過光強度との関係を示した。そして、縦軸で試薬液混合後360秒経過した時点の光センサ5の出力信号を示し、横軸で各被検液のタンパク質濃度を示した。
図15の実線に示したように、各点は直線状に並び、この直線を検量線とすることで、高精度にタンパク質濃度を計測することができた。この計測精度は、攪拌棒などで充分に攪拌したときと同程度であった。
一方、3秒、4秒および5秒など、2秒より長い時間でスルホサリチル酸試薬液を注入した場合は、各点は直線に乗らず、かつ再現性も低く、計測の精度は低かった。
本実施例のように、式(1)および(2)を満足する条件で試薬液を注入して攪拌することで、攪拌棒などで充分に攪拌したときと同等の攪拌効果が得られ、高精度な計測を実現することができた。
なお、上記実施例では、透過光を光センサ5で検出して濁度を計測したが、溶液中を略平行光4が伝搬する際に発生した散乱光を検出して濁度を計測しても同様に高精度な計測を実現できた。また、上記実施例においては、液体を注入する期間における注入速度は一定とした。
産業上の利用の可能性
本発明に係る溶液濃度計測方法によれば、攪拌棒などを用いずに溶液と試薬液を攪拌しながら混合することが可能であり、その実用的効果は大きく、計測および検査の効率化および省力化が可能になる。また、被検液中の特定成分と試薬液との反応を連続的に観測することができるため、この点からも実用的効果は極めて大きい。特に本発明に係る溶液濃度計測方法は尿検査に好適である。
【図面の簡単な説明】
図1は、本発明に係るサンプルセルを含む溶液濃度計測装置の概略上面図である。
図2は、図1に示した本発明に係るサンプルセルを含む溶液濃度計測装置の概略縦断面図である。
図3は、実施例1において0.1ml、0.07ml、0.05mlまたは0.03mlの純水を2秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図4は、実施例2において、0.05mlの純水を1秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図5は、実施例2において、0.05mlの純水を2.8秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図6は、実施例2において、0.07mlの純水を2.8秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図7は、実施例2において、0.07mlの純水を4秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図8は、実施例2において、0.1mlの純水を2.8秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図9は、実施例2において、0.1mlの純水を4秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図10は、実施例2において、0.1mlの純水を5秒間で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図11は、実施例1および2における被検液の試薬液に対する比(V/V)と試薬液を注入する時間(T)との関係を示すグラフである。
図12は、本発明に係る別のサンプルセルを含む溶液濃度計測装置の概略上面図である。
図13は、図12に示した本発明に係るサンプルセルを含む溶液濃度計測装置の概略縦断面図である。
図14は、実施例8において、0.05mlのスルホサリチル酸試薬液を2秒間(実線)または5秒間(破線)で注入した場合の計測開始からの経過時間と透過光強度との関係を示すグラフである。
図15は、実施例8において、被検溶液のタンパク質濃度と、試薬液混合から360秒間経過後の出力信号との関係を示すグラフである。

Claims (17)

