JPH04298288A - Treatment of cyanide and metal-containing solution - Google Patents

Treatment of cyanide and metal-containing solution

Info

Publication number
JPH04298288A
JPH04298288A JP3087539A JP8753991A JPH04298288A JP H04298288 A JPH04298288 A JP H04298288A JP 3087539 A JP3087539 A JP 3087539A JP 8753991 A JP8753991 A JP 8753991A JP H04298288 A JPH04298288 A JP H04298288A
Authority
JP
Japan
Prior art keywords
cyanide
electrolytic cell
cathode
ions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087539A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makita
蒔田 善之
Michihiro Akahori
赤堀 道弘
Yoshio Kubo
久保 良雄
Yuji Kawakami
川上 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP3087539A priority Critical patent/JPH04298288A/en
Publication of JPH04298288A publication Critical patent/JPH04298288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To provide the new method which decomposes the cyanide ions in a cyanide ion- and metal ion-contg. soln. and more particularly a waste plating soln. and recovers metals with single operation. CONSTITUTION:The ion- and metal ion-contg. soln. is supplied to an electrolytic cell (1), where the above-mentioned cyanide ions are oxidation decomposed by an anode (12) and the above-mentioned metal ions are reduced and are deposited as metals on a cathode (17). The electrolytic cell (1) to be used is either of a diaphragm type electrolytic cell segmented to an anode chamber and a cathode chamber by a porous diaphragm (18) or a non-diaphragm type electrolytic cell which is not segmented to both chambers by the diaphragm (18) so that an electrolyte comes into sufficient contact with both electrodes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電解反応を利用して溶
液中特にめっき廃液中のシアン及び金属を単一操作でそ
れぞれ分解しかつ回収するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing and recovering cyanide and metals in a solution, particularly in a plating waste solution, in a single operation using an electrolytic reaction.

【0002】0002

【従来技術及びその問題点】従来からシアンイオン及び
金属イオンを含有する廃液特にめっき廃液を処理して前
記シアンイオンを分解しあるいは金属を回収することが
試みられている。このような溶液からの金属回収には、
金属による置換還元法、還元剤添加による還元法などが
あり、いずれの方法も発生する水素により金属イオンを
金属に還元して回収する方法である。例えば還元剤添加
による中和により金属回収を行う場合には多くの場合シ
アンイオンが含まれる前記廃液の濾過等を行う必要があ
り危険なだけでなく、濾過残渣の焼成処理を行い純粋な
金属として回収しなければならないという欠点がある。 この他に電解反応を利用して貴金属回収を行うことが試
みられているが、廃液中の金属回収を電解法以外で行う
場合は該廃液の濃度が一般に高く取扱いにくい廃有機物
を含有するため、通常の処理操作を行いにくく、前記廃
有機物を分解できずそのまま廃棄することが多くなる。 この他に薬剤を使用しないためコストの減少や試薬残存
の回避を図ることができる等の理由から前記電解法は有
効な金属回収法として注目されている。
BACKGROUND OF THE INVENTION Conventionally, attempts have been made to treat waste liquids containing cyanide ions and metal ions, particularly plating waste liquids, to decompose the cyanide ions or recover metals. For metal recovery from such solutions,
There are substitution reduction methods using metals, reduction methods by adding a reducing agent, etc., and both methods are methods for recovering metal ions by reducing them to metals using generated hydrogen. For example, when metal recovery is performed by neutralization by adding a reducing agent, it is often necessary to filter the waste liquid that contains cyanide ions, which is not only dangerous, but also requires calcination treatment of the filtration residue to recover the pure metal. The disadvantage is that it must be collected. In addition, attempts have been made to recover precious metals using electrolytic reactions, but when recovering metals from waste liquid using methods other than electrolysis, the concentration of the waste liquid is generally high and it contains waste organic matter that is difficult to handle. It is difficult to perform normal treatment operations, and the waste organic matter cannot be decomposed and is often discarded as is. In addition, the electrolytic method is attracting attention as an effective method for recovering metals because it does not use chemicals, which reduces costs and avoids residual reagents.

【0003】しかし従来の電解法による金属回収は、イ
オンのみを透過させ電解液を透過させないイオン交換膜
等の隔膜により陽極室と陰極室に区画した電解槽の陰極
室に廃液を導き金属回収を行うようにしてあり、前記廃
液(電解液)は陰極室に留まり金属回収後に槽外に排出
されるため前記電解槽内では金属回収のみが行われる。 前述の通り前記廃液中には回収すべき金属の他に猛毒な
シアンイオンが含まれることが多く、このシアンイオン
は廃液の電解槽供給前又は後にアルカリや次亜塩素酸ソ
ーダあるいは塩素ガス等を添加する別途処理により廃液
から除去され、金属が回収されかつシアンイオンが分解
された廃液が放流されている。更にシアンイオン含有廃
液からの金属回収を従来の板状又は多孔性陰極を使用す
ると電流密度を十分に小さくすることができないため、
水素が比較的大量に発生し廃液中のシアンイオンと反応
してシアン化水素を発生する恐れがある。従って従来の
電解法による廃液処理では、金属回収のための電解処理
とシアンイオン分解のための処理を別個に行う必要があ
り手間が掛かり作業が危険となるだけでなく、シアンイ
オン分解の際に添加する薬剤のコストが嵩み、更に残存
する薬剤の処理を必要とするといった欠点がある。
However, metal recovery using conventional electrolytic methods involves leading the waste liquid into the cathode chamber of an electrolytic cell, which is divided into an anode chamber and a cathode chamber by a diaphragm such as an ion exchange membrane that allows only ions to pass through but not the electrolyte. The waste liquid (electrolyte) remains in the cathode chamber and is discharged outside the tank after metal recovery, so only metal recovery is performed in the electrolytic cell. As mentioned above, in addition to the metals to be recovered, the waste liquid often contains highly toxic cyanide ions, and these cyanide ions are removed by alkali, sodium hypochlorite, chlorine gas, etc. before or after supplying the waste liquid to the electrolytic tank. The waste liquid is removed from the waste liquid by a separate treatment in which metals are recovered and cyanide ions are decomposed, and the waste liquid is discharged. Furthermore, when conventional plate-shaped or porous cathodes are used to recover metals from waste liquid containing cyanide ions, the current density cannot be made sufficiently small.
There is a risk that a relatively large amount of hydrogen will be generated and react with cyanide ions in the waste liquid to generate hydrogen cyanide. Therefore, in waste liquid treatment using conventional electrolytic methods, it is necessary to perform electrolytic treatment for metal recovery and treatment for cyanide ion decomposition separately, which not only takes time and makes the work dangerous, but also There are disadvantages in that the cost of the added chemicals is high and the remaining chemicals need to be disposed of.

