JPS641961Y2 - - Google Patents
Info
- Publication number
- JPS641961Y2 JPS641961Y2 JP1984128607U JP12860784U JPS641961Y2 JP S641961 Y2 JPS641961 Y2 JP S641961Y2 JP 1984128607 U JP1984128607 U JP 1984128607U JP 12860784 U JP12860784 U JP 12860784U JP S641961 Y2 JPS641961 Y2 JP S641961Y2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- particles
- anode
- electrolytic
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 49
- 210000005056 cell body Anatomy 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 7
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- 239000012780 transparent material Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- -1 their oxides Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【考案の詳細な説明】
〔考案の目的〕
(産業上の利用分野)
本考案は、各種金属の回収や精製、粒体への電
気めつき等各種の電気化学反応に使用する流動床
を用いる電解装置に関し、特に粒体への金属の電
着状態を常に監視し、所定量の金属が電着した粒
子を装置外へ迅速に取り出し得るようにした電解
装置に関する。[Detailed explanation of the invention] [Purpose of the invention] (Field of industrial application) The invention uses a fluidized bed used for various electrochemical reactions such as recovery and purification of various metals and electroplating of granules. The present invention relates to an electrolytic device, and particularly to an electrolytic device that constantly monitors the state of electrodeposition of metal onto particles and allows particles on which a predetermined amount of metal is electrodeposited to be quickly taken out of the device.
(従来技術)
金属粒子等を流動化させた電極粒子を用いて、
溶液中の金属を回収したり、粒体にめつきしたり
する流動床電解は公知である(特開昭53−92302
号公報、米国特許第3457152号明細書、米国特許
第4212722号明細書)。この流動床電解技術は、処
理すべき電解液側の電極室に微細粒子を収容し、
この粒子を電解液単独または電解液と供給ガスを
用いて流動させることにより、電極表面積を飛躍
的に増大させ、高電流効率、低電解電圧にて電極
粒子上に金属を析出させることを可能にしたもの
である。(Prior art) Using electrode particles made of fluidized metal particles, etc.
Fluidized bed electrolysis for recovering metals from solutions and plating particles is well known (Japanese Patent Laid-Open No. 53-92302).
(U.S. Pat. No. 3,457,152, U.S. Pat. No. 4,212,722). This fluidized bed electrolysis technology accommodates fine particles in an electrode chamber on the side of the electrolyte to be treated.
By flowing these particles using an electrolyte alone or an electrolyte and a supply gas, the electrode surface area can be dramatically increased, making it possible to deposit metal on the electrode particles with high current efficiency and low electrolysis voltage. This is what I did.
この流動床電解では、ほぼ均一径を有する粒子
を用い、電解が進行するにつれ、粒子上に金属が
電着して重量が増加し、電着量の多い粒子ほど電
解室の下部に位置するようになる。従つて電解室
の下部に粒子の取出口を設け、十分金属が電着し
た粒子を電解室下部から取出す方法が提案されて
いる(米国特許第4212722号明細書)。しかしなが
ら、この方法では電解室内を目視できないため、
経験と勘により取り出し時期を定めなければなら
ず、特に金属の種類や電解条件が変更になつた際
には、最適量の金属が電着された粒子を取り出す
ことができないという欠点がある。 In this fluidized bed electrolysis, particles with a nearly uniform diameter are used, and as electrolysis progresses, metal is electrodeposited on the particles and their weight increases, so that the particles with a larger amount of electrodeposition are located at the lower part of the electrolytic chamber. become. Therefore, a method has been proposed in which a particle outlet is provided in the lower part of the electrolytic chamber and particles on which sufficient metal has been electrodeposited are taken out from the lower part of the electrolytic chamber (US Pat. No. 4,212,722). However, this method does not allow visual inspection of the inside of the electrolytic chamber.
The timing of removal must be determined based on experience and intuition, and there is a drawback that particles with an optimal amount of metal electrodeposited cannot be removed, especially when the type of metal or electrolytic conditions are changed.
(考案が解決しようとする問題点)
本考案は、金属が電着された粒子の最適の取り
出し時期を決定できないという従来の欠点を、少
なくとも電解室下部の粒子の状態を目視可能とす
ることにより解消することを目的とする。(Problems to be Solved by the Invention) The present invention solves the conventional drawback of not being able to determine the optimal time to take out particles on which metal is electrodeposited, by making it possible to visually observe at least the condition of the particles in the lower part of the electrolytic chamber. The purpose is to eliminate the problem.
