JPS63285184A - Production of single crystal film - Google Patents

Production of single crystal film

Info

Publication number
JPS63285184A
JPS63285184A JP9943888A JP9943888A JPS63285184A JP S63285184 A JPS63285184 A JP S63285184A JP 9943888 A JP9943888 A JP 9943888A JP 9943888 A JP9943888 A JP 9943888A JP S63285184 A JPS63285184 A JP S63285184A
Authority
JP
Japan
Prior art keywords
film
single crystal
substrate
solid
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9943888A
Other languages
Japanese (ja)
Inventor
Seiichi Iwamatsu
誠一 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9943888A priority Critical patent/JPS63285184A/en
Publication of JPS63285184A publication Critical patent/JPS63285184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable the production of a single crystal film having little crystal defects at a high speed, by forming a polycrystalline or amorphous Si film on a single crystal growth seed or insulation film of the edge of a single crystal Si substrate or other regions and converting the Si film to single crystal with an energy beam. CONSTITUTION:A specimen is placed on a carbon heater 1 heated at a specific temperature by electric current. The specimen is composed of a single crystal Si substrate 2 coated its major part with an insulation film such as SiO2 film, Si3N4 film or their double-layer structure film and a part of the insulation film 3 is etched to open a window through which the substrate 2 is exposed at the edge part. The exposed part of the substrate is used as a growing seed part 4 for single crystal Si and the surface of the part is made to form nearly a plane with the surface of the insulation film 3. A polycrystalline Si film 5 is formed on these surfaces by CVD process, the part of the growing seed 4 connected with the substrate 2 contacting with the film 5 is linearly irradiated with energy beam 6 such as electron ray in the direction of X and the film is transferred in the direction Y under partial melting. The part of the polycrystalline Si converted to single crystal during the cooling process grows continuously in the direction Y to form a single crystal Si film having nearly flat surface over the whole surface.

Description

【発明の詳細な説明】 本発明は単結晶膜の製造法に係り、とりわけ絶縁体上の
単結晶半導体膜の製造方法のなかでも絶縁体上のSi単
結晶膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single crystal film, and more particularly to a method for manufacturing a single crystal Si film on an insulator, among methods for manufacturing a single crystal semiconductor film on an insulator.

絶縁体上の単結晶半導体膜の製造方法としては通常S 
OS C3iLicbn On 5apDhire)V
、代表サレ;S。
The method for manufacturing a single crystal semiconductor film on an insulator is usually S.
OS C3iLicbn On 5apDhire)V
, Representative Sale;S.

単結晶サファイヤ基板上にSi半導体膜をエピタキシャ
ル法で形成する方法がある。
There is a method of forming a Si semiconductor film on a single crystal sapphire substrate by an epitaxial method.

しかし、前記従来技術では、育成された単結晶半導体S
2膜が基板サファイヤ単結晶の格子間定数と育成された
Si単結晶膜の格子間Z数が完全に一致する結晶面がな
く、せいぜい数%の格子定数差におさめるのが最良であ
り、ために、St単結晶膜に結晶欠陥が多いと云う欠点
がある。
However, in the conventional technology, the grown single crystal semiconductor S
Because there is no crystal plane in which the interstitial constant of the two films perfectly matches the interstitial Z number of the grown Si single crystal film and the interstitial constant of the substrate sapphire single crystal, it is best to keep the lattice constant difference to a few percent at most. Another drawback is that the St single crystal film has many crystal defects.

さらに、前記サファイヤ基板が高価であり、この様な絶
縁体上の単結晶半導体膜を用いて高速の半導体装置を製
作する事への要望が大きいにも拘らず、実用化が遅れて
いる。
Furthermore, the sapphire substrate is expensive, and although there is a strong demand for manufacturing high-speed semiconductor devices using such a single crystal semiconductor film on an insulator, practical implementation has been delayed.

本発明はかかる欠点をなくし、低価格で結晶欠陥の少な
い絶縁体上に半導体単結晶膜を形成した高速の半導体装
置用の半導体基板を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks and to provide a semiconductor substrate for a high-speed semiconductor device, which is inexpensive and has a semiconductor single crystal film formed on an insulator with few crystal defects.

