JPH09225470A - Treatment of cyan-containing water - Google Patents

Treatment of cyan-containing water

Info

Publication number
JPH09225470A
JPH09225470A JP8034695A JP3469596A JPH09225470A JP H09225470 A JPH09225470 A JP H09225470A JP 8034695 A JP8034695 A JP 8034695A JP 3469596 A JP3469596 A JP 3469596A JP H09225470 A JPH09225470 A JP H09225470A
Authority
JP
Japan
Prior art keywords
treatment
cyanide
containing water
cyan
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8034695A
Other languages
Japanese (ja)
Other versions
JP3783972B2 (en
Inventor
Yukie Matsumoto
幸英 松本
Masao Sekimoto
正生 関本
Yasuki Yoshida
泰樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP03469596A priority Critical patent/JP3783972B2/en
Publication of JPH09225470A publication Critical patent/JPH09225470A/en
Application granted granted Critical
Publication of JP3783972B2 publication Critical patent/JP3783972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover metal and simultaneously decompose cyan and org. matter in a short time by electrolyzing a cyan-contg. water with the anode and cathode on which a DC current is applied and oxidizing the water with an oxidizing agent not producing the decomposition product other than oxygen or water. SOLUTION: A cathode 2 and an anode 3 are provided oppositely in a unit electrolytic cell 4, and the plural unit cells 4 are set in an electrolytic cell 1. The cathode 2 and anode 3 are connected to an electrolytic power source, a baffle 5 is provided between the unit cells 4 to divide the cell. The cyan-contg. water to be treated is introduced into the unit cell 4 from its cathode 2 side and discharged from the anode 3 side as shown by the arrows, electrolyzed and then oxidized with an oxidizing agent not generating the decomposition product other than oxygen or water. Consequently, the cyan and org. matter are simultaneously decomposed in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シアン含有水の処
理方法に関し、特にシアンを含むめっき排水あるいは水
洗水の電気化学的な処理方法に関し、シアンとともに含
まれている有機物を同時に処理する処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating cyanide-containing water, and more particularly to an electrochemical treatment method for cyanide-containing plating wastewater or washing water, and a treatment method for simultaneously treating organic substances contained with cyanide. Regarding

【0002】[0002]

【従来の技術】電子部品や機械部品などに貴金属めっき
をする分野においては、シアンを含むめっき浴が一般的
に使用されている。シアンを含むめっき液の排水、ある
いはめっきした製品の水洗に用いる水洗水などのシアン
含有水から金属イオンを回収する方法としては、イオン
交換樹脂法、電解法、活性炭吸着法等多くの方法が提案
されてきた。一方、シアンイオンを分解する方法、塩素
や次亜塩素酸ナトリウム等の酸化剤による酸化分解法、
紫外線照射による酸化分解法、処理液に食塩を添加し、
食塩の電解により発生する次亜塩素酸を用いて、シアン
イオンを酸化する間接的な電解酸化法などの多くの方法
が提案されてきた。しかしながら、これらの方法を単独
あるいは併用した場合には、含まれている成分の完全な
処理は困難であり、処理液に何らかの前処理を必要とし
たり、処理後の液に2次、3次の後工程の処理を必要と
した。
2. Description of the Related Art In the field of plating precious metals on electronic parts and mechanical parts, a plating bath containing cyan is generally used. Many methods such as ion exchange resin method, electrolysis method, activated carbon adsorption method, etc. are proposed as methods for recovering metal ions from cyanide-containing water such as drainage of plating solution containing cyanide or washing water used for washing plated products It has been. On the other hand, a method of decomposing cyanide, an oxidative decomposition method using an oxidizing agent such as chlorine or sodium hypochlorite,
Oxidative decomposition method by ultraviolet irradiation, adding salt to the treatment liquid,
Many methods such as an indirect electrolytic oxidation method of oxidizing cyanide ions using hypochlorous acid generated by electrolysis of sodium chloride have been proposed. However, when these methods are used alone or in combination, it is difficult to completely treat the components contained in the treatment solution, and it is necessary to perform some kind of pretreatment on the treatment liquid, or the treatment liquid may be subjected to secondary or tertiary treatment. Post-treatment required.

【0003】例えば、イオン交換樹脂法や活性炭吸着法
では、処理液中の金属イオン濃度とシアンイオン濃度に
より溶液中に存在する金属イオンとシアンイオンが錯形
成し、吸着不可能となる場合が生じる。また、めっき液
中の有機物質などを栄養源とし、大気中より混入する菌
が繁殖したり、藻を発生させ、金属イオンのイオン交換
樹脂や活性炭への吸着力を低下させ、未処理のまま流出
することもある。
For example, in the ion exchange resin method or the activated carbon adsorption method, the metal ions present in the solution and the cyan ion are complexed due to the metal ion concentration and the cyan ion concentration in the treatment liquid, so that the adsorption becomes impossible. . In addition, by using organic substances in the plating solution as a nutrient source, bacteria mixed from the atmosphere will propagate and algae will be generated, reducing the adsorption power of metal ions to the ion exchange resin and activated carbon, leaving it untreated. It may be leaked.

【0004】さらに、イオン交換樹脂法や活牲炭吸着法
では、シアンイオンを無害化することは不可能であり、
後工程において塩素や次亜塩素酸処理により酸化する必
要がある。また、過剰の塩素や次亜塩素酸を含む処理液
は、直接放流することはできず還元処理等によって分解
処埋をするか、希釈して放出せざるを得ない。また、め
っき後の水洗水を塩素や次亜塩素酸処理を行って処理し
た場合には、は、塩素イオン等が含まれるので再度水洗
水として利用することは不可能となる。 シアンととも
に含まれている有機物を処理する方法としては、金属回
収の前にオゾンもしくは紫外線によって処理する方法
や、金属回収の後工程において、微生物を利用して分解
をする方法が行われている。しかし、設備の規模が大き
くなるなどの問題がある。
Further, it is impossible to detoxify cyan ions by the ion exchange resin method or the activated carbon adsorption method,
In the subsequent process, it is necessary to oxidize by treating with chlorine or hypochlorous acid. Further, the treatment liquid containing excess chlorine and hypochlorous acid cannot be discharged directly, and must be decomposed and buried by reduction treatment or diluted and discharged. Further, when the rinse water after plating is treated with chlorine or hypochlorous acid, it cannot be reused as rinse water because it contains chlorine ions and the like. As a method of treating an organic substance contained together with cyan, a method of treating with an ozone or an ultraviolet ray before metal recovery, and a method of decomposing using a microorganism in a post-metal recovery step are performed. However, there is a problem that the scale of equipment becomes large.

