JPS6231633B2 - - Google Patents

Info

Publication number
JPS6231633B2
JPS6231633B2 JP2716182A JP2716182A JPS6231633B2 JP S6231633 B2 JPS6231633 B2 JP S6231633B2 JP 2716182 A JP2716182 A JP 2716182A JP 2716182 A JP2716182 A JP 2716182A JP S6231633 B2 JPS6231633 B2 JP S6231633B2
Authority
JP
Japan
Prior art keywords
sludge
tank
paragraph
phosphorus
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2716182A
Other languages
Japanese (ja)
Other versions
JPS58143884A (en
Inventor
Izumi Hirasawa
Mutsuko Osanai
Kazuo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57027161A priority Critical patent/JPS58143884A/en
Publication of JPS58143884A publication Critical patent/JPS58143884A/en
Publication of JPS6231633B2 publication Critical patent/JPS6231633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、䞋氎、し尿等の生掻排氎、工堎排氎
䞭に含たれる有機性物質及びリン酞等を含む汚氎
から有害物を陀去しお浄化する方法に関するもの
である。 䞀般に自然氎系に排出される各皮排氎䞭には、
BOD、COD源ずなる有機物質や無機性のリン酞
塩ずしおオルトリン酞塩や各皮の瞮合リン酞塩さ
らに有機性リン酞塩などが様々な状態で存圚しお
おり、これらの物質が湖沌、内海、内湟などの閉
鎖氎域あるいは停滞氎域の「あおこ」、「赀朮」発
生の誘起因子ずなり、さらに各皮の甚氎ずしお䜿
甚する堎合には装眮、配管内に生物的なスラむム
が発生し、事故発生の重倧な原因ずな぀おいる。 したが぀お、これらの排氎䞭に含たれる汚濁物
質を陀去すべく各皮の方法が怜蚎され提案されお
いる。埓来法の䞀぀ずしお有機物質を陀去する代
衚的な方法に、掻性汚泥法があるが、この方法は
浄化機胜をも぀たフロツク状の生物増殖䜓を必芁
に応じお生物反応系で絶えず埪環し、曝気槜で有
機物質成分BODず浄化埮生物の比率が垞に
䞀定になるように人為的に操䜜し、溶存酞玠の存
圚䞋で有機成分ず埮生物矀を接觊せしめお、奜気
的に分解するプロセスである。 しかしこの方法においおは、生物凊理の過皋で
生成されるフロツク状の汚泥は、沈降性、濃瞮
性、脱氎性が必らずしも良奜ではなく、汚泥を沈
殿させるための沈殿池は広倧な敷地を必芁ずし、
さらに濃瞮性、脱氎性を向䞊させるために、ポリ
マヌや氎ガラス等の薬剀を倚量に必芁ずするため
問題芖されおいる。 たた生物凊理工皋に流入するリンは、陀去され
るBODに察しおほが䞀定の比率しか陀去され
ず、生物凊理氎にリンがリヌクしたり、たた汚泥
を凊理する過皋で、分離液䞭に高濃床のリンが流
出するずい぀た問題点があ぀た。 䞀方排氎䞭のリンを陀去する代衚的な方法に
は、液䞭に凝集剀を添加するこずによ぀お䞍溶性
のリン酞塩ずしお陀去する凝集沈殿法があるが、
この方法の最倧の欠点は倚量の薬剀を䜿甚し、か
぀倚量の濃瞮性、脱氎性の悪い汚泥を生成し、こ
の汚泥の凊理、凊分が問題ずなるこずである。 この凝集沈殿法を改善する方法ずしお、排氎を
リン酞カルシりム含有粒状固䜓以䞋「リン陀去
材」ず称するず接觊せしめる方法以䞋「接觊
脱リン法」ず称するがある。 この方法を甚いるず汚泥の発生はないものの、
凊理を継続するこずにより、しばしば液䞭に含た
れる有機物が反応の過皋でリン陀去材䞊に取り蟌
たれ、性胜が䜎䞋したり、たたリン陀去材䞊にお
いお 5Ca2+7OH-3H2PO4 -→ Ca5OHPO436H2O 

 の匏の反応に瀺すようにアパタむトが析出する
こずにより肥倧し、必芁に応じお行う掗浄が䞍充
分になるなどの問題点があ぀た。 本発明はこれら諞問題点を解消しようずするも
ので、掻性汚泥等の生物凊理工皋の埌にリン陀去
材ず接觊せしめる脱リン工皋を蚭ける堎合におい
お、リン陀去材衚面に析出した化合物を連続的、
たたは間欠的に剥離せしめ、剥離物を生物凊理工
皋沈殿池、濃瞮槜、返送汚泥、汚泥脱氎工皋
等に返送せしめるこずによ぀お、生物凊理工皋
ず接觊脱リン工皋を有機的に結合しお効率よく有
機性汚氎を浄化凊理する方法を提䟛するこずを目
的ずしたものである。 本発明方法においお重芁な特城の䞀぀はリン陀
去材衚面に析出した化合物を剥離するずずもに剥
離せしめた化合物を生物凊理工皋にお生成される
汚泥ず混合するこずにより、濃瞮性、沈降性、脱
氎性を向䞊せしめ、さらには汚泥凊理工皋でのリ
ンの流出も抑制できるこずであり、たたリン陀去
材ず接觊せしめる接觊脱リン工皋においお、間欠
的あるいは連続的にリン陀去材衚面に生成した化
合物を剥離されるので長期間運転による氎質の悪
化を防止するこずにある。 すなわち本発明は、汚氎を生物的方法にお凊理
した埌、リン酞カルシりムを含有する粒状固䜓を
充おんした反応槜にお接觊凊理する方法におい
お、前蚘粒状固䜓衚面に圢成された化合物を連続
