JPS643158B2 - - Google Patents

Info

Publication number
JPS643158B2
JPS643158B2 JP55089871A JP8987180A JPS643158B2 JP S643158 B2 JPS643158 B2 JP S643158B2 JP 55089871 A JP55089871 A JP 55089871A JP 8987180 A JP8987180 A JP 8987180A JP S643158 B2 JPS643158 B2 JP S643158B2
Authority
JP
Japan
Prior art keywords
sludge
water
slurry
biological treatment
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089871A
Other languages
Japanese (ja)
Other versions
JPS5715898A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP8987180A priority Critical patent/JPS5715898A/en
Publication of JPS5715898A publication Critical patent/JPS5715898A/en
Publication of JPS643158B2 publication Critical patent/JPS643158B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿、下水、廃水、浄化槽汚泥など
有機性廃液の新規、かつ、合理的な処理方法に関
するものである。 従来のし尿処理プロセスの問題点は、 活性汚泥法、生物学的硝化脱窒素法などの生
物処理プロセスでは、リン酸および難生物分解
性のCOD、色度が除去できないので、生物処
理水に硫酸ばん土、塩化第2鉄などの無機凝集
剤を多量に添加して凝集沈殿や凝集浮上などを
行わなければならない。(例えば、し尿の10倍
希釈生物処理水では硫酸ばん土は800mg/程
度、無希釈換算では8000mg/と極めて多量に
添加する必要がある。)この結果、難脱水性の
無機性スラツジが多量に発生し、また、ランニ
ングコストが高価につくなど、その処理、処分
が深刻な問題となつている。 汚泥脱水用の薬品と凝集沈殿用の薬品をそれ
ぞれ別個に必要とし、したがつて、この点もラ
ンニングコストが高価となる原因になつてい
る。 生物処理余剰汚泥の脱水性も極めて悪く、凝
集沈殿スラツジよりも処理、処分に難点があ
る。 生物処理工程に流入する廃液に対し、その10
倍程度の、多量の清浄な希釈水(地下水、河川
水など)を添加しなければならないので、水源
の確保が困難な処理場では、し尿処理そのもの
が実施困難となる問題があり、さらに、放流水
の水質は見掛け上は良好であつても、実際は約
10倍も希釈しているので、総量負荷的には、さ
ほど良好な処理水質が得られているわけではな
い。 本発明は、新規な発想によつて、上記従来の種
種の問題点を根本的に解決する有機性廃液の処理
方法を提供することを目的とするものである。 すなわち、本発明は有機性廃液を生物学的硝化
脱窒素工程で処理し、該生物学的硝化脱窒素工程
からの処理水と余剰汚泥との混合スラリーに鉄の
硫酸塩と、アルカリ剤として水酸化マグネシウム
及び/又は酸化マグネシウムを添加混合したの
ち、機械脱水を含む後処理工程にて固液分離する
ことを特徴とする有機性廃液の処理方法である。 本発明の実施態様を図面を参照しながら説明す
ると、第1図において、し尿、浄化槽汚泥などの
(有機性)廃液1は、生物学的硝化脱窒素法によ
る生物処理工程2に流入し生物処理を受ける。こ
の生物処理は無希釈で行うことが最も好ましく、
この点は従来のし尿処理と大きく相異する。しか
して、生物処理工程2内のスラリー(Mixed−
Liquor)の一部をスラリー6bとして遠心濃縮、
浮上分離などの汚泥濃縮工程3に流させ、濃縮汚
泥4aを返送汚泥4bとして生物処理工程2にリ
サイクルする。一方、濃縮分離水5は生物処理工
程2からの流出スラリー6a(余剰汚泥が含まれ
ている)と混合されて、混合スラリー7となり、
貯留槽8に流入する。なお、廃水1を無希釈で処
理する場合、廃水1の流入量と混合スラリー7の
流量は等しい。 貯留槽8からのスラリーは次いで薬剤混和槽9
に流入し、ここで凝集剤として鉄の硫酸塩10
を、アルカリ剤11としてMg(OH)2又はMgOを
添加混合して化学反応処理されたのち、フイルタ
ープレスなどの機械脱水機12により脱水ケーキ
13と脱水分離水14に分離される。 この脱水分離水14が廃水1の処理水に相当す
る点が本発明を構成する重要な要素の一つになつ
ている。なお、従来のように廃水1を高い倍率で
希釈して生物処理するのは、機械脱水機12に流
入するスラリー量が膨大となり好ましくない。 しかして、脱水分離水14は次いでPH調整剤3
2の添加によりPH6〜8程度に調整されたのち放
流される。なお、所望により、砂過機15によ
る処理又は活性炭吸着装置、オゾン処理装置もし
くはエアレーシヨン処理装置など(いずれも図示
せず)による処理を行つてから放流してもよい。 本発明の別の実施態様は第2図のとおりである
が、これは、薬剤混和槽9からのスラリーは、予
め浮上濃縮装置又は重力濃縮装置を使用する汚泥
濃縮工程16により濃縮して濃縮汚泥17と濃縮
分離水18に分離し、濃縮汚泥17を機械脱水機
12に送り、得られる脱水分離水14と濃縮分離
水18を処理水とするものである。この実施態様
は、消泡などの目的で止むを得ず生物処理工程2
内に希釈水を混合した場合に特に効果的処理プロ
セスとなる。 前記汚泥濃縮工程16として浮上濃縮装置又は
重力濃縮装置を使用する場合は問題ないが、遠心
濃縮機を用いる場合は濃縮分離水18中に多少の
SS分が含まれてしまうので、砂過機15の前
に沈殿池19を設けてSS分を分離する必要があ
る。なお、ここで得られる沈殿汚泥20は貯留槽
8にリサイクルすることが好ましい。 本発明においては、生物処理水と余剰汚泥との
前記混合スラリー7は重要な意味を持つので、こ
こで、この混合スラリー7を得る方法の実施態様
を図面により詳述する。 まず、第3図1に示す例では、生物処理工程2
から一部のスラリー6bを抜き出し、遠心濃縮、
浮上濃縮などの前記汚泥濃縮工程3としての遠心
濃縮機3a(浮上濃縮装置でもよい)に導入し、
得られる濃縮汚泥4aの全量を返送汚泥4bとし
て生物処理工程2にリサイクルする。なお、スラ
リー6bの抜き出し量は生物処理工程2内に所定
のMLSSを維持するに足る量に相当する量とすれ
ばよい。一方、生物処理工程2からの流出スラリ
ー6aは濃縮分離水5と合併されて混合スラリー
7となり、貯留槽8に流入する。 第3図2に示す例においては、生物処理工程2
に流入する廃液1と返送汚泥4bの合計量に相当
する量の流出スラリー6aが生物処理工程2から
流出し、その全量が遠心濃縮機3aにより処理さ
れ、濃縮汚泥4aの一部は前記返送汚泥4bとな
り、残部の汚泥4cは遠心濃縮機3aからの濃縮
分離水5に混合されて混合スラリー7となる。 なお、第3図1と第3図2に示す態様を比較す
ると、汚泥濃縮工程3に掛かる負荷が小さい点で
第3図1の方が合理的である。 次に第4図1に示す例では、生物処理工程2か
らの流出スラリー6aの全量が前記汚泥濃縮工程
