JPS643045B2 - - Google Patents

Info

Publication number
JPS643045B2
JPS643045B2 JP14327079A JP14327079A JPS643045B2 JP S643045 B2 JPS643045 B2 JP S643045B2 JP 14327079 A JP14327079 A JP 14327079A JP 14327079 A JP14327079 A JP 14327079A JP S643045 B2 JPS643045 B2 JP S643045B2
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
polycrystalline
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14327079A
Other languages
Japanese (ja)
Other versions
JPS5667923A (en
Inventor
Hiroyuki Tango
Yoshihisa Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14327079A priority Critical patent/JPS5667923A/en
Publication of JPS5667923A publication Critical patent/JPS5667923A/en
Publication of JPS643045B2 publication Critical patent/JPS643045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は改良された半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improved method of manufacturing a semiconductor device.

〈発明の技術的背景とその問題点〉 従来、シリコン(Si)基板なる単結晶基板表面
を熱酸化してSiO2膜を形成し、さらにCVD法に
よりSi膜を被着する工程がICの分野で広く用いら
れている。然しながらSiO2膜上に被着したSi膜
は単結晶とはならず多結晶Si膜となる。多結晶Si
膜の抵抗値はかなり高く、従つてゲート電極或い
は配線材料としてこのような多結晶Si膜を用いた
半導体装置における動作速度を制限する大きな要
因となつていた。
<Technical background of the invention and its problems> Conventionally, in the field of IC, the process of thermally oxidizing the surface of a single-crystal silicon (Si) substrate to form an SiO 2 film, and then depositing a Si film using the CVD method. It is widely used in However, the Si film deposited on the SiO 2 film is not a single crystal but a polycrystalline Si film. Polycrystalline Si
The resistance value of the film is quite high, and has therefore been a major factor limiting the operating speed of semiconductor devices using such polycrystalline Si films as gate electrodes or wiring materials.

〈発明の目的〉 本発明によればこの様な絶縁体膜上の非単結晶
半導体膜例えば多結晶Si膜を単結晶化せしめ、よ
り速い動作速度が要求される半導体装置の製造方
法を提供することが出来る。
<Object of the Invention> According to the present invention, there is provided a method for manufacturing a semiconductor device that requires higher operating speed by monocrystallizing a non-single-crystalline semiconductor film such as a polycrystalline Si film on such an insulating film. I can do it.

〈発明の概要〉 即ち、本発明は単結晶基板にこの基板の露出部
と同一面を有しこの基板に埋設された絶縁体膜を
設ける工程と、この絶縁体膜上および前記露出部
上に平坦である非単結晶半導体膜を形成する工程
と、この非単結晶半導体膜をエネルギービーム照
射により前記露出部から単結晶化する工程とを具
備することを特徴とする。
<Summary of the Invention> That is, the present invention includes a step of providing an insulating film on a single crystal substrate, which has the same surface as the exposed portion of the substrate and is embedded in the substrate, and a step of providing the insulating film on the single crystal substrate and on the exposed portion. The method is characterized by comprising a step of forming a flat non-single-crystal semiconductor film, and a step of single-crystallizing the non-single-crystal semiconductor film from the exposed portion by irradiating the non-single-crystal semiconductor film with an energy beam.

〈発明の実施例〉 以下本発明の実施例を図面を参照して詳述す
る。
<Embodiments of the Invention> Examples of the present invention will be described in detail below with reference to the drawings.