【0005】また、近年、イオン交換樹脂法と電解法の
併用による重金属イオンとシアンイオンを含有する電気
めっきの水洗水処理法が特開昭51−94431号公報
として提案されている。この方法によれば、先ず、めっ
き液の水洗水のうち、濃度の比較的高い水洗水を電解
し、金属イオンを陰極上に析出し、回収後、陽極として
二酸化鉛電極を用いてシアンイオンを一定の濃度(約1
000ppm)まで電解酸化により分解し、残るシアン
イオンを次亜塩素酸ナトリウムを添加して、酸化分解す
るという化学処理によるものである。この方法では、電
解手段を採用しているものの、イオン交換樹脂法と同様
に残留シアンイオンを次亜塩素酸ナトリウムの添加によ
り処理しなければならず、過剰の次亜塩素酸イオンを後
処理しなければ放流できず、まためっき工程において、
水洗水として再利用不可能であるなどの問題を有してい
る。さらに、イオン交換樹脂は水洗槽の最終段に設置さ
れており、希釈されためっき液中の金イオンやシアンイ
オンを回収しているのみであり、従来のイオン交換樹脂
法の問題点を回避することは不可能である。
Further, in recent years, a washing water treatment method for electroplating containing heavy metal ions and cyan ions by using both an ion exchange resin method and an electrolysis method has been proposed in Japanese Patent Application Laid-Open No. 51-94431. According to this method, first, of the washing water of the plating solution, the washing water having a relatively high concentration is electrolyzed to deposit metal ions on the cathode, and after recovery, cyanide is obtained by using a lead dioxide electrode as the anode. Constant concentration (about 1
(000 ppm) is decomposed by electrolytic oxidation, and the remaining cyan ions are chemically decomposed by adding sodium hypochlorite to oxidize and decompose. In this method, although electrolytic means is adopted, residual cyanide ion must be treated by addition of sodium hypochlorite as in the ion exchange resin method, and excess hypochlorite ion is post-treated. If it is not released, it cannot be discharged, and in the plating process,
It has the problem that it cannot be reused as wash water. Furthermore, the ion exchange resin is installed in the final stage of the water washing tank and only collects gold ions and cyan ions in the diluted plating solution, avoiding the problems of the conventional ion exchange resin method. Is impossible.

【0006】そこで、本発明者らは、特開平6−336
700号公報において不溶性陽極と不溶性陰極より構成
された電解槽により、貴金属シアン浴めっき排水および
水洗水中の貴金属の回収、シアンの分解、および有機物
の分解を行う方法を提案した。この方法は、貴金属の回
収とシアンの分解を可能とする優れた方法であるが、シ
アンイオンを分解するのに要する時間が貴金属を電解回
収するに要する時間より長くなり、シアンイオンをほぼ
完全に分解するまでには、貴金属を電解回収するに要す
る時間の数倍を要する場合がある。すなわち、シアンを
含むめっき排水および水洗水に溶存しているシアンイオ
ンおよび有機配位子は錯形成能力が大きいため、貴金属
イオン等と錯体を形成し安定化するために、直接の電解
酸化が困難である。したがって、安定な錯体に配位して
いるシアンイオンや有機配位子を分解するためには、ま
ず陰極上で金属イオンを電解還元し析出させ、シアンイ
オンや有機配位子を単独のイオンとして遊離した後に分
解処理を行う必要がある。有機配位子によっては、分解
してシアンイオンを生成したり、CODを増大させるた
めに、長時間の電解処理をしなければならない場合もあ
る。
[0006] Therefore, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 6-336.
In Japanese Patent Laid-Open No. 700, a method for recovering noble metal in noble metal cyanide plating wastewater and washing water, decomposing cyanide, and decomposing organic matter by an electrolytic cell composed of an insoluble anode and an insoluble cathode was proposed. This method is an excellent method that enables the recovery of precious metals and the decomposition of cyanide, but the time required to decompose cyanide ions is longer than the time required to electrolytically recover precious metals, and cyanide ions are almost completely removed. It may take several times as long as the time required for electrolytic recovery of the noble metal before decomposition. That is, since the cyan ions and organic ligands dissolved in the plating wastewater containing cyan and the washing water have a large complex-forming ability, they form a complex with a noble metal ion or the like and stabilize it, making direct electrolytic oxidation difficult. Is. Therefore, in order to decompose the cyan ion or the organic ligand coordinated to the stable complex, first, the metal ion is electrolytically reduced and deposited on the cathode, and the cyan ion or the organic ligand is used as a single ion. After liberation, it is necessary to perform decomposition treatment. Depending on the organic ligand, it may be necessary to perform electrolytic treatment for a long time in order to decompose it to generate cyan ions or to increase COD.

【0007】[0007]

【発明が解決しようとする課題】本発明は、シアンを含
むめっき排水および水洗水などのシアン含有水に含まれ
ている金属を回収し、シアンと有機物を短時間に同時に
処理し、処理水を直接に放流あるは、水洗水として再利
用可能なものとすることを課題とする。
DISCLOSURE OF THE INVENTION The present invention collects metal contained in cyanide-containing water such as plating wastewater containing cyanide and washing water, and simultaneously treats cyanide and an organic substance in a short time to treat the treated water. The issue is to discharge directly or reuse as wash water.

【0008】[0008]

【課題を解決するための手段】本発明は、シアン含有水
の処理方法において、シアン含有水を直流電流を通電し
た陽極および陰極により電解処理を行うと共に、酸素も
しくは水以外の分解生成物を生じない酸化剤を用いて酸
化処理を行うことにより金属の回収、シアンの分解、有
機物の分解を行うシアン含有水の処理方法である。電解
処理に用いる陽極が、鉛、鉛合金、二酸化鉛、フェライ
ト又は白金族の金属のあるいは合金又は白金族の金属の
酸化物からなる電極触媒を電極基体上に形成した不溶性
電極である前記のシアン含有水の処理方法である。電解
処理に用いる陰極が、鉄、ニツケル、銅、クロム、アル
ミニウム、チタン、もしくはこれらの合金、又はこれら
に白金を被覆を施したもの、又は炭素、黒鉛である前記
のシアン含有水の処理方法である。酸化剤が過酸化水
素、オゾンである前記のシアン含有水の処理方法であ
る。酸化処理時に紫外線照射を行う前記のシアン含有水
の処理方法である。処理水を、そのままもしくは脱イオ
ン処理した後に再使用する前記のシアン含有水の処理方
法である。電解槽において電極上に析出した金属を化学
的、もしくは電気化学的に溶解し、再利用するシアン含
有水中の金属の再利用方法である。
According to the present invention, in a method for treating cyanide-containing water, cyanide-containing water is electrolyzed by an anode and a cathode to which a direct current is applied, and decomposition products other than oxygen or water are produced. It is a method of treating cyanide-containing water in which metal is recovered, cyanide is decomposed, and organic matter is decomposed by performing an oxidation treatment using a non-oxidizing agent. The above cyan, in which the anode used for the electrolytic treatment is an insoluble electrode in which an electrode catalyst made of lead, a lead alloy, lead dioxide, ferrite, or an oxide of a metal of the platinum group or an alloy or a metal of the platinum group is formed on the electrode substrate. It is a method of treating contained water. The cathode used in the electrolytic treatment is iron, nickel, copper, chromium, aluminum, titanium, or an alloy thereof, or a platinum coating on these, or carbon, graphite in the treatment method for cyanide-containing water described above. is there. The method for treating cyanide-containing water as described above, wherein the oxidizing agent is hydrogen peroxide and ozone. It is the above-mentioned method for treating cyanide-containing water in which ultraviolet irradiation is performed during the oxidation treatment. It is the above-mentioned method for treating cyanide-containing water in which the treated water is reused as it is or after being deionized. This is a method of reusing a metal in cyanide-containing water in which a metal deposited on an electrode in an electrolytic cell is chemically or electrochemically dissolved and reused.