【0004】0004

【発明の目的】本発明は、単一の電解槽を使用してシア
ンイオンと金属イオンを含有する溶液中のシアンイオン
を電解的分解しかつ金属を電解回収する、つまりシアン
イオン分解と金属回収を同時に電解的に行うことのでき
る方法を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention provides electrolytic decomposition of cyanide ions and electrolytic recovery of metals in a solution containing cyanide ions and metal ions using a single electrolytic cell, that is, cyanide ion decomposition and metal recovery. The purpose of the present invention is to provide a method that can simultaneously perform the following electrolytically.

【0005】[0005]

【問題点を解決するための手段】本発明は、シアンイオ
ン及び金属イオン含有溶液を陽極及び陰極が設置された
電解槽に供給し、前記シアンイオンを陽極で酸化分解し
かつ前記金属イオンを還元し陰極上に金属として析出さ
せてシアンイオン分解及び金属回収を単一操作で行うこ
とを特徴とするシアンイオン及び金属含有溶液の処理方
法である。
[Means for Solving the Problems] The present invention supplies a solution containing cyanide ions and metal ions to an electrolytic cell equipped with an anode and a cathode, oxidizes and decomposes the cyanide ions at the anode, and reduces the metal ions. This is a method for treating a solution containing cyanide ions and metals, characterized in that cyanide ions are precipitated as metals on a cathode, and cyanide ion decomposition and metal recovery are performed in a single operation.

【0006】以下本発明を詳細に説明する。本発明方法
は、電解槽内を隔膜により区画せずあるいは電解液が流
通できる多孔性隔膜により電解槽内を陽極室及び陰極室
に区画することにより、シアンイオンと金属イオンを含
む処理すべき電解液を電解槽の陽極及び陰極の両者に接
触させることにより、前記電解液中の金属イオンを金属
として陰極上に析出させ、かつ前記シアンイオンを陽極
で分解し、ワンパス操作で溶液中のシアンイオン分解と
金属回収を同時に行えるようにしたことを特徴とする。 本発明方法は、シアンイオンと金属イオン特に金、白金
、パラジウム等の貴金属イオンを含む溶液の処理を対象
とし、このような溶液はめっき廃液であることが多い。
The present invention will be explained in detail below. In the method of the present invention, the inside of the electrolytic cell is divided into an anode chamber and a cathode chamber by a porous diaphragm that allows the electrolyte to flow, without dividing the inside of the electrolytic cell by a diaphragm, or by using a porous diaphragm through which an electrolytic solution can flow. By bringing the solution into contact with both the anode and cathode of the electrolytic cell, the metal ions in the electrolyte are deposited as metal on the cathode, and the cyanide ions are decomposed at the anode, and the cyanide ions in the solution are decomposed in one pass operation. It is characterized by being able to perform decomposition and metal recovery at the same time. The method of the present invention is directed to the treatment of solutions containing cyanide ions and metal ions, particularly noble metal ions such as gold, platinum, palladium, etc., and such solutions are often plating waste solutions.

【0007】本発明方法に使用できる電解槽は特に限定
されず、単極式電解槽及び複極式電解槽の両者のいずれ
を使用してもよい。又電解槽内を隔膜を使用して陽極室
及び陰極室に区画した隔膜型電解槽を使用しても、隔膜
を使用して両極室に区画しない無隔膜型電解槽を使用し
てもよい。しかし隔膜型電解槽を使用する場合には、前
記隔膜は電解液が流通可能な多孔性隔膜とすることが必
要であり、実質的に電解液の流通を完全に妨害するイオ
ン交換膜を使用することはできない。具体的な隔膜とし
ては、濾布、織布、塩化ビニル樹脂製又はプラスチック
製ネットあるいはパンチプレート、素焼き板等の中性隔
膜を使用することが好ましい。
The electrolytic cell that can be used in the method of the present invention is not particularly limited, and either a monopolar electrolytic cell or a bipolar electrolytic cell may be used. Further, a diaphragm-type electrolytic cell may be used in which the inside of the electrolytic cell is divided into an anode chamber and a cathode chamber using a diaphragm, or a diaphragm-less electrolytic cell may be used in which the electrolytic cell is not divided into bipolar chambers using a diaphragm. However, when using a diaphragm type electrolytic cell, the diaphragm needs to be a porous diaphragm through which the electrolyte can flow, and an ion exchange membrane that substantially completely blocks the flow of the electrolyte is used. It is not possible. As a specific diaphragm, it is preferable to use a neutral diaphragm such as a filter cloth, a woven cloth, a vinyl chloride resin or plastic net, a punch plate, or an unglazed plate.

【0008】陽極及び陰極としては、それぞれ例えば白
金族金属酸化物被覆チタン材等から成る寸法安定性電極
、白金めっきチタン材電極、二酸化鉛被覆電極等及び例
えばニッケル材、炭素材等から成る電極等の単独の板状
、多孔状等の電極を使用してことができ、あるいは炭素
材を電場に置いて該炭素材を陽極及び陰極に分極させた
タイプの電極を使用することもできる。しかし金属析出
が生ずる陰極の材質は多表面積を有する繊維状炭素とす
ることが望ましい。多表面積の繊維状炭素を使用するこ
とにより電流密度を微少値とし、これにより水素発生量
を金属イオン還元に必要な最小量に抑制することが可能
になる。これは繊維状炭素の各繊維の長さが十分に長く
電極内における電位勾配がなく該電極のどの部分でも電
位が等しく、そのほぼ全面が電極反応を行うためと推測
できる。一方多孔質材料等を使用しても表面積は大きく
なるが、このような多孔質材料ではその表面のみが電解
に寄与して内部は電解に寄与せず、表面積を大きくとっ
た意味がなくなることが多い。これは電極内での電位差
があるため、対極に近い表面のみが実質的な電解面とし
て機能するためであると思われる。なお溶液の流通を良
好にするために陽極は多孔性とすることが好ましい。
As the anode and the cathode, for example, a dimensionally stable electrode made of a platinum group metal oxide-coated titanium material, a platinum-plated titanium material electrode, a lead dioxide-coated electrode, etc., and an electrode made of a nickel material, a carbon material, etc., respectively. It is possible to use a single plate-like, porous, etc. electrode, or it is also possible to use a type of electrode in which a carbon material is placed in an electric field and polarized into an anode and a cathode. However, it is desirable that the material of the cathode on which metal precipitation occurs is fibrous carbon having a large surface area. By using fibrous carbon with a large surface area, the current density can be reduced to a minute value, thereby making it possible to suppress the amount of hydrogen generated to the minimum amount required for metal ion reduction. This can be assumed to be because the length of each fiber of fibrous carbon is sufficiently long so that there is no potential gradient within the electrode, the potential is the same in every part of the electrode, and almost the entire surface of the electrode undergoes an electrode reaction. On the other hand, using porous materials will increase the surface area, but with such porous materials, only the surface contributes to electrolysis, and the inside does not, so there is no point in increasing the surface area. many. This seems to be because, due to the potential difference within the electrode, only the surface close to the counter electrode functions as a substantial electrolytic surface. Note that the anode is preferably porous in order to improve the flow of the solution.

