WO2022121495A1 - 一种样本加注方法、样本加注组件以及样本分析仪 - Google Patents

一种样本加注方法、样本加注组件以及样本分析仪 Download PDF

Info

Publication number
WO2022121495A1
WO2022121495A1 PCT/CN2021/123932 CN2021123932W WO2022121495A1 WO 2022121495 A1 WO2022121495 A1 WO 2022121495A1 CN 2021123932 W CN2021123932 W CN 2021123932W WO 2022121495 A1 WO2022121495 A1 WO 2022121495A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
mixing tank
sample
reagent
reagent inlet
Prior art date
Application number
PCT/CN2021/123932
Other languages
English (en)
French (fr)
Inventor
褚聪
池书锐
甘小锋
刘治志
Original Assignee
深圳市帝迈生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市帝迈生物技术有限公司 filed Critical 深圳市帝迈生物技术有限公司
Publication of WO2022121495A1 publication Critical patent/WO2022121495A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow

Definitions

  • the present application relates to the field of biotechnology, and in particular, to a sample filling method, a sample filling assembly, and a sample analyzer.
  • the inventor of the present application found that the above two methods both have the following drawbacks: since the density of the sample is much greater than that of the reagent, the sample can easily sink into the drainage of the mixing tank before the sample is mixed with the reagent. Due to the slender structure of the drain port, the reagent cannot be mixed with the sample, and the ratio of the sample to the reagent in the mixing tank is not the preset ratio in the design, resulting in deviations in the accuracy of the test results. In addition, if the sample and the reagent are mixed directly by swirling, it may cause uneven dispersion of the sample.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the present application proposes a sample filling method, the method is based on a sample filling assembly, and the sample filling assembly at least includes: a sample needle, a reagent inlet and a mixing tank, and the method includes the following steps : inject the first liquid into the mixing tank through the reagent inlet; when the first liquid is in a non-stationary state in the mixing tank, inject the second liquid into the mixing tank through the sample needle.
  • the present application proposes a sample filling assembly for implementing the aforementioned method, the assembly comprising: a control unit, a sample needle, a reagent supply pipeline and a mixing tank, the mixing There is a reagent inlet above or on the side wall of the homogenization tank, and the control unit is respectively connected to the sample needle and the reagent supply pipeline; the control unit is used to control the reagent supply pipeline to inject the first liquid into the mixing tank through the reagent inlet; the control unit , and is also used to control the sample needle to inject the second liquid into the mixing tank when the first liquid is in a non-stationary state in the mixing tank.
  • the present application proposes a sample analyzer, comprising the aforementioned sample filling component and a detection component, the detection component is connected to a mixing tank of the sample filling component, and is used for performing the analysis on the liquid in the mixing tank. detection.
  • the second liquid will be better dispersed in the first liquid, and then in the mixing tank. Before the second liquid sinks into the liquid outlet of the mixing tank, the mixing of the first liquid and the second liquid is realized.
  • the actual ratio of the first liquid and the second liquid in the mixing tank is closer to the preset ratio in the design, and when the first liquid is the reaction liquid, the The reaction effect between the first liquid and the second liquid is better, and the detection component can obtain relatively accurate detection results according to the liquid to be tested formed by the first liquid and the second liquid, so that the detection results of the sample analyzer are highly accurate.
  • FIG. 1 shows a schematic flowchart of a sample filling method provided by an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a sample filling method provided by another embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application.
  • FIG. 7 shows a structural block diagram of a sample filling component provided by an embodiment of the present application.
  • FIG. 8 shows a structural block diagram of a sample filling component provided by another embodiment of the present application.
  • FIG. 9 shows a structural block diagram of a sample filling component provided by another embodiment of the present application.
  • FIG. 10 shows a structural block diagram of a sample filling component provided by still another embodiment of the present application.
  • FIG. 11 shows a structural block diagram of a sample filling component provided by still another embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a sample analyzer provided by an embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of a sample filling assembly provided by an embodiment of the present application.
  • FIG. 14 shows a schematic structural diagram of a sample filling assembly provided by another embodiment of the present application.
  • FIG. 15 shows a schematic structural diagram of a sample filling assembly provided by another embodiment of the present application.
  • FIG. 1 shows a schematic flowchart of a sample filling method provided by an embodiment of the present application.
  • the method is based on the sample filling assembly 200 shown in FIGS. 13-15 , wherein the sample filling assembly 200 at least includes: a reagent inlet 12 , a sample needle 13 and a mixing tank 201 .
  • the sample needle 13 of this embodiment is used to collect a second liquid and inject the second liquid into the mixing tank 201 , wherein the first liquid is a biological sample, for example, the biological sample may include blood samples, urine samples or other samples.
  • the reagent inlet 12 can be arranged above and/or the side wall of the mixing tank 201 , and the first liquid is injected into the mixing tank 201 through the reagent inlet 12 , wherein the reagent inlet 12 above the mixing tank 201 injects the first liquid into the mixing tank 201 .
  • the first liquid and the first liquid injected into the reagent inlet 12 on the side wall of the mixing tank 201 may be the same or different, which are not limited herein.
  • the first liquid may be sheath liquid or other reaction liquids, such as hemolytic agents, fluorescent dyes, and the like.
  • the mixing tank 201 is used to provide a place for mixing and/or reaction of the first liquid and the second liquid, and a liquid outlet 202 is provided on the bottom wall of the mixing tank 201 for mixing and/or reacting the liquid.
  • the first liquid and the second liquid are output to the detection assembly 100 .
  • the sample filling method may specifically include the following steps:
  • the mixing tank 201 is in a non-stationary state.
  • the first liquid since the first liquid is in a non-stationary state in the mixing tank 201, after the second liquid is injected into the mixing tank 201, the first liquid will be better mixed with the second liquid, and then in the second liquid Before the liquid sinks into the liquid outlet 202 of the mixing tank 201, the first liquid and the second liquid are mixed.