  1. 被検液と試薬液とを混合して得た混合液の光学特性を計測し、前記被検液中の特定成分濃度を計測する溶液濃度計測方法であって、
    (a)被検液に試薬液を注入することによって攪拌しながら、前記被検液と前記試薬液とを含む混合液を得る工程、および(b)前記被検液に光を照射しながら、少なくとも前記試薬液を注入する前の前記被検液の第1の光学特性と、前記試薬液を注入した後の前記被検液の第2の光学特性とを計測し、前記第1の光学特性と前記第2の光学特性とから前記被検液中の特定成分濃度を計測する工程を含むことを特徴とする溶液濃度計測方法。
  2. 前記工程(2)において、前記第1の光学特性と前記第2の光学特性とを連続的に計測することを特徴とする請求の範囲第1項記載の溶液濃度計測方法。
  3. 前記被検液の体積Vと、前記試薬体の体積Vと、前記試薬液を注入する時間Tとを、所定の関係に設定することを特徴とする請求の範囲第1項記載の溶液濃度計測方法。
  4. 前記関係が、式(1):
    T≦K×(V/V) (1)
    (式中、Kは定数)を満たすことを特徴とする請求の範囲第1項記載の溶液濃度計測方法。
  5. 前記Kが10以下であることを特徴とする請求の範囲第4項記載の溶液濃度計測方法。
  6. 液体を保持して前記液体に光を照射しながらその光学特性を計測することのできる液体保持部、および
    第1の液体を第2の液体に注入することによって攪拌しながら、前記第1の液体と前記第2の液体とを含む混合液を得ることのできるように、前記液体保持部にあらかじめ保持した前記第1の液体に前記第2の液体を注入するための注入口を具備することを特徴とするサンプルセル。
  7. あらかじめ保持した前記第1の液体の液面より下に前記注入口が位置し、前記第2の液体が外気に触れることなく前記第1の液体に注入されることを特徴とする請求の範囲第6項記載のサンプルセル。
  8. 前記注入口からの前記第2の液体の注入方向と、前記光の光軸方向とが、前記液体保持部内で交わることを特徴とする請求の範囲第6項記載のサンプルセル。
  9. 前記第1の液体に単一の渦を発生させるように前記第2の液体を注入することができることを特徴とする請求の範囲第6項記載のサンプルセル。
  10. 前記注入口からの前記第2の液体の注入方向が、前記液体保持部の一つの内壁面に対して垂直であることを特徴とする請求の範囲第6項記載のサンプルセル。
  11. 前記液体保持部が直方体形状を有し、前記注入口が前記液体保持部の一つの側面に位置し、前記注入口の一端が前記側面に垂直な側面に接することを特徴とする請求の範囲第6項記載のサンプルセル。
  12. 前記液体保持部が有底円筒形状を有し、前記注入口からの前記第2の液体の注入方向が、前記注入口と前記液体保持部の内壁が接する地点において、前記内壁に対して平行であることを特徴とする請求の範囲第6項記載のサンプルセル。
  13. 前記注入口からの前記第2の液体の注入方向が、あらかじめ保持された前記第1の液体の液面に平行であることを特徴とする請求の範囲第6項記載のサンプルセル。
  14. 前記液体保持部の内周距離D、前記注入口の開口面積Sおよび前記第2の液体の体積Vが所定の関係を満たすことを特徴とする請求の範囲第6項記載のサンプルセル。
  15. 前記関係が、式(2):
    M×D≦V/S≦N×D (2)
    (式中、MおよびNはそれぞれ独立した定数)を満たす関係であることを特徴とする請求の範囲第14項記載のサンプルセル。
  16. 前記Mが1.7であり、前記Nが5であることを特徴とする請求の範囲第15項記載のサンプルセル。
  17. 液体を保持して前記液体に光を照射しながらその光学特性を計測することのできる液体保持部、および
    第1の液体を第2の液体に注入することによって攪拌しながら、前記第1の液体と前記第2の液体とを含む混合液を得ることのできるように、前記液体保持部にあらかじめ保持した前記第1の液体に前記第2の液体を注入するための注入口を具備することを特徴とするサンプルセルを具備することを特徴とする溶液濃度計測装置。
JP2003515837A 2001-07-26 2002-07-25 溶液濃度計測方法、これに用いるサンプルセルおよび溶液濃度計測装置 Withdrawn JPWO2003010513A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001226406 2001-07-26
JP2001226406 2001-07-26
PCT/JP2002/007573 WO2003010513A1 (fr) 2001-07-26 2002-07-25 Procede de mesure de densite de solution, cellule d'echantillon utilisee pour ledit procede et dispositif de mesure de densite de solution

Publications (1)

Publication Number Publication Date
JPWO2003010513A1 true JPWO2003010513A1 (ja) 2004-11-18

Family

ID=19059231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003515837A Withdrawn JPWO2003010513A1 (ja) 2001-07-26 2002-07-25 溶液濃度計測方法、これに用いるサンプルセルおよび溶液濃度計測装置

Country Status (6)