【0009】繊維状炭素を陰極として使用するとその電
流密度は極小となり、これにより電流効率が飛躍的に向
上する。例えば廃液中の貴金属を電解により陰極上に析
出させて回収する場合、該貴金属濃度が10〜1000
mg/リットル程度でありこれを1mg/リットル以下
にする際に板状電極を使用するとその電流効率は1〜1
0%程度であるのに対し、前記繊維状炭素を使用すると
電流効率は10〜30%程度に上昇する。該繊維状炭素
は市販のものを使用すればよく、フェルト状の成形した
ものあるいは綿状のものをそのまま使用することができ
る。該繊維状炭素への給電は例えばチタンやステンレス
等の集電体により行えばよい。なお、シアンイオンは陽
極面で酸化的に分解して二酸化炭素や窒素に変換されて
電解液から除去されるが、このシアンイオン分解を促進
するために少量の食塩、次亜塩素酸ソーダ、亜塩素酸ソ
ーダ及びさらし粉等を電解液中に添加することができる
[0009] When fibrous carbon is used as a cathode, its current density becomes extremely small, thereby dramatically improving current efficiency. For example, when precious metals in waste liquid are deposited on a cathode by electrolysis and recovered, the concentration of the precious metals is 10 to 1000.
mg/liter, and if a plate electrode is used to reduce this to 1 mg/liter or less, the current efficiency is 1 to 1.
While it is about 0%, when the fibrous carbon is used, the current efficiency increases to about 10 to 30%. The fibrous carbon may be a commercially available one, and a felt-shaped one or a cotton-shaped one can be used as it is. Electricity may be supplied to the fibrous carbon using a current collector made of titanium, stainless steel, or the like. Note that cyanide ions are oxidatively decomposed on the anode surface, converted to carbon dioxide and nitrogen, and removed from the electrolyte, but in order to accelerate the decomposition of cyanide ions, a small amount of common salt, sodium hypochlorite, or nitrogen is added. Sodium chlorate, bleaching powder, etc. can be added to the electrolyte.

【0010】本発明方法によるシアンイオン及び金属イ
オンを含有する溶液処理の他の電解条件は特に限定され
ず、次のような範囲に設定することができる。 ■  電解温度:室温で十分であるが、加熱下で行って
もよい。 ■  電流濃度:0.05A/リットル以上として陰極
上に析出した金属が再析出しないようにすることが好ま
しい。 ■  陰極電流密度:0.01A/dm2 以下として
、陰極で水素ガスの発生を抑制し、金属析出を円滑にす
るとともにシアン化水素の発生を防止することが望まし
い。 ■  循環液量:100 ミリリットル/分以上として
水素ガスの蓄積を防止することが望ましい。 シアンイオン及び金属イオンを含有する前記溶液は、隔
膜型電解槽を使用する場合まず電解槽の陰極室へ供給し
て金属イオンの析出を行った後、多孔性隔膜を通して陽
極室に供給しシアンイオンの分解を行うようにしても、
逆に陽極室へ供給してシアンイオンの分解を行った後、
多孔性隔膜を通して陰極室に供給し金属回収を行うよう
にしてもよい。無隔膜型電解槽を使用する場合には電解
槽の任意の個所に溶液を供給すればよく、溶液(電解液
)は陽極及び陰極に接触してシアンイオン分解及び金属
回収が行われる。
Other electrolytic conditions for the solution treatment containing cyanide ions and metal ions according to the method of the present invention are not particularly limited, and can be set within the following ranges. ■ Electrolysis temperature: Room temperature is sufficient, but electrolysis may be performed under heating. (2) Current concentration: It is preferable to set the current concentration to 0.05 A/liter or more to prevent the metal deposited on the cathode from redepositing. (2) Cathode current density: It is desirable to set the current density to 0.01 A/dm2 or less to suppress the generation of hydrogen gas at the cathode, smooth metal deposition, and prevent the generation of hydrogen cyanide. ■ Circulating fluid volume: It is desirable to set the volume to 100 ml/min or more to prevent hydrogen gas from accumulating. When using a diaphragm-type electrolytic cell, the solution containing cyanide ions and metal ions is first supplied to the cathode chamber of the electrolytic cell to precipitate metal ions, and then supplied to the anode chamber through a porous diaphragm to remove cyanide ions. Even if you try to decompose the
Conversely, after decomposing cyanide ions by supplying them to the anode chamber,
The metal may be recovered by being supplied to the cathode chamber through a porous diaphragm. When a non-diaphragm type electrolytic cell is used, a solution may be supplied to any part of the electrolytic cell, and the solution (electrolytic solution) contacts the anode and the cathode to decompose cyanide ions and recover metals.

【0011】このように多孔性隔膜を使用した隔膜型電
解槽あるいは隔膜を使用しない無隔膜型電解槽にシアン
イオン及び金属イオンを含有する溶液を供給すると、該
溶液が電解槽の陽極及び陰極の両極に接触するため、陽
極でシアンイオン分解が又陰極で金属回収が同時に行わ
れ、シアンイオン分解と金属回収を比較的小型の装置で
コストが高く残留物を生じさせやすい薬剤を使用するこ
となく単一工程で実施することが可能になる。しかもシ
アンイオン濃度や金属イオン濃度が変化しても、電流濃
度や印加電圧等の電解条件を適宜設定することにより対
応することができ、幅広い範囲の濃度の溶液に本発明を
適用することができる。
[0011] When a solution containing cyan ions and metal ions is supplied to a diaphragm type electrolytic cell using a porous diaphragm or a diaphragmless type electrolytic cell not using a diaphragm as described above, the solution flows into the anode and cathode of the electrolytic cell. Because it comes into contact with both electrodes, cyanide ion decomposition occurs at the anode and metal recovery occurs at the cathode at the same time.Cyanide ion decomposition and metal recovery can be carried out using relatively small equipment without using chemicals that are expensive and tend to produce residue. It becomes possible to carry out the process in a single step. Moreover, even if the cyanide ion concentration or metal ion concentration changes, it can be handled by appropriately setting electrolytic conditions such as current concentration and applied voltage, and the present invention can be applied to solutions with a wide range of concentrations. .