  • the present application has the following beneficial effects: since the first liquid is in a non-stationary state in the mixing tank 201, the second liquid will be better dispersed after the second liquid is injected into the mixing tank 201 into the first liquid, and further before the second liquid sinks into the liquid outlet 202 of the mixing tank 201, the first liquid and the second liquid are mixed uniformly.
  • the actual ratio of the first liquid to the second liquid in the mixing tank 201 is closer to the preset ratio in design, and when the first liquid is the reaction liquid Therefore, the reaction effect of the first liquid and the second liquid is better, and the detection component 100 can obtain relatively accurate detection results according to the liquid to be tested formed by the first liquid and the second liquid, so that the detection results of the sample analyzer are highly accurate.
  • FIG. 2 shows a schematic flowchart of a sample filling method provided by another embodiment of the present application.
  • the sample filling method may specifically include the following steps:
  • the first liquid when the first liquid is in a non-stationary state, the first liquid can be better mixed with the second liquid.
  • the reagent inlet 12 stops injecting the first liquid into the mixing tank 201, and the When a liquid is still in a non-stationary state in the mixing tank 201 , the second liquid is injected into the mixing tank 201 through the sample needle 13 .
  • FIG. 3 shows a schematic flowchart of a sample filling method provided by another embodiment of the present application.
  • the sample filling method may specifically include the following steps:
  • step S22 in this embodiment may inject the second liquid into the mixing tank 201 through the sample needle 13 during the process of injecting the first liquid into the mixing tank 201 from the reagent inlet 12 .
  • both the first liquid and the second liquid have their own gravitational effects or hydrodynamic effects, a better mixing effect can be achieved and mixing time can be saved.
  • the filling process of the first liquid and the filling process of the second liquid are performed simultaneously, which can also save the time of the whole filling process.
  • FIG. 4 and FIGS. 14-15 are schematic flowcharts of a sample filling method provided by still another embodiment of the present application.
  • the reagent inlet 12 is disposed at least on the side wall of the mixing tank 201, and the sample filling method may specifically include the following steps:
  • this step S11 is to make the first liquid injected from the reagent inlet 12 on the side wall of the mixing tank 201 in step S12 to form a swirling flow.
  • the reagent inlet 12 of the side wall is injected with a first volume of the first liquid, and the liquid level of the first volume of the first liquid in the mixing tank 201 is greater than or equal to the height of the reagent inlet 12 in the mixing tank 201 .
  • the first liquid enters the mixing tank 201 from the reagent inlet 12 on the side wall of the mixing tank 201.
  • the first liquid will not directly impact the liquid outlet 202, and the flow resistance of the first liquid is small, so the first liquid can smoothly form a swirling flow along its liquid inlet direction.
  • the degree of mixing of the first liquid and the second liquid is relatively high.
  • FIG. 5 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application.
  • the sample filling method may specifically include the following steps:
  • the second liquid is usually a biological sample with a relatively high viscosity
  • the sample needle 13 is used to inject the second liquid in the air
  • the second liquid is likely to adhere to the outer wall of the liquid outlet, resulting in the injection of the first liquid into the mixing tank 201 .
  • the actual volume of the second liquid is smaller than the preset volume of the second liquid in the design, so that the actual ratio of the sample to the reagent in the mixing tank 201 is not the preset ratio in the design, and the measurement result of the sample analyzer deviates.
  • the liquid outlet of the sample needle 13 is controlled to be below the liquid level in the mixing tank 201 , and the non-stationary first liquid in the mixing tank 201 is used to flush the outer wall of the liquid outlet to ensure the first liquid injected into the mixing tank 201
  • the actual volume of the second liquid is equal to the preset volume of the second liquid in design, which improves the accuracy of the measurement result of the sample analyzer.
  • FIG. 6 shows a schematic flowchart of a sample filling method provided by still another embodiment of the present application.
  • the sample filling method may specifically include the following steps:
  • the first flow rate is less than or equal to the second flow rate, that is, the flow rate of the first liquid entering the mixing tank 201 may be accelerated.
  • first flow rate and the second flow rate can be constant or variable.
  • the first flow rate and the second flow rate may have acceleration.
  • the acceleration may be a constant value, so that the flow rate of the first liquid entering the mixing tank 201 exhibits a linear acceleration trend.
  • the acceleration can also be a variable value, so that the flow rate of the first liquid entering the mixing tank 201 exhibits a curve acceleration trend.
  • the first flow rate and the second flow rate are two of the variable flow rates of the first liquid entering the mixing tank 201 .
  • the third volume is less than or equal to the fourth volume, and the fourth volume of the first liquid can drive the third volume of the first liquid to do a mixing operation, which is conducive to better mixing of the second liquid with the first liquid in step S20. uniform.
  • the total volume of the second liquid injected into the mixing tank 201 is less than the total volume of the first reagent injected into the mixing tank 201 .
  • FIG. 7 shows a structural block diagram of a sample filling component provided by an embodiment of the present application.
  • the sample filling assembly 200 includes: a control unit 11 , a sample needle 13 , a reagent supply pipeline 14 and a mixing tank (not shown in the figure), a reagent inlet 12 is provided above or on the side wall of the mixing tank, and the control unit 11
  • the sample needle 13 and the reagent supply line 14 are directly or indirectly connected, respectively, for example, the control unit 11 is connected to the sample needle 13 and the solenoid valve (not shown) of the reagent supply line 14, or is connected to the sample needle 13 and the solenoid valve (not shown) through a power pump (not shown).
  • the sample needle 13 and the reagent supply line 14 are connected.
  • the control unit 11 is used for controlling the reagent supply pipeline 14 to inject the first liquid into the mixing tank through the reagent inlet 12 .
  • the control unit 11 is further configured to control the sample needle 13 to inject the second liquid into the mixing tank when the first liquid is in a non-stationary state in the mixing tank.