的たたは間欠的に剥離せしめ、剥離した該化合物
を前段の生物凊理工皋に返送する汚氎の凊理方法
である。 次に本発明の䞀実斜態様を第図を参照し぀぀
説明すれば、いわゆる生䞋氎などの汚氎は最初
沈殿池においお比范的倧きな浮遊物が沈殿陀去
され、この最初沈殿池からの流出氎は奜気的条
件䞋にある曝気槜即ち空気を散気しおいる曝
気槜に導入され、奜気的埮生物の働きにより液
䞭の有機物質が酞化陀去される。 前蚘曝気槜からの流出氎䞭の浮遊物は、最終
沈殿池においお沈殿陀去されるが、沈殿した汚
泥は最終沈殿池より導出され返送汚泥ず䜙剰
汚泥ずに分けられお、該返送汚泥は前蚘曝
気槜に返送され、曝気槜内のMLSS濃床を
2000〜3000mg/に維持する。䞀方䜙剰汚泥
は濃瞮槜に移送されおのち機械脱氎機などによ
る汚泥脱氎工皋を経お也燥焌华工皋に導か
れお凊理される。 前蚘最終沈殿池からの流出氎′は調敎槜
に導入され、消石灰及び石膏を添加
し、PH及びCa濃床を調敎する。このPH調敎氎
′は脱リン槜に䞋向流通出し、脱リン槜
内に充おんされたリン陀去材ず接觊せしめ
凊理氎ずしお槜䞋方より流出させる。該槜内
のリン陀去材は、連続的たたは間欠的に槜内
においお逆掗氎により逆掗掗浄するが、ある
いはこれず䜵甚しお槜䞋郚より空気を導入し
お、氎流ず気流による逆掗掗浄により、リン陀去
材䞊に生成した化合物を剥離陀去せしめる。 なお脱リン槜からの剥離物を含んだ逆掗廃
氎は生物凊理工皋たずえば最終沈殿池曝気
槜、汚泥濃瞮槜又は汚泥脱氎工皋のいずれ
か又は二぀以䞊に返送されお再凊理される。 前蚘実斜態様においおは生物凊理工皋ずしお掻
性汚泥法を䟋に挙げたが、その他散氎ろ床法、接
觊酞化法、粒状媒䜓生物凊理法を甚いおもよい。 たた生物凊理氎のPH調敎は、酞性偎ではリン酞
塩類の陀去率が著しく䜎䞋するのでPHを6.0以䞊
にする必芁があり、たた液䞭に含たれる氎酞化
物、あるいは氎溶性炭酞塩などが䞊蚘脱リン槜内
のリン陀去材衚面に析出し、その衚面掻性を䜎䞋
させるこずがあるので、このような堎合PHは6.0
〜11.0に調敎するず良く、さらに奜適には8.5〜
9.5が良い。 さらに添加するカルシりム剀ずしおは塩化カル
シりム、消石灰、石膏等が䜿甚可胜であるが、そ
の量はCaPO4モル重量比で〜の範囲で添加
し、その泚入点はカルシりム剀がむオン状のたた
前蚘脱リン槜内に流入するように考慮する。 たた本発明で䜿甚するリン陀去剀ずしおの
リン酞カルシりム含有固䜓ずは、リン酞カルシり
ムを含む各皮のリン鉱石、骚炭、サンゎ砂等で、
砂、あるいはアンスラサむト等にリン酞カルシり
ムを担持せしめたものが適宜遞べる。そしおリン
陀去材衚面に圢成された化合物の剥離陀去方法ず
しおは脱リン槜内での氎流、あるいは氎枈ず
気流䜵甚による逆掗でも、槜内に撹拌機等を蚭け
おリン陀去材を混合する方法でもリン陀去材
を容噚に入れこすり合せお剥離させるいわゆる擂
かいする方法でも良い。 これらの剥離操䜜による化合物は容易に剥離さ
れ、逆掗排氎に同䌎されお塔倖に流出し簡単な物
理的操䜜で液がら容易に分離するこずもできる。
これらの堎合剥離操䜜は塔内で行な぀おも、塔倖
で行な぀おも良くいずれにしおもリン陀去材
䞊に析出した化合物を党量剥離すれば、剥離物の
量は陀去されたリンの〜10倍で、脱リン槜で陀
去するリンを原氎m3圓りずするず、剥離物
の量は10〜20ずなる。なお剥離物を沈殿池、濃
瞮槜たたは脱氎機の汚泥に混入させるこずによる
沈降性、濃瞮性、脱氎性をそれぞれ向䞊できるの
で再利甚するのが奜たしい。この混入の比率は汚
泥也燥基準で〜以䞊で良い。混入の方法は
各工皋の流入氎䞭に加えおも、工皋内に盎接加え
おも良い。 本発明は脱リン工皋で䜿甚するリン陀去材の衚
面に析出した化合物を連続的、間欠的に剥離せし
めるこずにより、リン陀去材の肥倧もしくは、有
機物付着による氎質の悪化を防止でき、長期間に
わたり優れたリン陀去性胜を維持できしかも該剥
離物を汚泥凊理工皋に返送するこずにより汚泥の
性胜を倧幅に改善でき、すなわち沈殿池に剥離物
を混入せしめた堎合、汚泥の沈降性を向䞊させ、
か぀沈殿池に沈殿した汚泥からのリンの溶出を抑
制できるし、濃瞮工皋に該剥離物を混入せしめた
堎合は汚泥の濃瞮性を向䞊させ、合わせおリンの
溶出も抑制できるし、たた、脱氎工皋に混入せし
めた堎合、汚泥の脱氎性を向䞊させる脱氎助剀ず
しお䜜甚し、通垞䜿甚するCaOH2、FeCl3等
の薬剀の添加量を節玄でき、たた脱氎の過皋での
汚泥からの分離氎䞭ぞのリンの溶出をも抑制でき
るなど生物凊理工皋ず接觊脱リン工皋ずを有機的
に結合できお効率よく有機性汚氎を浄化でき安定
した操䜜ず運転制埡も容易である。 次に本発明の実斜䟋を瀺す。 実斜䟋  粗倧固型物を倧別分離した䞋氎を埓来技術ずし
おの掻性汚泥法で凊理した埌、苛性゜ヌダ消石
灰でも同等の効果が埗られたにより被凊理液の
PHを90付近に調敎し、たたカルシりム剀ずしお塩
化カルシりムを䜿甚し、被凊理液䞭の溶解性リン
酞塩類の濃床に察応しおCaPO4のモル重量比を
1.0〜1.5の範囲ずなるように添加した。 この被凊理液を盎埄0.5、有効深さ2.5の円
筒状の脱リン塔に導き䞊方より䞋方にLV2.5
時の流速で通氎した。脱リン塔内郚にリン陀
去材ずしお北アフリカ産リン鉱石粒埄0.42〜0.54
mmのものを充填した。 塔内には撹拌機翌埄0.2が蚭眮されおお
り、これによりリン陀去材は毎日回15分皋床撹
拌混合ず同時に氎掗通氎速床0.6分し、
これにより剥離された固型物を含む掗浄氎を前蚘
掻性汚泥工皋の最終沈殿池に返送した。 比范䟋ずしお同䞀芏暡で剥離操䜜を行なわない
ケヌスを瀺した。 凊理結果を衚―に瀺す。