【0009】[0009]

【発明の実施の形態】本発明のシアン含有水の処理方法
は、電解槽による電解処理と、水もしくは酸素以外の分
解生成物を生じない酸化剤による酸化処理槽とを組み合
わせて、シアン含有水にシアンとともに含まれている金
属を回収するとともに、有機物を分解して除去するもの
であり、処理した含有水を再度シアンめっきでの洗浄水
等として再使用可能としたものである。本発明における
電解処理と酸化剤による酸化処理の順序は、電解処理し
た後に酸化剤による処理を行うことが好ましいが、シア
ン含有水中に含まれているめっきの添加剤等の有機物が
電解処理によって重合化する場合には、電解処理の前
段、あるいは後段において行うことが好ましい。また、
電解処理と酸化剤による処理は、各処理をバッチ的に行
っても、電解処理槽と酸化処理槽との間を循環させなが
ら処理を行ってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for treating cyanide-containing water according to the present invention is a combination of an electrolytic treatment with an electrolysis tank and an oxidation treatment tank with an oxidizing agent that does not generate decomposition products other than water or oxygen. In addition to recovering the metal contained together with cyanide, the organic matter is decomposed and removed, and the treated contained water can be reused again as washing water for cyan plating. The order of the electrolytic treatment and the oxidizing treatment with the oxidizing agent in the present invention is preferably such that the treating with the oxidizing agent is performed after the electrolytic treatment, but an organic substance such as a plating additive contained in the cyanide-containing water is polymerized by the electrolytic treatment. In the case of conversion, it is preferable to perform it before or after the electrolytic treatment. Also,
The electrolytic treatment and the treatment with the oxidizing agent may be carried out in batches or while circulating between the electrolytic treatment tank and the oxidation treatment tank.

【0010】電解処理に使用する電解槽の陽極には、
鉛、鉛合金、フェライト、白金族の金属またはその合
金、白金族の金属の酸化物を電極触媒とする電極を用い
ることができ、電極基体上に電極触媒を被覆する場合に
は、チタン、タンタル、二オブ、ジルコニウムもしくは
これらの合金からなる耐食性金属を電極基体とすること
が好ましい。また、陰極には、鉄、ニッケル、銅、クロ
ム、アルミニウム、チタンもしくはこれらの合金、白金
を電極触媒とする電極を用いることができる。また、陽
極、陰極には、板状体、とくに表面積が大きな多孔体、
網状、すだれ状、または粒状のものが好適であり、粒状
の電極を流動状態で電解する流動床電解槽を用いること
ができ、粒径が20〜2000μmのものを液体の流速
で流動状態とすることができる。
The anode of the electrolytic cell used for electrolytic treatment is
An electrode using lead, a lead alloy, ferrite, a platinum group metal or its alloy, or an oxide of a platinum group metal as an electrode catalyst can be used. When the electrode substrate is coated with the electrode catalyst, titanium or tantalum is used. It is preferable to use a corrosion resistant metal composed of niobium, zirconium, or an alloy thereof as the electrode substrate. Further, for the cathode, an electrode using iron, nickel, copper, chromium, aluminum, titanium or an alloy thereof, or platinum as an electrode catalyst can be used. In addition, the anode and cathode have a plate-like body, especially a porous body having a large surface area,
A mesh-like shape, a blind shape, or a granular shape is preferable, and a fluidized bed electrolytic cell for electrolyzing a granular electrode in a fluidized state can be used, and a particle size of 20 to 2000 μm is brought into a fluidized state at a liquid flow rate. be able to.

【0011】電解槽は、無隔膜電解槽であっても隔膜電
解槽であっても良いが、流動床電解を行う場合には、流
動床状態の電極と他方の電極との間に多孔性の隔膜を設
けた電解槽を用いることが必要となる。本発明の電解槽
の一実施例を図1を示して説明する。電解槽1内には、
陰極2と陽極3が対向して配置された単位電解槽4の複
数個が設けられており、陰極および陽極は電解用電源に
接続されている。各単位電解槽の間には、邪魔板5を設
けて区画すると共に処理液が矢印で処理液の流れを示す
ように、各単位電解槽の陰極側から入り陽極側から出る
ように構成されており、処理液を充分に処理することが
可能となる。また、電解処理において通電する電流密度
は、0.5A/dm2 ないし30A/dm2 が好まし
い。通電時間の終点の決定は、電解液中の物質の濃度の
測定によって行う。
The electrolytic cell may be a diaphragmless electrolytic cell or a diaphragm electrolytic cell, but when performing fluidized bed electrolysis, there is a porous layer between the electrode in the fluidized bed state and the other electrode. It is necessary to use an electrolytic cell provided with a diaphragm. One embodiment of the electrolytic cell of the present invention will be described with reference to FIG. In the electrolytic cell 1,
There are provided a plurality of unit electrolytic cells 4 in which the cathode 2 and the anode 3 are opposed to each other, and the cathode and the anode are connected to a power source for electrolysis. A baffle plate 5 is provided between the unit electrolytic cells to partition the unit electrolytic cells, and the processing liquid is configured to enter from the cathode side and exit from the anode side of each unit electrolytic cell so that the arrows indicate the flow of the processing liquid. Therefore, the treatment liquid can be sufficiently treated. Further, the current density applied in the electrolytic treatment is preferably 0.5 A / dm 2 to 30 A / dm 2 . The end point of the energization time is determined by measuring the concentration of the substance in the electrolytic solution.

【0012】シアン含有水の酸化処理に用いる酸化剤
は、分解によって酸素、水以外のものは発生しないもの
であり、オゾン、過酸化水素を挙げることができる。オ
ゾンはオゾン含有気体あるいはオゾン水のいずれの形態
で供給しても良い。オゾン発生装置としては、オゾン含
有気体を発生する無声放電式のオゾン発生装置、オゾン
水を発生する電解オゾン発生装置を用いることができ
る。
The oxidizing agent used for the oxidation treatment of the cyan-containing water does not generate anything other than oxygen and water by decomposition, and examples thereof include ozone and hydrogen peroxide. Ozone may be supplied in the form of ozone-containing gas or ozone water. As the ozone generator, a silent discharge ozone generator that generates ozone-containing gas or an electrolytic ozone generator that generates ozone water can be used.

【0013】酸化剤の供給は、電解処理用の電解槽とは
別に設けた酸化処理槽中において行うことが好ましい
が、電解槽中に酸化剤を供給することも可能である。ま
た、電解処理用の電解槽の一部を区画して、酸化処理槽
を設ける場合には、一般には、電解槽の出口側の流路に
酸化処理槽を設けることが好ましいが、電解処理によっ
て重合反応を起こすおそれのあるめっき用の添加剤の有
機物を含んでいる場合には、電解槽の入り口側の流路に
酸化処理槽を設けることが好ましく、入り口側、流路側
の両方に設けても良い。
The supply of the oxidizing agent is preferably carried out in an oxidizing treatment tank provided separately from the electrolytic bath for electrolytic treatment, but it is also possible to supply the oxidizing agent into the electrolytic bath. Further, when a part of the electrolytic bath for electrolytic treatment is partitioned and an oxidizing treatment tank is provided, it is generally preferable to provide an oxidizing treatment tank in the flow path on the outlet side of the electrolytic bath. When the plating additive organic matter that may cause a polymerization reaction is contained, it is preferable to provide an oxidation treatment tank in the flow path on the inlet side of the electrolytic tank, and to provide it on both the inlet side and the flow path side. Is also good.

【0014】また、酸化処理槽には、紫外線照射装置を
設けても良い。紫外線照射装置としては、短波長の紫外
線を発生する低圧水銀ランプを紫外線照射照射装置が挙
げられる。紫外線は、水の励起によりヒドロキシラジカ
ルを生成するとともに、オゾン、過酸化水素を励起し
て、酸素ラジカルやペルヒドロキシラジカルなどの活性
種が生成してシアンや有機物の分解効率を高めるものと
考えられる。また、紫外線照射処理によって含まれてい
るめっき添加剤等の有機物が重合し、酸化分解すること
が困難となることがあるが、このような場合には、紫外
線照射処理を酸化処理の後で行うことが好ましい。
Further, an ultraviolet irradiation device may be provided in the oxidation treatment tank. Examples of the ultraviolet irradiation device include a low-pressure mercury lamp that emits ultraviolet light having a short wavelength. It is considered that ultraviolet rays excite water to generate hydroxy radicals, and also excite ozone and hydrogen peroxide to generate active species such as oxygen radicals and perhydroxyl radicals to enhance the decomposition efficiency of cyanide and organic substances. . In addition, it may be difficult to oxidize and decompose organic substances such as plating additives contained by the ultraviolet irradiation treatment, and in such a case, the ultraviolet irradiation treatment is performed after the oxidation treatment. It is preferable.

