JPH0413432B2 - - Google Patents

Info

Publication number
JPH0413432B2
JPH0413432B2 JP59146105A JP14610584A JPH0413432B2 JP H0413432 B2 JPH0413432 B2 JP H0413432B2 JP 59146105 A JP59146105 A JP 59146105A JP 14610584 A JP14610584 A JP 14610584A JP H0413432 B2 JPH0413432 B2 JP H0413432B2
Authority
JP
Japan
Prior art keywords
main electrode
particles
chamber
cathode
electrode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146105A
Other languages
Japanese (ja)
Other versions
JPS6126795A (en
Inventor
Nobutaka Goshima
Nobuyasu Ezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP14610584A priority Critical patent/JPS6126795A/en
Priority to US06/674,063 priority patent/US4569729A/en
Priority to CA000468351A priority patent/CA1269635A/en
Priority to KR1019840008080A priority patent/KR890002751B1/en
Priority to EP84309163A priority patent/EP0171478B1/en
Priority to DE8484309163T priority patent/DE3481777D1/en
Priority to US06/800,528 priority patent/US4626331A/en
Publication of JPS6126795A publication Critical patent/JPS6126795A/en
Publication of JPH0413432B2 publication Critical patent/JPH0413432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、各種金属の回収や精製、粒体への電
気めつき及び有機化合物及び/またはシアン化合
物の分解等各種の電気化学反応に使用する流動床
を用いる電解方法と電解槽に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to various applications such as recovery and purification of various metals, electroplating of particles, and decomposition of organic compounds and/or cyanide compounds. This invention relates to an electrolytic method using a fluidized bed and an electrolytic cell used in electrochemical reactions.

(従来技術) 金属粒子等を流動化させた電極粒子を用いて、
溶液中の金属を回収したり、粒体にめつきしたり
する流動床電解は公知である(特開昭53−92302
号公報、米国特許第3457152号明細書、米国特許
第4212722号明細書)。この流動床電解法が開発さ
れる以前には、溶液中から金属を回収するには次
のような方法が試みられていた。
(Prior art) Using electrode particles made of fluidized metal particles, etc.
Fluidized bed electrolysis for recovering metals from solutions and plating particles is well known (Japanese Patent Laid-Open No. 53-92302).
(U.S. Pat. No. 3,457,152, U.S. Pat. No. 4,212,722). Before this fluidized bed electrolysis method was developed, the following methods had been tried to recover metals from solutions.

(a) 溶液中に還元剤を加え、溶液中で直接金属を
析出させる。
(a) Add a reducing agent to the solution and deposit the metal directly in the solution.

(b) 金属イオン、金属シアン錯イオンを含む溶液
をイオン交換樹脂塔に導入して金属イオン、金
属シアン錯イオンをイオン交換樹脂に固定す
る。
(b) A solution containing metal ions and metal cyanide complex ions is introduced into an ion exchange resin tower to fix the metal ions and metal cyanide complex ions to the ion exchange resin.

(c) 溶液を低電流密度の電解槽で電解して、金属
を陰極に析出させる。
(c) The solution is electrolyzed in a low current density electrolytic cell to deposit the metal on the cathode.

これらの方法を使用すると、溶液中から金属を
回収できるが、各方法には次のような欠点があつ
た。つまり、(a)法は、処理液量が増加し、反応時
間が長く、さらに運転費が高騰するという欠点が
あり、(b)法では、運転は容易であるが、装置建設
費、再生薬剤費等の運転費が高くなるという欠点
があり、さらに(c)法は高濃度の金属含有廃液には
適しているが、低濃度の廃液の場合には、更に電
流密度を下げないと経済的な電流効率を得ること
ができず、電解槽が大型化して建設費が高くな
り、低電流密度運転を行うため、析出状態が極め
て良好なめつき状となり、陰極からの剥離作業が
困難であり、実際には金属の剥離剤を使用して再
溶解する必要があるという欠点があつた。
Although metals can be recovered from solutions using these methods, each method has the following drawbacks. In other words, method (a) has the disadvantages of increased processing liquid volume, long reaction time, and high operating costs, while method (b) is easy to operate, but requires equipment construction costs, regenerating chemicals, etc. However, although method (c) is suitable for waste liquids containing high concentrations of metals, it is not economical unless the current density is further reduced in the case of waste liquids with low concentrations. It is not possible to obtain a high current efficiency, the electrolytic cell becomes large and the construction cost increases, and because the electrolytic cell is operated at a low current density, the deposited state becomes extremely plated, making it difficult to remove it from the cathode. In practice, the drawback was that it was necessary to redissolve the metal using a metal stripping agent.

また、溶液中からの金属と回収だけでなく、少
量の不純物を含む金属を高純度の金属に精製する
際、あるいは、粉粒体に所望の金属を電気めつき
を行う際にも同様の方法が採用され、同様の欠点
が指摘されていた。
In addition to recovering metals from solutions, similar methods can also be used when refining metals containing small amounts of impurities into high-purity metals, or when electroplating desired metals onto powder or granules. was adopted, and similar shortcomings were pointed out.

流動床電解技術は、これらの欠点を解消するた
めに開発されたもので、処理すべき電解液側の電
極室に微細粒子を収容し、この粒子を電解液単独
または電解液と供給ガスを用いて流動させること
により、電極表面積を飛躍的に増大させ、高電流
効率、低電解電圧にて電極粒子上に金属を析出さ
せることを可能にしたものである。
Fluidized bed electrolysis technology was developed to overcome these shortcomings. Fine particles are housed in an electrode chamber on the side of the electrolyte to be treated, and these particles are electrolyzed using the electrolyte alone or with the electrolyte and a supply gas. By causing the electrode to flow, the surface area of the electrode can be dramatically increased, making it possible to deposit metal on the electrode particles with high current efficiency and low electrolytic voltage.

しかし、従来の流動床電解では対極側の電極と
して板状電極を使用しているため、流動状態の電
極粒子や対極側の電極と、両極室を区画する隔膜
との間に対極室側で発生するガスが進入して、電
解電圧を上昇させて電解条件を不安定にさせた
り、隔膜を波打たせて損傷させたり、さらに湾曲
度が大きいと電極粒子の流動化を阻げてより一層
電解条件を不安定にするという欠点がある。
However, because conventional fluidized bed electrolysis uses a plate-shaped electrode as the counter electrode, particles in the fluidized state and particles generated on the counter electrode chamber side between the counter electrode and the diaphragm that partitions the two electrode chambers. If gas enters, the electrolytic voltage increases and the electrolytic conditions become unstable, and the diaphragm becomes wavy and damaged. Furthermore, if the degree of curvature is large, the fluidization of electrode particles is inhibited, making the electrolysis even more difficult. It has the disadvantage of making conditions unstable.

