JPS5834171A - Vacuum vapor-depositing device - Google Patents
Vacuum vapor-depositing deviceInfo
- Publication number
- JPS5834171A JPS5834171A JP13023481A JP13023481A JPS5834171A JP S5834171 A JPS5834171 A JP S5834171A JP 13023481 A JP13023481 A JP 13023481A JP 13023481 A JP13023481 A JP 13023481A JP S5834171 A JPS5834171 A JP S5834171A
- Authority
- JP
- Japan
- Prior art keywords
- vapor
- evaporation
- film thickness
- deposited
- deposited film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000151 deposition Methods 0.000 title abstract description 8
- 238000001704 evaporation Methods 0.000 claims abstract description 39
- 230000008020 evaporation Effects 0.000 claims abstract description 39
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 238000010894 electron beam technology Methods 0.000 claims description 18
- 238000007738 vacuum evaporation Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000007740 vapor deposition Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 27
- 230000008021 deposition Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 208000008918 voyeurism Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、多数の被蒸着体に対する膜厚制御が容易な電
子ビームを蒸発パワーとする真空蒸着装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum evaporation apparatus using an electron beam as evaporation power, which allows easy control of film thickness on a large number of objects to be evaporated.
従来から物体の表面に薄膜を形成する手段としては真空
蒸着装置が広く使用されているが、そのうち蒸着膜厚の
制御が必要な場合には電子ビームl蒸発パワーとする真
空蒸着装置が主として採用されている。Vacuum evaporation equipment has traditionally been widely used as a means of forming thin films on the surface of objects, but when it is necessary to control the thickness of the deposited film, vacuum evaporation equipment that uses electron beam evaporation power is mainly used. ing.
そこで、このような電子ビームを蒸発パワーとする真空
蒸着装置の一例を第1図に示す。FIG. 1 shows an example of a vacuum evaporation apparatus using such an electron beam as evaporation power.
図において、1はペルジャー(真空容器)、2はベース
(基台)、3Fi覗き室、4は電子ビーム源、Sは蒸発
源、6は蒸発源の容器(ハース)、Tはシャッタ、8は
プラネタリ治具、9は被蒸着物な保持させる回転板、1
0は蒸着膜厚検出器。In the figure, 1 is a Pelger (vacuum container), 2 is a base (base), 3 is a viewing chamber, 4 is an electron beam source, S is an evaporation source, 6 is an evaporation source container (hearth), T is a shutter, and 8 is a Planetary jig, 9 is a rotating plate for holding the object to be deposited, 1
0 is a deposition film thickness detector.
11は制御回路、12は電子ビーム源動作用の電源回路
である。11 is a control circuit, and 12 is a power supply circuit for operating the electron beam source.
ペルジャー1はベース2の上に図示してないバッキング
を介して載置され、これも図示してない真空ポンプなど
Kより内部な高真空状態に保つことができるよ5にしで
ある。The Pel jar 1 is placed on a base 2 via a backing (not shown), which is also equipped with a vacuum pump (not shown) to maintain a high vacuum state inside the base 2.
電子ビームi![4は陰極となるフィラメントと、陽極
となる加速電極、それにビーム形成用の電極などからな
〕、電源回路12からフィラメント加熱用の電力と電子
ビーム1Xi速用の高電圧の供給を受け、数10kVの
加速電圧の下でアンペアオーダーに%達す為電子ビーム
を発生する。この電子ビームは図示してない偏向1Ni
t (fit、tけ磁界型のもの)Kよや偏向され、ア
ルミニウムのインゴットなどの蒸発#SK対して図の上
方から?!げ画直な方向て射突畜せられる。Electron beam i! [4 consists of a filament serving as a cathode, an accelerating electrode serving as an anode, and an electrode for beam formation], which receives electric power for heating the filament and high voltage for the electron beam 1Xi speed from the power supply circuit 12; Under an accelerating voltage of 10 kV, an electron beam is generated to reach % on the order of amperes. This electron beam has a polarization of 1Ni (not shown).
t (fit, t magnetic field type) is deflected by K and is evaporated from aluminum ingot etc. from the top of the figure against #SK? ! He was forced to shoot in the right direction.
従って、蒸発ms#iこの電子ビームの射突によシ局部
的に溶解し、蒸発し定分子は図の破線の矢印のように飛
散する。Therefore, the evaporation ms#i is locally dissolved by the impact of this electron beam, and the evaporated constant molecules are scattered as shown by the broken line arrow in the figure.