上記目的を達成するための本発明の基本的な構成は、第
1の固体表面の一部には第2の固体結晶からなる単結晶
、育成種が設けられ、該固体単結晶育成種に少なくとも
接して成り、且つ第1の固体表面を被覆した多結晶また
はアモルファス状態の第2と同一材料からなる膜または
第3の固体材料膜が形成されて成った基板を形成し、該
基板を前記固体材料膜の融点よりわずかに低温に保ちな
がら少なくとも前記固体単結晶育成種と前記固体材料膜
とが接した部分から電子線あるいは光線等のエネルギー
ビームを照射して融解しながら移動走査し、前記エネル
ギー・ビームにより第1の固体表面上の前記固体材料膜
や実質的に連続して融解と冷却過程により固体化による
単結晶化を行ない、前記固体材料膜を基板表面において
単結晶化することを特徴とする。
The basic configuration of the present invention for achieving the above object is that a single crystal and a growing seed made of a second solid crystal are provided on a part of the first solid surface, and the solid single crystal growing seed has at least forming a substrate on which a film made of the same material as the second solid material or a third solid material film in a polycrystalline or amorphous state is formed and is in contact with the surface of the first solid; While keeping the temperature slightly lower than the melting point of the material film, an energy beam such as an electron beam or a light beam is irradiated from at least the portion where the solid single crystal growth seed and the solid material film are in contact with each other, and the energy beam is moved and scanned while melting. - The solid material film on the first solid surface is solidified into a single crystal by a beam, and the solid material film is solidified into a single crystal on the substrate surface through a substantially continuous melting and cooling process. shall be.

以下、実施例を用いて本発明を詳細に述べる。The present invention will be described in detail below using examples.

第1図は本発明の実施例を模式的に示したもので、1は
カーボン・ヒーターであり、1200°C〜1300 
”Cに通電して保たれる。該カーボン・ヒーター上には
試料がのせられ、該試料はSi基板2の大部分がSin
、膜、Si3N、膜、あるいはSiO□とSi、 N、
膜の2N構造膜等の絶縁膜3が被覆され、該絶縁膜3の
一部がエツチングにより窓開けされ、下地Si基板を露
出させ、該露出Si基板部を単結晶Siの育成種部分4
となし、それらの表面には多結晶Si膜5がCVD法に
より形成され、該的結晶Si膜5の育成種4の部分に電
子線あるいはレーザー光線等のエネルギー・ビーム6を
X方向に実質的に線状に照射して、多結晶Si膜5を部
分的に1400°C程度で融解しながら、Y方向に移動
せしめることにより、融解した多結晶Siが冷却過程で
単結晶化した部分7がY方向に連続して成長し、多結晶
Si膜5は全面単結晶育成種となる。
FIG. 1 schematically shows an embodiment of the present invention, in which 1 is a carbon heater, and the heating temperature is 1200°C to 1300°C.
A sample is placed on the carbon heater, and most of the Si substrate 2 is made of Si.
, film, Si3N, film, or SiO□ and Si, N,
An insulating film 3 such as a 2N structure film is coated, a part of the insulating film 3 is opened by etching to expose the underlying Si substrate, and the exposed Si substrate part is used as a growth seed part 4 of single crystal Si.
A polycrystalline Si film 5 is formed on those surfaces by the CVD method, and an energy beam 6 such as an electron beam or a laser beam is applied to the growing seed 4 portion of the target crystalline Si film 5 substantially in the X direction. By irradiating the polycrystalline Si film 5 in a linear manner and moving it in the Y direction while partially melting it at about 1400°C, the portion 7 where the melted polycrystalline Si has become single crystal in the cooling process becomes Y The polycrystalline Si film 5 grows continuously in the direction, and the polycrystalline Si film 5 becomes a single crystal growth seed over the entire surface.

試料基板の形態としては、石英等のガラスまたはセラミ
ック基板11の表面又は基板11に埋めこまれた状態の
単結晶育成種となる単結晶、!9N2を頭布ガラス等で
基板に貼付けるか、多結晶S1膜13をCVD法で形成
する場合に、そのままCvD多結晶Si膜13で基板1
1と貼付けるかして構成されその上にCVD5iOt膜
14が被覆された形のものでも良い。
The form of the sample substrate is a single crystal that serves as a single crystal growth seed that is embedded on the surface of a glass or ceramic substrate 11 such as quartz, or embedded in the substrate 11. If 9N2 is attached to the substrate with a head cloth glass or the like, or if the polycrystalline S1 film 13 is formed by the CVD method, the CvD polycrystalline Si film 13 is directly attached to the substrate 1.
1 may be pasted onto it and a CVD5iOt film 14 may be coated thereon.