本考案は、隔膜で陰極室と陽極室に区画してな
る電解槽本体の陰極室に陰極粒子を収容し、該陰
極室に金属イオンを含有する被電解液を供給して
陰極粒子を流動状態に維持しながら、陰極粒子上
に金属イオンを電着させるようにした電解装置に
おいて、電解槽本体下部の少なくとも一部を透明
体で形成した流動床を用いる電解装置である。
The present invention stores cathode particles in the cathode chamber of the electrolytic cell body, which is divided into a cathode chamber and an anode chamber by a diaphragm, and supplies an electrolyte containing metal ions to the cathode chamber to keep the cathode particles in a fluid state. This electrolytic device uses a fluidized bed in which at least a portion of the lower part of the electrolytic cell body is made of a transparent material.
以下、図面に示す実施例に基いて本考案を詳細
に説明するが、本考案はこれに限定されるもので
はない。 Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings, but the present invention is not limited thereto.
図面は、本考案に係る電解装置の一実施例を示
す縦断正面図である。 The drawing is a longitudinal sectional front view showing an embodiment of the electrolysis device according to the present invention.
電解槽本体1は、溶液供給口2が下向きに連設
された皿状の下部枠体3と、アクリル樹脂等から
成る短寸円筒状の透明体4と、円筒状の陰極5と
から成り、下部枠体3の上端、透明体4の上下両
端及び陰極5の上下両端は、それぞれ外側に向け
て折曲され、フランジが形成されている。下部枠
体3のフランジ6上には、周縁部が1対のガスケ
ツト7により挟持された有孔膜8が載置され、さ
らに該有孔膜8上には、中央上面に凹部9が設け
られ、該凹部9と周縁部以外の部分に、上下方向
の多数の通孔10が穿設された溶液分散板11が
載置されている。透明体4の下部フランジ12
は、ガスケツト13を介して、溶液分散板11上
に載置され、ボルト14により、下部枠体3と一
体化されている。 The electrolytic cell body 1 consists of a dish-shaped lower frame 3 in which a solution supply port 2 is arranged downward, a short cylindrical transparent body 4 made of acrylic resin, etc., and a cylindrical cathode 5. The upper end of the lower frame 3, the upper and lower ends of the transparent body 4, and the upper and lower ends of the cathode 5 are each bent outward to form a flange. On the flange 6 of the lower frame 3, a perforated membrane 8 whose peripheral edge is sandwiched between a pair of gaskets 7 is placed, and further on the perforated membrane 8, a recess 9 is provided in the upper center surface. A solution dispersion plate 11 having a large number of vertically perforated holes 10 is placed in a portion other than the recess 9 and the peripheral edge. Lower flange 12 of transparent body 4
is placed on the solution distribution plate 11 via a gasket 13, and is integrated with the lower frame 3 by bolts 14.
透明体4の上部フランジ15上には、ガスケツ
ト16を介して陰極5の下部フランジ17が、補
強用のルースフランジ18とともに、ボルト19
により締着されている。 The lower flange 17 of the cathode 5 is placed on the upper flange 15 of the transparent body 4 via the gasket 16, together with the loose flange 18 for reinforcement, and bolts 19 are attached to the upper flange 15 of the transparent body 4.
It is tightened by.