【0015】また、電解処理及び酸化処理を行った被処
理水は、さらにイオン交換樹脂、電気透析、逆浸透等の
方法によって脱イオン化を行うことにより、長期間にわ
たり水洗水等として再利用することが可能となり、めっ
き処理工程から排出される排水、水洗水のクローズド化
が可能となる。とくに、被処理水に含まれているナトリ
ウムイオン、カリウムイオン、アンモニウムイオン、硫
酸イオン、リン酸イオン等のイオンの濃度が希薄である
場合、または処理量が少ない場合は、イオン交換樹脂に
よる方法でも処理可能であるが、イオン濃度が高く、処
理量も多い場合は、イオン交換樹脂による方法では、イ
オン交換樹脂の再生処理のために大量の薬剤が必要とな
るので、薬剤が不要な電気透析、逆浸透等が有効であ
る。電気透析法は、陽極と陰極の間に陰イオン交換膜、
陽イオン交換膜、またはバイポーラ膜の任意の数量を積
層した電解槽によって行うことが出来る。電気透析法に
使用する陽極と陰極には、本発明の電解処理用に用いた
ものと同様の電極を使用することができる。また、電気
透析処理においては、処理液中の陽イオンと陰イオンは
分離、濃縮され対応するアルカリ及び酸として回収し再
利用することも可能である。また、電気透析槽を通過
し、脱イオン化された処理液は直接放流またはめっき液
の調整水、水洗水として再利用できる。
Further, the water to be treated which has been subjected to the electrolytic treatment and the oxidation treatment is further deionized by a method such as ion exchange resin, electrodialysis, reverse osmosis or the like to be reused as washing water for a long period of time. It becomes possible to close the drainage water and rinsing water discharged from the plating process. In particular, if the concentration of ions such as sodium ions, potassium ions, ammonium ions, sulfate ions, and phosphate ions contained in the water to be treated is dilute, or if the treatment amount is small, a method using an ion exchange resin may be used. Although it is possible to treat, if the ion concentration is high and the treatment amount is large, the method using the ion exchange resin requires a large amount of chemicals for the regeneration treatment of the ion exchange resin, so electrodialysis without chemicals, Reverse osmosis is effective. The electrodialysis method uses an anion exchange membrane between the anode and cathode,
It can be performed by an electrolytic cell in which an arbitrary number of cation exchange membranes or bipolar membranes are laminated. As the anode and the cathode used in the electrodialysis method, the same electrodes as those used for the electrolytic treatment of the present invention can be used. Further, in the electrodialysis treatment, the cation and anion in the treatment liquid can be separated and concentrated to be recovered as the corresponding alkali and acid and reused. In addition, the treatment solution that has passed through the electrodialysis tank and has been deionized can be directly discharged or reused as conditioning water for the plating solution or as washing water.

【0016】さらに、本発明の処理方法では、電解とオ
ゾンや過酸化水素による酸化処理を併用しているので、
殺菌、滅菌効果により藻の発生を防止することができ
る。
Further, in the treatment method of the present invention, since the electrolysis and the oxidation treatment with ozone or hydrogen peroxide are used together,
The sterilization and sterilization effects can prevent the generation of algae.

【0017】本発明において、オゾンや過酸化水素によ
る酸化処理を電解処理前に施してもほとんど効果がみら
れない場合が多い。これは、シアンや有機配位子が金属
イオンと錯形成し、安定化することによりオゾンや過酸
化水素のような酸化剤に対して分解されることなく存在
しているものと推察される。したがって、電解還元によ
り錯形成した金属イオンを陰極上で金属として析出させ
た後に金属イオンに配位していたシアンや有機物を遊離
させてオゾンや過酸化水素により酸化することが効果的
である。
In the present invention, in most cases, even if the oxidation treatment with ozone or hydrogen peroxide is performed before the electrolytic treatment, almost no effect is observed. It is presumed that this is because cyan and organic ligands form a complex with metal ions and are stabilized, so that they exist without being decomposed by oxidizing agents such as ozone and hydrogen peroxide. Therefore, it is effective to deposit the metal ions complexed by electrolytic reduction as a metal on the cathode, and then release the cyanide or organic matter coordinated to the metal ions and oxidize them with ozone or hydrogen peroxide.

【0018】これは、電解処理とともにオゾンや過酸化
水素による酸化処理を行うため、電解によって金属を陰
極上に析出した後、シアンや有機配位子が単独のイオン
となり、オゾンや過酸化水素によって分解可能となるた
め電解のみの場合に比べて数倍の効率でシアンの分解及
びCODの低減を図ることが可能となった。また、陽極
には、鉛、鉛合金、二酸化鉛、フェライト電極ととも
に、従来はシアンもしくは有機物の存在下では、これら
を分解する能力に欠けるために使用することが出来なか
った白金族の金属またはこれらの合金、白金族金属酸化
物を電極触媒とし、チタン、タンタル、ニオブ、ジルコ
ニウムもしくはこれらの合金からなる耐食性金属電極基
体に被覆してなる電極も使用することができる。
This is because the oxidation treatment with ozone or hydrogen peroxide is carried out together with the electrolytic treatment, so that after the metal is deposited on the cathode by electrolysis, cyan and the organic ligand become single ions, and the ozone and hydrogen peroxide are used. Since it can be decomposed, it is possible to decompose cyanide and reduce COD with efficiency several times higher than that in the case of only electrolysis. In addition, in the anode, together with lead, a lead alloy, lead dioxide, and a ferrite electrode, a platinum group metal or these metals that could not be used in the presence of cyanide or an organic substance due to their lack of ability to decompose them, was used. It is also possible to use an electrode obtained by coating a corrosion-resistant metal electrode substrate made of titanium, tantalum, niobium, zirconium, or an alloy of these with the platinum group metal oxide or the platinum group metal oxide as an electrode catalyst.

【0019】さらに、EDTAのようなアミンを含有す
る化合物を含む液を鉛、鉛合金、二酸化鉛電極を陽極と
して電解処理すると、陽極酸化によりシアンが生成する
ことが認められ、生成したシアンを分解するために、さ
らに過剰の電力と時間を要した。しかし、オゾンや過酸
化水素による酸化処理を併用することにより、短時間で
シアン及び有機物の分解が可能となった。さらに、白金
族金属または白金族金属酸化物を電極触媒とする金属電
極を陽極として電解処理した場合は、EDTAの分解と
シアンの生成はみられなかった。またシアンの分解効率
は、鉛、鉛合金、二酸化鉛電極に比べて劣るものの、オ
ゾンや過酸化水素による酸化処理を併用することで短時
間でシアン及びEDTAの分解が可能であった。
Further, when a liquid containing a compound containing an amine such as EDTA is electrolyzed using a lead, lead alloy or lead dioxide electrode as an anode, it is recognized that cyanide is produced by anodic oxidation, and the produced cyanide is decomposed. In addition, it took an excessive amount of power and time. However, the combined use of oxidation treatment with ozone or hydrogen peroxide made it possible to decompose cyanide and organic substances in a short time. Furthermore, when electrolytic treatment was performed using a metal electrode having a platinum group metal or a platinum group metal oxide as an electrode catalyst as an anode, decomposition of EDTA and generation of cyan were not observed. Further, although the decomposition efficiency of cyan is inferior to that of the lead, lead alloy, and lead dioxide electrodes, it was possible to decompose cyan and EDTA in a short time by using the oxidation treatment with ozone or hydrogen peroxide together.