Country Link
US (1) US20040032590A1 (ja)
EP (1) EP1359404A4 (ja)
JP (1) JPWO2003010513A1 (ja)
KR (1) KR20030033087A (ja)
CN (1) CN1262830C (ja)
WO (1) WO2003010513A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484598A4 (en) * 2002-03-13 2007-11-21 Matsushita Electric Ind Co Ltd METHOD FOR JUDGING THE HOMOGENIZATION / REACTION EXECUTION AND METHOD FOR MEASURING THE CONCENTRATION OF A SOLUTION USING SAID JUDGING METHOD
JP4615342B2 (ja) * 2004-03-23 2011-01-19 パナソニック株式会社 攪拌方法、セルおよびこれを用いた測定装置、測定方法
DE602005017128D1 (de) * 2004-03-23 2009-11-26 Panasonic Corp Mischverfahren, probengefäss, messeinrichtung unter verwendung des probengefässes sowie messverfahren
JP2006234606A (ja) * 2005-02-25 2006-09-07 Yokogawa Electric Corp 濁度計
CN102252941B (zh) * 2011-06-16 2017-09-22 常州钇金环保科技有限公司 检测镀铬溶液中铬酐含量的方法
CN103675095B (zh) * 2013-12-30 2018-01-16 徐州工程学院 车载终端交互的混合物参数非接触检测装置系统
CN109406460B (zh) * 2018-09-21 2021-06-22 江苏大学 一种水体中叶绿素a含量检测装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910834U (ja) * 1982-07-12 1984-01-23 株式会社島津製作所 試料撹「あ」希釈装置
JPS6366466A (ja) * 1986-09-08 1988-03-25 Shimadzu Corp デイスクリ−ト型自動分析装置
CA2035067C (en) * 1990-02-22 1995-06-27 William M. Blough, Jr. Fluid mixing device
US5326165A (en) * 1991-06-26 1994-07-05 Irvine Scientific Sales Co. Mixing apparatus
US5464775A (en) * 1991-09-16 1995-11-07 Chimera Research And Chemical, Inc. Method of detecting adulterant in urine
JP3268400B2 (ja) * 1993-02-03 2002-03-25 株式会社日立製作所 混合反応装置
JP3780599B2 (ja) * 1996-02-09 2006-05-31 日本光電工業株式会社 抗原抗体反応物質の測定方法
JPH09281036A (ja) * 1996-04-10 1997-10-31 Seitai Hikari Joho Kenkyusho:Kk No検出方法および装置
JPH10206328A (ja) * 1997-01-24 1998-08-07 Suido Kiko Kaisha Ltd 水質計
JP3911907B2 (ja) * 1999-06-01 2007-05-09 株式会社明電舎 濁度測定装置と測定方法
DE60032853T2 (de) * 1999-10-28 2007-11-15 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Messung der Konzentration einer Lösung

Also Published As

Publication number Publication date
EP1359404A1 (en) 2003-11-05
KR20030033087A (ko) 2003-04-26
CN1262830C (zh) 2006-07-05
US20040032590A1 (en) 2004-02-19
EP1359404A4 (en) 2004-05-12
WO2003010513A1 (fr) 2003-02-06
CN1464973A (zh) 2003-12-31

Similar Documents

Publication Publication Date Title
JP4606543B2 (ja) 光学特性計測装置における被検溶液量確認方法および計測系制御方法
US9310286B2 (en) Patient sample classification based upon low angle light scattering
US7226777B2 (en) Turbidimetric immunoassay and an apparatus therefor
JPWO2003010513A1 (ja) 溶液濃度計測方法、これに用いるサンプルセルおよび溶液濃度計測装置
JP4121962B2 (ja) 均一化・反応完了判定方法およびこれを用いた溶液濃度計測方法
JP2002286602A (ja) 溶液攪拌方法、溶液攪拌装置、これを用いたサンプルセル及びこれらを用いた溶液濃度計測装置
JP3704035B2 (ja) 自動分析装置
JPS6365369A (ja) 抗原−抗体反応の測定法
CN105229472A (zh) 血液凝固检测方法
KR20220159382A (ko) 라텍스 응집법에 의한 목적 물질의 측정 방법 및 그 시약
EP1729137B1 (en) Agitating method, cell, measuring equipment using the cell, and measuring method
JP2003307521A (ja) 水質分析用マイクロリアクタおよび水質分析装置
JP2005189245A (ja) 溶液濃度計測方法および溶液濃度計測装置
WO2022121495A1 (zh) 一种样本加注方法、样本加注组件以及样本分析仪
JP3694449B2 (ja) 溶液濃度計測方法および溶液濃度計測装置
JPH10300651A (ja) 化学分析装置
JPH04233464A (ja) 粒子の凝集反応分析装置とその使用方法
JPH0743379B2 (ja) 免疫反応自動分析装置
JP2005043350A (ja) 免疫比濁計測方法及び計測装置
WO2023242188A1 (en) Surface plasmon resonance measuring system and a method for surface plasmon resonance measurement for injection of samples using a cuvette-injection-flow system
JPS60128368A (ja) 免疫学的分析方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060725