(発明が解決しようとする問題点) 本発明は、主電極室を電解液の上昇流にともな
つて上昇する主電極粒子が電解液とともに主電極
室から流出することを防止するとともに、対極側
すなわち補助電極を有孔性とし、補助電極面で発
生するガスを電極の背面に排出し、電極と隔膜と
の間にガスの存在によつて生じる電流分布の不均
一とそれによつて生じる隔膜への悪影響を防止す
ることを目的とするものである。
(Problems to be Solved by the Invention) The present invention prevents the main electrode particles that rise in the main electrode chamber with the upward flow of the electrolyte from flowing out of the main electrode chamber together with the electrolyte, and In other words, the auxiliary electrode is made porous, and the gas generated on the auxiliary electrode surface is discharged to the back side of the electrode, thereby reducing the uneven current distribution caused by the presence of gas between the electrode and the diaphragm, and the resulting diaphragm. The purpose is to prevent the negative effects of

〔発明の構成〕[Structure of the invention]

本発明は、第1に隔膜で主電極室と補助電極室
に区画した電解槽の主電極室に主電極粒子を収容
し、主電極室に電解液を供給して主電極粒子を流
動状態に維持しながら電解する流動床を用いる電
解方法において、主電極室の上部において電解液
の上昇流の流速を低下させて、上昇流に随伴する
主電極粒子を上昇流から分離して主電極粒子の外
部への流出を防止するとともに、有孔性の補助電
極を隔膜に密着し、補助電極表面で発生するガス
を補助電極の背面へ排出しながら電解する流動床
を用いる電解方法であり、第2に隔膜で主電極室
と補助電極室に区画した筒状の電解槽の主電極室
に主電極粒子を収容した電解槽において、主電極
室の底部に電解液の供給口を設け、主電極室の上
部には断面積が上部に向かつて漸増する流動粒子
逸散防止塔を設け、流動粒子逸散防止塔の壁面に
は電解液の流出口を設けるとともに、有孔性の補
助電極を隔膜に密着した流動床を用いる電解槽で
ある。
The present invention first stores main electrode particles in the main electrode chamber of an electrolytic cell divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and supplies an electrolytic solution to the main electrode chamber to bring the main electrode particles into a fluid state. In an electrolysis method using a fluidized bed that performs electrolysis while maintaining the electrolyte, the flow rate of the upward flow of electrolyte solution is reduced in the upper part of the main electrode chamber, and the main electrode particles accompanying the upward flow are separated from the upward flow. This is an electrolysis method that uses a fluidized bed to prevent leakage to the outside, and to conduct electrolysis while a porous auxiliary electrode is closely attached to the diaphragm and gas generated on the surface of the auxiliary electrode is discharged to the back of the auxiliary electrode. In an electrolytic cell in which main electrode particles are stored in the main electrode chamber of a cylindrical electrolytic cell divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, an electrolyte supply port is provided at the bottom of the main electrode chamber, and the main electrode chamber A fluidized particle dispersion prevention tower whose cross-sectional area gradually increases toward the top is installed at the top of the tower, an electrolyte outlet is provided on the wall of the fluidized particle dispersion prevention tower, and a porous auxiliary electrode is installed in the diaphragm. This is an electrolytic cell that uses a close fluidized bed.

本発明方法及び電解槽の用途は、主として金属
の回収及び精製、粉粒体へのめつき、有機化合物
及び/またはシアン化合物の分解である。
The method and electrolytic cell of the present invention are mainly used for recovering and refining metals, plating powder and granules, and decomposing organic compounds and/or cyanide compounds.

金属の回収及び精製、粉粒体へのめつきを行う
際には、主電極室を陰極室、補助電極室を陽極室
として電解を行う。又、有機化合物及び/または
シアン化合物の分解を行う際には、主電極室を陽
極室、補助電極室を陰極室として分解反応を行
う。従つて金属の回収等の場合には、主電極粒
子、補助電極及び主電極室の主電極は、それぞ
れ、陰極粒子、陽極及び陰極となり、有機化合物
及び/またはシアン化合物の分解の場合には、そ
れぞれ陽極粒子、陰極及び陽極となる。
When collecting and refining metals and plating powder or granules, electrolysis is performed using the main electrode chamber as a cathode chamber and the auxiliary electrode chamber as an anode chamber. Further, when decomposing an organic compound and/or a cyanide compound, the decomposition reaction is carried out using the main electrode chamber as an anode chamber and the auxiliary electrode chamber as a cathode chamber. Therefore, in the case of metal recovery, etc., the main electrode particles, the auxiliary electrode, and the main electrode of the main electrode chamber become the cathode particles, anode, and cathode, respectively, and in the case of decomposition of organic compounds and/or cyanide compounds, They become an anode particle, a cathode, and an anode, respectively.

陰極粒子を用いる場合、その材質としては、
金、銀、銅、ニツケル、鉛等の金属、それらの酸
化物、硫化物、あるいはそれらの合金、グラフア
イト、活性炭等の導電性非金属を使用することが
でき、さらにグラフアイト、ガラス、セラミツク
等の粒子上に金、銀、銅、ニツケル、鉛等の金属
をコーテイングしたものも使用することができ、
陽極粒子を用いる場合には、グラフアイト、ガラ
ス、セラミツク等の粒子又はチタン上に貴金属、
貴金属酸化物、鉛等の被覆されたものなど、電解
しても溶液におかされないものを使用することが
できる。この陰極または陽極粒子の粒径は、0.05
〜3.0mm程度、好ましくは0.1〜0.5mmとする。又、
陰極及び陽極の材質としては、グラフアイト、ス
テンレス、白金あるいは貴金属酸化物をコーテイ
ングしたチタン及びフエライト等の一般に使用さ
れているものを使用することができる。
When using cathode particles, the material is as follows:
Metals such as gold, silver, copper, nickel, and lead, their oxides, sulfides, or alloys thereof, and conductive nonmetals such as graphite and activated carbon can be used, as well as graphite, glass, and ceramics. Particles coated with metals such as gold, silver, copper, nickel, and lead can also be used.
When using anode particles, noble metals, particles of graphite, glass, ceramic, etc. or titanium are used.
It is possible to use materials that are coated with noble metal oxides, lead, etc., and which are not dissolved in solution even when electrolyzed. The particle size of this cathode or anode particle is 0.05
~3.0mm, preferably 0.1~0.5mm. or,
As the material for the cathode and anode, commonly used materials such as graphite, stainless steel, platinum, titanium coated with a noble metal oxide, and ferrite can be used.

主電極室と補助電極室とを区画する隔膜は、電
気イオンを通すものであれば無孔性でも有孔性で
あつてもよいが、有孔性隔膜を用いる場合、その
孔径は、主電極粒子の粒径より小さく、好ましく
は10〜100μとする。また、隔膜の材質は、ナイ
ロン、ポリエチレン、ポリプロピレン、ポリテト
ラフルオロエチレン等の非電導性有機化合物ある
いは非電導性無機化合物とするのがよい。また、
この隔膜は、イオン交換基を有するものであつて
もよい。
The diaphragm that separates the main electrode chamber and the auxiliary electrode chamber may be non-porous or porous as long as it allows electrical ions to pass through, but if a porous diaphragm is used, the pore diameter is It is smaller than the particle size of the particles, preferably 10 to 100μ. The material of the diaphragm is preferably a non-conductive organic compound or a non-conductive inorganic compound such as nylon, polyethylene, polypropylene, polytetrafluoroethylene. Also,
This diaphragm may have an ion exchange group.

