JPH01162789A - Method and device for recovering metal deposited on carrier - Google Patents

Method and device for recovering metal deposited on carrier

Info

Publication number
JPH01162789A
JPH01162789A JP62319892A JP31989287A JPH01162789A JP H01162789 A JPH01162789 A JP H01162789A JP 62319892 A JP62319892 A JP 62319892A JP 31989287 A JP31989287 A JP 31989287A JP H01162789 A JPH01162789 A JP H01162789A
Authority
JP
Japan
Prior art keywords
metal
cathode
chamber
electrolyte
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62319892A
Other languages
Japanese (ja)
Other versions
JP2520674B2 (en
Inventor
Yoshiyuki Makita
蒔田 善之
Michihiro Akahori
赤堀 道弘
Shigeki Takekoshi
竹腰 滋喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP62319892A priority Critical patent/JP2520674B2/en
Publication of JPH01162789A publication Critical patent/JPH01162789A/en
Application granted granted Critical
Publication of JP2520674B2 publication Critical patent/JP2520674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To recover the metals deposited on carriers with extremely little equipment by eluting the metals by an electrolyte contg. hydrochloric acid in an anode chamber, permeating the metals through neutral films into a cathode chamber, then reducing and depositing the metals. CONSTITUTION:The anode chambers 3 are formed on both sides of an electrolytic cell 1 and the anode chamber 4 is delineated at the center by two sheets of the liquid permeable neutral films 2. Anodes 5 and cathodes 6 are provided to the respective chambers. The alumina carriers 7 on which Pd and Pt are deposited are housed in a fixed bed state in the anode chambers 3. The electrolyte contg. the hydrochloric acid of the prescribed concn. is then supplied to the anode chambers 3 and is permeated through the neutral films 2 into the cathode chamber 4. The electrolyte is filtered by a filter 9 via a circulation line 8 and is thereby electrolyzed. The deposited metals are, therefore, eluted as ions and the ions permeate the neutral films 2 and enter the cathode chamber 4 where the metals are reduced and deposited to the metal simple substance. The carriers 7 in the anode chambers 3 are discharged from a cylindrical body 10 for air lifting by the compressed air from air valves 11 and the fresh carriers 7 are successively supplied from the upper part of the anode chambers 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属及び/又は金属化合物が担持された担体
特に自動車用触媒担体から前記金属等を金属イオンとし
て溶出させかつ該金属イオンを金属単体として回収する
ための方法及び該方法の実施に使用するための方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to eluting metals and/or metal compounds as metal ions from a carrier supporting a metal and/or a metal compound, particularly a catalyst carrier for automobiles, and converting the metal ions into metal ions. It relates to a method for recovering a single substance and a method for use in carrying out the method.

(従来技術とその問題点) 各種金属類特に白金族金属類は、各種化学反応用又は自
動車触媒用の触媒活性物質あるいは電子機器の接点等の
部品などに広く使用されている。
(Prior art and its problems) Various metals, especially platinum group metals, are widely used as catalytically active substances for various chemical reactions or automobile catalysts, or as parts such as contacts of electronic devices.

これらの触媒や部品は使用時間の経過に従ってその性能
が低下し、最終的には寿命に達して廃棄されるが、特に
白金族金属等の貴金属は高価であるため回収して再利用
することが経済的であるとともに資源の有効利用にも結
びつく。
The performance of these catalysts and parts deteriorates over time, and eventually they reach the end of their service life and are discarded, but precious metals such as platinum group metals are particularly expensive, so they cannot be recovered and reused. It is economical and also leads to effective use of resources.