としての沈殿池3bに流入する。この場合、沈殿
池3bの底部から排泥をしないようにしておく
と、沈殿池3bの上部も次第に汚泥で満たされる
ようになり、ついには沈殿池3bの水面からスラ
リーが溢流するようになる。この溢流スラリーが
前記各実施態様における混合スラリー7に相当す
る。なお、この場合前記溢流と併行して濃縮汚泥
4aが返送汚泥4bとして生物処理工程2へリサ
イクルされる。 第4図2は沈殿池3bの底部から濃縮汚泥4a
を引抜き、一部を返送汚泥4bに、残部の汚泥4
cを濃縮分離水5(越流水)と混合する場合であ
り、ここに得られる混合物が混合スラリー7に相
当する。 第4図3は生物処理工程2から、この工程内に
MLSSを希望濃度に維持するに足るだけのスラリ
ー6bを抜き出して沈殿池3bにて濃縮し、得ら
れる濃縮分離水5を流出スラリー6aと混合せし
めたものが混合スラリー7となる。 なお、沈殿池3bを使用する場合、上記各態様
のうち第4図3が最も好ましい。 さらに、第5図示例は、生物処理工程2として
回転円板法を採用した場合である。このような生
物膜プロセスによる場合は前記返送汚泥4bは不
要となるので、生物処理工程2からの流出スラリ
ー6aがそのまま混合スラリー7となり、前記し
た遠心濃縮機3a(又は浮上濃縮装置)、沈殿池3
bなどの汚泥濃縮工程3は全く不要となる。この
ことは、散水床法、浸漬床法、流動媒体生物
処理法など他の生物膜プロセスを採用する場合に
ついても同様である。 したがつて本発明によれば、汚泥の脱水と生物
処理水の高度処理が一つの工程で同時に行われる
という画期的な処理結果が得られることが確認さ
れた。 以上述べたように、本発明により得られる効果
を列挙すると、次のとおりである。 (1) 汚泥の脱水と高度処理が同時に達成できるの
でプロセスが簡略化される。 (2) 汚泥の脱水に要する薬品の添加によつて、一
挙に生物処理水中の色度、COD、リン酸が除
去されるので、従来のように汚泥の脱水用の薬
品と別個に凝集沈殿用の薬品を必要とすること
がなくなり、著しい省資源化が可能となる。 (3) 生物処理工程に通常の活性汚泥法を採用した
のち薬剤を添加して脱水するプロセスでは、窒
素成分がほとんど除去されずに脱水分離水に残
留してしまう。脱水分離水に対して生物学的硝
化脱窒素法を適用しようとしても、脱水分離水
中にBOD成分がほとんど残留していないので、
脱窒素菌に必要な有機炭素源として高価なメタ
ノールなどの有価物質を添加しなければならな
いという重大な欠点を生ずる。これに対し、本
発明では、脱水工程の前に生物学的硝化脱窒素
工程を設け、原液(し尿など)中のBOD成分
を有機炭素源として利用する方法を採用したの
で、前述の欠点を完全に解決でき、メタノール
は不要となり、脱水分離水を硝化脱窒素する必
要がなくなる。したがつてランニングコストの
低減、プロセスの簡略化が可能となる。 (4) 無希釈の廃水でも問題なく処理できるので、
希釈水が不要となる。 (5) 生物処理が困難なCOD等を除去するための
凝集沈殿あるいは凝集浮上による処理が不要と
なり、したがつて、凝集スラツジが発生しな
い。 (6) 生物処理工程で発生する余剰汚泥の脱水ケー
キの含水率が低くなる。(60〜63%程度) (7) 機械脱水工程後に活性炭処理などの高度処理
工程を設ける場合でも、該高度処理工程にかか
るCOD負荷、色度負荷が低減されているので、
高度処理工程の建設費、維持管理費を削減する
ことができる。 次に本発明の実施例について記す。 実施例 下記の水質を有する生し尿を原液とし、生物処
理工程として公知の硝化液循環生物学的脱窒素プ
ロセスを採用し、第1図に示すフローシートに従
つて処理した。
The present invention relates to a novel and rational method for treating organic waste liquids such as human waste, sewage, wastewater, and septic tank sludge. The problem with conventional human waste treatment processes is that biological treatment processes such as activated sludge and biological nitrification and denitrification cannot remove phosphoric acid, non-biodegradable COD, and color. A large amount of an inorganic flocculant such as clay or ferric chloride must be added to perform coagulation sedimentation or flocculation. (For example, in biologically treated water diluted 10 times as much as human waste, it is necessary to add extremely large amounts of sulfuric acid, approximately 800 mg/diluted, or 8,000 mg/diluted.) As a result, a large amount of inorganic sludge, which is difficult to dewater, is added. The treatment and disposal of such waste has become a serious problem, as the running costs are high. Separate chemicals are required for sludge dewatering and flocculation, and this also causes high running costs. The dewaterability of biologically treated surplus sludge is also extremely poor, making it more difficult to treat and dispose of than coagulated sedimentation sludge. For waste liquid flowing into the biological treatment process,
Since it is necessary to add a large amount of clean diluted water (groundwater, river water, etc.), which is approximately double the amount, there is a problem that the human waste treatment itself is difficult to carry out at treatment plants where it is difficult to secure a water source. Although the water quality may appear to be good, it is actually about