補助電極は、該電極と隔膜との間に発生するガ
スを該電極の背面に抜くために、有孔状とすると
ともに、隔膜に密着させる。該有孔状補助電極
は、エキスパンデツドメタルを用いても、板状体
に穿孔を設けたものや多孔質体、焼結体を用いて
もよい。
The auxiliary electrode has a perforated shape and is brought into close contact with the diaphragm in order to discharge gas generated between the electrode and the diaphragm to the back side of the electrode. The perforated auxiliary electrode may be made of expanded metal, a plate with perforations, a porous material, or a sintered material.

このような各要素から成る電解槽の主電極室に
電解液を供給して電解を行う。電解液は電解の目
的によつて適切なものを選択すればよく、金属の
回収を行う際には、たとえば金、白金、銀等の貴
金属、カドミウム、クロム等の公害金属、及び亜
鉛、ガリウム、ビスマス、アルミニウム等の他の
金属等各種金属の少なくとも一部を有する溶液、
特にめつき廃液またはエツチング液を使用する。
Electrolysis is performed by supplying an electrolytic solution to the main electrode chamber of the electrolytic cell made up of these various elements. An appropriate electrolyte may be selected depending on the purpose of electrolysis, and when recovering metals, for example, precious metals such as gold, platinum, and silver, polluting metals such as cadmium and chromium, and zinc, gallium, A solution containing at least a portion of various metals such as bismuth, other metals such as aluminum,
In particular, use plating waste liquid or etching liquid.

また、金属の精製の際には、比較的純度の高い
精製すべき金属と少量の不純物を含む溶液を用
い、粉流体へのめつきを行う場合には、めつきす
べき金属の溶液を用いる。
In addition, when refining metals, a solution containing the metal to be purified with relatively high purity and a small amount of impurities is used, and when plating powder fluid, a solution of the metal to be plated is used. .

主電極粒子は、電解槽内に供給された電解液の
上昇力により流動状態が形成される。この上昇力
は通過面積を拡大することによつて弱められ、流
動状態が維持される。ここで「流動状態」とは、
主電極粒子相互が溶液中でくつついたり離れたり
する間に溶液が通過していく状態をいう。
The main electrode particles are brought into a fluid state by the rising force of the electrolytic solution supplied into the electrolytic cell. This upward force is weakened by enlarging the passage area and the fluid state is maintained. Here, "fluid state" means
This refers to the state in which the solution passes through while the main electrode particles touch each other in the solution and separate from each other.

この状態で電解を行うと、流動状態の主電極粒
子を使用しているため、主電極の表面積が非常に
大きくなつて電流密度を下げると共に、主電極粒
子が相互に衝突して電気二重層を不安定としてい
るので、電解電圧が低く電流効率の高い状態で電
解を行うことができる。また、異種金属の析出電
位差を利用すれば特定金属のみを選択的に析出さ
せることができ、金属の精製に好都合である。
When electrolysis is performed in this state, the main electrode particles in a fluidized state are used, so the surface area of the main electrode becomes extremely large, lowering the current density, and the main electrode particles collide with each other, forming an electric double layer. Since it is unstable, electrolysis can be performed with low electrolysis voltage and high current efficiency. Further, by utilizing the deposition potential difference between different metals, only a specific metal can be selectively deposited, which is convenient for metal purification.

さらに、補助電極を隔膜に密着させ、かつ該電
極を有孔性としてあるため、補助電極と隔膜の間
に発生ガスが進入して、電解電圧が上昇したり、
隔膜が波打つて損傷したりすることがない。
Furthermore, since the auxiliary electrode is brought into close contact with the diaphragm and the electrode is porous, generated gas may enter between the auxiliary electrode and the diaphragm, increasing the electrolytic voltage.
The diaphragm will not wave or be damaged.

金属の回収または精製、粉粒体へのめつきの場
合には、上記電解操作により表面に金属がコーテ
イングされた陰極粒子が生成するので、これを電
解槽外に取り出す。粉粒体めつきの場合は、所望
の粒体が取り出されるので、そのまま各用途に供
すればよく、金属の回収、精製の場合には、析出
金属と陰極粒子が同一成分である場合を除き、析
出金属と陰極粒子とを分離する必要がある。分離
には、従来の分離手段、たとえば乾式分離法や湿
式分離法をそのまま使用すればよい。金属を陰極
粒子から乾式分離法により分離するには、たとえ
ば、金や白金の場合には次のように行えばよい。
金がコーテイングされた陰極粒子を溶融し、、こ
の溶融物に酸素ガスや塩素ガスなどを吹き込む
と、金、白金以外の金属は酸化物、塩化物等とな
つて大気中に飛散し、陰極粒子としてのガラス等
はスラグとなつて、溶融金属上に浮遊し、分離さ
れる。その後、冷却固化すると、白金と金以外に
ほとんど不純物を含まない金または白金を得るこ
とができる。また、貴金属と卑金属とを含む希薄
溶液から合金として析出させた場合には、通常の
湿式分離法で再溶解して分離することができる。
この再溶解した液は金属元素以外の有機物等が含
まれず、また高濃度で少量の液がえられるので経
済的に回収できる。
In the case of recovering or refining metals or plating powder or granules, cathode particles whose surfaces are coated with metal are produced by the electrolytic operation, and these are taken out of the electrolytic cell. In the case of powder plating, the desired granules are taken out, so they can be used as they are for various purposes.In the case of metal recovery and refining, unless the precipitated metal and the cathode particles have the same components, It is necessary to separate the deposited metal and the cathode particles. For separation, conventional separation means such as dry separation method or wet separation method may be used as is. In order to separate metal from cathode particles by a dry separation method, for example, in the case of gold or platinum, the following procedure may be performed.
When cathode particles coated with gold are melted and oxygen gas, chlorine gas, etc. Glass, etc., becomes slag, floats on the molten metal, and is separated. Thereafter, by cooling and solidifying, gold or platinum containing almost no impurities other than platinum and gold can be obtained. In addition, when an alloy is precipitated from a dilute solution containing a noble metal and a base metal, it can be redissolved and separated using a normal wet separation method.
This redissolved liquid does not contain organic substances other than metal elements, and can be economically recovered because a small amount of highly concentrated liquid can be obtained.

また、有機化合物及び/またはシアン化合物の
分解の場合には、陽極粒子上には何も析出しない
ので、分離操作は不要である。
Further, in the case of decomposing organic compounds and/or cyanide compounds, no separation operation is necessary because nothing is deposited on the anode particles.

本発明方法による金属回収に関する電流効率は
10%以上、溶液からの金属の回収率は、金属含有
量及び電解時間により異なるが、1回の操作で、
含有量が低い場合には低電力でほぼ100%、比較
的高い場合には、90%以上となる。後者の場合に
も、溶液を循環させることによりほぼ定量的に金
属を回収することができる。
The current efficiency for metal recovery by the method of the present invention is
The recovery rate of metal from the solution is 10% or more, which varies depending on the metal content and electrolysis time, but in one operation,
When the content is low, it is almost 100% at low power, and when the content is relatively high, it is more than 90%. In the latter case as well, the metal can be recovered almost quantitatively by circulating the solution.

以下、本発明を添付図面に示す第1実施例及び
第2実施例に基いてより詳細に説明する。両実施
例では、主電極を陰極、補助電極を陽極とした金
属と回収、精製及び粉粒体へのめつき用電解槽と
して本発明を説明するが、本発明はこれらに限定
されるものではない。
Hereinafter, the present invention will be explained in more detail based on a first embodiment and a second embodiment shown in the accompanying drawings. In both examples, the present invention will be described as an electrolytic cell for metal recovery, purification, and plating of powder and granular materials, with the main electrode as the cathode and the auxiliary electrode as the anode, but the present invention is not limited to these. do not have.