従来から該観点に基づき、各種金属類特に担体上に担持
された貴金属類の回収が種々の方法により試みられてい
るが、それぞれ技術的な欠点を有している。まず担体上
の貴金属を溶出させるための手段としては粉状又は粒状
の貴金属含有担体を硝酸l:塩酸3の混酸である王水で
溶解する王水溶解法が主流であるが、該方法は次のよう
な多数の欠点を有している。つまり(a)王水溶解には
高温を必要とし、(b)溶解時にNOXガスが発生し、
(C)溶出効率を高めるためには貴金属濃度を向上させ
ることが必要であり、(d)粉状又は粒状体が溶出液と
ともに取り出される等の欠点があり、従って加熱のため
の大量なエネルギを消費し、NOXガスの無害化のため
の設備と手間を必要とし、溶解効率が低下し、更に粉状
又は粒状体除去のための洗浄操作等が煩雑になるという
回避し難い不都合が生ずる。
Based on this viewpoint, various methods have been attempted to recover various metals, particularly noble metals supported on carriers, but each method has its own technical drawbacks. First, the mainstream method for eluting noble metals on a carrier is the aqua regia dissolution method, in which powdery or granular noble metal-containing carriers are dissolved in aqua regia, which is a mixed acid of 1 part nitric acid and 3 parts hydrochloric acid. It has many drawbacks such as: In other words, (a) high temperatures are required to dissolve aqua regia, (b) NOX gas is generated during dissolution,
(C) In order to increase the elution efficiency, it is necessary to improve the precious metal concentration, and (d) There are disadvantages such as powder or granules being taken out with the eluate, and therefore a large amount of energy is required for heating. This causes unavoidable inconveniences such as consuming the NOX gas, requiring equipment and labor to detoxify the NOX gas, reducing dissolution efficiency, and complicating cleaning operations for removing powder or granules.

しかも該王水溶解法により担体から分離した貴金属を回
収するためには、次のような方法が採用されているがそ
れぞれ特有の欠点を有している。
Moreover, in order to recover the precious metal separated from the carrier by the aqua regia dissolution method, the following methods have been adopted, but each method has its own drawbacks.

i)薬剤還元法 この方法は、回収すべき貴金属イオンを含有する溶液に
、ギ酸、シュウ酸、ヒドラジン、水素化ホウ素ナトリウ
ム等の還元剤を加えて前記貴金属イオンを還元して金属
とし、これを回収する方法であるが、前記還元剤はいず
れも高価であり回収コストが増大し、又該還元剤を添加
するため、金属回収後の溶液に各種処理(例えばpH調
整、COD除去等)を行って再生しなければならないと
いう欠点がある。
i) Chemical reduction method In this method, a reducing agent such as formic acid, oxalic acid, hydrazine, sodium borohydride, etc. is added to a solution containing precious metal ions to be recovered to reduce the precious metal ions to metals. However, the above-mentioned reducing agents are all expensive and increase the recovery cost, and in order to add the reducing agent, the solution after metal recovery is subjected to various treatments (for example, pH adjustment, COD removal, etc.). The disadvantage is that it must be played back.

ii )金属置換還元法 この方法は、貴金属等が溶解している溶液に該貴金属よ
りも酸化還元電位が卑な金属(例えば亜鉛、アルミニウ
ム)を粉状又は粒状の状態で添加して、溶解している前
記貴金属イオンを貴金属の状態に還元する方法であるが
、他の金属を添加するため薬剤還元法と同様の欠点があ
る。
ii) Metal substitution reduction method In this method, a metal whose oxidation-reduction potential is more base than that of the noble metal (e.g. zinc, aluminum) is added in the form of powder or granules to a solution in which a noble metal, etc. is dissolved. This method reduces the noble metal ions that are present in the ionizing process to a noble metal state, but since other metals are added, it has the same drawbacks as the chemical reduction method.

iii )電解回収法 この方法は、溶解している金属イオンを電解により陰極
上へ電析させて該陰極上から剥離し回収するか、又は溶
液中に電気伝導性の粒子を加え、該粒子上に金属を電析
させる方法である。しかしこの方法では、電解に先立ち
王水中の易溶性クロロ錯体を蒸発乾固により単離し、こ
れを塩酸に溶解して塩酸酸性クロロ錯体とする必要があ
るため大量の液を蒸発させる必要がある。しかも陰極電
析では還元される金属が陰極上に析出するため、該金属
を回収するためには電解作業を停止し、前記陰極上に電
析した金属を剥離する必要があり、操作効率が大幅に低
下するという欠点があり、又電気伝導性粒子を使用する
方法では、使用する電解槽を該電気伝導性粒子の使用に
適した複雑な構造に改造する必要があり、該改造費用が
嵩むという欠点がある。
iii) Electrolytic recovery method In this method, dissolved metal ions are electrolytically deposited onto a cathode and then recovered by peeling off from the cathode, or electrically conductive particles are added to a solution and the metal ions are deposited on the cathode. This is a method of electrodepositing metal. However, in this method, prior to electrolysis, it is necessary to isolate the easily soluble chlorocomplex in aqua regia by evaporation to dryness and dissolve it in hydrochloric acid to form a hydrochloric acid acidic chlorocomplex, so it is necessary to evaporate a large amount of liquid. Moreover, in cathodic electrodeposition, the metal to be reduced is deposited on the cathode, so in order to recover the metal, it is necessary to stop the electrolytic operation and peel off the metal deposited on the cathode, which greatly reduces operational efficiency. In addition, the method using electrically conductive particles requires modifying the electrolytic cell to have a complicated structure suitable for the use of the electrically conductive particles, which increases the cost of modification. There are drawbacks.