Since the water is diluted 10 times, the quality of the treated water is not very good in terms of total load. It is an object of the present invention to provide a method for treating organic waste liquid that fundamentally solves the various conventional problems described above based on a novel idea. That is, the present invention treats organic wastewater in a biological nitrification and denitrification process, and adds iron sulfate and water as an alkaline agent to a mixed slurry of treated water and excess sludge from the biological nitrification and denitrification process. This is a method for treating organic waste liquid, which is characterized in that after adding and mixing magnesium oxide and/or magnesium oxide, solid-liquid separation is performed in a post-treatment step including mechanical dehydration. An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, (organic) waste liquid 1 such as human waste and septic tank sludge flows into a biological treatment process 2 using a biological nitrification and denitrification method. receive. This biological treatment is most preferably carried out undiluted;
This point differs greatly from conventional human waste treatment. However, the slurry (Mixed-
Liquor) is centrifugally concentrated as slurry 6b,
The sludge is allowed to flow through a sludge concentration process 3 such as flotation separation, and the concentrated sludge 4a is recycled to the biological treatment process 2 as return sludge 4b. On the other hand, the concentrated separated water 5 is mixed with the effluent slurry 6a (containing excess sludge) from the biological treatment process 2 to form a mixed slurry 7,
It flows into the storage tank 8. Note that when the wastewater 1 is treated without dilution, the inflow amount of the wastewater 1 and the flow rate of the mixed slurry 7 are equal. The slurry from the storage tank 8 is then transferred to the drug mixing tank 9.
where iron sulfate 10 is added as a flocculant.
is subjected to a chemical reaction treatment by adding and mixing Mg(OH) 2 or MgO as an alkaline agent 11, and then separated into a dehydrated cake 13 and dehydrated separated water 14 by a mechanical dehydrator 12 such as a filter press. The point that this dehydrated separated water 14 corresponds to the treated water of the wastewater 1 is one of the important elements constituting the present invention. Note that it is not preferable to dilute the wastewater 1 at a high ratio and subject it to biological treatment as in the past because the amount of slurry flowing into the mechanical dehydrator 12 becomes enormous. Therefore, the dehydrated separated water 14 is then transferred to the PH adjuster 3.
After the pH is adjusted to about 6 to 8 by adding 2, it is discharged. If desired, the water may be discharged after being treated with a sand filter 15 or with an activated carbon adsorption device, an ozone treatment device, an aeration treatment device, or the like (none of which are shown). Another embodiment of the present invention is shown in FIG. 2, in which the slurry from the chemical mixing tank 9 is concentrated in advance in a sludge concentration step 16 using a flotation thickener or a gravity thickener to create a thickened sludge. The concentrated sludge 17 is sent to a mechanical dehydrator 12, and the resulting dehydrated separated water 14 and concentrated separated water 18 are used as treated water. In this embodiment, the biological treatment step 2 is unavoidable for purposes such as defoaming.