  • the present application has the following beneficial effects: since the first liquid is in a non-stationary state in the mixing tank, after the second liquid is injected into the mixing tank, the second liquid will be better dispersed to the first liquid. The mixing of the first liquid and the second liquid is realized before the second liquid sinks into the liquid outlet of the mixing tank.
  • the actual ratio of the first liquid and the second liquid in the mixing tank is closer to the preset ratio in the design, and when the first liquid is the reaction liquid, the The reaction effect between the first liquid and the second liquid is better, and the detection component 100 can obtain relatively accurate detection results according to the liquid to be tested formed by the first liquid and the second liquid, so that the detection results of the sample analyzer 10 are highly accurate.
  • control unit 11 is further configured to control the sample needle 13 to inject the second liquid into the mixing tank while the reagent inlet 12 injects the first liquid into the mixing tank.
  • the control unit 11 is further configured to control the sample needle 13 to inject the second liquid into the mixing tank when the reagent inlet 12 stops injecting the first liquid into the mixing tank and the first liquid is still in a non-stationary state in the mixing tank.
  • the sample filling assembly 200 further includes: a sample needle moving unit 15 , the sample needle 13 is disposed on the sample needle moving unit 15 , and the control unit 11 is connected to the sample needle moving unit 15 .
  • the control unit 11 is further configured to control the sample needle moving unit 15 to drive the sample needle 13 to move, so that the liquid outlet of the sample needle 13 is located below the liquid level in the mixing tank.
  • the control unit 11 is also used for controlling the sample needle 13 to flow through the liquid outlet of the sample needle 13 to the liquid level in the mixing tank when the liquid outlet of the sample needle 13 is below the liquid level in the mixing tank and the first liquid is in a non-stationary state in the mixing tank.
  • the mixing tank is injected with the second liquid.
  • FIG. 9 shows a structural block diagram of a sample filling component provided by yet another embodiment of the present application.
  • the reagent inlet 12 is at least disposed on the side wall of the mixing tank
  • the sample filling assembly 200 further includes: a first liquid quantitative unit 16 , which is disposed on the reagent supply pipeline 14 .
  • the control unit 11 is connected to the first liquid quantitative unit 16 .
  • the control unit 11 is used to control the first liquid quantitative unit 16 to quantify the first liquid in the reagent supply pipeline 14, and inject a first volume of the first liquid into the mixing tank through the reagent inlet 12, wherein the first liquid is The liquid level height of the volume of the first liquid in the mixing tank is greater than or equal to the height of the reagent inlet 12 in the mixing tank.
  • the control unit 11 is also used to control the first liquid quantification unit 16 to quantify the first liquid in the reagent supply pipeline 14, and inject a second volume of the first liquid into the mixing tank through the reagent inlet 12, so that the A liquid forms a swirling flow in the mixing tank.
  • the sample filling assembly 200 further includes: a power unit 17 , the power unit 17 is arranged on the reagent supply pipeline 14 , and the control unit 11 is connected to the power unit 17 .
  • the power unit 17 may be a power pump.
  • the control unit 11 is used to control the power unit 17 to pressurize the first liquid in the reagent supply pipeline 14, and inject a third volume of the first liquid into the mixing tank through the reagent inlet 12 at a first flow rate.
  • the control unit 11 is also used to control the power unit 17 to pressurize the first liquid in the reagent supply pipeline 14, and inject a fourth volume of the first liquid into the mixing tank through the reagent inlet 12 at a second flow rate.
  • the first flow rate is less than or equal to the second flow rate.
  • the sample filling assembly 200 further includes: a second liquid quantitative unit 18, the second liquid quantitative unit 18 is disposed on the reagent supply pipeline 14, and the control unit 11 is connected to the second liquid quantitative unit 18;
  • the control unit 11 is used to control the second liquid quantification unit 18 to quantify the first liquid in the reagent supply pipeline 14, and to control the power unit 17 to pressurize the first liquid in the reagent supply pipeline 14, and via the reagent
  • the inlet 12 injects the first liquid of the third volume into the mixing tank at the first flow rate;
  • the control unit 11 is used to control the second liquid quantification unit 18 to quantify the first liquid in the reagent supply pipeline 14, and to control the power unit 17 to pressurize the first liquid in the reagent supply pipeline 14, and via the reagent Inlet 12 injects a fourth volume of the first liquid into the mixing tank at a second flow rate.
  • the first flow rate is less than or equal to the second flow rate
  • the third volume is less than or equal to the fourth volume
  • the fourth volume of the first liquid can drive the third volume of the first liquid to perform a mixing operation.
  • FIG. 12 shows a structural block diagram of the sample analyzer 10 provided by an embodiment of the present application.
  • the present application also provides a sample analyzer 10.
  • the sample analyzer 10 can be used to analyze biological samples, and the biological samples can be blood, urine, and the like.
  • the sample analyzer 10 may include one or more of the following components: a sample filling assembly 200 and a detection assembly 100 .
  • the sample filling assembly 200 is the sample filling assembly 200 in the above embodiment.
  • the detection component 100 is connected to the mixing tank of the sample filling component 200, and is used for extracting the liquid in the mixing tank and performing detection.
  • FIG. 11 does not constitute a limitation on the sample analyzer 10, and may include more or less components than the one shown, or combine some components, or adopt different component arrangements .
  • the second liquid will be better dispersed in the first liquid, and then in the mixing tank. Before the second liquid sinks into the liquid outlet of the mixing tank, the mixing of the first liquid and the second liquid is realized.
  • the actual ratio of the first liquid and the second liquid in the mixing tank is closer to the preset ratio in the design, and when the first liquid is the reaction liquid, the The reaction effect between the first liquid and the second liquid is better, and the detection component 100 can obtain relatively accurate detection results according to the liquid to be tested formed by the first liquid and the second liquid, so that the detection results of the sample analyzer 10 are highly accurate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种样本加注方法、样本加注组件(200)以及样本分析仪(10)。样本加注方法基于样本加注组件(200),样本加注组件(200)至少包括:样本针(13)、试剂入口(12)以及混匀池(201)。样本加注方法包括以下步骤:经由试剂入口(12)向混匀池(201)中注入第一液体;当第一液体在混匀池(201)内处于非静止状态时,通过样本针(13)向混匀池(201)注入第二液体。在第二液体沉入到混匀池(201)的出液口(202)之前,实现第一液体与第二液体的混匀,使得样本分析仪(10)的检测结果准确度高。