【0012】次に本発明のシアンイオン分解及び金属回
収方法に使用できる単極型電解槽の例を添付図面に基づ
いて説明する。図1は、本発明方法に使用できる単極型
電解槽の一例を示す一部破断縦断面図である。1は、下
面中央にドレン排出口2が形成され上端が開口する電解
槽本体で、該電解槽本体1の右側面上部には外向きに電
解液取出口3が形成されている。該電解槽本体1の上端
周縁部には、内端に下向折曲部が連設されたドーナツ状
の接続体4が固定され、該接続体4にはその周縁部が前
記接続体4の周縁部に整合する中間体5のドーナツ状の
下部水平片6が接合されている。前記接続体4及び前記
下部水平片6は給電用ねじ7により相互に螺着されかつ
その周囲のクランプ8により締着され、該給電用ねじ7
の下端には円筒状の陽極9が電気的に接続され、該陽極
9の下端は電解槽本体1内の底板近傍に達している。
Next, an example of a monopolar electrolytic cell that can be used in the cyanide ion decomposition and metal recovery method of the present invention will be explained based on the accompanying drawings. FIG. 1 is a partially cutaway vertical sectional view showing an example of a monopolar electrolytic cell that can be used in the method of the present invention. Reference numeral 1 denotes an electrolytic cell main body having a drain outlet 2 formed at the center of the lower surface and open at the upper end, and an electrolytic solution outlet 3 facing outward at the upper right side of the electrolytic cell main body 1. A donut-shaped connecting body 4 with a downwardly bent part connected to the inner end is fixed to the upper peripheral edge of the electrolytic cell body 1, and the peripheral edge of the connecting body 4 is fixed to the upper peripheral edge of the electrolytic cell body 1. A donut-shaped lower horizontal piece 6 of the intermediate body 5 aligned with the peripheral edge is joined. The connecting body 4 and the lower horizontal piece 6 are screwed together by a power supply screw 7 and tightened by a clamp 8 around the power supply screw 7.
A cylindrical anode 9 is electrically connected to the lower end, and the lower end of the anode 9 reaches near the bottom plate inside the electrolytic cell body 1.

【0013】前記中間体5の下部水平片6の内縁部には
円筒状の連結片10が上向きに連設されかつ該連結片1
0の上端には外向きにドーナツ状の上部水平片11が連
設されている。該上部水平片11上には、その周縁が該
水平片11の周縁と整合し中央に貫通孔12が形成され
た蓋体13が接合され、該蓋体13は前記水平片11と
両者の周囲のクランブ14により締着されている。前記
蓋体13の中央の貫通孔12には、電解槽本体1内の部
分に多数の細孔15が穿設された電解液分散を兼ねる給
電管16が貫通し、電解槽本体1内の該給電管16の周
囲には多数の繊維状炭素を絡み合わせて所定厚さの円筒
状に形成した陰極17が密着状態で設置されている。こ
の陰極17は上面が開口する袋状に成形された濾布等か
ら成る多孔性隔膜18内に収容され、該隔膜18の上端
の開口部は前記水平片11のやや内方の蓋体13下面に
配設された円筒状の補助体19の下端に嵌合され、前記
隔膜18は前記陰極17を構成する繊維状炭素が前記陽
極9と短絡することを防止している。前記隔膜18は、
同様に上端が前記補助体19の下端に嵌合され袋状に成
形されたメッシュ体20に包囲されて該隔膜18と前記
陰極17が強固に密接するようになっている。
A cylindrical connecting piece 10 is connected upward at the inner edge of the lower horizontal piece 6 of the intermediate body 5, and the connecting piece 1
An upper horizontal piece 11 shaped like a donut is arranged outwardly at the upper end of 0. A lid 13 whose periphery is aligned with the periphery of the horizontal piece 11 and has a through hole 12 formed in the center is joined to the upper horizontal piece 11, and the lid 13 is connected to the horizontal piece 11 and the periphery of both. It is fastened by a clamp 14. A power supply pipe 16 which also serves as electrolyte dispersion and has a large number of pores 15 bored inside the electrolytic cell body 1 passes through the central through-hole 12 of the lid 13 , and the feed pipe 16 also serves as an electrolyte dispersion tube. A cathode 17 formed into a cylindrical shape with a predetermined thickness by intertwining a large number of carbon fibers is installed around the power supply tube 16 in close contact with the cathode 17 . This cathode 17 is housed in a porous diaphragm 18 made of a bag-shaped filter cloth or the like with an open top. The diaphragm 18 is fitted to the lower end of a cylindrical auxiliary body 19 disposed in the anode 9, and the diaphragm 18 prevents the fibrous carbon constituting the cathode 17 from shorting with the anode 9. The diaphragm 18 is
Similarly, the upper end is fitted into the lower end of the auxiliary body 19 and surrounded by a bag-shaped mesh body 20, so that the diaphragm 18 and the cathode 17 are brought into close contact with each other.

【0014】このような構成から成る電解槽の陽極9に
給電用ねじ7から、又陰極17に電解槽本体1から突出
する給電管16に接続された給電部(図示略)からそれ
ぞれ通電しかつ給電管16からシアンイオンと金属イオ
ン例えば金イオンを含有する廃液を供給すると、該廃液
(電解液)は給電管16の細孔15から繊維状炭素から
成る陰極17の内部に浸透し該陰極17の外端部に達す
るまでに、該陰極17での電解反応によって金属イオン
例えば金イオンを陰極17上に析出させ、該電解液中の
金属イオン濃度が減少しあるいは零になる。この場合電
流濃度等を調節することにより陰極17から発生する水
素がシアン化水素の発生に使用されないようにすること
が望ましい。
The anode 9 of the electrolytic cell constructed as described above is energized from the power supply screw 7, and the cathode 17 is energized from a power supply part (not shown) connected to the power supply pipe 16 protruding from the electrolytic cell body 1. When a waste liquid containing cyan ions and metal ions, such as gold ions, is supplied from the power supply pipe 16, the waste liquid (electrolyte) permeates through the pores 15 of the power supply pipe 16 into the inside of the cathode 17 made of fibrous carbon. By the time the electrolyte reaches the outer end of the electrolyte, metal ions such as gold ions are deposited on the cathode 17 by an electrolytic reaction at the cathode 17, and the metal ion concentration in the electrolyte decreases or becomes zero. In this case, it is desirable to prevent the hydrogen generated from the cathode 17 from being used to generate hydrogen cyanide by adjusting the current concentration and the like.