This is a particularly effective treatment process when dilution water is mixed into the solution. There is no problem if a flotation thickener or a gravity thickener is used as the sludge thickening step 16, but if a centrifugal thickener is used, some amount may be present in the concentrated and separated water 18.
Since the SS content is included, it is necessary to provide a sedimentation tank 19 in front of the sand filter 15 to separate the SS content. Note that the precipitated sludge 20 obtained here is preferably recycled to the storage tank 8. In the present invention, the mixed slurry 7 of biologically treated water and excess sludge has an important meaning, so an embodiment of the method for obtaining this mixed slurry 7 will be described in detail with reference to the drawings. First, in the example shown in FIG. 3, biological treatment step 2
A part of the slurry 6b was extracted from the slurry, centrifugally concentrated,
Introduced into a centrifugal concentrator 3a (a flotation concentrator may also be used) as the sludge concentration step 3 such as flotation concentration,
The entire amount of the obtained thickened sludge 4a is recycled to the biological treatment process 2 as return sludge 4b. Note that the amount of slurry 6b to be extracted may be an amount equivalent to an amount sufficient to maintain a predetermined MLSS within the biological treatment process 2. On the other hand, the outflow slurry 6a from the biological treatment process 2 is combined with the concentrated separated water 5 to form a mixed slurry 7, which flows into the storage tank 8. In the example shown in FIG. 3 2, biological treatment step 2
An amount of outflow slurry 6a corresponding to the total amount of waste liquid 1 and return sludge 4b flowing into the biological treatment process 2 flows out from the biological treatment process 2, the entire amount is treated by the centrifugal thickener 3a, and a part of the thickened sludge 4a is used as the return sludge. 4b, and the remaining sludge 4c is mixed with the concentrated and separated water 5 from the centrifugal thickener 3a to form a mixed slurry 7. Incidentally, when comparing the embodiments shown in FIG. 31 and FIG. 32, the embodiment shown in FIG. 31 is more rational in that the load applied to the sludge concentration step 3 is smaller. Next, in the example shown in FIG. 4, the entire amount of the slurry 6a discharged from the biological treatment process 2 flows into the settling tank 3b serving as the sludge concentration process. In this case, if sludge is not drained from the bottom of the settling tank 3b, the upper part of the settling tank 3b will gradually become filled with sludge, and eventually the slurry will overflow from the water surface of the settling tank 3b. . This overflow slurry corresponds to the mixed slurry 7 in each of the embodiments described above. In this case, in parallel with the overflow, the thickened sludge 4a is recycled to the biological treatment process 2 as return sludge 4b. Figure 4 2 shows the thickened sludge 4a from the bottom of the settling tank 3b.