Description

一种样本加注方法、样本加注组件以及样本分析仪
本申请要求申请号为2020114594212的中国专利申请的优先权,其内容通过引用结合在本申请中。
【技术领域】
本申请涉及生物技术领域,尤其涉及一种样本加注方法、样本加注组件以及样本分析仪。
【背景技术】
在临床检验设备中,如化学发光分析仪、凝血分析仪等样本分析仪,向混匀池中注入样本一般有以下两种方式:(1)先注入试剂,待试剂稳定后再注入样本;(2)先注入样本,再注入试剂。
本申请发明人在长期研发过程中,发现上述两种方式均存在以下弊端:由于样本的密度远大于试剂的密度,在样本与试剂混匀前,样本很容易沉入到混匀池的排液口处,且由于排液口的结构细长,试剂无法与样本混匀,进而导致混匀池内样本与试剂的比例并不是设计时的预设比例,导致测试结果的准确性存在偏差。此外,如果直接通过样本与试剂均为旋流方式进行两者的混匀,可能造成样本分散不均匀。
【发明内容】
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
在本申请的第一个方面,本申请提出了一种样本加注方法,该方法基于样本加注组件,样本加注组件至少包括:样本针、试剂入口以及混匀池,该方法包括以下步骤:经由试剂入口向混匀池中注入第一液体;当第一液体在混匀池内处于非静止状态时,通过样本针向混匀池注入第二液体。
在本申请的第二个方面,本申请提出了一种样本加注组件,该组件用于实现如前述的方法,该组件包括:控制单元、样本针、试剂供应管路以及混匀池,混匀池的上方或侧壁上设有试剂入口,控制单元分别连 接样本针以及试剂供应管路;控制单元,用于控制试剂供应管路经由试剂入口向混匀池中注入第一液体;控制单元,还用于当第一液体在混匀池内处于非静止状态时,控制样本针向混匀池注入第二液体。
在本申请的第三个方面,本申请提出了一种样本分析仪,包括前述的样本加注组件和检测组件,检测组件连接样本加注组件的混匀池,用于对混匀池内液体进行检测。
本申请实施例提供的技术方案可以带来如下有益效果:
相较于现有技术,本申请由于第一液体在混匀池内处于非静止状态,因此,第二液体注入到混匀池后,第二液体将更好地分散到第一液体中,进而在第二液体沉入到混匀池的出液口之前,实现第一液体与第二液体的混匀。此外,由于第一液体与第二液体的混匀程度较高,混匀池内第一液体与第二液体的实际比例更接近设计时的预设比例,且在第一液体为反应液时,第一液体与第二液体的反应效果更好,检测组件能够依据第一液体和第二液体所形成的待测液获得较为准确的检测结果,使得样本分析仪的检测结果准确度高。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1示出了本申请一个实施例提供的样本加注方法的流程示意图;
图2示出了本申请另一个实施例提供的样本加注方法的流程示意图;
图3示出了本申请又一个实施例提供的样本加注方法的流程示意图;
图4示出了本申请再一个实施例提供的样本加注方法的流程示意图;
图5示出了本申请再一个实施例提供的样本加注方法的流程示意图;
图6示出了本申请再一个实施例提供的样本加注方法的流程示意图;
图7示出了本申请一个实施例提供的样本加注组件的结构框图;
图8示出了本申请另一个实施例提供的样本加注组件的结构框图;
图9示出了本申请又一个实施例提供的样本加注组件的结构框图;
图10示出了本申请再一个实施例提供的样本加注组件的结构框图;
图11示出了本申请再一个实施例提供的样本加注组件的结构框图;
图12示出了本申请一个实施例提供的样本分析仪的结构框图;
图13示出了本申请一个实施例提供的样本加注组件的结构示意图;
图14示出了本申请另一个实施例提供的样本加注组件的结构示意图;
图15示出了本申请又一个实施例提供的样本加注组件的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面,通过几个实施例对本申请技术方案进行介绍说明。
请参考图1,其示出了本申请一个实施例提供的样本加注方法的流程示意图。该方法基于如图13-15所示的样本加注组件200,其中,样本加注组件200至少包括:试剂入口12、样本针13以及混匀池201。
具体而言,本实施例的样本针13用于采集第二液体并将该第二液体注入混匀池201内,其中,第一液体为生物样本,例如生物样本可以包括血液样本、尿液样本或其它样本。
其中,试剂入口12可以设置在混匀池201的上方和/或侧壁,经由试剂入口12将第一液体注入混匀池201内,其中,混匀池201的上方 的试剂入口12所注入的第一液体与混匀池201的侧壁的试剂入口12所注入的第一液体可以相同,也可以不同,在此不作限定。第一液体可以为鞘液或其它反应液,例如溶血剂、荧光染料等。
混匀池201用于为第一液体和第二液体提供混合和/或反应的场所,且混匀池201的底壁上设置有出液口202,用于将混匀和/或反应后的第一液体和第二液体输出至检测组件100。
该样本加注方法具体可以包括如下几个步骤:
S10:经由试剂入口12向混匀池201中注入第一液体。
在本实施例中,第一液体注入混匀池201后,因第一液体自身的重力作用或流体动力影响,第一液体会出现晃动、或因旋转流动而形成旋流,导致第一液体在混匀池201内处于非静止状态。
S20:当第一液体在混匀池201内处于非静止状态时,通过样本针13向混匀池201注入第二液体。
具体而言,由于第一液体在混匀池201内处于非静止状态,因此,第二液体注入到混匀池201后,第一液体将更好地与第二液体进行混合,进而在第二液体沉入到混匀池201的出液口202之前,实现第一液体与第二液体的混匀。
相较于现有技术,本申请具有以下有益效果:由于第一液体在混匀池201内处于非静止状态,因此,第二液体注入到混匀池201后,第二液体将更好地分散到第一液体中,进而在第二液体沉入到混匀池201的出液口202之前,实现第一液体与第二液体的混匀。此外,由于第一液体与第二液体的混匀程度较高,混匀池201内第一液体与第二液体的实际比例更接近设计时的预设比例,且在第一液体为反应液时,第一液体与第二液体的反应效果更好,检测组件100能够依据第一液体和第二液体所形成的待测液获得较为准确的检测结果,使得样本分析仪的检测结果准确度高。