【0015】この電解液は更に前記多孔性隔膜18を透
過して陽極室に達し、該電解液中のシアンイオンは陽極
9に接触して酸化的に分解して電解液から除去され、金
属イオン及びシアンイオンを殆どあるいは完全に含有し
ない溶液として電解液取出口3から取り出される。シア
ンイオン分解や金属回収が不十分であるときは、電解液
取出口3から取り出された電解液を再度電解槽の給電管
16に供給して、更にシアンイオン分解及び金属回収を
継続すればよい。なお本発明方法では、陰極室から陽極
室にではなく、陽極室から陰極室へ電解液が透過するよ
う電解槽を組立て電解液の供給を行うようにしてもよく
、この方法ではまず陽極室でシアンイオン分解が行われ
、次いで陰極室で金属回収が行われる。又無隔膜型電解
槽を使用する場合には、シアンイオン分解と金属回収が
同時に行われる。
This electrolytic solution further passes through the porous diaphragm 18 and reaches the anode chamber, and the cyanide ions in the electrolytic solution come into contact with the anode 9 and are oxidatively decomposed and removed from the electrolytic solution, forming metal ions. and is taken out from the electrolyte outlet 3 as a solution containing little or no cyanide ions. When cyanide ion decomposition and metal recovery are insufficient, the electrolyte taken out from the electrolyte solution outlet 3 may be supplied again to the power supply pipe 16 of the electrolytic cell to further continue cyanide ion decomposition and metal recovery. . In addition, in the method of the present invention, the electrolytic cell may be assembled so that the electrolyte passes from the anode chamber to the cathode chamber instead of from the cathode chamber to the anode chamber, and the electrolyte is supplied to the anode chamber. Cyanide ion decomposition takes place, followed by metal recovery in the cathode chamber. Furthermore, when a non-diaphragm type electrolytic cell is used, cyanide ion decomposition and metal recovery are performed simultaneously.

【0016】[0016]

【実施例】以下本発明方法によるシアンイオン分解及び
金属回収の実施例を記載するが、該実施例は本発明を限
定するものではない。 実施例1 図1に示す電解槽を使用してシアンイオン及び金属イオ
ンを含有する廃液の処理を行った。直径52mm及び高
さ120 mm(有効容積は52mm×102 mm)
の円筒形電解槽内に直径50mmの白金族金属酸化物被
覆チタン材を陽極として収容し、直径10mmのチタン
製給電管に繊維状炭素を厚みが12.5mmとなるよう
に被覆して陰極を形成し、その上から中性濾布で覆い、
更にプラスチック製のネットで該中性濾布を陰極に密着
させた。金イオン濃度20.1mg/リットル、シアン
イオン濃度44.0g/リットルであるめっき廃液を水
道水で稀釈し、更に市販のシアン化金カリウム濃縮液及
びシアン化カリウム試薬特級品を添加して初期金イオン
濃度70.0mg/リットル及び初期シアンイオン濃度
203.0 mg/リットルの溶液1リットルを調製し
て電解液(初期pH11.80 、初期温度12.0℃
)とした。
EXAMPLES Examples of cyanide ion decomposition and metal recovery by the method of the present invention will be described below, but these examples are not intended to limit the present invention. Example 1 The electrolytic cell shown in FIG. 1 was used to treat a waste liquid containing cyanide ions and metal ions. Diameter 52mm and height 120mm (effective volume 52mm x 102mm)
A platinum group metal oxide-coated titanium material with a diameter of 50 mm was housed as an anode in a cylindrical electrolytic cell, and a titanium feed tube with a diameter of 10 mm was coated with fibrous carbon to a thickness of 12.5 mm to form a cathode. form, cover with a neutral filter cloth,
Furthermore, the neutral filter cloth was brought into close contact with the cathode using a plastic net. A plating waste solution with a gold ion concentration of 20.1 mg/liter and a cyanide ion concentration of 44.0 g/liter was diluted with tap water, and a commercially available gold potassium cyanide concentrate and a special grade potassium cyanide reagent were added to obtain the initial gold ion concentration. Prepare 1 liter of a solution with an initial cyanide ion concentration of 70.0 mg/liter and an initial cyanide concentration of 203.0 mg/liter to form an electrolytic solution (initial pH 11.80, initial temperature 12.0°C).
).

【0017】この電解槽及び電解液を使用し、電解電流
0.50A、電流濃度0.50A/リットル及び循環液
量1.920 リットル/分の電解条件で90分間電解
処理を行った(通電量0.80AH/リットル)後、電
解液中の金イオン濃度及びシアンイオン濃度を測定した
ところそれぞれ0.1 mg/リットル及び39.0m
g/リットルであり、金回収率は99.86 %(金回
収電流効率3.8 %)、シアンイオン分解率は81.
92 %であった。90分経過後のpHは11.00 
であった。更に電解を継続して通電時間が計360 分
となったところで通電を停止し(通電量3.49AH/
リットル)、電解液中の金イオン濃度及びシアンイオン
濃度を測定したところそれぞれ0.0 mg/リットル
及び0.1 mg/リットルであり、金回収率は100
 %、シアンイオン分解率は99.95 %であり、ほ
ぼ完全に金回収及びシアンイオン分解が行われた。36
0 分経過後のpHは10.30 であった。この結果
を表1に纏めた。更に電流濃度と電解液中のシアンイオ
ン濃度との関係を図2のグラフに、又電流濃度と電解液
中の金イオン濃度との関係を図3のグラフに、それぞれ
纏めた。
Using this electrolytic cell and electrolytic solution, electrolytic treatment was carried out for 90 minutes under the electrolytic conditions of 0.50 A current, 0.50 A/liter current concentration, and 1.920 liter/minute circulating fluid volume (current flow rate After 0.80AH/liter), the gold ion concentration and cyanide ion concentration in the electrolyte were measured and found to be 0.1 mg/liter and 39.0m, respectively.
g/liter, the gold recovery rate is 99.86% (gold recovery current efficiency 3.8%), and the cyanide ion decomposition rate is 81.8%.
It was 92%. pH after 90 minutes is 11.00
Met. Further electrolysis was continued, and when the energization time reached a total of 360 minutes, the energization was stopped (the energization amount was 3.49AH/
When the gold ion concentration and cyanide ion concentration in the electrolyte were measured, they were 0.0 mg/liter and 0.1 mg/liter, respectively, and the gold recovery rate was 100 mg/liter.
%, and the cyanide ion decomposition rate was 99.95%, indicating almost complete gold recovery and cyanide ion decomposition. 36
The pH after 0 minutes was 10.30. The results are summarized in Table 1. Furthermore, the relationship between the current concentration and the cyanide ion concentration in the electrolytic solution is summarized in the graph of FIG. 2, and the relationship between the current concentration and the gold ion concentration in the electrolytic solution is summarized in the graph of FIG. 3.