この様にして形成された絶縁体上の単結晶育成種 ゛は
育成種の結晶性がそのまま保持された単結晶膜となり、
結晶欠陥が少なく、且つ基板がサファイヤの如く高価な
ものである必要はなく、低価格でかつ高速半導体素子製
作に適した基板が提供できるという効果がある。
The single crystal grown seed on the insulator formed in this way becomes a single crystal film in which the crystallinity of the grown seed is maintained as it is,
It has the advantage that it has few crystal defects and does not need to be an expensive substrate such as sapphire, and can provide a substrate suitable for manufacturing high-speed semiconductor devices at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を模式的に示したものであり、
第2図は基板試料のその他の構成例の断面図を示したも
のである。 1・・・カーボン・ヒーター  2・・・51基板3.
14・・・絶縁膜  4,12・・・単結晶育成種部分
  5,13・・・多結晶Si膜  6・・・エネルギ
ー・ビーム  7・・・単結晶育成種  11・・・絶
縁基板。 以上 出願人 セイコーエプソン株式会社 代理人弁理士 上樋 雅誉 他1名 第1図 第2図 手続補正書(自発) 昭和63年 5月20日 2、発明の名称 単結晶膜の製造方法 代表取締役  中 村 恒 也 明 細 書(全文補正) 明細書 1、発明の名称 単結晶膜の製造方法 2、特許請求の範囲 アモルファス状七のSf  全体に前記エネルギービー
ムを   査して、1晋己   またはアモルi とす
る工王を することを特徴とする単結晶膜の製造方法。 3、発明の詳細な説明 本発明は単結晶膜の製造方法に係り、とりわけ絶縁体上
の単結晶半導体膜の製造方法のなかでも絶縁体上の単結
晶S1膜の製造方法に関する。 従来、絶縁体上の単結晶半導体膜の製造方法としては、
通常S OS (Silicon On 5apphi
re)に代表される単結晶サファイヤ基板上にSi半導
体膜をエピタキシャル法で形成する方法がある。 しかし、前記従来技術では、育成された単結晶育成種の
格子間定数と基板サファイヤ単結晶の格子間定数とが完
全に一致する結晶面がな(、せいぜい数%の格子定数差
におさめるのが最良であるために、単結晶育成種に結晶
欠陥が多いと云う欠点がある。 さらに、前記サファイヤ基板が高価であり、この様な絶
縁体上の単結晶半導体膜を用いて高速の半導体装置を製
作する事への要望が大きいにも拘らず、実用化が遅れて
いる。 本発明はかかる欠点をなくし、低価格で結晶欠陥の少な
い絶縁体上に非常に平坦な状態で半導体単結晶膜を形成
した高速の半導体装置用の半導体基板の製造方法を提供
することを目的とする。 上記目的を達成するための本発明の基本的な構成は、表
面がほぼ平坦な第1の固体表面の一部、特に端部には第
2の固体単結晶からなる単結晶育成種が設けられ、該固
体単結晶育成種に少なくとも接して成り、且つ第1の固
体表面を被覆した多結晶またはアモルファス状態の第2
と同一材料からなる膜または第3の固体材料膜が形成さ
れて成った基板を形成し、該基板を前記固体材料膜の融
点よりわずかに低温に保ちながら少なくとも前記固体単
結晶育成種と前記固体材料膜とが接した部分から電子線
あるいは光線等のエネルギービームを照射して融解しな
がら移動走査し、前記エネルギービームにより第1の固
体表面上の前記固体材料膜や実質的に連続して融解と冷
却過程により固体化による単結晶化を行ない、前記固体
材料膜を基板表面において表面がほぼ平坦となるように
単結晶化することを特徴とする。 以下、実施例を用いて本発明を詳細に述べる。 第1図は本発明の実施例を模式的に示したもので、1は
カーボン・ヒーターであり、1200°C〜1300°
Cに通電して保たれる。該カーボン・ヒーター上には試
料がのせられ、該試料は単結晶Si基板2の大部分が5
ift膜、Six N4膜あるいはSin、とSt、 
N、膜の2層構造膜等の絶縁膜3により被覆され、該絶
縁膜3の一部がエツチングにより窓開けされ、下地単結
晶Si基板2をその端部において露出させ、該露出単結
晶Si基板部を単結晶Siの育成種部分4と成している
。ここで、第1図のように育成種部分4の表面と絶縁膜
3の表面とが、はぼ平坦となるように形成することが、
特徴である。この表面がほぼ平坦となるようにすること
により、後に形成される単結晶育成種もほぼ平坦となる
のである。 そして、それらの表面には多結晶Si膜5がCVD法に
より形成され、該多結晶Si膜5と接触している単結晶
51基板2と連続する単結晶育成種4の部分に電子線あ
るいはレーザー光線等のエネルギービーム6をX方向に
実質的に線状に照射して、多結晶Si膜5を部分的に1
400″C程度で融解しながら、Y方向に移動せしめる
ことにより、融解した多結晶Siが冷却過程で単結晶化
した部分7がY方向に連続して成長し、多結晶Si膜5
は全面はぼ平坦な単結晶育成種となる。 試料基板の形態としては、石英等のガラスまたはセラミ
ック基板11の表面又は基板11に埋めこまれた状態の
単結晶育成種12となる単結晶Siを頭布ガラス等で基
板に貼付けるか、多結晶Si膜13をCVD法で形成す
る場合に、そのままC■D多結晶Si膜13で基板11
と貼付けるかして構成されその上にCVD5tO,膜等
の絶縁膜14が被覆された形のものでも良い。 この様にして形成された絶縁体上の表面がほぼ平坦な単
結晶育成種は育成種の結晶性がそのまま保持された単結
晶膜となり、結晶欠陥が少なく、且つ基板がサファイヤ
の如く高価なものである必要はなく、低価格でかつ高速
半導体素子製作に適した基板が提供できるという効果が
ある。 また、本発明は単結晶育成種と絶縁膜との表面をほぼ平
坦となるようにしたことにより、表面がほぼ平坦な単結
晶育成種が形成されるので、そこに半導体素子等を形成
する時に信頬性の良いものができるのである。 上述の如く本発明は、単結晶Sj基板の端部にその単結
晶St基板と連続する単結晶育成種を設け、この単結晶
育成種に少なくとも接してなり、単結晶St基板を被覆
した多結晶またはアモルファス状態のSi膜を形成する
。その後、少なくとも多結晶またはアモルファス状態の
Si膜をその融点よりもわずかに低く加熱し、電子線ま
たは光線等のエネルギービームを、単結晶St基板の端
部にその単結晶Si基板と連続するように形成された単
結晶育成種の上のSN膜から照射を開始し、Si膜全全
体わたって移動走査されるので、Si膜自体が高温に維
持されつつ、エネルギービーム照射で単結晶化がはから
れ、低消費電力のエネルギービームを用いて均質な単結
晶育成種の育成が可能となる。また、単結晶育成種を単
結晶S!基板と連続するように単結晶31基板の端部に
設けたので、その単結晶育成種上に形成された多結晶ま
たはアモルファス状態のSi膜からエネルギービームの
照射を開始し、Si膜全全体わたって移動走査するので
、P1単に広い面積を有する単結晶育成種が確実に得ら
れるのである。 さらに、単結晶育成種を単結晶Si基板の端部に、その
単結晶Sf基板と連続するように設けたので、この単結
晶育成種を用いて多結晶またはアモルファス状態のSi
膜を単結晶育成種とした時に、この単結晶育成種は、そ
の成長の基となった単結晶Sf基板と結晶面がそろうか
ら、それぞれ、単結晶St基板と単結晶育成種に半導体
装置つまり素子等を形成しても、非常に素子特性の等し
い素子が形成できるものである。よって半導体装置全体
の信顧性が非常に高いものとなる。 4、図面の簡単な説明 第1図は本発明の実施例を模式的に示したものであり、
第2図は基板試料のその他の構成例の断面図を示したも
のである。 1・・カーボン・ヒーター 2・・・単結晶Si基板 3.14・・・絶縁膜 4.12・・・単結晶育成種部分 5.13 ・・・多結晶S1膜 6・・・エネルギービーム 7・・・単結晶育成種 11・・・絶縁基板 以上
FIG. 1 schematically shows an embodiment of the present invention.
FIG. 2 shows a cross-sectional view of another example of the structure of the substrate sample. 1... Carbon heater 2... 51 board 3.