请参考图2,其示出了本申请另一个实施例提供的样本加注方法的流程示意图。在一实施例中,该样本加注方法具体可以包括如下几个步骤:
S10:经由试剂入口12向混匀池201中注入第一液体。
S21:当试剂入口12停止向混匀池201中注入第一液体,且第一液体在混匀池201内仍处于非静止状态时,通过样本针13向混匀池201注入第二液体。
具体而言,第一液体处于非静止状态时,第一液体可更好地与第二液体进行混合,本实施例可以在试剂入口12停止向混匀池201中注入第一液体后,且第一液体在混匀池201内仍处于非静止状态时,通过样本针13向混匀池201注入第二液体。
请参考图3,其示出了本申请又一个实施例提供的样本加注方法的流程示意图。在一实施例中,该样本加注方法具体可以包括如下几个步骤:
S10:经由试剂入口12向混匀池201中注入第一液体。
S22:在经由试剂入口12向混匀池201中注入第一液体的同时,通过样本针13向混匀池201注入第二液体。
具体而言,与步骤S21不同的是,本实施例步骤S22可以在试剂入口12向混匀池201中注入第一液体的过程中,通过样本针13向混匀池201注入第二液体。此时,由于第一液体和第二液体两者均有自身的重力作用或流体动力影响,可以实现更好的混匀效果,并节省混匀时间。此外,第一液体的加注过程与第二液体的加注过程同时进行,还能够节省整个加注流程的时间。
请参考图4以及图14-15,其示出了本申请再一个实施例提供的样本加注方法的流程示意图。在一实施例中,试剂入口12至少设置在混匀池201的侧壁上,该样本加注方法具体可以包括如下几个步骤:
S11:经由试剂入口12向混匀池201中注入第一体积的第一液体,其中,第一体积的第一液体在混匀池201内的液面高度大于或等于试剂入口12在混匀池201内的高度。
具体而言,本步骤S11的目的是:使步骤S12中自混匀池201的侧壁上的试剂入口12注入的第一液体形成旋流,因此,可以通过位于混匀池201的上方和/或侧壁的试剂入口12注入第一体积的第一液体,第 一体积的第一液体在混匀池201内的液面高度大于或等于试剂入口12在混匀池201内的高度。
S12:经由试剂入口12向混匀池201中注入第二体积的第一液体,以使第一液体在混匀池201内形成旋流。
由于混匀池201侧壁的试剂入口12的中心线与混匀池201底壁的出液口202的中心线错开设置,因此第一液体自混匀池201侧壁的试剂入口12进入混匀池201时,第一液体不会直接冲击出液口202,第一液体的流动阻力小,因此第一液体能够顺利沿其进液方向形成旋流。
S20:当第一液体在混匀池201内处于非静止状态时,通过样本针13向混匀池201注入第二液体。
具体而言,当第一液体在混匀池201内为旋流状态时,第一液体与第二液体的混匀程度较高。
请参考图5,其示出了本申请再一个实施例提供的样本加注方法的流程示意图。在一实施例中,该样本加注方法具体可以包括如下几个步骤:
S10:经由试剂入口12向混匀池201中注入第一液体。
S23:控制样本针13的出液口位于混匀池201内的液面以下。
S24:当第一液体在混匀池201内处于非静止状态时,通过样本针13的出液口向混匀池201注入第二液体。
具体而言,由于第二液体通常为黏度较大的生物样本,若采用样本针13悬空注入第二液体,第二液体容易粘附在出液口的外壁处,导致注入混匀池201的第二液体的实际体积小于设计时的第二液体的预设体积,进而导致混匀池201内样本与试剂的实际比例并不是设计时的预设比例,样本分析仪的测量结果出现偏差,因此,本实施例控制样本针13的出液口位于混匀池201内的液面以下,利用混匀池201内非静止的第一液体冲洗出液口的外壁,以保证注入混匀池201的第二液体的实际体积等于设计时的第二液体的预设体积,提高样本分析仪测量结果的准确性。
请参考图6,其示出了本申请再一个实施例提供的样本加注方法的 流程示意图。在一实施例中,该样本加注方法具体可以包括如下几个步骤:
S13:经由试剂入口12以第一流速向混匀池201中注入第三体积的第一液体。
S14:经由试剂入口12以第二流速向混匀池201中注入第四体积的第一液体。
其中,第一流速小于或等于第二流速,也就是说,第一液体进入混匀池201的流速可以呈加速趋势。
可以理解的是,第一流速和第二流速可以是恒定的,也可以是变化的。
在其他实施例中,第一流速和第二流速可以具有加速度。其中,该加速度可为恒定值,使得第一液体进入混匀池201的流速呈直线加速趋势。该加速度也可为变化的值,使得第一液体进入混匀池201的流速呈曲线加速趋势。此时,第一流速和第二流速为第一液体进入混匀池201的变化流速中的其中两个流速。
进一步地,第三体积小于或等于第四体积,第四体积的第一液体可带动第三体积的第一液体做混匀操作,有利于步骤S20中第二液体更好地与第一液体混匀。
S20:当第一液体在混匀池201内处于非静止状态时,通过样本针13向混匀池201注入第二液体。
在某一实施例中,注入混匀池201的第二液体的总体积小于注入混匀池201的第一试剂的总体积。
请参考图7,其示出了本申请一个实施例提供的样本加注组件的结构框图。在一实施例中,该样本加注组件200用于实现上述实施例的样本加注方法。该样本加注组件200包括:控制单元11、样本针13、试剂供应管路14以及混匀池(图未示出),混匀池的上方或侧壁上设有试剂入口12,控制单元11分别直接或间接连接样本针13以及试剂供应管路14,例如控制单元11连接样本针13以及试剂供应管路14的电磁阀(图未示出)、或通过动力泵(图未示出)与样本针13以及试剂供 应管路14连接。
控制单元11,用于控制试剂供应管路14经由试剂入口12向混匀池中注入第一液体。
控制单元11,还用于当第一液体在混匀池内处于非静止状态时,控制样本针13向混匀池注入第二液体。