【0018】実施例2 直径125 mm及び高さ255 mm(有効容積は1
25 mm×240 mm)で実施例1とほぼ同形状で
大きさの異なる円筒状電解槽に、直径87mmの寸法安
定性電極を陽極として収容し、直径10mmのチタン製
給電管に繊維状炭素を厚みが15.0mmとなるように
被覆して陰極を形成し、その上から中性濾布で覆い、更
にプラスチック製のネットで該中性濾布を陰極に密着さ
せた実施例1と同じ廃液から同様にして初期金イオン濃
度34.0mg/リットル及び初期シアンイオン濃度8
09.0 mg/リットルの溶液8リットルを調製して
電解液(初期pH12.45 、初期温度14.0℃)
とした。この電解槽及び電解液を使用し、電解電流1.
0A、電流濃度0.13A/リットル及び循環液量1.
080 リットル/分の電解条件で360 分間電解処
理を行った(通電量0.76AH/リットル)後、電解
液中の金イオン濃度及びシアンイオン濃度を測定したと
ころそれぞれ0.1 mg/リットル及び91.0mg
/リットルであり、金回収率は99.68 %(金回収
電流効率1.8 %)、シアンイオン分解率は88.9
6 %であった。360 分経過後のpHは12.09
 であった。
Example 2 Diameter: 125 mm and height: 255 mm (effective volume: 1
A dimensionally stable electrode with a diameter of 87 mm was housed as an anode in a cylindrical electrolytic cell (25 mm x 240 mm), which was approximately the same shape as Example 1 but different in size, and fibrous carbon was placed in a titanium power supply tube with a diameter of 10 mm. The same waste liquid as in Example 1, which was coated to a thickness of 15.0 mm to form a cathode, covered with a neutral filter cloth, and further adhered the neutral filter cloth to the cathode with a plastic net. Similarly, the initial gold ion concentration was 34.0 mg/liter and the initial cyanide ion concentration was 8.
Prepare 8 liters of 09.0 mg/liter solution and use it as an electrolytic solution (initial pH 12.45, initial temperature 14.0°C)
And so. Using this electrolytic cell and electrolytic solution, electrolytic current 1.
0A, current concentration 0.13A/liter and circulating fluid volume 1.
After electrolytic treatment was performed for 360 minutes under electrolytic conditions of 0.080 liters/min (current flow rate: 0.76AH/liter), the gold ion concentration and cyanide ion concentration in the electrolyte were measured and found to be 0.1 mg/liter and 91 mg/liter, respectively. .0mg
/liter, the gold recovery rate is 99.68% (gold recovery current efficiency 1.8%), and the cyanide ion decomposition rate is 88.9%.
It was 6%. pH after 360 minutes is 12.09
Met.

【0019】更に電解を継続して通電時間が計1350
分となったところで通電を停止し(通電量2.89AH
/リットル)、電解液中の金イオン濃度及びシアンイオ
ン濃度を測定したところそれぞれ0.0 mg/リット
ル及び0.1 mg/リットルであり、金回収率は10
0 %、シアンイオン分解率は99.99 %であり、
ほぼ完全に金回収及びシアンイオン分解が行われ、高濃
度のシアンイオンの分解も可能であることが判った。1
350分経過後のpHは11.90 であった。この結
果を表1に纏めた。更に電流濃度と電解液中のシアンイ
オン濃度との関係を図2のグラフに、又電流濃度と電解
液中の金イオン濃度との関係を図3のグラフに、それぞ
れ纏めた。
[0019] Electrolysis was continued for a total of 1350 electrification times.
The energization is stopped when the energization amount reaches 2.89 AH.
When the gold ion concentration and cyanide ion concentration in the electrolyte were measured, they were 0.0 mg/liter and 0.1 mg/liter, respectively, and the gold recovery rate was 10 mg/liter).
0%, the cyanide ion decomposition rate is 99.99%,
It was found that almost complete gold recovery and cyanide ion decomposition were achieved, and that it was possible to decompose high concentrations of cyanide ions. 1
The pH after 350 minutes was 11.90. The results are summarized in Table 1. Furthermore, the relationship between the current concentration and the cyanide ion concentration in the electrolytic solution is summarized in the graph of FIG. 2, and the relationship between the current concentration and the gold ion concentration in the electrolytic solution is summarized in the graph of FIG. 3.

【0020】実施例3 実施例2と同じ電解槽を使用し、初期金イオン濃度16
4.0 mg/リットル及び初期シアンイオン濃度44
70.0mg/リットルの溶液8リットルを調製して電
解液(初期pH12.00 、初期温度6.3 ℃)と
した。この電解槽及び電解液を使用し、電解電流1.0
 A、電流濃度0.13A/リットル及び循環液量0.
93リットル/分の電解条件で360 分間電解処理を
行った(通電量0.77AH/リットル)後、電解液中
の金イオン濃度及びシアンイオン濃度を測定したところ
それぞれ0.1 mg/リットル及び3590.0mg
/リットルであり、金回収率は99.94 %(金回収
電流効率8.9 %)、シアンイオン分解率は21.4
9 %であり、濃シアンイオン含有溶液から金が回収で
きることが判った。 360 分経過後のpHは11.55 であった。
Example 3 The same electrolytic cell as in Example 2 was used, and the initial gold ion concentration was 16.
4.0 mg/liter and initial cyanide ion concentration 44
Eight liters of a 70.0 mg/liter solution was prepared to serve as an electrolytic solution (initial pH 12.00, initial temperature 6.3° C.). Using this electrolytic cell and electrolyte, the electrolytic current is 1.0
A, current concentration 0.13 A/liter and circulating fluid volume 0.
After electrolytic treatment was performed for 360 minutes under electrolytic conditions of 93 liters/min (current flow rate: 0.77 AH/liter), the gold ion concentration and cyanide ion concentration in the electrolyte were measured and found to be 0.1 mg/liter and 3590 mg/liter, respectively. .0mg
/liter, the gold recovery rate is 99.94% (gold recovery current efficiency 8.9%), and the cyanide ion decomposition rate is 21.4%.
9%, indicating that gold can be recovered from solutions containing concentrated cyanide ions. The pH after 360 minutes was 11.55.