第1図は、本発明の第1実施例を示す一部破断
正面図、第2図は、第1図の−線横断面図で
ある。
FIG. 1 is a partially cutaway front view showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line -- in FIG.

電解槽本体1は、溶液供給口2が下向きに連設
された皿状の下部枠体3と、円筒状の陰極4とか
ら成り、陰極4の上下両端は、それぞれ外方に向
けて折曲されている。下部枠体3の周縁のフラン
ジ部5上には、周縁部が1対のガスケツト6によ
り挾持された有孔の下部隔膜7が載置され、さら
に該下部隔膜7上には、中央上面に凹部8が設け
られ、該凹部8と周縁部以外の部分に、上下方向
の多数の通孔9が穿設された溶液分散板10が載
置されている。陰極4の下部の外向き折曲部11
はガスケツト12を介して、溶液分散板10上に
載置され、ボルト13により、下部枠体3と一体
化されている。
The electrolytic cell body 1 consists of a dish-shaped lower frame 3 in which a solution supply port 2 is connected downward, and a cylindrical cathode 4. Both upper and lower ends of the cathode 4 are bent outward. has been done. A perforated lower diaphragm 7 whose periphery is sandwiched by a pair of gaskets 6 is placed on the flange portion 5 at the periphery of the lower frame 3, and a recessed portion is provided on the upper center surface of the lower diaphragm 7. 8, and a solution dispersion plate 10 having a large number of vertically perforated holes 9 is placed in a portion other than the recess 8 and the peripheral edge. Outward bent portion 11 at the bottom of the cathode 4
is placed on the solution distribution plate 10 via a gasket 12, and is integrated with the lower frame 3 by bolts 13.

陰極4の上部の外向き折曲部14上には、ガス
ケツト15を介して、流動粒子逸散防止塔16の
下端部外向きフランジ17が載置され、ボルト1
8により締着されている。流動粒子逸散防止塔1
6は下から順に前記下端部外向きフランジ17、
小径部19、テーパー部20、大径部21、上端
部外向きフランジ22から構成され、該外向きフ
ランジ22上には、円盤状の蓋体23がボルト2
4により締着されている。蓋体23下面中央に
は、棒状体25を介して、下端が前記凹部8近傍
に達する円筒状の陽極26が垂設され、該陽極2
6には、ガス抜きのための多数の孔27が穿設さ
れている。陽極26の下面と側面には、ポリテト
ラフルオロエチレン等実質的に電極液を透過させ
ない材質から成り、上面が開口する円筒状の隔膜
28が密着状態で装着され、該隔膜28の上端
は、Oリング29で陽極26に固定されている。
隔膜28より外方の電解槽本体1内には、陰極粒
子30が流動状態で収容されている。31は、流
動粒子逸散防止塔16の大径部21側面に連設さ
れた電解液抜出口、32は、蓋体23上面に連設
された発生ガス取出口、33は、陰極の下部側面
に設けられた陰極粒子取出口である。
On the outward bent part 14 of the upper part of the cathode 4, the outward flange 17 of the lower end of the fluidized particle diffusion prevention tower 16 is mounted via the gasket 15, and the bolt 1
8. Fluidized particle diffusion prevention tower 1
6, in order from the bottom, the lower end outward flange 17;
It is composed of a small diameter part 19, a tapered part 20, a large diameter part 21, and an upper end outward flange 22. A disk-shaped cover body 23 is mounted on the outward flange 22.
It is tightened by 4. A cylindrical anode 26 whose lower end reaches the vicinity of the recess 8 is vertically disposed at the center of the lower surface of the lid body 23 via a rod-shaped body 25.
6 has a large number of holes 27 for venting gas. A cylindrical diaphragm 28 made of a material substantially impermeable to the electrode liquid, such as polytetrafluoroethylene, and having an open top surface is attached to the lower and side surfaces of the anode 26 in close contact with the upper end of the diaphragm 28. It is fixed to the anode 26 with a ring 29.
Cathode particles 30 are accommodated in a fluid state in the electrolytic cell body 1 outside the diaphragm 28 . Reference numeral 31 indicates an electrolytic solution outlet connected to the side surface of the large diameter portion 21 of the fluidized particle diffusion prevention tower 16, 32 indicates a generated gas outlet connected to the upper surface of the lid body 23, and 33 indicates a lower side surface of the cathode. This is the cathode particle outlet provided in the

次に、上記構成から成る電解槽による被電解液
の電解の要領を金属の回収を例にとつて説明す
る。
Next, the procedure for electrolyzing a liquid to be electrolyzed using the electrolytic cell having the above-mentioned structure will be explained by taking metal recovery as an example.

電解槽本体1に、金属含有廃液などの金属含有
溶液を溶液供給口2から供給する。この溶液は、
一般に水溶液が用いられるが、溶媒抽出で利用さ
れるアルコール等の有機溶液の場合もある。供給
された溶液は、下部隔膜7の細孔と溶液分散板1
0の通孔9を通つて陰極室内に加圧されて導入さ
れる。この場合、溶液は陰極粒子30を流動状態
に維持する役割を果たす。陰極粒子30の間を通
過した溶液はテーパー部20で断面積が大きくな
り、溶液の流速が減速されるため陰極粒子30と
溶液が分離され、陰極粒子中で均一な層流が得ら
れる。溶液中の金属イオンは、陰極粒子30上で
電解還元され、金属原子となつて陰極粒子30上
に析出するとともに副反応として水が分解されて
水素が発生し、この水素は、発生ガス取出口32
から取出される。また、陽極26表面では通常の
水電解反応による酸素発生が生じる。この酸素
は、陽極26表面全体から発生するが、隔膜28
と陽極26の間で発生する酸素も陽極26の間で
発生する酸素も陽極26の孔27から陽極26の
背面に抜かれ、陽極26上面の孔を通つて発生ガ
ス取出口32から取出されるため、発生するガス
が隔膜と陽極との間に存在して電解電圧を上昇さ
せたり、隔膜を波打たせて電解条件を不安定にし
たり、隔膜を傷つけたりすることがない。電解さ
れて金属イオン濃度が減少した溶液は、電解液抜
出口31からオーバーフローして電解槽外に取り
出される。
A metal-containing solution such as metal-containing waste liquid is supplied to the electrolytic cell body 1 from a solution supply port 2. This solution is
Generally, an aqueous solution is used, but an organic solution such as alcohol used in solvent extraction may also be used. The supplied solution is distributed between the pores of the lower diaphragm 7 and the solution distribution plate 1.
0 into the cathode chamber under pressure. In this case, the solution serves to maintain the cathode particles 30 in a fluid state. The cross-sectional area of the solution that has passed between the cathode particles 30 increases at the tapered portion 20, and the flow rate of the solution is reduced, so that the cathode particles 30 and the solution are separated, and a uniform laminar flow is obtained in the cathode particles. The metal ions in the solution are electrolytically reduced on the cathode particles 30, become metal atoms and precipitate on the cathode particles 30, and water is decomposed as a side reaction to generate hydrogen. 32
taken from. Furthermore, oxygen is generated on the surface of the anode 26 due to a normal water electrolysis reaction. This oxygen is generated from the entire surface of the anode 26, but the diaphragm 28
The oxygen generated between the anode 26 and the anode 26 is extracted from the hole 27 of the anode 26 to the back side of the anode 26, and is taken out from the generated gas outlet 32 through the hole on the upper surface of the anode 26. The generated gas does not exist between the diaphragm and the anode to increase the electrolytic voltage, cause the diaphragm to wave, destabilize the electrolytic conditions, or damage the diaphragm. The electrolyzed solution whose metal ion concentration has been reduced overflows from the electrolytic solution outlet 31 and is taken out of the electrolytic cell.