相较于现有技术,本申请具有以下有益效果:由于第一液体在混匀池内处于非静止状态,因此,第二液体注入到混匀池后,第二液体将更好地分散到第一液体中,进而在第二液体沉入到混匀池的出液口之前,实现第一液体与第二液体的混匀。此外,由于第一液体与第二液体的混匀程度较高,混匀池内第一液体与第二液体的实际比例更接近设计时的预设比例,且在第一液体为反应液时,第一液体与第二液体的反应效果更好,检测组件100能够依据第一液体和第二液体所形成的待测液获得较为准确的检测结果,使得样本分析仪10的检测结果准确度高。
在一实施例中,控制单元11,还用于在试剂入口12向混匀池中注入第一液体的同时,控制样本针13向混匀池注入第二液体。
控制单元11,还用于在试剂入口12停止向混匀池中注入第一液体,且第一液体在混匀池内仍处于非静止状态时,控制样本针13向混匀池注入第二液体。
请参考图8,其示出了本申请另一个实施例提供的样本加注组件的结构框图。在一实施例中,该样本加注组件200还包括:样本针移动单元15,样本针13设置在样本针移动单元15上,控制单元11连接样本针移动单元15。
控制单元11,还用于控制样本针移动单元15带动样本针13移动,以使样本针13的出液口位于混匀池内的液面以下。
控制单元11,还用于在样本针13的出液口位于混匀池内的液面以下,且第一液体在混匀池内处于非静止状态时,控制样本针13经样本针13出液口向混匀池注入第二液体。
请参考图9,其示出了本申请又一个实施例提供的样本加注组件的结构框图。在一实施例中,试剂入口12至少设于混匀池的侧壁上,该 样本加注组件200还包括:第一液体定量单元16,第一液体定量单元16设于试剂供应管路14上,控制单元11连接第一液体定量单元16。
控制单元11,用于控制第一液体定量单元16对试剂供应管路14内的第一液体进行定量,并经由试剂入口12向混匀池中注入第一体积的第一液体,其中,第一体积的第一液体在混匀池内的液面高度大于或等于试剂入口12在混匀池内的高度。
控制单元11,还用于控制第一液体定量单元16对试剂供应管路14内的第一液体进行定量,并经由试剂入口12向混匀池中注入第二体积的第一液体,以使第一液体在混匀池内形成旋流。
请参考图10,其示出了本申请再一个实施例提供的样本加注组件的结构框图。在一实施例中,该样本加注组件200还包括:动力单元17,动力单元17设于试剂供应管路14上,且控制单元11连接动力单元17。其中,动力单元17可以为动力泵。
控制单元11,用于控制动力单元17为试剂供应管路14内的第一液体进行加压,并经由试剂入口12以第一流速向混匀池中注入第三体积的第一液体。
控制单元11,还用于控制动力单元17为试剂供应管路14内的第一液体进行加压,并经由试剂入口12以第二流速向混匀池中注入第四体积的第一液体。
其中,第一流速小于或等于第二流速。
请参考图11,其示出了本申请再一个实施例提供的样本加注组件的结构框图。在一实施例中,该样本加注组件200还包括:第二液体定量单元18,第二液体定量单元18设于试剂供应管路14上,控制单元11连接第二液体定量单元18;
控制单元11,用于控制第二液体定量单元18对试剂供应管路14内的第一液体进行定量,并控制动力单元17为试剂供应管路14内的第一液体进行加压,并经由试剂入口12以第一流速向混匀池中注入第三体积的第一液体;
控制单元11,用于控制第二液体定量单元18对试剂供应管路14内 的第一液体进行定量,并控制动力单元17为试剂供应管路14内的第一液体进行加压,并经由试剂入口12以第二流速向混匀池中注入第四体积的第一液体。
其中,第一流速小于或等于第二流速,第三体积小于或等于第四体积,第四体积的第一液体可带动第三体积的第一液体做混匀操作。
请参考图12,其示出了本申请一个实施例提供的样本分析仪10的结构框图。本申请还提供一种样本分析仪10,样本分析仪10可用于进行生物样本分析,生物样本可以为血液、尿液等。样本分析仪10可以包括一个或多个如下部件:样本加注组件200和检测组件100,样本加注组件200为上述实施例中的样本加注组件200。检测组件100连接样本加注组件200的混匀池,用于抽取混匀池内液体并进行检测。
本领域技术人员可以理解,图11中示出的结构并不构成对样本分析仪10的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
相较于现有技术,本申请由于第一液体在混匀池内处于非静止状态,因此,第二液体注入到混匀池后,第二液体将更好地分散到第一液体中,进而在第二液体沉入到混匀池的出液口之前,实现第一液体与第二液体的混匀。此外,由于第一液体与第二液体的混匀程度较高,混匀池内第一液体与第二液体的实际比例更接近设计时的预设比例,且在第一液体为反应液时,第一液体与第二液体的反应效果更好,检测组件100能够依据第一液体和第二液体所形成的待测液获得较为准确的检测结果,使得样本分析仪10的检测结果准确度高。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种样本加注方法,其特征在于,所述方法基于样本加注组件,所述样本加注组件至少包括:样本针、试剂入口以及混匀池;
    所述方法包括以下步骤:
    经由所述试剂入口向所述混匀池中注入第一液体;
    当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针向所述混匀池注入第二液体。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针向所述混匀池注入第二液体的步骤,包括:
    在经由所述试剂入口向所述混匀池中注入所述第一液体的同时,通过所述样本针向所述混匀池注入所述第二液体。
  3. 根据权利要求1所述的方法,其特征在于,当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针向所述混匀池注入第二液体的步骤,包括:
    当所述试剂入口停止向所述混匀池中注入所述第一液体,且所述第一液体在所述混匀池内仍处于非静止状态时,通过所述样本针向所述混匀池注入第二液体。
  4. 根据权利要求1所述的方法,其特征在于,所述试剂入口至少设于所述混匀池的侧壁上,所述经由所述试剂入口向所述混匀池中注入第一液体的步骤,包括:
    经由所述试剂入口向所述混匀池中注入第一体积的所述第一液体,其中,所述第一体积的所述第一液体在所述混匀池内的液面高度大于或等于所述试剂入口在所述混匀池内的高度;
    经由所述试剂入口向所述混匀池中注入第二体积的所述第一液体,以使所述第一液体在所述混匀池内形成旋流。
  5. 根据权利要求1所述的方法,其特征在于,所述当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针向所述混匀池注入第二液体的步骤包括:
    控制所述样本针的出液口位于所述混匀池内的液面以下;
    当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针的出液口向所述混匀池注入第二液体。
  6. 根据权利要求1所述的方法,其特征在于,所述经由所述试剂入口向所述混匀池中注入第一液体的步骤,包括:
    经由所述试剂入口以第一流速向所述混匀池中注入第三体积的所述第一液体;
    经由所述试剂入口以第二流速向所述混匀池中注入第四体积的所述第一液体;
    其中,所述第一流速小于或等于所述第二流速。
  7. 根据权利要求6所述的方法,其特征在于,所述第三体积小于或等于所述第四体积。
  8. 根据权利要求1所述的方法,其特征在于,所述第一流速和所述第二流速具有恒定或者变化的加速度。
  9. 一种样本加注组件,其特征在于,所述组件用于实现如权利要求1-8任一项所述的方法,所述组件包括:控制单元、样本针、试剂供应管路以及混匀池,所述混匀池的上方或侧壁上设有试剂入口,所述控制单元分别连接所述样本针以及所述试剂供应管路;
    所述控制单元,用于控制所述试剂供应管路经由所述试剂入口向所述混匀池中注入第一液体;
    所述控制单元,还用于当所述第一液体在所述混匀池内处于非静止状态时,控制所述样本针向所述混匀池注入第二液体。
  10. 根据权利要求9所述的组件,其特征在于,所述控制单元,还用于在经由所述试剂入口向所述混匀池中注入所述第一液体的同时,通过所述样本针向所述混匀池注入所述第二液体。
  11. 根据权利要求9所述的组件,其特征在于,所述控制单元,还用于当所述试剂入口停止向所述混匀池中注入所述第一液体,且所述第一液体在所述混匀池内仍处于非静止状态时,通过所述样本针向所述混匀池注入第二液体。
  12. 根据权利要求9所述的组件,其特征在于,所述试剂入口至少设于所述混匀池的侧壁上;
    所述组件还包括:第一液体定量单元,所述第一液体定量单元设于所述试剂供应管路上,所述控制单元连接所述第一液体定量单元;
    所述控制单元,用于控制所述第一液体定量单元对所述试剂供应管路内的所述第一液体进行定量,并经由所述试剂入口向所述混匀池中注入第一体积的所述第一液体,其中,所述第一体积的所述第一液体在所述混匀池内的液面高度大于或等于所述试剂入口在所述混匀池内的高度;
    所述控制单元,还用于控制所述第一液体定量单元对所述试剂供应管路内的所述第一液体进行定量,并经由所述试剂入口向所述混匀池中注入第二体积的所述第一液体,以使所述第一液体在所述混匀池内形成旋流。
  13. 根据权利要求9所述的组件,所述控制单元,用于控制所述样本针的出液口位于所述混匀池内的液面以下;
    所述控制单元,还用于当所述第一液体在所述混匀池内处于非静止状态时,通过所述样本针的出液口向所述混匀池注入第二液体。
  14. 根据权利要求9所述的组件,其特征在于,所述组件还包括:动力单元,所述动力单元设于所述试剂供应管路上,且所述控制单元连接所述动力单元;
    所述控制单元,用于控制所述动力单元为所述试剂供应管路内的所述第一液体进行加压,并经由所述试剂入口以第一流速向所述混匀池中注入所述第一液体;
    所述控制单元,还用于控制所述动力单元为所述试剂供应管路内的所述第一液体进行加压,并经由所述试剂入口以第二流速向所述混匀池中注入所述第一液体;
    其中,所述第一流速小于或等于所述第二流速。
  15. 根据权利要求14所述的组件,其特征在于,所述组件还包括:第二液体定量单元,所述第二液体定量单元设于所述试剂供应管路上, 所述控制单元连接所述第二液体定量单元;
    所述控制单元,用于控制所述第二液体定量单元对所述试剂供应管路内的所述第一液体进行定量,并控制所述动力单元为所述试剂供应管路内的所述第一液体进行加压,并经由所述试剂入口以所述第一流速向所述混匀池中注入第三体积的所述第一液体;
    所述控制单元,用于控制所述第二液体定量单元对所述试剂供应管路内的所述第一液体进行定量,并控制所述动力单元为所述试剂供应管路内的所述第一液体进行加压,并经由所述试剂入口以所述第二流速向所述混匀池中注入第四体积的所述第一液体;
    所述第三体积小于或等于所述第四体积。
  16. 一种样本分析仪,其特征在于,包括如权利要求9-15任一项所述的样本加注组件和检测组件,所述检测组件连接所述样本加注组件的混匀池,用于对所述混匀池内液体进行检测。
PCT/CN2021/123932 2020-12-11 2021-10-14 一种样本加注方法、样本加注组件以及样本分析仪 WO2022121495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011459421.2 2020-12-11
CN202011459421.2A CN114618419A (zh) 2020-12-11 2020-12-11 一种样本加注方法、样本加注组件以及样本分析仪