先ず単結晶基板なるSi基板1の主面に1000℃の
ウエツトO2中で熱酸化し絶縁体膜として8000Å
厚のSiO2膜2を成長させる(第1図a)。ここで
公知の耐熱酸化膜を用いたる選択酸化法によりSi
基板1の主面に酸化膜のない開孔部3を設けてい
る。これは耐熱酸化膜下に薄いバツフア酸化膜を
挟んで選択酸化を行ない、その後耐熱酸化膜、バ
ツフア酸化膜除去により開孔部3を形成出来る。
バツフア酸化膜を残した部分は薄いSiO2膜4と
して示した。このように選択酸化によるコプラナ
技術を用いることにより表面の平担化が為されて
いるとともに開孔部3は絶縁体膜2と同一面に形
成される。
First, the main surface of the Si substrate 1, which is a single crystal substrate, is thermally oxidized in wet O 2 at 1000°C to form an insulating film with a thickness of 8000 Å.
A thick SiO 2 film 2 is grown (FIG. 1a). Here, a selective oxidation method using a well-known heat-resistant oxide film is used to
An opening 3 without an oxide film is provided on the main surface of the substrate 1. In this case, selective oxidation is performed by sandwiching a thin buffer oxide film under the heat-resistant oxide film, and then the heat-resistant oxide film and the buffer oxide film are removed to form the openings 3.
The portion where the buffer oxide film remains is shown as a thin SiO 2 film 4. As described above, by using the coplanar technique using selective oxidation, the surface is made flat and the openings 3 are formed on the same surface as the insulating film 2.

次に全面に4000Å厚の多結晶Si膜5をCVD法
によつ平担に形成し(第1図b)、さらに
200KeVの加速電圧で3×1016/cm2のSiイオンを
イオン打込み6する(第1図c)。このイオン打
込みは多結晶Si膜5の内部に欠陥を生じせしめ、
その後のエネルギービーム照射に際してエネルギ
ー吸収を効果的に行なわせるためのものである。
Next, a polycrystalline Si film 5 with a thickness of 4000 Å is formed flat on the entire surface by CVD method (Fig. 1b), and then
Si ions of 3×10 16 /cm 2 are implanted at an accelerating voltage of 200 KeV (Fig. 1c). This ion implantation causes defects inside the polycrystalline Si film 5,
This is for effectively absorbing energy during subsequent energy beam irradiation.

この状態でエネルギービーム例えばレーザー光
を照射7することにより多結晶Si膜5を開孔部3
からSiO2膜2上に亘り、開孔部を介して隣接す
るSi基板1を成長種として単結晶化せしめる。多
結晶Si膜5の領域5aそして領域5bという具合
に順次レーザー光を走査しながら照射して行くこ
とにより(第1図d,e)単結晶化された既照射
部分の結晶方位にならつて順次単結晶化され、遂
には全面の多結晶Si膜5を単結晶化することが出
来る。
In this state, the polycrystalline Si film 5 is irradiated with an energy beam such as a laser beam 7 to open the opening 3 in the polycrystalline Si film 5.
The Si substrate 1, which is adjacent to the SiO 2 film 2 through the opening, is used as a growth seed to form a single crystal. By scanning and irradiating the region 5a and then the region 5b of the polycrystalline Si film 5 with a laser beam (Fig. 1 d, e), the regions 5a and 5b of the polycrystalline Si film 5 are sequentially irradiated in accordance with the crystal orientation of the irradiated portion that has been made into a single crystal. The entire surface of the polycrystalline Si film 5 can finally be made into a single crystal.

Si基板1に隣接する多結晶シリコンへのレーザ
ー照射により、多結晶Siは極めて短時間で溶融、
再固化を行なうが、このとき開孔部3を介して隣
接するSi基板1を成長種としてエピタキシヤル成
長し、基板Siと同一の結晶方位を有する単結晶が
成長する。エネルギービーム照射に際しては、そ
のビーム径、エネルギー密度を設定することによ
り実質的に多結晶Si膜5にのみエネルギーを与
え、SiO2膜2及びその下に対しては熱的影響を
与えないようにすることも可能である。
By laser irradiating the polycrystalline silicon adjacent to the Si substrate 1, the polycrystalline silicon melts in an extremely short time.
During resolidification, epitaxial growth occurs using the Si substrate 1 adjacent through the opening 3 as a growth seed, and a single crystal having the same crystal orientation as the Si substrate grows. When irradiating the energy beam, by setting the beam diameter and energy density, energy is applied only to the polycrystalline Si film 5, and the SiO 2 film 2 and the area below it are not thermally affected. It is also possible to do so.