The present invention relates to a method for purifying wastewater by removing harmful substances from domestic wastewater such as sewage, human waste, and wastewater containing organic substances and phosphoric acid contained in industrial wastewater. Generally, various types of wastewater discharged into natural water systems include:
Orthophosphates, various condensed phosphates, and organic phosphates exist in various states as organic substances and inorganic phosphates that are sources of BOD and COD, and these substances exist in lakes and inland seas. It is a factor that induces the occurrence of blue water and red tide in closed waters such as inner bays or stagnant waters.Furthermore, when water is used for various purposes, biological slime may form inside equipment and piping, which can lead to accidents. It is a serious cause. Therefore, various methods have been studied and proposed to remove the pollutants contained in these wastewaters. Activated sludge is a typical conventional method for removing organic substances, but this method uses floc-like biological growth that has a purifying function and is constantly circulated in a biological reaction system as needed. , the aeration tank is artificially operated so that the ratio of organic matter components (BOD) and purifying microorganisms is always constant, and the organic components and microorganisms are brought into contact in the presence of dissolved oxygen, resulting in aerobic decomposition. It's a process. However, with this method, the floc-like sludge produced during the biological treatment process does not necessarily have good settling, thickening, and dewatering properties, and the settling pond for settling the sludge is spread over a vast area. requires
Furthermore, in order to improve the concentration and dehydration properties, large amounts of chemicals such as polymers and water glass are required, which is considered a problem. In addition, the phosphorus that flows into the biological treatment process is only removed at a roughly constant ratio to the BOD removed, and phosphorus may leak into the biologically treated water, or in the process of treating sludge, it can become highly concentrated in the separated liquid. There was a problem when phosphorus leaked out. On the other hand, a typical method for removing phosphorus from wastewater is the coagulation-sedimentation method, which removes it as insoluble phosphate by adding a coagulant to the liquid.