Publications (1)

Publication Number Publication Date
WO2022121495A1 true WO2022121495A1 (zh) 2022-06-16

Family

ID=81895886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123932 WO2022121495A1 (zh) 2020-12-11 2021-10-14 一种样本加注方法、样本加注组件以及样本分析仪

Country Status (2)

Country Link
CN (1) CN114618419A (zh)
WO (1) WO2022121495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798581A (zh) * 2022-06-28 2022-07-29 深圳市帝迈生物技术有限公司 样本分析仪的清洗装置及其清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419240A (zh) * 2007-10-23 2009-04-29 深圳迈瑞生物医疗电子股份有限公司 样本分析装置和样本分析方法
JP2016211893A (ja) * 2015-04-30 2016-12-15 シスメックス株式会社 検体分析カートリッジを用いた検体分析方法、検体分析カートリッジ、および、検体分析装置
CN110873662A (zh) * 2018-08-31 2020-03-10 深圳市帝迈生物技术有限公司 液路系统、混匀方法及样本分析装置
CN111024481A (zh) * 2019-12-30 2020-04-17 深圳开立生物医疗科技股份有限公司 一种样本混匀方法及样本分析仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677387B2 (en) * 2002-06-03 2004-01-13 Intevep, S.A. Preparation of stable emulsion using dynamic or static mixers
CN201148418Y (zh) * 2007-07-09 2008-11-12 中国市政工程华北设计研究院 二甲醚与液化石油气液相掺混装置
CN101581729B (zh) * 2009-06-05 2012-06-27 何峰 液体样本处理装置
CN103084226B (zh) * 2011-10-31 2016-01-20 深圳迈瑞生物医疗电子股份有限公司 一种样本液反应池
CN206848287U (zh) * 2017-06-30 2018-01-05 深圳迈瑞生物医疗电子股份有限公司 反应组件及样本分析仪
CN110418967B (zh) * 2017-06-30 2024-02-06 深圳迈瑞生物医疗电子股份有限公司 反应组件、样本分析仪及混合方法
CN212031507U (zh) * 2019-11-30 2020-11-27 深圳市帝迈生物技术有限公司 一种血液检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419240A (zh) * 2007-10-23 2009-04-29 深圳迈瑞生物医疗电子股份有限公司 样本分析装置和样本分析方法
JP2016211893A (ja) * 2015-04-30 2016-12-15 シスメックス株式会社 検体分析カートリッジを用いた検体分析方法、検体分析カートリッジ、および、検体分析装置
CN110873662A (zh) * 2018-08-31 2020-03-10 深圳市帝迈生物技术有限公司 液路系统、混匀方法及样本分析装置
CN111024481A (zh) * 2019-12-30 2020-04-17 深圳开立生物医疗科技股份有限公司 一种样本混匀方法及样本分析仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798581A (zh) * 2022-06-28 2022-07-29 深圳市帝迈生物技术有限公司 样本分析仪的清洗装置及其清洗方法
CN114798581B (zh) * 2022-06-28 2022-10-28 深圳市帝迈生物技术有限公司 样本分析仪的清洗装置及其清洗方法

Also Published As

Publication number Publication date
CN114618419A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN102401834B (zh) 一种高温高浓稠料液多通道在线取样进样方法
JP4606543B2 (ja) 光学特性計測装置における被検溶液量確認方法および計測系制御方法
US20240295577A1 (en) Sample analyzer and mixing method
WO2022121495A1 (zh) 一种样本加注方法、样本加注组件以及样本分析仪
CN105716933B (zh) 一种定容积比例稀释装置以及方法
CN110270564B (zh) 一种反应物的清洗方法和样本分析仪
CN118067591A (zh) 一种用于血液分析的耗材
CN111024481A (zh) 一种样本混匀方法及样本分析仪
CN207457252U (zh) 一种血红蛋白反应装置及样本分析仪
CN211978707U (zh) 特定蛋白分析仪
CN213580824U (zh) 一种水质分析用取样滴定检测装置
CN102778383B (zh) 一种溶液自动稀释设备
JPWO2003076913A1 (ja) 均一化・反応完了判定方法およびこれを用いた溶液濃度計測方法
US20040032590A1 (en) Solution concentration measuring method, and sample cell and solution concentration measuring therefor
CN108449963B (zh) 单次注射竞争分析
CN110261595A (zh) 适于化学发光免疫分析仪的样本液稀释混匀方法
CN112485251A (zh) 特定蛋白分析仪及混匀方法
CN209148415U (zh) 一种冲击试样深冷器
CN202710386U (zh) 一种溶液自动稀释设备
KR20170091898A (ko) 자동 혈구 분석용 멀티 디스펜서
CN215066607U (zh) 一种水质质控装置
CN113884688A (zh) 特定蛋白分析仪、测定方法及计算机可读存储介质
JPS5784346A (en) Measuring apparatus of body liquid component
CN210572282U (zh) 定容组件及加标回收率测试装置
CN114323783B (zh) 一种采样方法、采样组件以及样本分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902203

Country of ref document: EP

Kind code of ref document: A1