iv)化学的回収法 この方法は、金属イオンを溶解している溶液を濃縮し脱
硝し金属塩化物とした後、該塩化物を温水又は希塩酸に
溶解し塩化物溶液から化学的に回収する方法であるが、
工程数が多くコスト増を招くという欠点がある。
iv) Chemical recovery method In this method, a solution in which metal ions are dissolved is concentrated and denitrated to form a metal chloride, and then the chloride is dissolved in warm water or dilute hydrochloric acid to chemically recover it from the chloride solution. In Although,
The drawback is that it requires a large number of steps and increases costs.

上記した王水法はコスト高に繋がる種々の欠点を有する
とともに、担体からの金属の溶出用と該金属の回収用と
して全く異なった工程を使用する必要があるため、コス
ト的にも操作的にも満足できるものではなかった。
The aqua regia method described above has various drawbacks that lead to high costs, and requires the use of completely different processes for eluting metals from the carrier and recovering the metals, so it is not satisfactory in terms of cost and operation. It wasn't possible.

つまり廃触媒等からの金属回収操作では、如何にして安
価かつ簡便に金属を得るかが最も重要な課題の一つであ
り、上記王水法に換わるべき画期的方法として電解法が
提案された。
In other words, in metal recovery operations from waste catalysts, etc., one of the most important issues is how to obtain metals cheaply and easily, and electrolysis has been proposed as an innovative method to replace the aqua regia method.

該電解法は塩酸を電解液とし不溶性電極を設けた電解槽
で電解により塩素を発生させ、該塩素を含んだ電解液を
、貴金属を担持した担体と接触させ貴金属を溶出させる
方法であり、必要に応じて該溶出貴金属を含んだ電解液
を電解槽の陰極室で還元して陰極上に析出させる方法で
ある。
This electrolysis method is a method in which chlorine is generated by electrolysis in an electrolytic tank equipped with an insoluble electrode using hydrochloric acid as an electrolyte, and the chlorine-containing electrolyte is brought into contact with a carrier supporting a precious metal to elute the precious metal. In this method, the electrolytic solution containing the eluted precious metal is reduced in the cathode chamber of the electrolytic cell and deposited on the cathode.

該電解法は、高価な薬剤の使用を回避ししかも公害を誘
発する有害物質の副成もないため、非常に優れた貴金属
類の回収法として注目を集めている。しかしながら王水
法と比較して格段の技術的優位性を有する該電解法にお
いてもより以上の改良が望ましいことは当然である。
The electrolytic method avoids the use of expensive chemicals and does not produce by-products of harmful substances that cause pollution, so it is attracting attention as an excellent method for recovering precious metals. However, it is natural that further improvements are desirable even in this electrolytic method, which has a significant technical advantage over the aqua regia method.

例えば特開昭62−158833号公報に開示されてい
る貴金属回収法は、塩酸を電解槽中で電解して含塩素塩
酸を得、これを電解槽外に取り出して適宜の容器中で貴
金属を担持させた担体に接触させて該貴金属を溶出し、
溶出した該貴金属を含む溶液を電解槽の陰極室に循環さ
せて陰極室中で還元し、還元された貴金属を陰極上に析
出させて回収させる方法である。
For example, in the precious metal recovery method disclosed in JP-A-62-158833, hydrochloric acid is electrolyzed in an electrolytic cell to obtain chlorinated hydrochloric acid, which is taken out of the electrolytic cell and placed in an appropriate container to support precious metals. The noble metal is eluted by contacting with a carrier prepared by
In this method, a solution containing the eluted noble metal is circulated to the cathode chamber of the electrolytic cell, reduced therein, and the reduced noble metal is deposited on the cathode and recovered.