is pulled out, a part is returned to sludge 4b, and the remaining sludge 4 is
This is the case where c is mixed with the concentrated separated water 5 (overflow water), and the mixture obtained here corresponds to the mixed slurry 7. Figure 4.3 shows the process from biological treatment process 2 to within this process.
Slurry 6b sufficient to maintain the desired concentration of MLSS is extracted and concentrated in settling tank 3b, and the resulting concentrated separated water 5 is mixed with effluent slurry 6a to form mixed slurry 7. In addition, when using the sedimentation tank 3b, FIG. 4 3 is the most preferable among the above-mentioned each aspect. Furthermore, the fifth illustrated example is a case where a rotating disk method is adopted as the biological treatment step 2. In the case of such a biofilm process, the return sludge 4b is not required, so the slurry 6a flowing out from the biological treatment process 2 becomes the mixed slurry 7 as it is, and is used in the centrifugal thickener 3a (or flotation thickener), sedimentation basin, etc. 3
The sludge concentration step 3 such as b is completely unnecessary. This also applies to cases where other biofilm processes such as the sprinkled bed method, immersed bed method, and fluidized medium biological treatment method are employed. Therefore, it has been confirmed that according to the present invention, an innovative treatment result can be obtained in which dewatering of sludge and advanced treatment of biologically treated water are performed simultaneously in one process. As described above, the effects obtained by the present invention are listed below. (1) The process is simplified because sludge dewatering and advanced treatment can be achieved at the same time. (2) By adding the chemicals required for sludge dewatering, the chromaticity, COD, and phosphoric acid in the biologically treated water are removed all at once. This eliminates the need for many chemicals, making it possible to significantly conserve resources. (3) In the process of applying a conventional activated sludge method to the biological treatment process and then adding chemicals for dehydration, almost no nitrogen components are removed and remain in the dehydrated separated water. Even if we try to apply the biological nitrification and denitrification method to dehydrated and separated water, there is almost no BOD component left in the dehydrated and separated water.
This method has a serious disadvantage in that valuable substances such as expensive methanol must be added as an organic carbon source necessary for denitrifying bacteria. In contrast, in the present invention, a biological nitrification and denitrification process is provided before the dehydration process, and a method is adopted in which the BOD component in the raw solution (human waste, etc.) is used as an organic carbon source, so the above-mentioned drawbacks can be completely overcome. This eliminates the need for methanol and the need for nitrification and denitrification of dehydrated and separated water. Therefore, running costs can be reduced and processes can be simplified. (4) Even undiluted wastewater can be treated without problems.
Dilution water becomes unnecessary. (5) Treatment by coagulation sedimentation or coagulation flotation to remove COD, etc., which is difficult to biologically treat, is not necessary, and therefore no coagulated sludge is generated. (6) The moisture content of the dehydrated cake of excess sludge generated in the biological treatment process is reduced. (approximately 60 to 63%) (7) Even when an advanced treatment process such as activated carbon treatment is provided after the mechanical dehydration process, the COD load and chromaticity load associated with the advanced treatment process are reduced.
Construction costs and maintenance costs for advanced treatment processes can be reduced. Next, examples of the present invention will be described. Example Human waste having the following water quality was used as a stock solution and treated according to the flow sheet shown in FIG. 1 using a known nitrified solution circulation biological denitrification process as a biological treatment process.