電解が進行してくると、陰極粒子30上に金属
が析出してくる。析出量がふえるほど陰極粒子3
0は重くなつて陰極室下部に集まり、陰極室の上
部には、比較的析出量の少ない陰極粒子30が存
在する。金属が十分に析出し、陰極室下部に集ま
つた陰極粒子30は、陰極粒子取出口33から電
解槽外へ取出され、取出された分に相当する陰極
粒子を上方から陰極室に供給する。これにより、
運転を止めることなく陰極粒子の供給及び取出し
を行うことができ、長期に亘る連続運転が可能と
なる。
As the electrolysis progresses, metal is deposited on the cathode particles 30. As the amount of precipitation increases, the cathode particles 3
The particles 30 become heavier and gather in the lower part of the cathode chamber, and the cathode particles 30, which are precipitated in a relatively small amount, are present in the upper part of the cathode chamber. The cathode particles 30 where the metal has sufficiently precipitated and gathered in the lower part of the cathode chamber are taken out of the electrolytic cell from the cathode particle outlet 33, and cathode particles corresponding to the amount taken out are supplied from above to the cathode chamber. This results in
The cathode particles can be supplied and taken out without stopping the operation, and continuous operation over a long period of time is possible.

この電解操作において、流動層内の微粒子に効
率よく陰極電位をもたせて金属を高電流効率、低
電解電圧で陰極上に析出させるためには、次に挙
げる電解条件下で電解を行うことが望ましい。
In this electrolytic operation, in order to efficiently impart a cathode potential to the fine particles in the fluidized bed and deposit the metal on the cathode with high current efficiency and low electrolytic voltage, it is desirable to perform electrolysis under the following electrolytic conditions. .

陰極電流密度:30A/dm2以下(好ましくは
10A/dm2以下) 陽極電流密度:20A/dm2以下(好ましくは
5A/dm2以下) 流動層内電流濃度:30A/−流動層以下(好ま
しくは10A/−流動層以下) 流動層空間率:40〜90%(好ましくは60〜75%) ここで、陰極電流密度及び陽極電流密度が、そ
れぞれ30A/dm2、20A/dm2を越えると電圧が
不必要に高くなり好ましくない。さらに、流動層
内電流濃度が30A/−流動層を越えると、電圧
が上がるだけでなく、プラツギングが発生し、流
動層空間率90%を越えると電圧が上がり、40%よ
り下がると、溶液供給口付近でプラツギングが生
ずるので、上記範囲内とするのがよい。
Cathode current density: 30A/ dm2 or less (preferably
10A/dm 2 or less) Anode current density: 20A/dm 2 or less (preferably
5A/dm 2 or less) Current concentration in fluidized bed: 30A/- fluidized bed or less (preferably 10A/- fluidized bed or less) Fluidized bed void ratio: 40 to 90% (preferably 60 to 75%) Here, cathode current If the density and the anode current density exceed 30 A/dm 2 and 20 A/dm 2 , respectively, the voltage will become unnecessarily high, which is not preferable. Furthermore, when the current concentration in the fluidized bed exceeds 30A/- fluidized bed, not only does the voltage increase, but plugging occurs, and when the fluidized bed void ratio exceeds 90%, the voltage increases, and when it falls below 40%, the solution supply Since plugging occurs near the mouth, it is best to keep it within the above range.

また、この電解操作を引き続いて行うと、金属
の析出に伴つて陰極粒子の径が大きくなつて、流
動条件(流動層高、流動層空間率、流動層圧力損
失)が変化するので、本電解槽の流動床部分は次
のように設計することが好ましい。すなわち、流
動層の高さは、初期流動層の1.2倍以上、好まし
くは1.4倍以上とし、流動粒子逸散防止塔の断面
積を電解槽本体の断面積の1.5倍以上、好ましく
は2倍以上として、陰極粒子が流動状態に維持で
きるようにし、かつ粒子の逸散を防止する。この
ようにすれば、陰極粒子の元の径の倍以上まで、
金属を析出させることができる。
Furthermore, if this electrolytic operation is continued, the diameter of the cathode particles will increase as the metal is deposited, and the fluidization conditions (fluidized bed height, fluidized bed void ratio, fluidized bed pressure loss) will change, so this The fluidized bed section of the tank is preferably designed as follows. That is, the height of the fluidized bed is at least 1.2 times, preferably at least 1.4 times, the height of the initial fluidized bed, and the cross-sectional area of the fluidized particle scattering prevention tower is at least 1.5 times, preferably at least twice, the cross-sectional area of the electrolytic cell body. As a result, the cathode particles can be maintained in a fluid state and the particles can be prevented from escaping. In this way, up to twice the original diameter of the cathode particles,
Metals can be deposited.

第3図は、本発明の第2実施例を示す縦断面図
である。この電解槽は、第1実施例の電解槽の改
良に係わるものであり、第1実施例の部材と同一
部材には同一符号を付して説明を省略する。
FIG. 3 is a longitudinal sectional view showing a second embodiment of the invention. This electrolytic cell is an improvement of the electrolytic cell of the first embodiment, and the same members as those of the first embodiment are given the same reference numerals and explanations thereof will be omitted.

電解槽本体1′は上面が開口し、上端に外向き
フランジ41が連設された円筒体から成り、該本
体1′内壁の下端近傍には、陰極支持用円筒42
が内設され、該円筒42上には、有孔性隔膜43
を介して、格子状の支持片44が内設されたドー
ナツ状の陰極下部フレーム45が載置されてい
る。陰極下部フレーム45の上縁には、多孔性円
筒状の陰極4′が溶接等により立設され、該陰極
下部フレーム45の内縁には溶液分散板10′が
載置されている。
The electrolytic cell main body 1' consists of a cylindrical body with an open upper surface and an outward flange 41 connected to the upper end.A cathode supporting cylinder 42 is provided near the lower end of the inner wall of the main body 1'.
is installed inside the cylinder 42, and a porous diaphragm 43 is provided on the cylinder 42.
A donut-shaped cathode lower frame 45 having a lattice-shaped support piece 44 installed therein is placed therebetween. A porous cylindrical cathode 4' is erected on the upper edge of the lower cathode frame 45 by welding or the like, and a solution dispersion plate 10' is placed on the inner edge of the lower cathode frame 45.