The biggest drawback of this method is that it uses a large amount of chemicals and produces a large amount of sludge with poor thickening and dewatering properties, which poses problems in the treatment and disposal of this sludge. As a method for improving this coagulation-sedimentation method, there is a method (hereinafter referred to as "catalytic dephosphorization method") in which wastewater is brought into contact with a granular solid containing calcium phosphate (hereinafter referred to as "phosphorus removal material"). Although this method does not generate sludge,
By continuing the treatment, organic substances contained in the liquid are often incorporated onto the phosphorus removal material during the reaction process, resulting in a decrease in performance, or 5Ca 2+ +7OH - +3H 2 PO 4 - → Ca 5 (OH) (PO 4 ) 3 +6H 2 O... As shown in the reaction of the formula, apatite precipitates and becomes enlarged, leading to problems such as insufficient cleaning when necessary. . The present invention aims to solve these problems, and when a dephosphorization step is provided after a biological treatment process such as activated sludge, in which compounds are brought into contact with a phosphorus removal material, the compounds precipitated on the surface of the phosphorus removal material are continuously removed.
Alternatively, the biological treatment process and the catalytic dephosphorization process can be organically combined by intermittently peeling and returning the peeled material to the biological treatment process (sedimentation tank, thickening tank, return sludge, sludge dewatering process, etc.). The purpose of this invention is to provide a method for efficiently purifying organic wastewater. One of the important features of the method of the present invention is that it removes the compounds precipitated on the surface of the phosphorus removal material and mixes the removed compounds with the sludge produced in the biological treatment process, which improves concentration, sedimentation, and dewatering properties. In addition, it is possible to suppress the outflow of phosphorus during the sludge treatment process, and in the catalytic dephosphorization process in which the material is brought into contact with the phosphorus removal material, compounds that are generated on the surface of the phosphorus removal material are removed intermittently or continuously. The aim is to prevent deterioration of water quality due to long-term operation. That is, the present invention provides a method in which wastewater is treated by a biological method and then subjected to contact treatment in a reaction tank filled with granular solids containing calcium phosphate, in which compounds formed on the surface of the granular solids are continuously or intermittently treated. This is a wastewater treatment method in which the compound is exfoliated and the exfoliated compound is returned to the preceding biological treatment process. Next, one embodiment of the present invention will be described with reference to FIG. 1. In sewage 1 such as so-called raw sewage, relatively large suspended matter is settled and removed in a first settling tank 2, and the outflow from this first settling tank is Water 3 is introduced into an aeration tank 4 under aerobic conditions, that is, an aeration tank 4 in which air 5 is diffused, and organic substances in the liquid are oxidized and removed by the action of aerobic microorganisms. Floating matter in the outflow water from the aeration tank 4 is settled and removed in the final settling tank 6, and the settled sludge is led out from the final settling tank 6 and divided into return sludge 7 and surplus sludge 10, and the returned sludge is The sludge 7 is returned to the aeration tank 4, and the MLSS concentration in the aeration tank 4 is
Maintain at 2000-3000mg/. On the other hand, surplus sludge 10
The sludge is transferred to a thickening tank 8 and then passed through a sludge dewatering step 9 using a mechanical dehydrator or the like, and then led to a drying and incineration step 20 for treatment. The outflow water 6' from the final settling tank 6 is sent to the adjustment tank 1.
3, slaked lime 11 and gypsum 12 are added to adjust the pH and Ca concentration. This PH adjusted water 1
3' flows downward into the dephosphorization tank 14, and the dephosphorization tank 1
The treated water 19 is brought into contact with the phosphorus removing material 15 filled in the tank 4, and is caused to flow out from the bottom of the tank as treated water 19. The phosphorus removal material 15 in the tank is continuously or intermittently backwashed with backwash water 17 in the tank, or in combination with this, air 18 is introduced from the bottom of the tank to remove the phosphorus by water and air currents. By backwashing, compounds generated on the phosphorus removal material 15 are peeled off and removed. Note that the backwash wastewater 16 containing separated substances from the dephosphorization tank 14 is returned to one or more of the biological treatment process, such as the final settling tank 6, aeration tank 4, sludge thickening tank 8, or sludge dewatering process 9, and is recycled. It is processed. In the embodiment described above, the activated sludge method was used as an example of the biological treatment process, but other methods such as a trickling filter method, a catalytic oxidation method, and a granular media biological treatment method may also be used. In addition, when adjusting the pH of biologically treated water, the removal rate of phosphates decreases significantly on the acidic side, so it is necessary to adjust the pH to 6.0 or higher. In such a case, the pH should be 6.0 as it may precipitate on the surface of the phosphorus removal material in the dephosphorization tank and reduce its surface activity.