【0020】また、従来の電解処理のみによるシアン及
び有機物の分解効率は金属の回収効率の20%以下であ
り、電解処理に多大な時間と電力を要したのに比べて本
発明の方法では、従来の電界処理のみに比べ2倍以上の
分解効率が得られ、処理時間の短縮化、装置の小型化を
図ることができる。また、電解処理によって陰極に析出
した金属は、薬剤による溶解、電気化学的な溶解処理に
よって溶解し、金属の塩として回収し、めっき原料とし
て再利用することが可能である。
Further, the decomposition efficiency of cyanide and organic substances only by the conventional electrolytic treatment is 20% or less of the metal recovery efficiency, and in contrast to the electrolytic treatment requiring a great deal of time and power, in the method of the present invention, Decomposition efficiency more than double that of conventional electric field treatment alone can be obtained, and the processing time can be shortened and the device can be downsized. Further, the metal deposited on the cathode by the electrolytic treatment can be dissolved by a chemical agent, dissolved by an electrochemical dissolution treatment, recovered as a metal salt, and reused as a plating raw material.

【0021】例えば、金シアン浴めっき排水や水洗水を
電解し、陰極上に析出、回収した金を水酸化カリウム、
シアン化カリウムのような強アルカリとシアンイオンま
たは有機酸の共存する水溶液中で、金を析出した陰極を
陽極とし、対極上に金が析出しない条伴下にて電解処理
することにより金を溶解させ、めっき原料として回収す
ることができる。対極上に金を析出させない方法として
は対極の電極電位を、基準電極に金を用いて金の析出電
位よりも高い電位となる条伴で電解処理するか、または
イオン交換膜等の隔膜を用いて電解処理することによ
り、対極上に析出することを防止し、かつ溶解した金イ
オンを金めっきの原料であるシアン化金の塩として回収
することも可能である。
For example, gold cyanide bath plating waste water or washing water is electrolyzed, and gold deposited and recovered on the cathode is potassium hydroxide,
In an aqueous solution in which a strong alkali such as potassium cyanide and cyan ions or an organic acid coexist, the cathode on which gold is deposited is used as an anode, and gold is dissolved by electrolytic treatment under the condition that gold is not deposited on the counter electrode, It can be recovered as a plating raw material. As a method of not depositing gold on the counter electrode, electrolytic treatment is performed by using gold as the reference electrode so that the electrode potential of the counter electrode is higher than the deposition potential of gold, or a diaphragm such as an ion exchange membrane is used. It is also possible to prevent precipitation on the counter electrode and to collect the dissolved gold ions as a salt of gold cyanide, which is a raw material for gold plating, by performing electrolytic treatment by electrolytic treatment.

【0022】[0022]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。 実施例1 容積が30dm3 の貯槽と、縦200mm、横165m
mのチタン製エキスパンデッドメタルの基体上に二酸化
鉛を被覆した陽極と、陽極と同じ形状のチタン製のエキ
スパンデッドメタルを陰極とし、2枚の陰極の中央に電
極間距離を15mmとして陽極を設置した電解槽(内
寸:幅40mm、横185mm、高さ210mm)と、
ステンレス製の2個の円筒容器(内径100mm、高さ
500mm)の間を酸性金めっき工程より排出された金
めっき水洗水30dm3 を流量20dm3/分 で循環し
た。一方の円筒容器内の底部に設置した散気管よりオゾ
ン含有気体(オゾン量4g/時)を処理液と対向して噴
出させた。もう一方の円筒容器には、24Wの低圧水銀
ランプを設置し処理液を通過させながら紫外線を照射し
た。陽極と陰極に直流電源により10Aの電流を通電し
て電解処理を行うとともに、処理時間を変化させ、処理
液中の金イオン濃度をICP(誘導結合プラズマ分析装
置 セイコー電子工業製SPS一1100型)によっ
て、シアンはJIS法(JIS K0102)により、
それぞれ測定し、その結果を図2に示し、またCODは
JlS法(JIS K0101)によって測定し、その
結果を図3に示す。電解処理とオゾンによる処理を併用
した場合、電解処理とオゾン処理、紫外線照射を併用し
た場合のいずれの場合も金濃度は同様に変化したが、紫
外線照射を併用した場合の方が、シアン濃度、およびC
ODの減少が大であった。
The present invention will be described in more detail with reference to the following examples. Example 1 Storage tank with a volume of 30 dm 3 , length 200 mm, width 165 m
m of titanium expanded metal substrate coated with lead dioxide, and a titanium expanded metal of the same shape as the anode as the cathode, and the distance between the electrodes is 15 mm in the center of the two cathodes. And an electrolytic cell (inside dimensions: width 40 mm, width 185 mm, height 210 mm)
30 dm 3 of gold plating wash water discharged from the acidic gold plating step was circulated between two stainless steel cylindrical containers (inner diameter 100 mm, height 500 mm) at a flow rate of 20 dm 3 / min. An ozone-containing gas (ozone amount: 4 g / hr) was ejected from the air diffuser installed at the bottom of one of the cylindrical containers, facing the treatment liquid. A 24 W low-pressure mercury lamp was placed in the other cylindrical container, and ultraviolet rays were irradiated while passing the treatment liquid. A current of 10 A is applied to the anode and the cathode by a DC power source for electrolytic treatment, and the treatment time is changed to determine the gold ion concentration in the treatment liquid by ICP (inductively coupled plasma analyzer SPS-11100 manufactured by Seiko Denshi Kogyo). According to JIS method (JIS K0102),
Each measurement was carried out, and the result is shown in FIG. 2, and COD was measured by the JLS method (JIS K0101), and the result is shown in FIG. When the electrolytic treatment and the treatment with ozone were used in combination, the gold concentration changed similarly in both cases of the electrolytic treatment, the ozone treatment and the ultraviolet irradiation, but when the ultraviolet irradiation was used together, the cyan concentration was And C
The decrease in OD was large.

【0023】比較例1 オゾンの吹き込みを行わなかつた点を除き実施例1と同
様に電解による処理、オゾンと紫外線照射処理の併用に
よる処理及び電解と紫外線照射処理を行い、実施例1と
同様に金濃度、シアン濃度を測定し、その結果を図4に
示し、またCOD濃度を実施例1と同様に測定して図5
に示した。電解法のみの場合には、金の回収は良好であ
ったが、シアン分解とCODの分解には多くの時間を要
した。オゾンと紫外線照射処理の併用による処理の場合
には、CODの分解は良好であったが、金回収及びシア
ン分解には全く効果がみられなかった。また、電解と紫
外線照射処理を行った場合には、金回収とシアン分解に
効果がみられたが、CODの低減には十分な効果が得ら
れなかった。
COMPARATIVE EXAMPLE 1 Except that no ozone was blown, electrolysis treatment, ozone / UV irradiation treatment and electrolysis / UV irradiation treatment were carried out in the same manner as in Embodiment 1, and the same as in Embodiment 1. The gold concentration and the cyan concentration were measured, the results are shown in FIG. 4, and the COD concentration was measured in the same manner as in Example 1.
It was shown to. In the case of only the electrolysis method, the recovery of gold was good, but it took a long time for the decomposition of cyanide and the decomposition of COD. In the case of the combined treatment of ozone and ultraviolet irradiation treatment, COD was decomposed well, but no effect was observed on gold recovery and cyanide decomposition. Further, when electrolysis and ultraviolet irradiation treatment were performed, the effects of gold recovery and cyan decomposition were observed, but sufficient effects of COD reduction were not obtained.