プラネタリ治具・はそれ自体が図の垂直方向な中心軸と
して水平に回転しなからさらに軸支した璽数枚の浅%A
ll状をした回転板9を回転させるように動作す為。The planetary jig itself rotates horizontally as the central axis in the vertical direction of the figure, and then is further pivoted to support several pieces of shallow %A.
This is because it operates to rotate the ll-shaped rotary plate 9.
そこで、いま1回転板9の内側面に被蒸着体を所定の数
だけ取付け、ペルジャー1の中を所定の真蜜虞に保ち、
プラネタリ治具8を動作させながらシャツ#7を蒸発源
5の上方から外せば、図の破線の矢印て示すように蒸発
源5かも蒸着物質が被蒸着体の表面に飛来し、蒸着か行
なわれる。Therefore, a predetermined number of objects to be deposited are attached to the inner surface of the rotating plate 9, and the inside of the Pelger 1 is kept at a predetermined temperature.
If shirt #7 is removed from above the evaporation source 5 while operating the planetary jig 8, the evaporation material from the evaporation source 5 will fly onto the surface of the object to be evaporated, as shown by the broken line arrow in the figure, and evaporation will be performed. .
そして、このときの被蒸着体に対する蒸着膜厚の制御は
次のようkして行なう。即ち、ペルジャー1の頂部には
蒸着膜厚検出器10が設けられているから、前述のよう
にして蒸着を開始するとこの検出器10の検出面にも蒸
着膜が形成されてゆき、この検出−10からはその形成
され始め良港着膜の厚さに応じt検出信号が出力されて
制御回路11に供給される。At this time, the thickness of the deposited film on the object to be deposited is controlled as follows. That is, since the vapor deposited film thickness detector 10 is provided on the top of the Pelger 1, when vapor deposition is started as described above, a vapor deposited film is also formed on the detection surface of this detector 10, and this detection - From 10, a t detection signal is outputted according to the thickness of the deposited film that has just begun to be formed, and is supplied to the control circuit 11.
そこで、制御回路11は供給された検出信号に応じて電
源回路12を制御し、電子ビーム#4に供給しているフ
ィラメント加熱電力などを変化させ、あらかじめ設定し
である所定の蒸着速度に対応した検出信号が蒸着膜厚検
出器10から得られるようkすれは膜厚の制御l′1に
:行なうことができる。Therefore, the control circuit 11 controls the power supply circuit 12 according to the supplied detection signal, and changes the filament heating power etc. supplied to the electron beam #4 to correspond to a predetermined evaporation rate that is set in advance. Control of the film thickness can be performed so that a detection signal is obtained from the deposited film thickness detector 10.
ところが、このような従来の真空蒸着装置においては、
ペルジャー10頂部に設けである蒸着膜厚検出器10に
19蒸着速度を検出しているだけなので、プラネタリ治
具−の回転板9の全面に対する膜厚分布の違いや蒸着操
作ごとく生じる膜厚分布の違いを補正するような制御か
できず、そのため、被蒸着体ごとの蒸着膜厚にバラツキ
を生じやすいという欠点かあった。However, in such conventional vacuum evaporation equipment,
Since the evaporation film thickness detector 10 installed at the top of the Pelger 10 only detects the evaporation speed, it is possible to detect differences in the film thickness distribution over the entire surface of the rotating plate 9 of the planetary jig and the film thickness distribution that occurs during the evaporation operation. It is not possible to perform control to compensate for the difference, and as a result, there is a drawback that the thickness of the deposited film tends to vary from one object to another.
本発明の目的は、上記し几従来技術の欠点を除I1.被
蒸着体ごとの蒸着膜厚にほとんどバラツキが生じないよ
5Kした真空蒸着装置を提供するにある。The object of the present invention is to eliminate the drawbacks of the prior art as described above. To provide a vacuum evaporation device capable of operating at 5K so that there is almost no variation in the thickness of the evaporated film for each object to be evaporated.
この目的を達成するため1本発明は、蒸発源から被蒸着
体方向KR来する蒸着物質の飛来方向分11v検出し、
それに応じて蒸着物質の飛来方向分布な制御するように
した点な特徴とする。In order to achieve this object, the present invention detects the flying direction of the evaporation material 11v coming from the evaporation source toward the object to be evaporated KR,
A unique feature is that the distribution of the deposition material in the flying direction is controlled accordingly.
以下1本発明による真空蒸着装置の実施例な図1iKク
ーで説明する。An embodiment of a vacuum evaporation apparatus according to the present invention will be described below with reference to FIG. 1iK.
第!図は本発明の一実施例で、第1図の従来例と同一も
しくは開部の部分には同じ符号を付し。No.! The figure shows one embodiment of the present invention, and the same or opening parts as in the conventional example of FIG. 1 are given the same reference numerals.