It is best to adjust to ~11.0, more preferably 8.5~
9.5 is good. Calcium chloride, slaked lime, gypsum, etc. can be used as calcium agents to be added, but the amount should be in the Ca/ PO4 molar weight ratio of 1 to 5, and the injection point should be placed so that the calcium agent becomes ionic. The dephosphorization tank 14 is designed to flow into the dephosphorization tank 14 as it is. Further, the calcium phosphate-containing solid as the phosphorus removing agent 15 used in the present invention includes various phosphate rocks containing calcium phosphate, bone charcoal, coral sand, etc.
Sand, anthracite, or the like supported on calcium phosphate can be selected as appropriate. The compound formed on the surface of the phosphorus removal material can be peeled off and removed by water flow in the dephosphorization tank 14, or by backwashing using a combination of water and air flow. Either a mixing method or a so-called rubbing method in which the phosphorus removing material is placed in a container and rubbed together to separate the materials may be used. The compounds resulting from these peeling operations are easily peeled off, flow out of the tower along with the backwash wastewater, and can be easily separated from the liquid by simple physical operations.
In these cases, the stripping operation may be performed within the tower or outside the tower, and in either case, the phosphorus removal material 15
If all the compounds precipitated on the top are stripped off, the amount of peeled substances will be 5 to 10 times the amount of phosphorus removed.If the amount of phosphorus to be removed in the dephosphorization tank is 2g per 1m3 of raw water, the amount of peeled substances will be 10 to 10 times the amount of phosphorus removed. It will be 20g. Note that it is preferable to reuse the separated material since it is possible to improve the settling properties, thickening properties, and dewatering properties by mixing the separated material into the sludge in the sedimentation basin, thickening tank, or dehydrator. The ratio of this mixing may be 1 to 2% or more on a dry sludge basis. The mixing method may be by adding it to the influent water of each process or directly into the process. The present invention continuously and intermittently peels off the compounds precipitated on the surface of the phosphorus removal material used in the dephosphorization process, thereby preventing the phosphorus removal material from thickening or deteriorating water quality due to organic matter adhesion, for a long period of time. Excellent phosphorus removal performance can be maintained, and the performance of the sludge can be greatly improved by returning the exfoliated material to the sludge treatment process.In other words, when exfoliated material is mixed into the settling tank, the settling properties of the sludge can be improved,
In addition, it is possible to suppress the elution of phosphorus from the sludge that has settled in the settling tank, and when the exfoliated material is mixed into the concentration process, the thickening property of the sludge is improved, and the elution of phosphorus can also be suppressed. When mixed into the process, it acts as a dewatering aid that improves the dewatering properties of sludge, saving the amount of chemicals normally used such as Ca(OH) 2 and FeCl 3 , and also removing water from sludge during the dewatering process. It is possible to organically combine the biological treatment process and the catalytic dephosphorization process, such as suppressing the elution of phosphorus into the separated water, and it is possible to efficiently purify organic wastewater, and the operation is stable and easy to control. Next, examples of the present invention will be shown. Example 1 After treating sewage from which coarse solids have been roughly separated using the conventional activated sludge method, the treated liquid was treated with caustic soda (slaked lime had the same effect).
Adjust the pH to around 90, use calcium chloride as a calcium agent, and adjust the molar weight ratio of Ca/PO 4 according to the concentration of soluble phosphates in the liquid to be treated.
It was added in a range of 1.0 to 1.5. This liquid to be treated is guided into a cylindrical dephosphorization tower with a diameter of 0.5 m and an effective depth of 2.5 m, from the top to the bottom at LV = 2.5
Water was passed through at a flow rate of m/h. North African phosphate rock particle size 0.42 to 0.54 is used as a phosphorus removal material inside the dephosphorization tower.
Filled with mm. A stirrer (blade diameter: 0.2 m) is installed inside the tower, which allows the phosphorus removal material to be stirred and mixed once every day for about 15 minutes, and at the same time washed with water (water flow rate: 0.6 m/min).
The wash water containing the separated solids was returned to the final settling tank of the activated sludge process. As a comparative example, a case was shown in which no peeling operation was performed on the same scale. The processing results are shown in Table 1.