【0024】実施例2 実施例1と同じ条件にて無電解金めっき排水30dm3
を処理し、実施例1と同様に金濃度、シアン濃度を測定
し、その結果を図6に示し、またCOD濃度を実施例1
と同様に測定して図7に示した。
Example 2 Electroless gold plating drainage 30 dm 3 under the same conditions as in Example 1.
Was treated and the gold concentration and the cyan concentration were measured in the same manner as in Example 1. The results are shown in FIG.
The measurement was performed in the same manner as the above and shown in FIG.

【0025】比較例2 電解処理と紫外線照射を併用した処理を行い、実施例1
と同様に金濃度、シアン濃度を測定し、その結果を図6
に示し、またCOD濃度を実施例1と同様に測定して図
7に示した。金回収効率に関しては、実施例2および比
較例2は、同じ結果であったが、シアン分解に関して
は、比較例の電解処理、電解処理と紫外線照射併用処埋
の場合には、シアンの増加がみられたが、本発明の方法
では処理時間50時間で処理できた。また、COD値も
比較例の方法よりも効率良く処理できることが判明し
た。実施例3 陽極として、チタン基体上に酸化イリジウムと酸化タン
タル(70:30(重量比))からなる電極触媒を被覆
した電極を用いた以外は、実施例2と同じ試験を行っ
た。実施例1と同様に金濃度、シアン濃度を測定し、そ
の結果を図8に示し、またCOD濃度を実施例1と同様
に測定して図9に示した。
COMPARATIVE EXAMPLE 2 Electrolytic treatment and ultraviolet irradiation were used in combination to obtain Example 1
The gold concentration and the cyan concentration were measured in the same manner as in, and the results are shown in FIG.
The COD concentration was measured in the same manner as in Example 1 and shown in FIG. Regarding the gold recovery efficiency, Example 2 and Comparative Example 2 had the same result, but regarding the decomposition of cyanide, the increase of cyanide was observed in the electrolytic treatment of the comparative example, and the electrolytic treatment and the UV irradiation combined treatment. As can be seen, the method of the present invention could be processed in a processing time of 50 hours. It was also found that the COD value can be processed more efficiently than the method of the comparative example. Example 3 The same test as in Example 2 was performed, except that an electrode in which an electrode catalyst made of iridium oxide and tantalum oxide (70:30 (weight ratio)) was coated on a titanium substrate was used as the anode. The gold concentration and the cyan concentration were measured in the same manner as in Example 1, and the results are shown in FIG. 8, and the COD concentration was measured in the same manner as in Example 1, and shown in FIG.

【0026】比較例3 電解処理及び電解処理と紫外線照射を併用した処理を行
った。実施例1と同様に金濃度、シアン濃度を測定し、
その結果を図8に示し、またCOD濃度を実施例1と同
様に測定して図9に示した。金回収効率に関しては、い
ずれの場合も同じ結果であったが、シアンの分解に関し
ては、電解処理のみでは、処理時間が60時間でも処理
できなかったが、電解処理と紫外線照射の併用、または
電解処理とオゾン処理の併用、電解処理と紫外線照射及
びオゾン処理の併用では、シアンの増加もみられずに処
理できた。しかしながら、電解処理と紫外線照射の併用
法では、CODを低減することができなかった。一方、
酸化イリジウムを電極触媒とする電極を用いた場合でも
本発明の方法では、CODを短時間で低減することがで
きた。陽極として、チタン基体に白金めっき(3μm)
を施した白金めっき電極を用いた以外は、実施例2と同
様の条件で試験を行った。その結果も図8及び図9で示
した結果と同等であった。
Comparative Example 3 Electrolytic treatment and treatment using both electrolytic treatment and ultraviolet irradiation were performed. The gold concentration and the cyan concentration were measured in the same manner as in Example 1,
The results are shown in FIG. 8, and the COD concentration was measured as in Example 1 and shown in FIG. Regarding the gold recovery efficiency, the same results were obtained in all cases, but regarding the decomposition of cyan, the electrolytic treatment alone could not be performed even for a treatment time of 60 hours. By the combined use of the treatment and the ozone treatment, and the combined use of the electrolytic treatment and the ultraviolet irradiation and the ozone treatment, it was possible to perform the treatment without an increase in cyan. However, COD could not be reduced by the combined method of electrolytic treatment and ultraviolet irradiation. on the other hand,
Even when an electrode using iridium oxide as an electrocatalyst was used, the method of the present invention could reduce COD in a short time. Platinum plating (3 μm) on titanium substrate as anode
A test was performed under the same conditions as in Example 2 except that the platinum-plated electrode that was subjected to was used. The results were also similar to the results shown in FIGS.

【0027】実施例4 無電解金めっき排水(30dm3 )に過酸化水素(H2
2:30重量%)を添加しながら、実施例1と同じ条
件で電解処理のみ、電解処理と紫外線照射併用処理及び
電解と酸化剤による処理を行った。過酸化水素の添加方
法は初期と1時間毎に0.02dm3 ずつ添加して、合
計0.1dm3 を添加した。実施例1と同様に金濃度、
シアン濃度を測定し、その結果を図10に示し、またC
OD濃度を実施例1と同様に測定して図11に示した。
酸化剤として過酸化水素を用いることにより、金の回収
時間は変化しなかったか、シアン分解及びCOD低減に
要する処理時間は実施例2で得られた結果(図6及び図
7)より、さらに短縮できた。
Example 4 Hydrogen peroxide (H 2 was added to electroless gold plating wastewater (30 dm 3 ).
(0 2 : 30% by weight) was added, and under the same conditions as in Example 1, only electrolytic treatment, electrolytic treatment and ultraviolet irradiation combined use treatment, and electrolytic treatment and treatment with an oxidizing agent were performed. The method of adding hydrogen peroxide was added in 0.02Dm 3 early and every hour, was added a total of 0.1dm 3. Gold concentration as in Example 1,
The cyan density was measured and the result is shown in FIG.
The OD concentration was measured as in Example 1 and is shown in FIG.
By using hydrogen peroxide as the oxidant, the gold recovery time did not change, or the processing time required for cyanide decomposition and COD reduction was further shortened from the results obtained in Example 2 (FIGS. 6 and 7). did it.