【表】 前記生物学的硝化脱窒素工程の運転条件は次の
ように設定し、生し尿は希釈はせず、無希釈処理
を行つた。 水温…30〜32℃ MLSS…18000〜20000mg/ 硝化槽DO…3〜5mg/ 硝化液循環比…原液流入量の100倍 第1脱窒素槽滞留時間…2日 硝化槽滞留時間…4日 第2脱窒素槽滞留時間…2日 汚泥返送方法…遠心濃縮機(巴工業製) 最終沈殿池…不要なので使用せず この生物学的硝化脱窒素工程からの流出スラリ
ーに遠心濃縮機の分離水を混合した混合スラリー
(SS濃度12000〜15000mg/)に前記鉄の硫酸塩
として硫酸第1鉄FeSO4を5000〜6000ppm添加し
たのち前記アルカリ剤として水酸化マグネシウム
をPH8〜9になるように添加して15分間撹拌して
から圧搾機構付全自動フイルタープレスで過圧
力を3Kgf/cm2、圧搾圧力を15Kgf/cm2にそれぞ
れ設定して脱水した。 この結果、含水率65〜70%という著しく低含水
率の脱水ケーキと下記の水質を有する脱水分離水
が得られ、この脱水分離水はそのままでも放流可
能な程、水質が良好であつた。
[Table] The operating conditions for the biological nitrification and denitrification process were set as follows, and the raw human waste was not diluted and treated without dilution. Water temperature…30~32℃ MLSS…18000~20000mg/ Nitrification tank DO…3~5mg/Nitrifying solution circulation ratio…100 times the raw solution inflow 1st denitrification tank retention time…2 days Nitrification tank retention time…4 days 2nd Denitrification tank retention time...2 days Sludge return method...centrifugal concentrator (manufactured by Tomoe Kogyo) Final sedimentation tank...unnecessary, so not used Separated water from the centrifugal concentrator is mixed with the effluent slurry from this biological nitrification and denitrification process To the mixed slurry (SS concentration 12,000 to 15,000 mg/), 5,000 to 6,000 ppm of ferrous sulfate FeSO4 was added as the iron sulfate, and then magnesium hydroxide was added as the alkali agent to adjust the pH to 8 to 9. After stirring for a minute, the mixture was dehydrated using a fully automatic filter press equipped with a squeezing mechanism, with overpressure set at 3 Kgf/cm 2 and squeezing pressure set at 15 Kgf/cm 2 . As a result, a dehydrated cake with an extremely low water content of 65 to 70% and dehydrated separated water having the following water quality were obtained, and the quality of this dehydrated separated water was so good that it could be discharged as it was.

【表】 次に、各種鉄の硫酸塩と各種アルカリ剤とを組
合わせて上記同様の機械脱水試験を行つたとこ
ろ、最適薬注率における脱水ケーキの含水率は次
表のとおりとなり、鉄の硫酸塩と、マグネシウム
系アルカリ剤との組合わせによれば脱水ケーキの
含水率が低く、しかもその発生量も少ないことが
確認された。なお、アルカリ剤として消石灰を使
用した場合、脱水ケーキの含水率は低くなるが発
生量は増大する傾向が見られた。
[Table] Next, when we conducted the same mechanical dehydration test as above using a combination of various iron sulfates and various alkaline agents, the water content of the dehydrated cake at the optimum chemical dosing rate was as shown in the table below. It was confirmed that the combination of sulfate and a magnesium-based alkaline agent resulted in a dehydrated cake with a low moisture content and a small amount of moisture generated. Note that when slaked lime was used as the alkaline agent, the water content of the dehydrated cake decreased, but the amount generated tended to increase.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示し、第1図及び第
2図は全体系統説明図、第3図乃至第5図は混合
スラリーを得る方法を示す部分系統説明図であ
る。 1……廃液、2……生物処理工程、3……汚泥
濃縮工程、3a……遠心濃縮機又は浮上濃縮装
置、3b……沈殿池、4a……濃縮汚泥、4b…
…返送汚泥、4c……汚泥、5……濃縮分離水、
6a……流出スラリー、6b……スラリー、7…
…混合スラリー、8……貯留槽、9……薬剤混和
槽、10……鉄の硫酸塩、11……アルカリ剤、
12……機械脱水機、13……脱水ケーキ、14
……脱水分離水、15……砂過機、16……汚
泥濃縮工程、17……濃縮汚泥、18……濃縮分
離水、19……沈殿池、20……沈殿汚泥、21
……PH調整剤。
The drawings show embodiments of the present invention, with FIGS. 1 and 2 being explanatory views of the entire system, and FIGS. 3 to 5 being explanatory views of partial systems showing a method for obtaining a mixed slurry. 1... Waste liquid, 2... Biological treatment process, 3... Sludge concentration process, 3a... Centrifugal thickener or floating concentration device, 3b... Sedimentation tank, 4a... Thickened sludge, 4b...