14... Insulating film 4, 12... Single crystal growth seed portion 5, 13... Polycrystalline Si film 6... Energy beam 7... Single crystal growth seed 11... Insulating substrate. Applicant: Seiko Epson Co., Ltd. Representative Patent Attorney Masayoshi Kamihi and one other person Figure 1 Figure 2 Procedural amendment (voluntary) May 20, 1988 2 Name of the invention Method for manufacturing single crystal film Representative Director Specification by Tsuneya Nakamura (full text amended) Description 1, Name of the invention Method for producing a single crystal film 2, Claims The energy beam is applied to the entire amorphous Sf, and 1. Shinki or amorphous Sf. A method for producing a single crystal film, characterized in that a method for manufacturing a single crystal film is performed. 3. Detailed Description of the Invention The present invention relates to a method for manufacturing a single crystal film, and particularly to a method for manufacturing a single crystal S1 film on an insulator among methods for manufacturing a single crystal semiconductor film on an insulator. Conventionally, the method of manufacturing a single crystal semiconductor film on an insulator is as follows:
Normal S OS (Silicon On 5apphi)
There is a method of forming a Si semiconductor film on a single crystal sapphire substrate by an epitaxial method, as typified by re). However, in the conventional technology, there is no crystal plane in which the interstitial constant of the grown single crystal seed and the interstitial constant of the substrate sapphire single crystal completely match (it is difficult to keep the difference in lattice constant to a few percent at most). However, the sapphire substrate has the disadvantage of having many crystal defects in the single-crystal grown seed.Furthermore, the sapphire substrate is expensive, and it is difficult to build high-speed semiconductor devices using a single-crystal semiconductor film on such an insulator. Although there is a strong demand for the production of such a film, its practical application has been delayed.The present invention eliminates these drawbacks and enables the production of a semiconductor single crystal film in a very flat state on an insulator with few crystal defects at a low cost. It is an object of the present invention to provide a method for manufacturing a semiconductor substrate for a high-speed semiconductor device.The basic structure of the present invention for achieving the above object is to A single-crystal growth seed made of a second solid single crystal is provided at the part, especially at the end, and a polycrystalline or amorphous seed is provided at least in contact with the solid single-crystal growth seed and covers the first solid surface. Second
forming a substrate on which a film made of the same material or a third solid material film is formed, and while maintaining the substrate at a temperature slightly lower than the melting point of the solid material film, at least the solid single crystal growth seed and the solid material are formed. The material film is irradiated with an energy beam such as an electron beam or a light beam from a portion in contact with the material film, and is moved and scanned while melting, and the solid material film on the first solid surface is melted substantially continuously by the energy beam. The method is characterized in that single crystallization is performed by solidification through a cooling process, and the solid material film is single crystallized on the substrate surface so that the surface thereof is substantially flat. The present invention will be described in detail below using examples. FIG. 1 schematically shows an embodiment of the present invention, in which 1 is a carbon heater, and the heating temperature is 1200°C to 1300°C.
It is maintained by energizing C. A sample is placed on the carbon heater, and most of the single crystal Si substrate 2 is 5
ift film, Six N4 film or Sin, and St,
N, covered with an insulating film 3 such as a two-layer structure film, a part of the insulating film 3 is etched to expose the base single crystal Si substrate 2 at its end, and the exposed single crystal Si The substrate portion is formed as a growing seed portion 4 of single crystal Si. Here, as shown in FIG.
It is a characteristic. By making this surface substantially flat, the single crystal growth seeds that will be formed later will also be substantially flat. Then, a polycrystalline Si film 5 is formed on their surfaces by the CVD method, and a portion of the single crystal growth seed 4 that is continuous with the single crystal 51 substrate 2 that is in contact with the polycrystalline Si film 5 is irradiated with an electron beam or a laser beam. The polycrystalline Si film 5 is partially irradiated with an energy beam 6 such as