【衚】 衚―には汚泥濃瞮槜流出氎のリン濃床を瀺し
たが、比范䟋では凊理䞭リン濃床が1.2mg/以䞊
あるため、濃瞮槜流出氎は最初沈殿池に返送し
た。 しかし本発明で流出リン濃床は0.35mg/ずな
り、通垞濃瞮床に起こるリンの溶出をかなり抑え
るこずができた。 たた衚―に最終沈殿池汚泥のSVIを瀺した。
SVIずは汚泥の沈降性、濃瞮性を衚わす尺床で、
通垞SVIが小さい皋汚泥の性状が良奜であるこず
を瀺す。 衚―に瀺すように最終沈殿池の汚泥のSVI比
范䟋が55.0であるが、本発明によればSVIが36.5
ずなり汚泥の沈殿性及び濃瞮性が良奜になるこず
を確認できた。 たた同じく衚―には濃瞮汚泥をベルトプレス
で脱氎した䟋を瀺しおいるが、本発明による方法
で濃瞮汚泥の脱氎性は、比范䟋に比べおろ過速床
が20䞊昇し、しかもケヌキの氎分の䜎䞋し
汚泥の脱氎性が向䞊した。分離䞭のリン濃床を調
べるず、本発明ではリン濃床がmg/ず比范䟋
に比べ䜎い倀を瀺し、脱出工皋での汚泥からのリ
ンの溶出も抑えられた。 しかも本発明による凊理氎リン濃床は通氎開始
埌12ケ月経過しおも平均0.27mg/を維持した。
䞀方比范䟋の剥離を行わない方法では、通氎開始
埌12ケ月で凊理氎リン濃床は1.2〜mg/ずなり脱
リン効果が著しく悪化した。 実斜䟋  実斜䟋ず党く同䞀の装眮を甚いた。実隓条件
は、実斜䟋ではリン陀去材䞊の反応生成物質の
剥離をリン陀去材の充填塔内で行぀たのに察し、
本実斜䟋では週間に回リン陀去材を脱リン塔
内より取り出しお剥離槜10に導き、槜内に
蚭定された撹拌機翌埄20cm回転数100r.p.m.
により衚面の反応物質を剥離した。 剥離した物質を含んだ液は貯留し定量ポンプに
より最初沈殿池にもどし、リン陀去材は脱リン塔
にもどしお凊理実隓を玄12ケ月間行぀た。 その結果12ケ月通氎埌の凊理氎のリン濃床は衚
―に瀺した結果ず同じになり本発明による方法
による凊理氎リン濃床は0.3mg/以䞋を維持し、
脱リン効果の䜎枛は党く認められず良奜な結果が
埗られた。 たた初沈汚泥の沈降性も埓来法ではSVI100で
あ぀たが、剥離物を混合した初沈汚泥はSVI50ず
なり沈降性が良奜ずな぀た。 実斜䟋  MLSS2000mg/の掻性汚泥のメスシリン
ダヌに入れたものず、䞊蚘汚泥にリン陀去材より
剥離された化合物を䞀定の割合で混合し、汚泥の
沈降性を比范した。 枬定結果を第図に瀺す。即ち第図に瀺すよ
うに添加等を以䞊にするず、沈降性が著しく
向䞊した。 実斜䟋  実斜䟋で甚いた掻性汚泥500mlをのビヌ
カヌに入れ、ビヌカヌ内に枅氎を入れ、ビヌカヌ
の䞊郚をパラフむンでシヌルし䞀定時間空気を遮
断したあず、枅氎䞭のリン濃床を枬定した。同様
に䞊蚘掻性汚泥にリン陀去材衚面ず生成した化合
物を剥離したものを䞀定の割合で混合し、の
ビヌカヌに入れ、同様の詊隓を行぀た。結果を第
図に瀺すが、この結果から、掻性汚泥を入れた
ビヌカヌを䞀定時間空気を遮断するず掻性汚泥か
らリンが溶出するが、この掻性汚泥にリン陀去材
衚面に生成した化合物の剥離物を混入させるこず
によりリンの溶出を防止できるこずがわか぀た。
[Table] Table 1 shows the phosphorus concentration in the sludge thickening tank effluent. In the comparative example, the phosphorus concentration during treatment was over 1.2 mg/ml, so the thickening tank effluent was first returned to the settling tank. However, in the present invention, the concentration of effluent phosphorus was 0.35 mg/, which made it possible to considerably suppress the elution of phosphorus that normally occurs at high concentrations. Table 1 also shows the SVI of the final settling tank sludge.
SVI is a scale that expresses the settling and thickening properties of sludge.
Generally, the smaller the SVI, the better the sludge properties. As shown in Table 1, the SVI comparison example of sludge in the final settling tank is 55.0, but according to the present invention, the SVI is 36.5.