第2図は全面にビーム照射が為され単結晶化が
行なわれたSi層を用いて第1のMISトランジスタ
のゲート電極8、配線9及びアクテイブ領域とし
て能動素子なる第2のMISトランジスタ10を形
成したものである。ここに11,12はソース、
13,14はドレイン、15,16は夫々第2の
トランジスタのゲート酸化膜及びゲート電極であ
る。
FIG. 2 shows the formation of the gate electrode 8 of the first MIS transistor, the wiring 9, and the second MIS transistor 10, which serves as an active region, using a Si layer whose entire surface has been irradiated with a beam and made into a single crystal. This is what I did. Here 11 and 12 are sources,
13 and 14 are drains, and 15 and 16 are the gate oxide film and gate electrode of the second transistor, respectively.

ゲート電極8、配線9は単結晶化により数Ω/
□以下の抵抗値となり多結晶シリコンを用いた場
合の1/10程度の値となつた。ゲート電極8、配線
9へはエネルギービーム照射前又は後適当な時期
にP,B,As等の不純物を導入し低抵抗化を図
る。
The gate electrode 8 and wiring 9 have a resistance of several Ω/Ω due to single crystallization.
The resistance value was less than □, which was about 1/10 of that when polycrystalline silicon was used. Impurities such as P, B, and As are introduced into the gate electrode 8 and the wiring 9 at an appropriate time before or after the energy beam irradiation to lower the resistance.

又、アクテイブ領域10は高速化が為され、又
島状に形成され、バルク素子に比べて所謂SOS構
造のトランジスタと同様な効果を享受することが
出来る。
In addition, the active region 10 has a higher speed and is formed in an island shape, so that it can enjoy effects similar to those of a so-called SOS structure transistor compared to a bulk element.

又、予めエネルギービーム照射する半導体層を
パターニングしておくことによりエネルギー吸収
能が高まり単結晶化を促進することが出来る。
Further, by patterning the semiconductor layer to be irradiated with the energy beam in advance, the energy absorption ability can be increased and single crystallization can be promoted.

上記実施例に於いては基板、半導体膜材料とし
てSiを例としたが、その他GeやGaAsの様な材料
にも適用できることはもちろんである。またイオ
ン打込みも先述Siに限らず、Ge等の半導体元素、
Ar等の不活性元素、As,P,B等のN又はP導
電型を与える元素のイオンを用いてもよい。さら
にエネルギービームとしてレーザービームを用い
ているが、その他電子線、X線等の照射によつて
も同様の効果をあげることが出来る。又、多結晶
シリコンの代わりに非晶質シリコン膜等の非単結
晶半導体膜を用いても良い。
In the above embodiments, Si was used as the substrate and semiconductor film material, but it goes without saying that other materials such as Ge and GaAs can also be used. In addition, ion implantation is not limited to the aforementioned Si, but also semiconductor elements such as Ge, etc.
Ions of inert elements such as Ar, and elements that provide N or P conductivity type such as As, P, and B may also be used. Furthermore, although a laser beam is used as the energy beam, similar effects can be achieved by irradiation with other electron beams, X-rays, etc. Furthermore, a non-single crystal semiconductor film such as an amorphous silicon film may be used instead of polycrystalline silicon.

また、上記実施例では、多結晶シリコン層5全
面にエネルギービーム照射を行なつているが高抵
抗素子を製作する場合の様に、照射を選択的に行
ない所定領域を多結晶シリコンのまま残こすこと
も可能である。
In the above embodiment, the entire surface of the polycrystalline silicon layer 5 is irradiated with an energy beam, but as in the case of manufacturing a high-resistance element, irradiation is performed selectively to leave a predetermined area as polycrystalline silicon. It is also possible.

また、本実施例では単結晶化の種として半導体
基板を用いているが、サフアイア、スピネルの様
な絶縁性基板を用いることも出来る。第3図に本
発明をこのSOSに応用した例を示す。
Further, in this embodiment, a semiconductor substrate is used as a seed for single crystallization, but an insulating substrate such as sapphire or spinel can also be used. FIG. 3 shows an example in which the present invention is applied to this SOS.