【0028】実施例5 縦100mm、横300mmの陰イオン交換膜(トクヤ
マ製AMH)と陽イオン交換膜(トクヤマ製CMX)で
陽極室、中間室及び陰極室に分離した電気透析槽を脱イ
オン化を目的として用いた。陽極はチタン製エキスパン
デッドメタル上に酸化イリジウムと酸化タンタルの複合
酸化物(50モル%)を被覆した電極(電解有効面10
0mm×300mm)、陰極は陽極と同一の形状及び大
きさのニツケル製エキスパンデッドメタルとし、陽極液
として0.1mol/dm3 の硫酸水溶液、陰極液とし
て0.1mol/dm3 の水酸化カリウム水溶液を用い
た。一方、金めっき水洗水を電流密度4A/dm2 の定
電流電解処理とオゾン処理(オゾン発生量50g/時)
及び紫外線照射処理(紫外線ランプ110W)を行った
処理水を1500dm2/時 の流量で電気透析槽の中間
室に供給し、1.6A/dm2 の電流密度の直流電流を
通電して、電気透析処理を行い、電気透析処理された処
理水を再び金めっき水洗水として再利用した。この操作
を連続して10日間にわたり実施し、カリウムイオン濃
度をICPによって測定し、、COD値の変化を実施例
1と同様に測定した。また、めっき不良の有無を外観検
査によって評価し、それらの結果を表1に示した。
Example 5 An electrodialysis tank separated into an anode chamber, an intermediate chamber and a cathode chamber was deionized with a 100 mm long and 300 mm wide anion exchange membrane (AMH manufactured by Tokuyama) and a cation exchange membrane (CMX manufactured by Tokuyama). Used as a purpose. The anode was an electrode (electrolysis effective surface 10) in which a composite oxide of iridium oxide and tantalum oxide (50 mol%) was coated on an expanded metal made of titanium.
Nickel expanded metal having the same shape and size as the anode, and a 0.1 mol / dm 3 sulfuric acid aqueous solution as the anolyte and 0.1 mol / dm 3 potassium hydroxide as the catholyte. An aqueous solution was used. On the other hand, the galvanized washing water is subjected to constant current electrolysis treatment with a current density of 4 A / dm 2 and ozone treatment (ozone generation amount: 50 g / hour).
And treated water that has been subjected to ultraviolet irradiation treatment (ultraviolet lamp 110 W) is supplied to the intermediate chamber of the electrodialysis tank at a flow rate of 1500 dm 2 / hour, and a direct current with a current density of 1.6 A / dm 2 is applied to generate electricity. A dialysis treatment was performed, and the treated water subjected to the electrodialysis treatment was reused again as a washing water for gold plating. This operation was continuously carried out for 10 days, the potassium ion concentration was measured by ICP, and the change in COD value was measured as in Example 1. In addition, the presence or absence of plating defects was evaluated by visual inspection, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】比較例5 電気透析処理を行わず紫外線照射処理を併用した電解処
理を実施例4と同様の条件で行った処理液を水洗水とし
て再利用し、実施例4と同様にカリウムイオン濃度、C
OD値の変化及びめっき不良の有無を測定した結果を表
1に示した。表1の結果より本発明の方法によればCO
D値も低く、めっき状態も良好であったが、比較例の方
法では、カリウムイオンの蓄積が顕著であり、8日目よ
り水洗後のめっきの表面にしみが発生した。
Comparative Example 5 The electrolytic solution which was not subjected to the electrodialysis treatment but was combined with the ultraviolet irradiation treatment under the same conditions as in Example 4 was reused as washing water, and the potassium ion concentration was changed in the same manner as in Example 4. , C
Table 1 shows the results of measuring the change in OD value and the presence or absence of defective plating. From the results in Table 1, according to the method of the present invention, CO
Although the D value was low and the plating condition was good, accumulation of potassium ions was remarkable in the method of the comparative example, and stains were generated on the surface of the plating after washing from the 8th day.

【0031】[0031]

【発明の効果】本発明の方法によれば、電解処理又は電
解処理と紫外線照射処理の併用法より短時間で効率良
く、金属の回収と有害なシアンを系外に放出することな
く処理でき、かつ、処理水の再利用が可能であるため使
用水量と排水の処理量を大幅に低減することが可能であ
る。
EFFECTS OF THE INVENTION According to the method of the present invention, metal recovery and treatment without releasing harmful cyanide out of the system can be performed in a shorter time and more efficiently than the electrolytic treatment or the combined use of the electrolytic treatment and the ultraviolet irradiation treatment. Moreover, since the treated water can be reused, the amount of water used and the amount of wastewater treated can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電解槽を説明する図であ
る。
FIG. 1 is a diagram illustrating an electrolytic cell according to an embodiment of the present invention.

【図2】本発明の一実施例における金、シアン濃度の変
化を説明する図である。
FIG. 2 is a diagram illustrating changes in gold and cyan densities according to an embodiment of the present invention.

【図3】本発明の一実施例におけるCODの変化を説明
する図である。
FIG. 3 is a diagram illustrating a change in COD according to an embodiment of the present invention.

【図4】本発明の比較例における金、シアン濃度の変化
を説明する図である。
FIG. 4 is a diagram for explaining changes in gold and cyan densities in a comparative example of the present invention.

【図5】本発明の比較例におけるCODの変化を説明す
る図である。
FIG. 5 is a diagram illustrating a change in COD in a comparative example of the present invention.

【図6】本発明の他の実施例および比較例における金、
シアン濃度の変化を説明する図である。
FIG. 6 shows gold in another example and comparative example of the present invention,
It is a figure explaining the change of cyan density.

【図7】本発明の他の実施例および比較例におけるCO
Dの変化を説明する図である。
FIG. 7: CO in another example and comparative example of the present invention
It is a figure explaining the change of D.

【図8】本発明の他の実施例および比較例における金、
シアン濃度の変化を説明する図である。
FIG. 8 shows gold in another example and comparative example of the present invention,
It is a figure explaining the change of cyan density.

【図9】本発明の他の実施例および比較例におけるCO
Dの変化を説明する図である。
FIG. 9 shows CO in another example and comparative example of the present invention.
It is a figure explaining the change of D.

【図10】本発明の他の実施例における金、シアン濃度
の変化を説明する図である。
FIG. 10 is a diagram for explaining changes in gold and cyan densities according to another embodiment of the present invention.

【図11】本発明の他の実施例におけるCODの変化を
説明する図である。
FIG. 11 is a diagram illustrating changes in COD in another example of the present invention.

【符号の説明】[Explanation of symbols]

1…電解槽、2…陰極、3…陽極、4…単位電解槽、5
…邪魔板
1 ... Electrolyzer, 2 ... Cathode, 3 ... Anode, 4 ... Unit electrolyzer, 5
... baffle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 C02F 1/72 A 1/78 ZAB 1/78 ZAB C25C 1/00 301 C25C 1/00 301Z C25D 21/20 C25D 21/20 C02F 1/46 101C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/72 C02F 1/72 A 1/78 ZAB 1/78 ZAB C25C 1/00 301 C25C 1 / 00 301Z C25D 21/20 C25D 21/20 C02F 1/46 101C

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シアン含有水の処理方法において、シア
ン含有水を直流電流を通電した陽極および陰極によって
電解処理すると共に、酸素もしくは水以外の分解生成物
を生じない酸化剤を用いて酸化処理を行うことにより金
属の回収、シアンの分解、有機物の分解を行うことを特
徴とするシアン含有水の処理方法。
1. A method for treating cyanide-containing water, wherein the cyanide-containing water is electrolyzed by an anode and a cathode to which a direct current is applied, and an oxidizer that does not generate decomposition products other than oxygen or water is used. A method for treating cyanide-containing water, which comprises recovering metal, decomposing cyanide, and decomposing organic matter by carrying out the treatment.
【請求項2】 電解処理に用いる陽極が、鉛、鉛合金、
二酸化鉛、フェライト又は白金族の金属のあるいは合金
又は白金族の金属の酸化物からなる電極触媒を電極基体
上に形成した電極であることを特徴とする請求項第1項
記載のシアン含有水の処理方法。
2. The anode used for electrolytic treatment is lead, lead alloy,
The cyan-containing water according to claim 1, which is an electrode in which an electrode catalyst made of lead dioxide, ferrite, or an alloy of a platinum group metal or an oxide of a platinum group metal is formed on an electrode substrate. Processing method.
【請求項3】 電解処理に用いる陰極が、鉄、ニツケ
ル、銅、クロム、アルミニウム、チタン、もしくはこれ
らの合金、又はこれらに白金を被覆を施したもの、又は
炭素、黒鉛であることを特徴とする請求項第1〜項記載
のシアン含有水の処理方法。
3. The cathode used in the electrolytic treatment is iron, nickel, copper, chromium, aluminum, titanium, or an alloy thereof, or a platinum coating of these, or carbon or graphite. The method for treating cyanide-containing water according to claim 1.
【請求項4】 酸化剤が過酸化水素、オゾンであること
を特徴とする請求項第1〜3項記載の前記のシアン含有
水の処理方法。
4. The method for treating cyanide-containing water according to claim 1, wherein the oxidizing agent is hydrogen peroxide or ozone.
【請求項5】 酸化処理時に紫外線照射を行うことを特
徴とする請求項第1〜4項記載のシアン含有水の処理方
法。
5. The method for treating cyanide-containing water according to any one of claims 1 to 4, wherein ultraviolet irradiation is performed during the oxidation treatment.
【請求項6】 処理水をそのままもしくは脱イオン処理
した後に再使用することを特徴とする請求項第1〜5項
記載のシアン含有水の処理方法。
6. The method for treating cyanide-containing water according to claim 1, wherein the treated water is reused as it is or after being deionized.
【請求項7】 請求項1記載の方法によって電解槽にお
いて電極上に析出した金属を化学的、もしくは電気化学
的に溶解し、再利用することを特徴とするシアン含有水
中の金属の再利用方法。
7. A method of reusing a metal in cyanide-containing water, which comprises chemically or electrochemically dissolving and reusing a metal deposited on an electrode in an electrolytic cell according to the method of claim 1. .
JP03469596A 1996-02-22 1996-02-22 Cyanide water treatment method Expired - Lifetime JP3783972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03469596A JP3783972B2 (en) 1996-02-22 1996-02-22 Cyanide water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03469596A JP3783972B2 (en) 1996-02-22 1996-02-22 Cyanide water treatment method