陰極4′の上端には、上端に外向き折曲部46
が連設された短寸円筒状の陰極上部フレーム47
の下端部が溶接等により連結され、外向き折曲部
46の外端部は、前記外向きフランジ41の外端
部と整合している。
The upper end of the cathode 4' has an outwardly bent portion 46 at the upper end.
A short cylindrical cathode upper frame 47 in which
The lower ends of the two are connected by welding or the like, and the outer end of the outward bent portion 46 is aligned with the outer end of the outward flange 41.

陽極26の下面と側面には、ナイロン等から成
り、陰極粒子は通過させないが、電解液を比較的
自由に通過させる有孔の隔膜28′が密着状態で
装着され、陽極26内部には、ガラスビーズ等か
ら成る多数の粒体48が収容されている。
A perforated diaphragm 28' made of nylon or the like is tightly attached to the bottom and side surfaces of the anode 26, and does not allow the cathode particles to pass through, but allows the electrolyte to pass through relatively freely. A large number of particles 48 made of beads and the like are accommodated.

この電解槽に溶液供給口2から金属含有溶液を
供給すると、第1実施例の場合と同様に金属が回
収される。また、この電解槽では、陰極室に加圧
状態で溶液を供給し、かつ、陽極室と陰極室を区
画する隔膜が多孔性であるため、陽極室内に粒体
を存在させないと、被電解液が陰極室から陽極室
に移動し、抵抗の少ない陽極室を通り抜け、陰極
粒子と接触せずに電解槽から取り出され、金属が
回収されないことになるが、陽極室内に存在させ
た多数の粒体により、抵抗が増大して陽極室内の
被電解液の流通が阻害されるため、被電解液は十
分に陰極粒子と接触し、高収率で金属が回収され
る。
When a metal-containing solution is supplied to this electrolytic cell from the solution supply port 2, metals are recovered in the same manner as in the first embodiment. In addition, in this electrolytic cell, the solution is supplied under pressure to the cathode chamber, and the diaphragm separating the anode chamber and the cathode chamber is porous, so if particles are not present in the anode chamber, the electrolyte The metal moves from the cathode chamber to the anode chamber, passes through the anode chamber with low resistance, and is taken out of the electrolytic cell without coming into contact with the cathode particles. Although the metal is not recovered, the large number of particles present in the anode chamber As a result, the resistance increases and the flow of the electrolyte in the anode chamber is inhibited, so that the electrolyte comes into sufficient contact with the cathode particles and the metal is recovered at a high yield.

実施例 1 第1図に示す流動床型電解槽を用いて金めつき
廃液からの金の回収を行つた。電解槽の各部の寸
法は、電解槽本体の高さ113.5cm、内径14.0cm、
有孔性陽極の高さ105cm、直径4.9cm、流動粒子逸
散防止塔の高さ35cm、大径部の外径21cmとした。
Example 1 Gold was recovered from gold plating waste liquid using the fluidized bed electrolytic cell shown in FIG. The dimensions of each part of the electrolytic cell are: height of the electrolytic cell body: 113.5cm, inner diameter: 14.0cm,
The height of the porous anode was 105 cm and the diameter was 4.9 cm, the height of the fluidized particle diffusion prevention tower was 35 cm, and the outer diameter of the large diameter part was 21 cm.

各部の材質は、電解槽本体及び流動粒子逸散防
止塔がアクリル樹脂、陽極が白金コーテイングチ
タン、陰極粒子が粒径0.1〜0.15mmの金めつきし
たグラフアイト粒子、隔膜がポリテトラフルオロ
エチレン製無孔製膜、溶液分散板が塩化ビニル樹
脂であるものを用いた。
The materials of each part are acrylic resin for the electrolytic cell body and fluidized particle diffusion prevention tower, platinum-coated titanium for the anode, gold-plated graphite particles with a particle size of 0.1 to 0.15 mm for the cathode, and polytetrafluoroethylene for the diaphragm. A non-porous membrane and a solution dispersion plate made of vinyl chloride resin were used.

試験用溶液としては、PH値4.1、全有機炭素量
(TOC)15.0g/、二酸化ケイ素量56mg/、
全リン量が1.6mg/であり、各イオン濃度が次
のものを用い、電解槽に供給する前に水で希釈し
て全濃度が1650ppmになるよう調整した。
The test solution had a pH value of 4.1, a total organic carbon content (TOC) of 15.0 g/, a silicon dioxide content of 56 mg/,
The total phosphorus amount was 1.6 mg/, and the following ion concentrations were used, and the total concentration was adjusted to 1650 ppm by diluting with water before supplying to the electrolytic cell.

Au 2580ppm Ni 25ppm Na 51ppm K 13300ppm CN- 1000ppm SO4 3- 43000ppm Cl- 530ppm この調整した金廃液を約2.8/mmの流速で電
解槽に供給し、陽極電流密度2.60A/dm2、陰極
電流密度1.0A/dm2、流動層内電流濃度10.7A/
−流動層、陰極粒子の流動層空間率70%の条件
となるよう電解したところ、電解電圧2.1〜2.5V、
平均電流効率38%であり、電解層出口における金
濃度は3ppmであつた。なお、ニツケル濃度は減
少していなかつた。
Au 2580ppm Ni 25ppm Na 51ppm K 13300ppm CN - 1000ppm SO 4 3- 43000ppm Cl - 530ppm This adjusted gold waste solution was supplied to the electrolytic cell at a flow rate of about 2.8/mm, and the anode current density was 2.60A/dm 2 and the cathode current density was 1.0A/dm 2 , current concentration in the fluidized bed 10.7A/
-When electrolysis was carried out under the conditions of fluidized bed and fluidized bed void ratio of cathode particles of 70%, the electrolysis voltage was 2.1 to 2.5V,
The average current efficiency was 38%, and the gold concentration at the electrolyte exit was 3 ppm. Note that the nickel concentration did not decrease.

実施例 2 隔膜として細孔径が50μ程度であるナイロン網
を用い、陽極室内に粒径が0.3〜0.6mm程度のガラ
スビーズを多数収容したこと以外は、実施例1と
同一の電解槽を用い、銅粒子(平均粒径100μの
球状粒子)に下記の方法により金めつきを施し
た。
Example 2 The same electrolytic cell as in Example 1 was used, except that a nylon net with a pore size of about 50 μm was used as the diaphragm, and a large number of glass beads with a particle size of about 0.3 to 0.6 mm were housed in the anode chamber. Gold plating was applied to copper particles (spherical particles with an average particle size of 100 μm) by the following method.

まず、銅粒子5Kgを脱脂し、次いで水洗、酸
洗、水洗を行つて、銅粒子表面の汚れ、酸化物を
除去し、その後下記条件により電気金めつきを施
した。
First, 5 kg of copper particles were degreased, then washed with water, pickled, and washed with water to remove dirt and oxides from the surface of the copper particles, and then electroplated with gold under the following conditions.

金めつき条件 めつき液:金3g/のオークロネクスC(日本
エレクトロプレーテイングエンジニヤーズ(株)製
酸製シアンめつき液) 不純物:銅40ppm めつき液量:50 電 流:45A 電 圧:4V めつき温度:50℃ めつき時間:60分 流 速:0.3cm/sec 銅粒子は約10分で全体が金色にかわつてきた。
Gold plating conditions Plating liquid: Auclonex C (cyan plating liquid made by Japan Electroplating Engineers Co., Ltd.) containing 3 g of gold Impurities: 40 ppm copper Plating liquid amount: 50 Current: 45 A Voltage: 4 V Plating temperature: 50℃ Plating time: 60 minutes Flow rate: 0.3cm/sec The entire copper particle turned golden in about 10 minutes.