その評しい説明は省略しである。図において、2G。I will omit the detailed explanation. In the figure, 2G.
20’、2Fは蒸着膜厚検出器、21は蒸発源位置制御
機構、22は制御駆動機構である。20' and 2F are vapor deposition film thickness detectors, 21 is an evaporation source position control mechanism, and 22 is a control drive mechanism.
蒸着膜厚検出器20 、20’、 20’は蒸発[!!
に対して斜め上方″clII転板9の下側になる部分で
、かつ頂部の蒸着膜厚検出器10に対してほば対称な位
置に取シ付けられ、それぞれ膜厚検出信号を制御回路1
1に供給するようになっている。The evaporation film thickness detectors 20, 20', 20' detect the evaporation [! !
It is mounted diagonally above the ``clII turn plate 9'' and at a position that is almost symmetrical to the vapor deposited film thickness detector 10 on the top, and sends a film thickness detection signal to the control circuit 1.
1.
蒸発源位置制御機構21は制御駆動機構22によって駆
動され、八−ス6に収容されているアル1−ラムインボ
ッドなどの蒸発i1[5の位置を図の矢印の方向に任意
に変化させるように動作する。The evaporation source position control mechanism 21 is driven by a control drive mechanism 22, and operates to arbitrarily change the position of the evaporator i1[5 of the aluminum 1-ram in-bod or the like housed in the 8th 6 in the direction of the arrow in the figure. do.
そして、このときの制御駆動機構22に対する制御信号
は制御回路11から供給されるようになっている。A control signal for the control drive mechanism 22 at this time is supplied from the control circuit 11.
次に動作について説明する。Next, the operation will be explained.
第1図に示した従来例と同様にして蒸着が開始されると
、各検出器1,20.20’、2fKも蒸着膜が形成さ
れる−ようKなり、そのため、これらの検出器から検出
信号がそれぞれ制m@N 11 K供給される。When vapor deposition is started in the same manner as in the conventional example shown in FIG. Signals are provided respectively m@N 11 K.
そこで、制御面1!i11は全ての検出器1G、20゜
20’、20彎検出される蒸着速度があらかじめ設定し
であるl1lK等しくなるよ5に制御駆動機構22に制
御信号を与えて蒸発I15の上下方向の位置な制御する
と共に電#!回路12を介して電子ビームj14からの
電子ビームの出力を制御する。なお。So, control surface 1! i11 controls the vertical position of the evaporator I15 by giving a control signal to the control drive mechanism 22 so that the evaporation speed detected by all the detectors 1G, 20°, 20', and 20' is equal to the preset value l1lK. Control and call! The output of the electron beam from the electron beam j14 is controlled via the circuit 12. In addition.
図示してないが、このとき偏向装置を制御し、蒸発源s
k対する電子ビームの射突位置tも制御するようにして
もよい。Although not shown, at this time the deflection device is controlled and the evaporation source s
The impact position t of the electron beam relative to k may also be controlled.
蒸発源Iを上下方向に変位させ7?、す、それに対す石
電子ビームの射突位置な変化させてやれば。Displace the evaporation source I in the vertical direction 7? Well, if you change the impact position of the stone electron beam.
蒸発原藻から飛散する蒸着物質の飛散方向分布を駅える
ことができるから、上述のように制御回路111Cよp
制御駆動機構22YIIIIILyt6.偏向装置Vl
l制御してやれば、各検出1)10 、20 、20’
。Since the scattering direction distribution of vapor deposited substances scattered from the evaporogen algae can be determined, the control circuit 111C and p
Control drive mechanism 22YIIILyt6. Deflection device Vl
If controlled, each detection 1) 10, 20, 20'
.
20’ Kよりそれぞれ検出されている蒸着速度か等し
くなゐよ5な膜厚制御が可能になる。From 20'K onwards, the film thickness can be controlled in such a way that the detected evaporation rates are not equal to each other.
従って、この実m*によれば、プラネタリ治具−の一転
ll1tsのいずれの部分においても充分に均一な膜厚
か得られることkなシ、回転板9に保持し九多数の被蒸
着体の膜厚にバラツキが生じるのを充分に防止すること
がてきる。Therefore, according to this actual m*, it is impossible to obtain a sufficiently uniform film thickness at any part of the rotation of the planetary jig. It is possible to sufficiently prevent variations in film thickness.