陰極5の上部フランジ20上には、ガスケツト
21を介して、流動粒子逸散防止塔22の下部フ
ランジ23が載置され、補強用のルースフランジ
24とともに、ボルト25により締着されてい
る。流動粒子逸散防止塔22は下から順に、前記
下部フランジ23,小径部26、テーパー部2
7、大径部28及び上部フランジ29から構成さ
れ、該上部フランジ29上には、円盤状の蓋体3
0がボルト31により締着されている。蓋体30
の下面中央には、棒状の陽極ターミナル32が連
結され、陽極ターミナル32の下端には、下端が
前記凹部9近傍に達する陽極体33が連結されて
いる。陽極体33は、前記ターミナル32の下端
に連結される有孔の円盤体34、該円盤体34の
周縁下面に溶接等により連結された陽極短筒体3
5、該陽極短筒体35の下端に連結された有孔の
陽極36及び該陽極36の下端に連結されたコツ
プ状の陽極下部枠体37とから成つている。陽極
体33の周囲の陽極短筒体35と陽極下部枠体3
7との間には円筒状の隔膜38が、上下各1対の
Oリング39,40により密着状態で装着されて
いる。隔膜38より外方の電解槽本体1内、すな
わち陰極室内には、陰極粒子41が流動状態で収
容されている。電解槽本体1の透明体4の側面に
は、陰極粒子取出管42が設けられ、該取出管4
2の内端は、下向きに折曲されて溶液分散板11
の上面近傍に達している。43は、流動粒子逸散
防止塔22の大径部28側面に連設された電解液
抜出口、44は蓋体30上面に連設された発生ガ
ス取出口、45は蓋体30の孔46に嵌合され、
下端が流動粒子逸散防止塔22の小径部26の内
方に達する陰極粒子供給管である。 A lower flange 23 of a fluidized particle diffusion prevention tower 22 is mounted on the upper flange 20 of the cathode 5 via a gasket 21, and is fastened with bolts 25 together with a loose flange 24 for reinforcement. The fluidized particle diffusion prevention tower 22 includes, in order from the bottom, the lower flange 23, the small diameter portion 26, and the tapered portion 2.
7. It is composed of a large diameter part 28 and an upper flange 29, and on the upper flange 29 is a disc-shaped lid 3.
0 is fastened with a bolt 31. Lid body 30
A rod-shaped anode terminal 32 is connected to the center of the lower surface, and an anode body 33 whose lower end reaches near the recess 9 is connected to the lower end of the anode terminal 32 . The anode body 33 includes a perforated disk body 34 connected to the lower end of the terminal 32, and an anode short cylinder body 3 connected to the lower surface of the periphery of the disk body 34 by welding or the like.
5. It consists of a perforated anode 36 connected to the lower end of the anode short cylinder 35 and a pot-shaped anode lower frame 37 connected to the lower end of the anode 36. Anode short cylinder 35 around anode body 33 and anode lower frame 3
A cylindrical diaphragm 38 is tightly attached between the upper and lower O-rings 39 and 7 by a pair of upper and lower O-rings 39 and 40, respectively. Inside the electrolytic cell body 1 outside the diaphragm 38, that is, inside the cathode chamber, cathode particles 41 are accommodated in a fluid state. A cathode particle extraction tube 42 is provided on the side surface of the transparent body 4 of the electrolytic cell body 1.
The inner end of 2 is bent downward to form the solution dispersion plate 11.
It has reached near the top surface. Reference numeral 43 indicates an electrolytic solution outlet connected to the side surface of the large diameter portion 28 of the fluidized particle diffusion prevention tower 22, 44 indicates a generated gas outlet connected to the upper surface of the lid 30, and 45 refers to a hole 46 in the lid 30. is mated to
This is a cathode particle supply pipe whose lower end reaches inside the small diameter portion 26 of the fluidized particle diffusion prevention tower 22.
本考案における陽極、陰極、隔膜及び陰極粒子
の材質は、たとえば、陽極及び陰極として白金を
被覆したチタン等を、陰極粒子としては、金、
銀、銅、ニツケル、鉛等の金属、それらの酸化
物、硫化物あるいはそれらの合金、グラフアイ
ト、活性炭、さらにグラフアイト、ガラス、セラ
ミツク等の粒子上に金、銀、銅、ニツケル、鉛等
の金属をコーテイングしたもの等を、また隔膜と
してナイロン、ポリエチレン、ポリプロピレン、
ポリテトラフルオロエチレン、あるいはイオン交
換基を有する各種樹脂など通常のものを制限なく
使用することができる。 The materials of the anode, cathode, diaphragm, and cathode particles in the present invention include, for example, titanium coated with platinum for the anode and cathode, and gold, gold, etc. for the cathode particles.
Metals such as silver, copper, nickel, and lead, their oxides, sulfides, or alloys thereof, graphite, activated carbon, and particles of graphite, glass, ceramic, etc., as well as gold, silver, copper, nickel, lead, etc. nylon, polyethylene, polypropylene, etc. as a diaphragm.
Conventional materials such as polytetrafluoroethylene or various resins having ion exchange groups can be used without limitation.