It was confirmed that the settling and thickening properties of the sludge were improved. Similarly, Table 1 shows an example in which thickened sludge was dehydrated using a belt press, and the dewatering performance of thickened sludge using the method of the present invention was found to be 20% higher than in the comparative example, and the cake was removed. The water content decreased by 5%, improving the dewaterability of the sludge. When the phosphorus concentration during separation was examined, the phosphorus concentration in the present invention was 1 mg/, which was lower than that in the comparative example, and the elution of phosphorus from the sludge in the escape process was also suppressed. Moreover, the phosphorus concentration in the treated water according to the present invention remained at an average of 0.27 mg/12 months after the start of water flow.
On the other hand, in the comparative method in which stripping was not performed, the phosphorus concentration in the treated water was 1.2 to 1.2 mg/12 months after the start of water flow, and the dephosphorization effect was significantly deteriorated. Example 2 The same equipment as in Example 1 was used. The experimental conditions were as follows: In Example 1, the reaction product on the phosphorus removal material was removed in a column packed with the phosphorus removal material.
In this example, the phosphorus removal material is taken out from the dephosphorization tower once a week and guided to the stripping tank (10), and a stirrer (blade diameter 20 cm, rotation speed 100 r.pm) is installed in the tank.
The reactive substance on the surface was peeled off. The liquid containing the separated substances was stored and returned to the initial settling tank using a metering pump, and the phosphorus removal material was returned to the dephosphorization tower, and a treatment experiment was conducted for about 12 months. As a result, the phosphorus concentration of the treated water after 12 months of water flow was the same as the results shown in Table 1, and the phosphorus concentration of the treated water by the method of the present invention was maintained at 0.3 mg/or less.
Good results were obtained, with no reduction in the dephosphorization effect observed at all. In addition, the settling property of the initial settling sludge was SVI100 in the conventional method, but the settling property of the initial settling sludge mixed with the exfoliated material was SVI50, and the settling property was good. Example 3 Activated sludge 1 containing 2000 mg of MLSS in a measuring cylinder was mixed with the above sludge at a constant ratio of the compound exfoliated from the phosphorus removal material, and the sedimentation properties of the sludge were compared. The measurement results are shown in Figure 2. That is, as shown in FIG. 3, when the addition amount was 1% or more, the sedimentation property was significantly improved. Example 4 500 ml of the activated sludge used in Example 3 was placed in beaker 1, fresh water was poured into the beaker, the top of the beaker was sealed with paraffin, air was blocked for a certain period of time, and then the phosphorus concentration in the fresh water was measured. . Similarly, the above-mentioned activated sludge was mixed with the surface of the phosphorus removing material and the resulting compound removed at a certain ratio, placed in a beaker No. 1, and the same test was conducted. The results are shown in Figure 3. From these results, phosphorus is eluted from the activated sludge when the air is shut off for a certain period of time in a beaker containing activated sludge. It was found that the elution of phosphorus can be prevented by mixing it with phosphorus.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明方法の䞀実斜態様のフロヌシヌ
ト、第図は汚泥の沈降性を瀺す関係線図、第
図はリン溶出特性線図である。   汚氎、  最初沈殿池、  初沈流
出氎、  曝気槜、  空気、  最終沈
殿池、  返送汚泥、  汚泥濃瞮槜、 
 脱氎機、  䜙剰汚泥、  消石灰、
  石膏、  PH調敎槜、  脱リ
ン槜、  リン陀去材、  逆掗排氎、
  逆掗氎、  空気、  凊理
氎。
Fig. 1 is a flow sheet of one embodiment of the method of the present invention, Fig. 2 is a relational diagram showing the sedimentation property of sludge, and Fig. 3 is a flow sheet of an embodiment of the method of the present invention.
The figure is a phosphorus elution characteristic diagram. 1...Sewage, 2...First settling tank, 3...First settling effluent, 4...Aeration tank, 5...Air, 6...Final settling tank, 7...Return sludge, 8...Sludge thickening tank ,9...
...Dehydrator, 10... Surplus sludge, 11... Slaked lime,
12...Gypsum, 13...PH adjustment tank, 14...Dephosphorization tank, 15...Phosphorus removal material, 16...Backwash drainage,
17... Backwash water, 18... Air, 19... Treated water.