By moving the melted polycrystalline Si in the Y direction while melting it at about 400"C, a portion 7 in which the melted polycrystalline Si becomes single crystal during the cooling process grows continuously in the Y direction, forming a polycrystalline Si film 5.
becomes a single-crystal grown seed with a flat surface. The sample substrate may be formed by attaching single-crystal Si, which will become the single-crystal growth seed 12, to the surface of a glass or ceramic substrate 11, such as quartz, or embedded in the substrate 11, using a head cloth glass, etc. When forming the crystalline Si film 13 by the CVD method, the substrate 11 is directly coated with the CD polycrystalline Si film 13.
It is also possible to have a structure in which an insulating film 14 such as a CVD 5tO film is coated thereon. The single-crystal grown seed with a nearly flat surface on the insulator formed in this way becomes a single-crystal film that maintains the crystallinity of the grown seed, has few crystal defects, and is suitable for expensive substrates such as sapphire. However, it is possible to provide a substrate suitable for manufacturing high-speed semiconductor devices at low cost. Furthermore, in the present invention, by making the surfaces of the single crystal growth seed and the insulating film almost flat, a single crystal growth seed with an almost flat surface is formed, so that when semiconductor elements etc. are formed thereon, This allows us to create products with good credibility. As described above, the present invention provides a single-crystal growth seed continuous with the single-crystal St substrate at the end of a single-crystal Sj substrate, and a polycrystalline seed that is at least in contact with the single-crystal growth seed and coated with the single-crystal St substrate. Alternatively, an amorphous Si film is formed. Thereafter, at least the Si film in a polycrystalline or amorphous state is heated to a temperature slightly lower than its melting point, and an energy beam such as an electron beam or a light beam is applied to the edge of the single-crystal St substrate so as to be continuous with the single-crystal Si substrate. Irradiation starts from the SN film on the formed single crystal growth seed and is moved and scanned over the entire Si film, so the Si film itself is maintained at high temperature and the energy beam irradiation prevents single crystallization. This makes it possible to grow homogeneous single-crystal seeds using an energy beam with low power consumption. In addition, the single crystal grown seeds are single crystal S! Since the single crystal 31 was provided at the edge of the substrate so as to be continuous with the substrate, irradiation of the energy beam was started from the polycrystalline or amorphous Si film formed on the single crystal growth seed, and the energy beam was irradiated across the entire Si film. Since P1 is moved and scanned, a single crystal growth seed having a large area can be reliably obtained. Furthermore, since a single-crystal growth seed was provided at the edge of the single-crystal Si substrate so as to be continuous with the single-crystal Sf substrate, this single-crystal growth seed was used to grow polycrystalline or amorphous Si.
When a film is grown as a single-crystal growth seed, the crystal planes of this single-crystal growth seed are aligned with the single-crystal Sf substrate that is the basis for its growth. Even if elements etc. are formed, elements with very similar element characteristics can be formed. Therefore, the reliability of the entire semiconductor device becomes extremely high. 4. Brief description of the drawings FIG. 1 schematically shows an embodiment of the present invention.
FIG. 2 shows a cross-sectional view of another example of the structure of the substrate sample. 1...Carbon heater 2...Single crystal Si substrate 3.14...Insulating film 4.12...Single crystal growth seed portion 5.13...Polycrystalline S1 film 6...Energy beam 7 ...Single crystal growth seed 11...Insulating substrate or higher