【0021】更に電解を継続して通電時間が計1390
分となったところで通電を停止し(通電量3.00AH
/リットル)、電解液中の金イオン濃度及びシアンイオ
ン濃度を測定したところそれぞれ0.1 mg/リット
ル及び2120.0mg/リットルであり、金回収率は
99.94 %、シアンイオン分解率は54.17 %
であり、ほぼ完全に金回収が行われ、シアンイオン分解
も行われた。1350分経過後のpHは11.90 で
あった。この結果を表1に纏めた。更に電流濃度と電解
液中のシアンイオン濃度との関係を図2のグラフに、又
電流濃度と電解液中の金イオン濃度との関係を図3のグ
ラフに、それぞれ纏めた。
[0021] Electrolysis was continued for a total of 1390 hrs.
When the energization amount reaches 3.00 AH, the energization is stopped.
The gold ion concentration and cyanide ion concentration in the electrolyte were measured to be 0.1 mg/liter and 2120.0 mg/liter, respectively, with a gold recovery rate of 99.94% and a cyanide ion decomposition rate of 54%. .17%
Almost complete gold recovery was achieved, and cyanide ion decomposition was also performed. The pH after 1350 minutes was 11.90. The results are summarized in Table 1. Furthermore, the relationship between the current concentration and the cyanide ion concentration in the electrolytic solution is summarized in the graph of FIG. 2, and the relationship between the current concentration and the gold ion concentration in the electrolytic solution is summarized in the graph of FIG. 3.

【0022】実施例4 実施例2と同じ電解槽を使用し、初期金イオン濃度90
.0mg/リットル及び初期シアンイオン濃度1147
.0mg/リットルの溶液8リットルを調製して電解液
(初期pH13.89 、初期温度5.0 ℃)とした
。この電解槽及び電解液を使用し、実施例3と同じ電解
条件で300 分間電解処理を行った(通電量0.64
AH/リットル)後、電解液中の金イオン濃度及びシア
ンイオン濃度を測定したところそれぞれ0.1 mg/
リットル及び678.0 mg/リットルであり、金回
収率は99.89 %(金回収電流効率5.9 %)、
シアンイオン分解率は42.22 %であった。300
 分経過後のpHは13.05 であった。
Example 4 The same electrolytic cell as in Example 2 was used, and the initial gold ion concentration was 90.
.. 0mg/liter and initial cyanide ion concentration 1147
.. Eight liters of a 0 mg/liter solution was prepared to serve as an electrolytic solution (initial pH 13.89, initial temperature 5.0° C.). Using this electrolytic cell and electrolytic solution, electrolytic treatment was performed for 300 minutes under the same electrolytic conditions as in Example 3 (current flow: 0.64
AH/liter), the gold ion concentration and cyanide ion concentration in the electrolyte were measured and found to be 0.1 mg/liter each.
liter and 678.0 mg/liter, gold recovery rate is 99.89% (gold recovery current efficiency 5.9%),
The cyanide ion decomposition rate was 42.22%. 300
The pH after minutes was 13.05.

【0023】更に電解を継続して通電時間が計600 
分となったところで通電を停止し(通電量1.29AH
/リットル)、電解液中の金イオン濃度及びシアンイオ
ン濃度を測定したところそれぞれ0.1 mg/リット
ル及び286.0 mg/リットルであり、金回収率は
99.90 %、シアンイオン分解率は75.9%であ
り、ほぼ完全に金回収が行われ、シアンイオン分解も行
われ、初期pH値が大きく変化しても金回収及びシアン
イオン分解が起こることが判った。600 分経過後の
pHは12.90 であった。この結果を表1に纏めた
。更に電流濃度と電解液中のシアンイオン濃度との関係
を図2のグラフに、又電流濃度と電解液中の金イオン濃
度との関係を図3のグラフに、それぞれ纏めた。
[0023] Electrolysis was continued for a total of 600 hrs.
The energization is stopped when the current reaches 1.29 AH.
The gold ion concentration and cyanide ion concentration in the electrolyte were measured to be 0.1 mg/liter and 286.0 mg/liter, respectively, with a gold recovery rate of 99.90% and a cyanide ion decomposition rate of 99.90%. The result was 75.9%, indicating that almost complete gold recovery and cyanide ion decomposition occurred, and that gold recovery and cyanide ion decomposition occurred even if the initial pH value changed significantly. The pH after 600 minutes was 12.90. The results are summarized in Table 1. Furthermore, the relationship between the current concentration and the cyanide ion concentration in the electrolytic solution is summarized in the graph of FIG. 2, and the relationship between the current concentration and the gold ion concentration in the electrolytic solution is summarized in the graph of FIG. 3.

【0024】[0024]

【表1】[Table 1]

【0025】[0025]

【発明の効果】本発明は、シアンイオン及び金属イオン
含有溶液を陽極及び陰極が設置された電解槽に供給し、
前記シアンイオンを陽極で酸化分解しかつ前記金属イオ
ンを還元し陰極上に金属として析出させてシアン分解及
び金属回収を単一操作で行うことを特徴とするシアン及
び金属含有溶液特にめっき廃液の処理方法である(請求
項1)。本発明方法に使用できる電解槽としては、多孔
性隔膜により陽極室及び陰極室に区画された電解槽(請
求項2)及び無隔膜型電解槽(請求項3)とがあり、電
解槽に供給される電解液が陽極及び陰極の両極に接触し
、シアンイオンが陽極で二酸化炭素や窒素に分解され、
金属イオンは陰極上で還元されて金属として該陰極上に
析出する。従って電解槽に前記溶液を供給しワンパス処
理することによりシアンイオン分解と金属回収を同時に
行うことができる。
[Effect of the invention] The present invention supplies a solution containing cyanide ions and metal ions to an electrolytic cell in which an anode and a cathode are installed,
Treatment of cyanide and metal-containing solutions, especially plating waste liquid, characterized in that cyanide decomposition and metal recovery are performed in a single operation by oxidatively decomposing the cyanide ions at the anode and reducing the metal ions and precipitating them as metals on the cathode. A method (Claim 1). Electrolytic cells that can be used in the method of the present invention include electrolytic cells partitioned into an anode chamber and a cathode chamber by a porous diaphragm (Claim 2) and membraneless electrolytic cells (Claim 3), which are supplied to the electrolytic cell. The electrolyte solution is brought into contact with both the anode and cathode, and cyanide ions are decomposed into carbon dioxide and nitrogen at the anode.
The metal ions are reduced on the cathode and deposited as metals on the cathode. Therefore, cyanide ion decomposition and metal recovery can be performed simultaneously by supplying the solution to the electrolytic cell and performing one-pass treatment.