金めつき後、めつき液を除き、よく水洗してか
ら濾過し、乾燥して銅粒子に金めつき膜が0.1μ被
膜した粒子(Au/Cu粒子)を得た。
After gold plating, the plating solution was removed, thoroughly washed with water, filtered, and dried to obtain particles (Au/Cu particles) in which the copper particles were coated with a gold plating film of 0.1μ.

上述した方法で得られたAu/Cu粒子につき、
SEM写真とX線マイクロアナライザーによる金
分布像を調べた結果、金が銅粒子に均一に電着し
ていることが認められた。また、不純物としての
銅はめつき後も40ppmであつた。
Regarding the Au/Cu particles obtained by the method described above,
As a result of examining the gold distribution image using SEM photographs and an X-ray microanalyzer, it was found that gold was uniformly electrodeposited on the copper particles. In addition, copper as an impurity remained at 40 ppm even after plating.

このようにしてえられたAu/Cu粒子は電気接
点用素材に利用できた。
The Au/Cu particles obtained in this way could be used as a material for electrical contacts.

実施例 3 平均粒径1mmのAl2O3粒子2を用い、下記方
法によりめつきを行つた。
Example 3 Using Al 2 O 3 particles 2 with an average particle diameter of 1 mm, plating was performed by the following method.

まず、Al2O3粒子を脱脂し、次いで水洗、酸
洗、水洗した後、下記工程に従つて化学ニツケル
めつきを行つた。
First, the Al 2 O 3 particles were degreased, then washed with water, pickled, and washed with water, and then chemically plated with nickel according to the following steps.

センシタイジング:塩化第1錫溶液2 ↓ 水 洗 ↓ アクチペイシヨン:塩化パラジウム溶液2 ↓ 水 洗 ↓ 化学ニツケルめつき:上村工業(株)製BELニツケ
ル5(還元剤ジメチルポラザン) ↓ 水 洗 次に、このAl2O3粒子につき、第3図に示す如
き装置を用い、実施例2に準じて下記条件により
電気白金めつきを施した。
Sensitizing: Stannous chloride solution 2 ↓ Water washing ↓ Actipation: Palladium chloride solution 2 ↓ Water washing ↓ Chemical nickel plating: Uemura Kogyo Co., Ltd. BEL Nickel 5 (reducing agent dimethyl porazan) ↓ Water washing Next, the Al 2 O 3 particles were subjected to electroplating using an apparatus as shown in FIG. 3 under the following conditions according to Example 2.

白金めつき条件 めつき液:塩化白金酸 10g/ 塩 酸 0.3規定 めつき液量:50 電 流:200A 電 圧:20V めつき温度:20℃ めつき時間:60分 流 速:0.2cm/sec 上述した方法でえられたPt/Ni/Al2O3粒子
は、いずれも電気めつき膜が均一に電着している
ものであり、粒子が陰極であるめつき液に確実に
接触し、均一な電着物を得ることができることを
知見した。
Platinum plating conditions Plating liquid: 10g of chloroplatinic acid/Hydrochloric acid 0.3N Plating liquid volume: 50 Current: 200A Voltage: 20V Plating temperature: 20℃ Plating time: 60 minutes Flow rate: 0.2cm/sec As mentioned above All of the Pt/Ni/Al 2 O 3 particles obtained by this method have a uniform electroplated film, and the particles reliably contact the plating solution, which is the cathode, to form a uniform layer. The inventors have discovered that it is possible to obtain electrodeposited materials.

また、粒子が非電導性の場合、電気めつき前に
化学めつきを施す必要があるが、本発明において
は粒子に化学めつきを施す場合、その膜厚は電気
めつきが可能な程度のものでよく、化学めつき被
膜のみによつて高導電性粒子を得る場合に比較し
てその膜厚を薄くすることができ、コストを著し
く低下されることができた。
In addition, if the particles are non-conductive, it is necessary to apply chemical plating before electroplating, but in the present invention, when chemical plating is applied to particles, the film thickness is such that electroplating is possible. Compared to the case where highly conductive particles are obtained only by chemical plating, the film thickness can be made thinner, and the cost can be significantly reduced.

実施例 4 実施例1の電解槽において、陽極、陰極及び陰
極粒子をそれぞれ、陰極、陽極及び陽極粒子と
し、陽極粒子を粒径が0.4〜0.8mmのグラフアイト
粒子、陰極を金コーテイングチタンとして金廃液
中のシアンイオンの分解を行つた。
Example 4 In the electrolytic cell of Example 1, the anode, the cathode, and the cathode particles were respectively used as the cathode, the anode, and the anode particles, the anode particles were graphite particles with a particle size of 0.4 to 0.8 mm, and the cathode was made of gold coated titanium. Cyanide ions in waste liquid were decomposed.

試験用廃液としては、実施例1と同様のものを
用い、電解槽に供給する前に水を希釈して遊離シ
アンイオン濃度が640ppmになるよう調整した。
The same waste liquid as in Example 1 was used as the test waste liquid, and the free cyanide ion concentration was adjusted to 640 ppm by diluting the water before supplying it to the electrolytic cell.

この調整した廃液を約2.8/mmの流速で電解
槽に供給し、陽極電流密度2.60A/dm2、陰極電
流密度1.0A/dm2、流動層内電流濃度10.7A/
−流動層、グラフアイト粒子の流動層空間率70%
の条件となるよう電解したところ電解電圧2.1〜
2.5V、平均電流効率85%であり、電解槽出口に
おける遊離シアンイオン濃度は80ppmであつた。
This adjusted waste liquid was supplied to the electrolytic cell at a flow rate of approximately 2.8/mm, and the anode current density was 2.60A/dm 2 , the cathode current density was 1.0A/dm 2 , and the current density in the fluidized bed was 10.7A/dm 2 .
-Fluidized bed, fluidized bed void ratio of graphite particles 70%
When electrolyzed under the following conditions, the electrolytic voltage was 2.1~
The voltage was 2.5V, the average current efficiency was 85%, and the free cyanide ion concentration at the electrolyzer outlet was 80ppm.