Claims (1)

【特蚱請求の範囲】  有機性汚氎を生物孊的凊理工皋にお凊理した
埌、リン酞カルシりムを含有する粒状固䜓のリン
陀去材に接觊凊理する方法においお、前蚘粒状固
䜓の衚面に圢成された化合物を連続的又は間欠的
に剥離せしめ、該剥離物を前蚘生物凊理工皋に返
送しお凊理するこずを特城ずする汚氎の凊理方
法。  前蚘剥離操䜜が前蚘粒状固䜓を充填した接觊
反応槜内で行われるものである特蚱請求の範囲第
項蚘茉の方法。  前蚘剥離操䜜が、前蚘粒状固䜓を連続的又は
間欠的に前蚘反応槜倖ぞ取り出しお行぀た埌、該
剥離枈粒状固䜓を前蚘反応槜に返送しお凊理され
るものである特蚱請求の範囲第項蚘茉の方法。  前蚘生物孊的凊理工皋が、曝気槜、最終沈殿
池、䜙剰汚泥の濃瞮槜、汚泥脱氎工皋からなる掻
性汚泥凊理工皋で行なわれるものであ぀お前蚘剥
離物を該凊理工皋の少なくずもいずれか぀に返
送されお凊理されるものである特蚱請求の範囲第
項、第項又は第項蚘茉の方法。  前蚘剥離操䜜が、氎流および又は気流を利
甚しお行なわれるものである特蚱請求の範囲第
項、第項、第項又は第項蚘茉の方法。  前蚘剥離操䜜が、機械的撹拌、擂かい又は振
動によ぀お行うものである特蚱請求の範囲第
項、第項、第項又は第項蚘茉の方法。
[Scope of Claims] 1. A method of treating organic wastewater in a biological treatment step and then contacting it with a granular solid phosphorus removal material containing calcium phosphate, in which a compound formed on the surface of the granular solid is removed. A method for treating wastewater, which comprises stripping the waste continuously or intermittently, and returning the stripped material to the biological treatment step for treatment. 2. The method according to claim 1, wherein the stripping operation is performed in a contact reaction tank filled with the granular solid. 3. Claims in which the peeling operation is performed by continuously or intermittently taking out the granular solids out of the reaction tank, and then returning the peeled granular solids to the reaction tank for treatment. The method described in paragraph 1. 4. The biological treatment step is carried out in an activated sludge treatment step consisting of an aeration tank, a final settling tank, a surplus sludge thickening tank, and a sludge dewatering step, and the detached material is treated in at least one of the treatment steps. 3. The method according to claim 1, 2 or 3, wherein the method is returned to a laboratory for processing. 5. Claim 1, wherein the peeling operation is performed using a water stream and/or an air stream.
2. The method according to paragraph 2, paragraph 3, or paragraph 4. 6. Claim 1, wherein the peeling operation is performed by mechanical stirring, agitation, or vibration.
2. The method according to paragraph 2, paragraph 3, or paragraph 4.
JP57027161A 1982-02-22 1982-02-22 Purification of filthy water Granted JPS58143884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027161A JPS58143884A (en) 1982-02-22 1982-02-22 Purification of filthy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027161A JPS58143884A (en) 1982-02-22 1982-02-22 Purification of filthy water

Publications (2)

Publication Number Publication Date
JPS58143884A JPS58143884A (en) 1983-08-26
JPS6231633B2 true JPS6231633B2 (en) 1987-07-09

Family

ID=12213326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027161A Granted JPS58143884A (en) 1982-02-22 1982-02-22 Purification of filthy water

Country Status (1)

Country Link
JP (1) JPS58143884A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061092A (en) * 1983-09-14 1985-04-08 Kurita Water Ind Ltd Dephosphorizing method
CN109293058A (en) * 2018-10-26 2019-02-01 措湖垂泰科技有限公叞 A kind of method of phosphorus-containing wastewater recycled and waste resource recovery utilizes

Also Published As

Publication number Publication date
JPS58143884A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
US4076615A (en) Process and system for treating waste water
US7384573B2 (en) Compositions for wastewater treatment
US4721569A (en) Phosphorus treatment process
Owen Removal of phosphorus from sewage plant effluent with lime
DK0408878T3 (en) Increased phosphate removal in a process for treating activated sludge wastewater
FR2729653A1 (en) METHOD FOR IMPROVED DEPHOSPHATION OF WASTE WATER
JP3653422B2 (en) Waste water treatment method and waste water treatment equipment
JP2000015287A (en) Waste water treatment method and apparatus
US3716484A (en) Process for substantial removal of phosphates from wastewaters
JPS6242677B2 (en)
US4110209A (en) Method for treating a medium containing water with coagulants
JPS6317513B2 (en)
JPH0124558B2 (en)
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH08318292A (en) Waste water treatment method and apparatus
JPS6231633B2 (en)
JP3181521B2 (en) Water treatment method and water treatment device
JPH07323297A (en) Biological treatment of organic sewage
JPS59206092A (en) Treating process of waste water
JPH0810791A (en) Method for removing phosphorus
JPS59162997A (en) Organic filthy water disposal
JP2590474B2 (en) Wastewater treatment method
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPH0649197B2 (en) Organic wastewater treatment method
JPH0130554B2 (en)