【0026】更に本発明方法では、電解によりシアンイ
オン分解と金属回収を比較的小型の装置でコストが高く
残留物を生じさせやすい薬剤を使用することなく単一工
程で実施することが可能になる。しかし少量の薬剤を添
加してシアンイオン分解を促進してもよいことは勿論で
ある。しかも処理溶液のシアンイオン濃度や金属イオン
濃度が変化しても、電流濃度や印加電圧等の電解条件を
適宜設定することにより対応することができ、幅広い範
囲の濃度の溶液に本発明を適用することができる。陰極
として繊維状炭素材を使用すると(請求項4)、各繊維
の長さが十分に長く電極内における電位勾配がなく該電
極のどの部分でも電位が等しくそのほぼ全面が電極反応
を行うため電流密度を微少値とし、これにより水素発生
量を最小量に抑制することが可能になる。
Furthermore, the method of the present invention allows cyanide ion decomposition and metal recovery to be carried out in a single step by electrolysis using relatively small equipment and without the use of costly and residue-prone chemicals. . However, it is of course possible to add a small amount of a chemical to promote cyanide ion decomposition. Moreover, even if the cyanide ion concentration or metal ion concentration of the treatment solution changes, it can be handled by appropriately setting electrolytic conditions such as current concentration and applied voltage, and the present invention can be applied to solutions with a wide range of concentrations. be able to. When a fibrous carbon material is used as the cathode (Claim 4), each fiber is long enough so that there is no potential gradient within the electrode, and the potential is the same at every part of the electrode, and almost the entire surface of the electrode undergoes an electrode reaction. By setting the density to a minute value, it becomes possible to suppress the amount of hydrogen generated to a minimum amount.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法に使用できる単極型電解槽の一例を
示す一部破断縦断面図
[Fig. 1] Partially broken vertical cross-sectional view showing an example of a monopolar electrolytic cell that can be used in the method of the present invention.

【図2】実施例1〜4の電流濃度と電解液中のシアンイ
オン濃度との関係を示すグラフ
[Figure 2] Graph showing the relationship between current concentration and cyanide ion concentration in the electrolyte in Examples 1 to 4

【図3】実施例1〜4の電流濃度と電解液中の金イオン
濃度との関係を示すグラフ
[Figure 3] Graph showing the relationship between current concentration and gold ion concentration in the electrolyte in Examples 1 to 4

【符号の説明】[Explanation of symbols]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  シアンイオン及び金属イオン含有溶液
を陽極及び陰極が設置された電解槽に供給し、前記シア
ンイオンを陽極で酸化分解しかつ前記金属イオンを還元
し陰極上に金属として析出させてシアンイオン分解及び
金属回収を単一操作で行うことを特徴とするシアン及び
金属含有溶液の処理方法。
1. A solution containing cyanide ions and metal ions is supplied to an electrolytic cell in which an anode and a cathode are installed, and the cyanide ions are oxidized and decomposed at the anode, and the metal ions are reduced and deposited as a metal on the cathode. A method for processing cyanide and metal-containing solutions, characterized by performing cyanide ion decomposition and metal recovery in a single operation.
【請求項2】  多孔性隔膜により陽極室及び陰極室に
区画された電解槽を使用する請求項1に記載の方法。
2. The method according to claim 1, wherein an electrolytic cell is used which is divided into an anode chamber and a cathode chamber by a porous diaphragm.
【請求項3】  無隔膜型電解槽を使用する請求項1に
記載の方法。
3. The method according to claim 1, wherein a membraneless electrolytic cell is used.
【請求項4】  陰極が繊維状炭素材により形成されて
いる請求項1から3までのいずれかに記載の方法。
4. The method according to claim 1, wherein the cathode is formed of a fibrous carbon material.
JP3087539A 1991-03-26 1991-03-26 Treatment of cyanide and metal-containing solution Pending JPH04298288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087539A JPH04298288A (en) 1991-03-26 1991-03-26 Treatment of cyanide and metal-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087539A JPH04298288A (en) 1991-03-26 1991-03-26 Treatment of cyanide and metal-containing solution

Publications (1)

Publication Number Publication Date
JPH04298288A true JPH04298288A (en) 1992-10-22

Family

ID=13917791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087539A Pending JPH04298288A (en) 1991-03-26 1991-03-26 Treatment of cyanide and metal-containing solution

Country Status (1)

Country Link
JP (1) JPH04298288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336700A (en) * 1993-05-28 1994-12-06 Permelec Electrode Ltd Treatment of waste water and water washings from noble metal plating using cyanide bath
JP2002535493A (en) * 1999-01-22 2002-10-22 リノヴェア・インターナショナル・インコーポレーテッド Electrochemical cell for removing metals from solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336700A (en) * 1993-05-28 1994-12-06 Permelec Electrode Ltd Treatment of waste water and water washings from noble metal plating using cyanide bath
JP2002535493A (en) * 1999-01-22 2002-10-22 リノヴェア・インターナショナル・インコーポレーテッド Electrochemical cell for removing metals from solution

Similar Documents

Publication Publication Date Title
KR100432971B1 (en) Electrolytic Apparatus, Methods for Purification of Aqueous Solutions and Synthesis of Chemicals
US4834850A (en) Efficient electrolytic precious metal recovery system
US4028199A (en) Method of producing metal powder
US9199867B2 (en) Removal of metals from water
JP2002531704A (en) Electrolytic apparatus, method for purifying aqueous solution, and method for synthesizing chemical substance
US5894077A (en) Radioactive effluent treatment
TW351731B (en) Process for the preparation of chlorine by means of the electrolysis of aqueous solution of hydrochloric acid chlorine preparation by electrolysis of hydrochloric acid
CA2468856A1 (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
KR890002751B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
US4619745A (en) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ
JPH0780466A (en) Method and device for regenerating aqueous solution containing metal ion and sulfuric acid
JPH09225470A (en) Treatment of cyan-containing water
JP2003145161A (en) Water treatment apparatus and water treatment method
US5225054A (en) Method for the recovery of cyanide from solutions
JPH04298288A (en) Treatment of cyanide and metal-containing solution
JPH01162789A (en) Method and device for recovering metal deposited on carrier
KR100367709B1 (en) Recovery method of platinum group metals from waste water
JPS5919994B2 (en) Method for producing metal powder from dilute solution of metal
JPH101794A (en) Electrolytic cell and electrolyzing method
JPH11158681A (en) Treatment of selenium-containing water to be treated
JPH032959B2 (en)
JPH0413432B2 (en)
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same