〔発明の効果〕〔Effect of the invention〕

本発明は、溶液から金属を回収し、または金属
を精製し、粒子にめつきを施し、あるいは溶液中
の有機化合物を分解する際に、流動床電解槽を用
いて主電極の表面積を非常に大きくしてあるた
め、低電流密度で効率よく電解できるとともに、
主電極室の上部の断面積を漸増するようにしたの
で、電極室の上部において電解液の流速が減少
し、電解液とともに上昇した主電極粒子が主電極
室の上部の電解液流出口から電解液とともに外部
へ流出することはなく、また補助電極を有孔性と
し隔膜に密着させているため、補助電極で発生す
るガスが補助電極の背面に排出されるので、補助
電極と隔膜の間にガスが進入することはなく、電
解電圧が上昇したり、電流分布が不均一となつた
り、隔膜が損傷を受けたりすることがない。
The present invention uses a fluidized bed electrolytic cell to greatly increase the surface area of the main electrode when recovering metals from solutions, refining metals, plating particles, or decomposing organic compounds in solutions. Because it is large, it allows efficient electrolysis at low current density, and
Since the cross-sectional area of the upper part of the main electrode chamber is gradually increased, the flow velocity of the electrolyte decreases in the upper part of the electrode chamber, and the main electrode particles that rise with the electrolyte are electrolyzed from the electrolyte outlet at the upper part of the main electrode chamber. Since the auxiliary electrode is porous and tightly attached to the diaphragm, the gas generated by the auxiliary electrode is discharged to the back of the auxiliary electrode, so there is no space between the auxiliary electrode and the diaphragm. There is no gas ingress, no increase in electrolytic voltage, no uneven current distribution, and no damage to the diaphragm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す一部破断正
面図、第2図は、第1図の−線横断面図、第
3図は、本発明の第2実施例を示す縦断面図であ
る。 1,1……電解槽本体、4,4′……陰極、1
6……流動粒子逸散防止塔、26……陽極、27
……孔、28,28′……隔膜、30……陰極粒
子。
Fig. 1 is a partially cutaway front view showing a first embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the - line in Fig. 1, and Fig. 3 is a longitudinal cross-section showing a second embodiment of the invention. It is a diagram. 1, 1... Electrolytic cell body, 4, 4'... Cathode, 1
6... Fluidized particle diffusion prevention tower, 26... Anode, 27
...pore, 28,28'...diaphragm, 30...cathode particle.

Claims (1)

【特許請求の範囲】 1 隔膜で主電極室と補助電極室に区画した電解
槽本体の主電極室に主電極粒子を収容し、該主電
極室に電解液を供給して主電極粒子を流動状態に
維持しながら電解する方法において、主電極室の
上部において電解液の上昇流の流速を低下させて
上昇流に随伴する主電極粒子を上昇流から分離し
て主電極粒子の外部への流出を防止するととも
に、有孔性の補助電極を隔膜に密着し、補助電極
面で発生するガスを補助電極の背面へ排出しなが
ら電解することを特徴とする流動床を用いる電解
方法。 2 主電極室が陰極室、陽極室のいずれかであ
り、補助電極室が主電極室の対極室であることを
特徴とする特許請求の範囲第1項記載の流動床を
用いる電解方法。 3 隔膜で主電極室と補助電極室に区画した筒状
の電解槽の主電極室に主電極粒子を収容した電解
槽において、主電極室の底部に電解液の供給口を
設け、主電極室の上部には断面積が上部に向かつ
て漸増する流動粒子逸散防止塔を設け、流動粒子
逸散防止塔の壁面には電解液の流出口を設けると
ともに、有孔性の補助電極を隔膜に密着したこと
を特徴とする流動床を用いる電解槽。
[Claims] 1. Main electrode particles are accommodated in the main electrode chamber of the electrolytic cell body, which is divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and an electrolytic solution is supplied to the main electrode chamber to flow the main electrode particles. In this method, the flow velocity of the upward flow of electrolyte solution is reduced in the upper part of the main electrode chamber, the main electrode particles accompanying the upward flow are separated from the upward flow, and the main electrode particles flow out to the outside. An electrolysis method using a fluidized bed, which is characterized in that a porous auxiliary electrode is brought into close contact with a diaphragm, and gas generated on the surface of the auxiliary electrode is discharged to the back of the auxiliary electrode while electrolysis is carried out. 2. The electrolysis method using a fluidized bed according to claim 1, wherein the main electrode chamber is either a cathode chamber or an anode chamber, and the auxiliary electrode chamber is a counter electrode chamber to the main electrode chamber. 3. In an electrolytic cell containing main electrode particles in the main electrode chamber of a cylindrical electrolytic cell divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, an electrolyte supply port is provided at the bottom of the main electrode chamber, and the main electrode chamber A fluidized particle dispersion prevention tower whose cross-sectional area gradually increases toward the top is installed at the top of the tower, an electrolyte outlet is provided on the wall of the fluidized particle dispersion prevention tower, and a porous auxiliary electrode is installed in the diaphragm. An electrolytic cell using a fluidized bed characterized by close contact.
JP14610584A 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell Granted JPS6126795A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14610584A JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell
US06/674,063 US4569729A (en) 1984-07-16 1984-11-19 Electrolyzing method and electrolytic cell employing fluidized bed
CA000468351A CA1269635A (en) 1984-07-16 1984-11-21 Electrolyzing method and electrolytic cell employing fluidized bed
KR1019840008080A KR890002751B1 (en) 1984-07-16 1984-12-18 Electrolyzing process and electrolytic cell employing fluidized bed
EP84309163A EP0171478B1 (en) 1984-07-16 1984-12-31 Electrolyzing process and electrolytic cell employing fluidized bed
DE8484309163T DE3481777D1 (en) 1984-07-16 1984-12-31 ELECTROLYTIC METHOD AND ELECTROLYSIS CELL WITH A FLUID BED.
US06/800,528 US4626331A (en) 1984-07-16 1985-11-21 Electrolytic cell employing fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14610584A JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell

Publications (2)

Publication Number Publication Date
JPS6126795A JPS6126795A (en) 1986-02-06
JPH0413432B2 true JPH0413432B2 (en) 1992-03-09

Family

ID=15400259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14610584A Granted JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell

Country Status (1)

Country Link
JP (1) JPS6126795A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130792A (en) * 1986-11-21 1988-06-02 Matsuda Metal Kogyo Kk Electrolytic device
JPH0189961U (en) * 1987-12-04 1989-06-13
US6409895B1 (en) * 2000-04-19 2002-06-25 Alcavis International, Inc. Electrolytic cell and method for electrolysis
CN103038373B (en) * 2010-05-20 2014-04-16 秦仁洙 Method and apparatus for extracting precious metal from an inorganic granular waste catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535331Y2 (en) * 1976-02-29 1980-08-20

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Also Published As

Publication number Publication date
JPS6126795A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
KR890002751B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
US3981787A (en) Electrochemical circulating bed cell
EP0309389A2 (en) Electrolytic precious metal recovery system
US6298996B1 (en) Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams
AU621543B2 (en) Electrochemical reactor for copper removal from barren solutions
JPS5833036B2 (en) Suiyouekichiyuunoshiankabutsu Oyobi Jiyukinzokunodoujijiyokiyonohouhou Narabini Souchi
US4134806A (en) Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
JPH0413432B2 (en)
JP2520674B2 (en) Method and device for recovering metal supported on carrier
RU2330125C2 (en) Electrolytic cell and electrochemical method of decomposing powders
JPS5844157B2 (en) Purification method of nickel electrolyte
US5089097A (en) Electrolytic method for recovering silver from waste photographic processing solutions
JPH059799A (en) Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating
JPS641961Y2 (en)
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JPH0474435B2 (en)
JPH0210875B2 (en)
JPH11158681A (en) Treatment of selenium-containing water to be treated
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method
JPH032959B2 (en)
JP2000157978A (en) Electrochemical water treating device and method therefor
JPH04298288A (en) Treatment of cyanide and metal-containing solution
JPS60202786A (en) Electrolysis and electrolytic cell of nitrogen compound and/or carbon compound in solution containing the nitrogen and/or carbon compounds
JP2005270779A (en) Separation method for heavy metal and separation apparatus therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term