また、このような蒸着膜厚分布のバラツキは、蒸着操作
ととに変化する。従って1111図に示した従来同では
蒸着操作ごとの被蒸着体間での膜厚のバラツキかかなp
多くなシ、均一な製品を得ることか困難で6つ几が、こ
の実施例によれば、常に蒸着物質の分布の制御が可能に
なるため、蒸着操作が異なっても膜厚にバラツキを生じ
る虞れがなくなり、充分に均一な膜厚の製品を安定して
得ることができる。Furthermore, such variations in the thickness distribution of the deposited film change depending on the deposition operation. Therefore, with the conventional method shown in Fig.
In many cases, it is difficult to obtain a uniform product, but according to this example, it is possible to always control the distribution of the deposited substance, so even if the deposition operation is different, there will be no variation in film thickness. This eliminates the risk and allows products with sufficiently uniform film thickness to be stably obtained.
なお、以上の実施例では、全部で4個の検出器10.2
0.20’*20’Y設けているか、検出器の数は4個
に限らず任意に定めてよ(、このとぎ、検tB器の数は
多い程、均一な膜厚制御が可能になるのはい5tでもな
いことである。In addition, in the above embodiment, a total of four detectors 10.2
0.20'*20'Y, or the number of detectors is not limited to 4, but can be arbitrarily determined. No, it's not even 5 tons.
i穴、これら複数個の検出器の取付位置についても第2
図に示し友実施例は例示にす「ず、被蒸着体方向に飛来
する蒸着物質の飛来分布を検出できるならどのような配
置にしてもかまわないのはいうまで4ない。The i hole and the mounting position of these multiple detectors are also
The embodiment shown in the figure is merely an example. First, it goes without saying that any arrangement may be used as long as the distribution of the evaporation material flying toward the object to be evaporated can be detected.
以上説明したように1本発明によれば、被蒸着体が保持
された部分での蒸着膜厚分布な充分均一に保つことかで
きるから、従来技術の欠点を除幹。As explained above, according to the present invention, it is possible to maintain a sufficiently uniform deposition film thickness distribution in the portion where the object to be deposited is held, thereby eliminating the drawbacks of the prior art.
精密な膜厚制御を必要とする弾性表面波素子などの製造
に際して充分な性能の素子を高い歩留りのもとで得るこ
とができる真空蒸着装置を提供することができる。It is possible to provide a vacuum evaporation apparatus that can obtain devices with sufficient performance at a high yield when manufacturing surface acoustic wave devices that require precise film thickness control.
【図面の簡単な説明】
第1図は電子ビームを蒸発パワーとした真空蒸着装置の
従来fllY示す模式図、第2図は本発明による真空蒸
着装置の一実施*”を示す模式図である。
1・・・・・・ペルジャー、2・・・・・・ベース、3
・・・・・・覗き室、4・・・・・・電子ビーム源、5
・・・・・・蒸発源、6・・・・・・八−ス、7−・・
・・・シャッタ、8・・・・・・プラネタリ治具、S
・−・・−回転板、10,20.20’、20’・・−
蒸着膜厚検出器、11・・・・・・制御回路、12・・
・・・・電源回路、21・・・・・・蒸発源位瞳制御機
構、22・・・・・・制卿駆動機構第1図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a conventional vacuum evaporation apparatus using an electron beam as evaporation power, and FIG. 2 is a schematic diagram illustrating an implementation of the vacuum evaporation apparatus according to the present invention. 1...Perger, 2...Base, 3
...Peeping room, 4...Electron beam source, 5
...Evaporation source, 6...8-th, 7-...
...Shutter, 8...Planetary jig, S
・-・・Rotating plate, 10, 20.20', 20'...-
Vapor deposition film thickness detector, 11... Control circuit, 12...
... Power supply circuit, 21 ... Evaporation source position pupil control mechanism, 22 ... Control drive mechanism Fig. 1
Claims (1)
において、蒸着物質が蒸発源から飛来する方向の所定の
範1iKわたって分布して設置しt複数個の蒸着膜厚検
出aを設け、これら複数個の蒸着膜厚検出器からの膜厚
検出信号に応じて上記蒸着1質の飛来方向の分布状態を
制御するように構成したことを特徴とする真空蒸着at
・ (7)特許請求の範囲第1項において、上記蒸着物質の
飛来方向の分布状tlAyt制御する几めの手段を電子
ビームの入射方向に対して蒸発源の位置を変位畜せる手
段で構成したことン特徴とする真空蒸着装置。[Claims] (1) In a vacuum evaporation apparatus using an electron beam as evaporation power, a plurality of evaporation film thicknesses can be detected distributed over a predetermined range 1iK in the direction in which the evaporation material comes from the evaporation source. a, and is configured to control the distribution state of the above-mentioned evaporation material in the flying direction according to the film thickness detection signals from the plurality of evaporation film thickness detectors.