Publications (2)

Publication Number Publication Date
JPH09225470A true JPH09225470A (en) 1997-09-02
JP3783972B2 JP3783972B2 (en) 2006-06-07

Family

ID=12421514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03469596A Expired - Lifetime JP3783972B2 (en) 1996-02-22 1996-02-22 Cyanide water treatment method

Country Status (1)

Country Link
JP (1) JP3783972B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081735A (en) * 2000-02-18 2001-08-29 김학준 Apparatus for treatment of wastewater containing cyanide
WO2003066939A1 (en) * 2002-02-06 2003-08-14 Shinko Electric Industries Co., Ltd. Electrolytic recycling device
JP2007063617A (en) * 2005-08-31 2007-03-15 Kurita Water Ind Ltd Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
KR101022946B1 (en) * 2008-08-07 2011-03-17 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
JPWO2012098924A1 (en) * 2011-01-20 2014-06-09 三菱レイヨン株式会社 Waste water treatment apparatus, treatment method, and waste water treatment system
JP2014201785A (en) * 2013-04-03 2014-10-27 エコシステムリサイクリング株式会社 Method and apparatus for recovery of valuable metal
US8932439B2 (en) 2009-09-14 2015-01-13 Sangyoup Suk Electrolytic both for recovering valuable metals, with increased contact specific surface area
JP2015058415A (en) * 2013-09-20 2015-03-30 株式会社オメガ Cleaning method of contaminated soil
JP2016151475A (en) * 2015-02-17 2016-08-22 学校法人近畿大学 Electrochemical occlusion removal method and device of metal ion in metal ion-containing aqueous solution using porous aluminum electrode
CN109809600A (en) * 2019-03-15 2019-05-28 深圳市世清环保科技有限公司 The quickly device of processing chemical nickel Ageing solution
KR102021719B1 (en) * 2019-03-20 2019-09-17 건국대학교 산학협력단 Treatment system and method for wastewater containing heavy metal
JP2020025955A (en) * 2018-08-08 2020-02-20 日鉄環境株式会社 Treatment method of cyan-containing water
CN114873691A (en) * 2022-05-05 2022-08-09 河南清波环境工程有限公司 Multistage electrocatalytic oxidation wastewater treatment device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081735A (en) * 2000-02-18 2001-08-29 김학준 Apparatus for treatment of wastewater containing cyanide
WO2003066939A1 (en) * 2002-02-06 2003-08-14 Shinko Electric Industries Co., Ltd. Electrolytic recycling device
KR100972998B1 (en) * 2002-02-06 2010-07-30 신꼬오덴기 고교 가부시키가이샤 Electrolytic recycling device
JP2007063617A (en) * 2005-08-31 2007-03-15 Kurita Water Ind Ltd Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
KR101022946B1 (en) * 2008-08-07 2011-03-17 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
US8932439B2 (en) 2009-09-14 2015-01-13 Sangyoup Suk Electrolytic both for recovering valuable metals, with increased contact specific surface area
JP2017080740A (en) * 2011-01-20 2017-05-18 三菱レイヨン株式会社 Waste water treatment apparatus, waste water treatment method, and waste water treatment system
JPWO2012098924A1 (en) * 2011-01-20 2014-06-09 三菱レイヨン株式会社 Waste water treatment apparatus, treatment method, and waste water treatment system
JP2014201785A (en) * 2013-04-03 2014-10-27 エコシステムリサイクリング株式会社 Method and apparatus for recovery of valuable metal
JP2015058415A (en) * 2013-09-20 2015-03-30 株式会社オメガ Cleaning method of contaminated soil
JP2016151475A (en) * 2015-02-17 2016-08-22 学校法人近畿大学 Electrochemical occlusion removal method and device of metal ion in metal ion-containing aqueous solution using porous aluminum electrode
JP2020025955A (en) * 2018-08-08 2020-02-20 日鉄環境株式会社 Treatment method of cyan-containing water
CN109809600A (en) * 2019-03-15 2019-05-28 深圳市世清环保科技有限公司 The quickly device of processing chemical nickel Ageing solution
KR102021719B1 (en) * 2019-03-20 2019-09-17 건국대학교 산학협력단 Treatment system and method for wastewater containing heavy metal
CN114873691A (en) * 2022-05-05 2022-08-09 河南清波环境工程有限公司 Multistage electrocatalytic oxidation wastewater treatment device

Also Published As

Publication number Publication date
JP3783972B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
US5965009A (en) Method of producing acid water and electrolytic cell therefor
JP3783972B2 (en) Cyanide water treatment method
JP2002531704A (en) Electrolytic apparatus, method for purifying aqueous solution, and method for synthesizing chemical substance
KR101598493B1 (en) A treating method for waste water using electrolysis and waste water treating system
CA1065272A (en) Treatment of dilute cyanide solutions
KR100311951B1 (en) Apparatus and method for treating a cyanide waste water using a electrolysis
Wu et al. Removal of phenolic compounds by electroassisted advanced process for wastewater purification
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
US3645867A (en) Method of treating cyanide-containing liquors in surface treatment installations
US5225054A (en) Method for the recovery of cyanide from solutions
JP2975577B2 (en) Electrolytic treatment of electroless nickel plating wastewater
JPH10290987A (en) Treatment of liquid residue resulting from photographic processing
JP3973508B2 (en) Water treatment equipment
US6884332B2 (en) Method and apparatus for treating an aqueous electroplating bath solution
JPH08299963A (en) Treatment of cyanide-containing water
JPH09150159A (en) Cod-related component removing method for the component containing water
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
JPH11347558A (en) Method and apparatus for electrolytic treatment of nitrogen oxide-containing water
JP2745278B2 (en) Treatment method for precious metal cyanide bath plating wastewater and washing water
JP2003200171A (en) Treatment method for organic waste liquid
JPH09103787A (en) Treatment of waste liquid containing organic materials
JP3179721B2 (en) Wastewater treatment method and apparatus by discharge electrolysis heating
JP2000263049A (en) Method and apparatus for cleaning barn effluent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term