次に、本実施例装置による被電解液の電解の要
領を説明する。 Next, the procedure for electrolyzing the electrolyte using the apparatus of this embodiment will be explained.
電解槽本体1に、金属含有廃液などの金属含有
溶液を溶液供給口2から供給する。この溶液は、
一般に水溶液が用いられるが、溶媒抽出で利用さ
れるアルコール等の有機溶液の場合もある。供給
された溶液は、有孔膜8の細孔と溶液分散板11
の通孔10を通つて陰極室内に加圧されて導入さ
れる。この場合、溶液は陰極粒子41を流動状態
に維持する役割を果たす。陰極粒子41の間を通
過した溶液はテーパー部27で減速されるため、
陰極粒子41と溶液が分離され、陰極粒子中で均
一な層流が得られる。溶液中の金属イオンは、陰
極粒子41上で電解還元され、金属原子となつて
陰極粒子41上に析出するとともに副反応として
水が分解されて水素が発生し、この水素は、発生
ガス取出口44から取出される。また、陽極36
表面では通常の水電解反応による酸素発生が生じ
る。この酸素は、陽極36表面全体から発生する
が、隔膜38と陽極36の間で発生する酸素も陽
極36の間で発生する酸素も陽極36の孔から陽
極36の背面に抜かれ、陽極36上面の孔を通つ
て発生ガス取出口44から取出されるため、発生
するガスが隔膜と陽極との間に存在して電解電圧
を上昇させたり、隔膜を波打たせて電解条件を不
安定にしたり、隔膜を傷つけたりすることがな
い。電解されて金属イオン濃度が減少した溶液
は、電解液抜出口43からオーバーフローして電
解槽外に取り出される。 A metal-containing solution such as metal-containing waste liquid is supplied to the electrolytic cell body 1 from a solution supply port 2. This solution is
Generally, an aqueous solution is used, but an organic solution such as alcohol used in solvent extraction may also be used. The supplied solution is distributed between the pores of the porous membrane 8 and the solution distribution plate 11.
is introduced into the cathode chamber through the through hole 10 under pressure. In this case, the solution serves to maintain the cathode particles 41 in a fluid state. Since the solution passing between the cathode particles 41 is decelerated by the tapered part 27,
The cathode particles 41 and the solution are separated, and a uniform laminar flow is obtained in the cathode particles. The metal ions in the solution are electrolytically reduced on the cathode particles 41, become metal atoms and precipitate on the cathode particles 41, and water is decomposed as a side reaction to generate hydrogen. 44. In addition, the anode 36
Oxygen evolution occurs at the surface due to normal water electrolysis reactions. This oxygen is generated from the entire surface of the anode 36, but both the oxygen generated between the diaphragm 38 and the anode 36 and the oxygen generated between the anode 36 are extracted from the holes in the anode 36 to the back surface of the anode 36, and Since the generated gas is extracted from the generated gas outlet 44 through the hole, the generated gas may exist between the diaphragm and the anode, increasing the electrolytic voltage or causing the diaphragm to wave, making the electrolytic conditions unstable. It will not damage the diaphragm. The electrolyzed solution whose metal ion concentration has been reduced overflows from the electrolytic solution outlet 43 and is taken out of the electrolytic cell.
電解が進行してくると、陰極粒子41上に金属
が析出してくる。析出量がふえるほど陰極粒子4
1は重くなつて陰極室下部に集まり、陰極室の上
部には、比較的析出量の少ない陰極粒子41が存
在する。 As the electrolysis progresses, metal is deposited on the cathode particles 41. As the amount of precipitation increases, the cathode particles 4
1 becomes heavier and gathers in the lower part of the cathode chamber, and cathode particles 41 with a relatively small amount of precipitation are present in the upper part of the cathode chamber.