Claims (3)

【特許請求の範囲】[Claims] (1)第1の固体表面の一部には第2の固体単結晶から
なる単結晶育成種が設けられ、該固体単結晶育成種に少
なくとも接して成り、且つ第1の固体表面を被覆した多
結晶またはアモルファス状態の第2と同一材料からなる
膜または第3の固体材料膜が形成されて成った基板を形
成し、該基板を前記固体材料膜の融点よりわずかに低温
に保ちながら少なくとも前記固体単結晶育成種と前記固
体材料膜とが接した部分から電子線あるいは光線等のエ
ネルギー・ビームを照射して融解しながら移動走査し、
前記エネルギー・ビームにより第1の固体表面上の前記
固体材料膜を実質的に連続して融解と冷却過程による固
体化による単結晶化を行ない、前記固体材料膜を基板表
面において単結晶化することを特徴とする単結晶膜の製
造方法。
(1) A single crystal growth seed made of a second solid single crystal is provided on a part of the first solid surface, the seed is at least in contact with the solid single crystal growth seed, and the first solid surface is covered. A substrate is formed on which a film made of the same material as the second material or a third solid material film is formed in a polycrystalline or amorphous state, and while the substrate is kept at a temperature slightly lower than the melting point of the solid material film, at least the An energy beam such as an electron beam or a light beam is irradiated from the part where the solid single crystal growth seed and the solid material film are in contact with each other, and the seed is melted while moving and scanning;
The solid material film on the first solid surface is substantially continuously melted and solidified into a single crystal by the energy beam, and the solid material film is single crystallized on the substrate surface. A method for producing a single crystal film characterized by:
(2)第1の固体を絶縁体、単結晶固体材料膜を単結晶
半導体膜とすることを特徴とする特許請求の範囲第1項
記載の単結晶膜の製造方法。
(2) The method for manufacturing a single crystal film according to claim 1, wherein the first solid is an insulator and the single crystal solid material film is a single crystal semiconductor film.
(3)第1の固体をSi単結晶基板表面にSiO_2膜
または、Si_3N_4膜等からなる絶縁膜を形成した
基板またはSiO_2等の絶縁基板となし、第2の固体
単結晶を前記第1の固体としてのSi単結晶基板を前記
絶縁膜の一部を除去し露出させた部分をSi単結晶育成
種部分となした基板となし、該基板上に多結晶またはア
モルファス状態のSi膜を被覆し、該Si膜を単結晶S
i膜となす事を特徴とする特許請求の範囲第1項記載の
単結晶膜の製造方法。
(3) The first solid is a Si single crystal substrate on which an insulating film such as a SiO_2 film or a Si_3N_4 film is formed, or an insulating substrate such as SiO_2, and the second solid single crystal is the first solid. A part of the insulating film is removed from the Si single-crystal substrate as a substrate with the exposed part serving as a Si single-crystal growth seed part, and a polycrystalline or amorphous Si film is coated on the substrate, The Si film is made of single crystal S
A method for producing a single crystal film according to claim 1, characterized in that the film is an i-film.
JP9943888A 1988-04-22 1988-04-22 Production of single crystal film Pending JPS63285184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9943888A JPS63285184A (en) 1988-04-22 1988-04-22 Production of single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9943888A JPS63285184A (en) 1988-04-22 1988-04-22 Production of single crystal film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56116008A Division JPS5820794A (en) 1981-07-02 1981-07-24 Preparation of single crystal film