〈発明の効果〉 以上、説明したように、本発明の方法は、トラ
ンジスタ、ゲート電極、配線、高抵抗素子、容量
素子等に利用することが出来る。例えばアクテイ
ブ領域10として示したようにフイールド領域上
に能動素子を設けるなど、又層を重ねてさらに絶
縁体層と単結晶層を幾重にも重ねることが出来、
従来横方向に広がつた面積に配置されていたデバ
イスを縦方向につみ重ねた構造に出来ることにな
り、デバイスの集積度を極端に高めることが出来
る。
<Effects of the Invention> As described above, the method of the present invention can be used for transistors, gate electrodes, wiring, high resistance elements, capacitive elements, and the like. For example, as shown as the active region 10, an active element can be provided on the field region, or layers can be stacked, and insulator layers and single crystal layers can be stacked many times.
Devices, which were conventionally arranged in an area spread horizontally, can now be stacked vertically, making it possible to extremely increase the degree of device integration.

以上説明したように本発明は単結晶基板にこの
基板の露出部と同一面を有しこの基板に埋設され
た絶縁体膜を設ける工程と、この絶縁体膜上およ
び前記露出部上に平坦である非単結晶半導体膜を
形成する工程と、この非単結晶半導体膜をエネル
ギービーム照射により前記露出部から単結晶化す
る工程とを具備することを特徴とする半導体装置
の製造方法であり本発明の主旨を逸脱しない限り
種々変更を加え得ることは勿論である。
As explained above, the present invention includes a step of providing a single crystal substrate with an insulating film having the same surface as the exposed portion of the substrate and buried in the substrate, and a step of providing a flat insulating film on the insulating film and the exposed portion. A method of manufacturing a semiconductor device, comprising the steps of forming a certain non-single-crystal semiconductor film, and single-crystallizing the non-single-crystal semiconductor film from the exposed portion by irradiating the non-single-crystal semiconductor film, and the present invention Of course, various changes can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明を説明する為の断面図、
第2図は本発明の実施例を説明する断面図、第3
図はサフアイア基板を用いた実施例を説明する断
面図である。 図に於いて、1……Si基板、2……SiO2膜、
3……開孔部、5……多結晶Si膜、7……エネル
ギービーム照射、8,16……ゲート電極、9…
…配線、10……第2のトランジスタ、11,1
2……ソース領域、13,14……ドレイン領
域、15……ゲートSiO2膜、20……単結晶サ
フアイア基板、21……エピタキシアルSi層、2
2……SiO2膜、23……開孔部、24……単結
晶化されたSi膜。
FIGS. 1a to 1e are cross-sectional views for explaining the present invention,
Fig. 2 is a sectional view explaining an embodiment of the present invention;
The figure is a sectional view illustrating an example using a sapphire substrate. In the figure, 1...Si substrate, 2...SiO 2 film,
3... Opening portion, 5... Polycrystalline Si film, 7... Energy beam irradiation, 8, 16... Gate electrode, 9...
...Wiring, 10...Second transistor, 11,1
2... Source region, 13, 14... Drain region, 15... Gate SiO 2 film, 20... Single crystal sapphire substrate, 21... Epitaxial Si layer, 2
2... SiO 2 film, 23... Opening portion, 24... Single crystallized Si film.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶基板にこの基板の露出部と同一面を有
しこの基板に埋設された絶縁体膜を設ける工程
と、この絶縁体膜上および前記露出部上に平坦で
ある非単結晶半導体膜を形成する工程と、この非
単結晶半導体膜をエネルギービーム照射により前
記露出部から単結晶化する工程とを具備すること
を特徴とする半導体装置の製造方法。
1. Providing an insulating film on a single crystal substrate, which has the same surface as the exposed part of the substrate and is buried in the substrate, and forming a flat non-single crystal semiconductor film on the insulating film and the exposed part. 1. A method of manufacturing a semiconductor device, comprising the steps of forming a non-single crystal semiconductor film, and monocrystalizing the non-single crystal semiconductor film from the exposed portion by irradiating the non-single crystal semiconductor film with an energy beam.
JP14327079A 1979-11-07 1979-11-07 Preparation method of semiconductor system Granted JPS5667923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14327079A JPS5667923A (en) 1979-11-07 1979-11-07 Preparation method of semiconductor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14327079A JPS5667923A (en) 1979-11-07 1979-11-07 Preparation method of semiconductor system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP8788082A Division JPS5825271A (en) 1982-05-26 1982-05-26 Manufacture of semiconductor device
JP57087878A Division JPS5825221A (en) 1982-05-26 1982-05-26 Manufacture of semiconductor device
JP57087879A Division JPS5825222A (en) 1982-05-26 1982-05-26 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5667923A JPS5667923A (en) 1981-06-08
JPS643045B2 true JPS643045B2 (en) 1989-01-19