本実施例では、陰極5の下端に透明体4を連結
してあるため、陰極室下部に集まつた陰極粒子の
電着状態を視覚で観察することができ、陰極粒子
が最適の電着状態にある時点で陰極粒子取出管4
2のバルブ(図示略)を開くと、陰極粒子が被電
解液とともに電解装置外に取り出される。この場
合、取り出した量と同量の陰極粒子を陰極粒子供
給管45から供給すれば、陰極室内の陰極粒子の
量を一定に保つことができる。 In this embodiment, since the transparent body 4 is connected to the lower end of the cathode 5, it is possible to visually observe the electrodeposition state of the cathode particles gathered at the bottom of the cathode chamber, and the cathode particles are in the optimal electrodeposition state. At a certain point in time, the cathode particle extraction tube 4
When valve 2 (not shown) is opened, the cathode particles are taken out of the electrolyzer together with the electrolyte. In this case, by supplying the same amount of cathode particles as the amount taken out from the cathode particle supply pipe 45, the amount of cathode particles in the cathode chamber can be kept constant.
本実施例では、陰極5と透明体4とで電解槽本
体1を構成したが、本考案はこれに限定されるも
のではなく、たとえば陰極を陰極室内部に設け、
電解槽本体の外壁全部を透明体で構成したり、あ
るいは電解槽本体の外壁全部を陰極とし、陰極下
部に覗き窓を付けるようにするなど種々の変形が
可能である。 In this embodiment, the electrolytic cell main body 1 is composed of the cathode 5 and the transparent body 4, but the present invention is not limited to this. For example, the cathode may be provided inside the cathode chamber,
Various modifications are possible, such as making the entire outer wall of the electrolytic cell body a transparent material, or using the entire outer wall of the electrolytic cell body as a cathode and providing a viewing window below the cathode.
また、隔膜は本実施例の通り、陽極に接触させ
ることが、操作上最も好ましいが、間隙を作つて
もよい。なお、本実施例では、電解槽本体下部が
電解に寄与しない透明体で構成されているため、
陽極の下端を溶液分散板のかなり上方に位置さ
せ、かつ、隔膜も陽極のみを包囲する円筒状とし
たが、本考案はこれに限定されるものではなく、
たとえば陽極体すべてを陽極としたり、陽極体を
袋状の隔膜に収容したりすることが可能である。 Further, as in this example, it is most preferable for the diaphragm to be in contact with the anode in terms of operation, but a gap may be provided. In addition, in this example, since the lower part of the electrolytic cell body is made of a transparent body that does not contribute to electrolysis,
Although the lower end of the anode is located considerably above the solution distribution plate, and the diaphragm is also cylindrical, surrounding only the anode, the present invention is not limited to this.
For example, it is possible to use the entire anode body as an anode, or to house the anode body in a bag-like diaphragm.
〔考案の効果)
本考案では、陰極室内で電着された陰極粒子が
集まる電解槽本体の下部の少なくとも一部を透明
体で構成してあるため、金属が電着した陰極粒子
の状態を透明体を通して視覚で確認できる。従つ
て、陰極粒子が最適の電着状態にあるときに陰極
粒子を取り出すことができ、操作効率を最大にす
ることができる。[Effects of the invention] In the present invention, at least a part of the lower part of the electrolytic cell body where the cathode particles electrodeposited in the cathode chamber gather is made of a transparent material. It can be confirmed visually through the body. Therefore, the cathode particles can be removed when they are in an optimal electrodeposition state, maximizing operating efficiency.
図面は、本考案の一実施例を示す縦断面図であ
る。
1……電解槽本体、4……透明体、5……陰
極、22……流動粒子逸散防止塔、36……陽
極、38……隔膜、42……陽極粒子取出管。
The drawing is a longitudinal sectional view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Electrolytic cell main body, 4... Transparent body, 5... Cathode, 22... Fluidized particle diffusion prevention tower, 36... Anode, 38... Diaphragm, 42... Anode particle extraction tube.