Publications (1)

Publication Number Publication Date
JPS63285184A true JPS63285184A (en) 1988-11-22

Family

ID=14247418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9943888A Pending JPS63285184A (en) 1988-04-22 1988-04-22 Production of single crystal film

Country Status (1)

Country Link
JP (1) JPS63285184A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667923A (en) * 1979-11-07 1981-06-08 Toshiba Corp Preparation method of semiconductor system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667923A (en) * 1979-11-07 1981-06-08 Toshiba Corp Preparation method of semiconductor system

Similar Documents

Publication Publication Date Title
USRE33096E (en) Semiconductor substrate
JPS63285184A (en) Production of single crystal film
JPS6119116A (en) Manufacture of semiconductor device
JP2898360B2 (en) Method for manufacturing semiconductor film
JPS59148322A (en) Manufacture of semiconductor device
JPS58139423A (en) Lateral epitaxial growing method
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPH0236052B2 (en)
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS6234716B2 (en)
WO1987003916A1 (en) Method of forming single crystal silicon using spe seed and laser crystallization
JP2692138B2 (en) Manufacturing method of single crystal thin film
JP2532252B2 (en) Method for manufacturing SOI substrate
JPS62226621A (en) Forming method for single crystal silicon thin film
JPS61179523A (en) Formation of single crystal thin film
JPH0354819A (en) Manufacture of soi substrate
JPS59154016A (en) Formation of thin film crystal
JPS6219046B2 (en)
JPS5886716A (en) Forming of single crystal semiconductor film
JPH02105517A (en) Manufacture of semiconductor device
JPS6265410A (en) Formation of single crystal thin film
JPH0396225A (en) Manufacture of semiconductor substrate
JPH0746683B2 (en) Method for manufacturing semiconductor device
JPS6126598A (en) Preparation of germanium thin film crystal
JPS6055614A (en) Manufacture of film of semiconductor single crystal