(7) In claim 1, the elaborate means for controlling the distribution pattern tlAyt of the evaporation material in the direction in which it comes is constituted by means for displacing the position of the evaporation source with respect to the direction of incidence of the electron beam. Vacuum evaporation equipment with special features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13023481A JPS5834171A (en) | 1981-08-21 | 1981-08-21 | Vacuum vapor-depositing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13023481A JPS5834171A (en) | 1981-08-21 | 1981-08-21 | Vacuum vapor-depositing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5834171A true JPS5834171A (en) | 1983-02-28 |
Family
ID=15029314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13023481A Pending JPS5834171A (en) | 1981-08-21 | 1981-08-21 | Vacuum vapor-depositing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5834171A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200994A (en) * | 1984-03-23 | 1985-10-11 | Chlorine Eng Corp Ltd | Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal |
JPS6126795A (en) * | 1984-07-16 | 1986-02-06 | Chlorine Eng Corp Ltd | Electrolysis method using fluidized bed and electrolytic cell |
JPS6147074U (en) * | 1984-08-27 | 1986-03-29 | クロリンエンジニアズ株式会社 | Electrolyzer using fluidized bed |
JPS61175227U (en) * | 1985-04-16 | 1986-10-31 | ||
JPS624863A (en) * | 1985-06-29 | 1987-01-10 | Anelva Corp | Device for controlling distribution of vaporization rate of electron gun |
JPH02182876A (en) * | 1989-01-06 | 1990-07-17 | Ishikawajima Harima Heavy Ind Co Ltd | Ion plating device |
-
1981
- 1981-08-21 JP JP13023481A patent/JPS5834171A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200994A (en) * | 1984-03-23 | 1985-10-11 | Chlorine Eng Corp Ltd | Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal |
JPH0474435B2 (en) * | 1984-03-23 | 1992-11-26 | ||
JPS6126795A (en) * | 1984-07-16 | 1986-02-06 | Chlorine Eng Corp Ltd | Electrolysis method using fluidized bed and electrolytic cell |
JPH0413432B2 (en) * | 1984-07-16 | 1992-03-09 | Kurorin Enjiniazu Kk | |
JPS6147074U (en) * | 1984-08-27 | 1986-03-29 | クロリンエンジニアズ株式会社 | Electrolyzer using fluidized bed |
JPS641961Y2 (en) * | 1984-08-27 | 1989-01-18 | ||
JPS61175227U (en) * | 1985-04-16 | 1986-10-31 | ||
JPH0215540Y2 (en) * | 1985-04-16 | 1990-04-26 | ||
JPS624863A (en) * | 1985-06-29 | 1987-01-10 | Anelva Corp | Device for controlling distribution of vaporization rate of electron gun |
JPH0254428B2 (en) * | 1985-06-29 | 1990-11-21 | Anelva Corp | |
JPH02182876A (en) * | 1989-01-06 | 1990-07-17 | Ishikawajima Harima Heavy Ind Co Ltd | Ion plating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6113752A (en) | Method and device for coating substrate | |
JPH031378B2 (en) | ||
JP2000144399A (en) | Sputtering device | |
US6338775B1 (en) | Apparatus and method for uniformly depositing thin films over substrates | |
JPS59208069A (en) | Evaporation device having radiation heat portion for evaporating many substances | |
JPS5834171A (en) | Vacuum vapor-depositing device | |
US5554222A (en) | Ionization deposition apparatus | |
US4652357A (en) | Apparatus for and a method of modifying the properties of a material | |
US4096055A (en) | Electron microscopy coating apparatus and methods | |
JPH05311419A (en) | Magnetron type sputtering device | |
JPS58144474A (en) | Sputtering apparatus | |
KR102220854B1 (en) | Physical vapor disposition device | |
JPH03264667A (en) | Carrousel-type sputtering device | |
JP2946387B2 (en) | Ion plating equipment | |
US20030127322A1 (en) | Sputtering apparatus and magnetron unit | |
KR102579090B1 (en) | Ion Beam Sputtering Apparatus for Manufacturing a Wire Grid Polarizer | |
JPH01212761A (en) | Thin film-forming equipment | |
JP2890686B2 (en) | Laser sputtering equipment | |
JPH02290971A (en) | Sputtering device | |
JPH09176852A (en) | Magnetron sputtering device | |
JPS62177177A (en) | Ion mixing device | |
JP2004018892A (en) | Process, mask and automatic system used for setting deposition condition | |
JPH02115365A (en) | Sputtering device | |
JPS627851A (en) | Sputtering method | |
JPS61227165A (en) | Vapor deposition device |