Claims (1)
本体の陰極室に陰極粒子を収容し、該陰極室に
金属イオンを含有する被電解液を供給して陰極
粒子を流動状態に維持しながら陰極粒子上に金
属イオンを電着させるようにした電解装置にお
いて、電解槽本体下部の少なくとも一部を透明
体で形成したことを特徴とする流動床を用いる
電解装置。 (2) 陰極と透明体で電解槽本体を構成した実用新
案登録請求の範囲第(1)項に記載の電解装置。[Scope of Claim for Utility Model Registration] (1) Cathode particles are accommodated in the cathode chamber of the electrolytic cell body, which is divided into a cathode chamber and an anode chamber by a diaphragm, and an electrolyte containing metal ions is supplied to the cathode chamber. In an electrolytic device in which metal ions are electrodeposited onto cathode particles while maintaining the cathode particles in a fluidized state, the fluidized bed is characterized in that at least a part of the lower part of the electrolytic cell body is formed of a transparent material. Electrolyzer used. (2) The electrolytic device according to claim (1) of the utility model registration claim, in which the electrolytic cell body is composed of a cathode and a transparent body.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984128607U JPS6147074U (en) | 1984-08-27 | 1984-08-27 | Electrolyzer using fluidized bed |
US06/674,063 US4569729A (en) | 1984-07-16 | 1984-11-19 | Electrolyzing method and electrolytic cell employing fluidized bed |
CA000468351A CA1269635A (en) | 1984-07-16 | 1984-11-21 | Electrolyzing method and electrolytic cell employing fluidized bed |
KR1019840008080A KR890002751B1 (en) | 1984-07-16 | 1984-12-18 | Electrolyzing process and electrolytic cell employing fluidized bed |
EP84309163A EP0171478B1 (en) | 1984-07-16 | 1984-12-31 | Electrolyzing process and electrolytic cell employing fluidized bed |
DE8484309163T DE3481777D1 (en) | 1984-07-16 | 1984-12-31 | ELECTROLYTIC METHOD AND ELECTROLYSIS CELL WITH A FLUID BED. |
US06/800,528 US4626331A (en) | 1984-07-16 | 1985-11-21 | Electrolytic cell employing fluidized bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984128607U JPS6147074U (en) | 1984-08-27 | 1984-08-27 | Electrolyzer using fluidized bed |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6147074U JPS6147074U (en) | 1986-03-29 |
JPS641961Y2 true JPS641961Y2 (en) | 1989-01-18 |
Family
ID=30687234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984128607U Granted JPS6147074U (en) | 1984-07-16 | 1984-08-27 | Electrolyzer using fluidized bed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6147074U (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834171A (en) * | 1981-08-21 | 1983-02-28 | Hitachi Ltd | Vacuum vapor-depositing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524877Y2 (en) * | 1975-07-14 | 1980-06-14 |
-
1984
- 1984-08-27 JP JP1984128607U patent/JPS6147074U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834171A (en) * | 1981-08-21 | 1983-02-28 | Hitachi Ltd | Vacuum vapor-depositing device |
Also Published As
Publication number | Publication date |
---|---|
JPS6147074U (en) | 1986-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890002751B1 (en) | Electrolyzing process and electrolytic cell employing fluidized bed | |
EP0717792B1 (en) | Cell for the recovery of metals from dilute solutions | |
US3974049A (en) | Electrochemical process | |
US3457152A (en) | Electrolytic apparatus and process for removing trace metals | |
US4004994A (en) | Electrochemical removal of contaminants | |
US4834850A (en) | Efficient electrolytic precious metal recovery system | |
MX2007000833A (en) | Apparatus for producing metal powder by electrowinning. | |
US5486272A (en) | Electroplating method and apparatus | |
KR100874684B1 (en) | Method and apparatus for high rated jewerly recovering | |
CN1796615A (en) | Method of cyclic electrolysis process in constant electric potential in use for purifying electroplating solution | |
JPS641961Y2 (en) | ||
JP2926272B2 (en) | Target electrode for corrosion prevention of electrochemical tank | |
JPS58756B2 (en) | electrolytic cell | |
US6235189B1 (en) | Method of supplying dissolved carbon dioxide to plants in an aqueous medium | |
JPH0413432B2 (en) | ||
US4208258A (en) | Method for the recovery of mercury and other heavy metal ions from a liquid stream | |
JPS6220891A (en) | Method for electrolytically collecting metal from aqueous solution containing minor amount of metal | |
JPH059799A (en) | Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating | |
JPH11286796A (en) | Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell | |
JPH0474435B2 (en) | ||
JPH04298288A (en) | Treatment of cyanide and metal-containing solution | |
GB2278367A (en) | Electroremoval of metal from electroplating effluent solutions | |
JPS60202786A (en) | Electrolysis and electrolytic cell of nitrogen compound and/or carbon compound in solution containing the nitrogen and/or carbon compounds | |
JPS63130792A (en) | Electrolytic device | |
JPH02310387A (en) | Single-electrode electrolytic cell and method for electrolysis using the cell |