...Return sludge, 4c...Sludge, 5...Concentrated separated water,
6a...Outflow slurry, 6b...Slurry, 7...
... Mixed slurry, 8 ... Storage tank, 9 ... Chemical mixing tank, 10 ... Iron sulfate, 11 ... Alkali agent,
12... Mechanical dehydrator, 13... Dehydrated cake, 14
... Dehydrated separated water, 15 ... Sand filter, 16 ... Sludge concentration process, 17 ... Thickened sludge, 18 ... Concentrated separated water, 19 ... Sedimentation tank, 20 ... Sedimented sludge, 21
...PH adjuster.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性廃液を生物学的硝化脱窒素工程で処理
し、該生物学的硝化脱窒素工程からの処理水と余
剰汚泥との混合スラリーに鉄の硫酸塩と、水酸化
マグネシウム及び/又は酸化マグネシウムとを添
加混合したのち、機械脱水を含む後処理工程にて
固液分離することを特徴とする有機性廃液の処理
方法。
1 Organic waste liquid is treated in a biological nitrification and denitrification process, and iron sulfate, magnesium hydroxide and/or magnesium oxide are added to a mixed slurry of treated water and surplus sludge from the biological nitrification and denitrification process. 1. A method for treating organic waste liquid, which comprises adding and mixing and then performing solid-liquid separation in a post-treatment process including mechanical dehydration.
JP8987180A 1980-07-01 1980-07-01 Treatment of organic waste liquid Granted JPS5715898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8987180A JPS5715898A (en) 1980-07-01 1980-07-01 Treatment of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8987180A JPS5715898A (en) 1980-07-01 1980-07-01 Treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS5715898A JPS5715898A (en) 1982-01-27
JPS643158B2 true JPS643158B2 (en) 1989-01-19

Family

ID=13982825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8987180A Granted JPS5715898A (en) 1980-07-01 1980-07-01 Treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS5715898A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061013A (en) * 1983-09-13 1985-04-08 Ebara Infilco Co Ltd Solid/liquid separating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231564A (en) * 1975-08-13 1977-03-10 Advadan Harvey As Purification method of waste water and device for executing this method
JPS5845320B2 (en) * 1977-02-06 1983-10-08 荏原インフイルコ株式会社 How to dispose of human waste

Also Published As

Publication number Publication date
JPS5715898A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
EP0408878B1 (en) Enhanced phosphate removal in an activated sludge wastewater treatment process
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JPS6210720B2 (en)
JP2796909B2 (en) Wastewater treatment method
JPH06320190A (en) Method and device for treating sewage water
JPH0124558B2 (en)
JPS58153594A (en) Treatment of organic waste
JPS6320600B2 (en)
JPS643158B2 (en)
JPS59206092A (en) Treating process of waste water
JPH0483594A (en) Biological treatment of organic sewage
JP3326084B2 (en) How to reduce organic sludge
JPS6339309B2 (en)
JPH0649197B2 (en) Organic wastewater treatment method
JPS5771699A (en) Treating method for organic waste liquid
JP2509473B2 (en) Method for dephosphorizing organic wastewater
JPS6231633B2 (en)
JPS5879596A (en) Treatment for night soil and sludge of septic tank by mixing
JPS5851995A (en) Treatment of night soil
JPH03270789A (en) Biological treatment of organic sewage
JPS6345270B2 (en)
JPS6094200A (en) Treatment before dehydration of organic sludge
JPS596986A (en) Treatment of night soil-type filthy water
JPS58112099A (en) Purification of organic waste water
JPS5898198A (en) Treatment of sewage sludge