Family

ID=15334838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14327079A Granted JPS5667923A (en) 1979-11-07 1979-11-07 Preparation method of semiconductor system

Country Status (1)

Country Link
JP (1) JPS5667923A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586121A (en) * 1981-07-02 1983-01-13 Seiko Epson Corp Semiconductor substrate
JPS5817674A (en) * 1981-07-24 1983-02-01 Seiko Epson Corp Metal oxide semiconductor type semiconductor device
JPS5837913A (en) * 1981-08-28 1983-03-05 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5839062A (en) * 1981-09-02 1983-03-07 Toshiba Corp Semiconductor device and manufacture thereof
JPS5853821A (en) * 1981-09-25 1983-03-30 Toshiba Corp Preparation of laminated semiconductor device
JPS5853822A (en) * 1981-09-25 1983-03-30 Toshiba Corp Laminated semiconductor device
JPS5890769A (en) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp Laminated semiconductor device
JPS5893217A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor crystal film
JPS5893221A (en) * 1981-11-30 1983-06-02 Toshiba Corp Semiconductor thin film structure and preparation thereof
JPS58175821A (en) * 1982-04-08 1983-10-15 Toshiba Corp Manufacture of semiconductor device
JPS6055614A (en) * 1983-09-07 1985-03-30 Agency Of Ind Science & Technol Manufacture of film of semiconductor single crystal
JPS60189217A (en) * 1984-03-09 1985-09-26 Agency Of Ind Science & Technol Seed construction for multilayer soi
JPS61199624A (en) * 1985-03-02 1986-09-04 Agency Of Ind Science & Technol Manufacture of single crystal layer of semiconductor layer
JPS62122120A (en) * 1986-01-10 1987-06-03 Seiko Epson Corp Manufacture of semiconductor substrate
JPS635559A (en) * 1986-06-25 1988-01-11 Matsushita Electronics Corp Manufacture of semiconductor device
JPS63285184A (en) * 1988-04-22 1988-11-22 Seiko Epson Corp Production of single crystal film
JP2008505488A (en) * 2004-06-30 2008-02-21 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Technology for forming substrates having crystalline semiconductor regions with different characteristics

Also Published As

Publication number Publication date
JPS5667923A (en) 1981-06-08

Similar Documents

Publication Publication Date Title
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
US4969031A (en) Semiconductor devices and method for making the same
JPS643045B2 (en)
US4437225A (en) Method of forming SOS devices by selective laser treatment and reactive formation of isolation regions
KR100737662B1 (en) Thin film semiconductor device and method for fabricating the same
JPS643046B2 (en)
JPS643047B2 (en)
JPS5885520A (en) Manufacture of semiconductor device
JPH0580159B2 (en)
JP2718074B2 (en) Method of forming thin film semiconductor layer
JPS6342417B2 (en)
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPH0467336B2 (en)
JPH02864B2 (en)
JPS5825271A (en) Manufacture of semiconductor device
JPH05166839A (en) Semiconductor device and its manufacture
JPH0236050B2 (en)
JPS6360551B2 (en)
JPH0395937A (en) Soi type semiconductor device and manufacture thereof
JPS61166074A (en) Insulated gate type transistor and manufacture thereof
JPS5837952A (en) Semiconductor device and manufacture thereof
JPS6151874A (en) Manufacture of soi-mos
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JP2730905B2 (en) Method for manufacturing semiconductor device
JPH0243331B2 (en)