該方法では担体上の貴金属の溶出を電解槽外で行うよう
にしているため、貴金属溶出用の設備が必要となるとと
もに循環ラインの設置が不可欠であり、しかも陰極上に
貴金属が析出するため電解を定期的に停止して陰極上か
らの貴金属の剥離回収操作が必要となり特に設備的及び
操作的により簡略化された経済的な貴金属回収法の出現
が要請されている。
In this method, the precious metals on the carrier are eluted outside the electrolytic tank, so equipment for eluting the precious metals is required and the installation of a circulation line is essential.Moreover, since the precious metals are deposited on the cathode, the electrolytic It is necessary to periodically stop the process and recover the precious metal from the cathode.Therefore, there is a particular need for an economical precious metal recovery method that is simpler in terms of equipment and operation.

(発明の目的) 本発明は、上記従来技術の欠点に鑑み、より簡略化した
構造を有する電解反応装置を利用して担体上に担持され
た金属類を回収するための方法と該方法に使用する装置
を提供することを目的とする。
(Object of the Invention) In view of the drawbacks of the prior art described above, the present invention provides a method for recovering metals supported on a carrier using an electrolytic reaction device having a simpler structure, and a method used in the method. The purpose is to provide a device for

(問題点を解決するための手段) 本発明は、第1に、液透過性中性膜により陽極室と陰極
室に区画された電解槽の陽極室に金属及び/又は金属化
合物が担持された担体を収容し、該陽極室に塩酸を含む
電解液を供給して塩素を電解的に発生させて前記金属及
び/又は金属化合物を前記電解液中に対応する金属イオ
ンとして溶出させ、該電解液を前記中性膜を通して前記
陰極室に透過させ、該陰極室において金属単体に還元し
析出させることを含んで成る担体上に担持された金属の
回収方法であり、第2に、金属及び/又は金属化合物が
担持された担体が収容され、塩酸を含む電解液を電解す
ることにより発生させた塩素により前記金属及び/又は
金属化合物を対応する金属イオンとして前記電解液中に
溶出させるための陽極室と、該電解液中の金属イオンを
対応する金属単体に還元し析出させるための陰極室と、
電”解槽を前記陽極室及び陰極室に区画する液透過性中
性膜と、前記陽極室中の電解液を該中性膜を通して前記
陰極室中へ透過させるための手段とを含んで成る担体上
に担持された金属の回収用装置である。
(Means for Solving the Problems) The present invention provides, firstly, that a metal and/or a metal compound is supported in the anode chamber of an electrolytic cell that is divided into an anode chamber and a cathode chamber by a liquid-permeable neutral membrane. accommodating a carrier, supplying an electrolytic solution containing hydrochloric acid to the anode chamber to electrolytically generate chlorine and eluting the metal and/or metal compound as a corresponding metal ion into the electrolytic solution; A method for recovering a metal supported on a carrier, which comprises transmitting a metal through the neutral membrane into the cathode chamber, reducing it to an elemental metal in the cathode chamber, and depositing the metal. an anode chamber in which a carrier carrying a metal compound is accommodated, and the metal and/or metal compound is eluted into the electrolyte as a corresponding metal ion by chlorine generated by electrolyzing an electrolyte containing hydrochloric acid; and a cathode chamber for reducing and precipitating metal ions in the electrolyte into corresponding metal elements;
a liquid-permeable neutral membrane that partitions the electrolytic cell into the anode chamber and the cathode chamber; and means for permeating the electrolyte in the anode chamber through the neutral membrane and into the cathode chamber. This is a device for recovering metals supported on a carrier.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、塩酸の電解により発生する含塩素塩酸による
担体上の金属類の溶出による金属イオンの形成を、該担
体を電解槽の陽極室に収容して該陽極室内で行い、前記
溶出金属イオンを含存する電解液を中性膜を通して陰極
室に透過させ、該陰極室内で前記金属イオンの還元を行
うことにより、単一の電解槽のみで担体上に担持された
金属類の溶出及び回収を行い得るようにしたことを特徴
とする。従って従来の電解法における循環ラインは本発
明においては不可欠ではなく、しかも陰極物質を適宜選
択することにより、還元された金属を陰極上に析出させ
ず陰極室内に沈澱させることができ、電解を停止するこ
となく連続的に溶出回収操作を行うことも可能になる。
In the present invention, the formation of metal ions by elution of metals on a carrier by chlorinated hydrochloric acid generated by electrolysis of hydrochloric acid is carried out in the anode chamber of an electrolytic cell by accommodating the carrier in an anode chamber, and the eluted metal ions are By passing an electrolytic solution containing ions into the cathode chamber through a neutral membrane and reducing the metal ions in the cathode chamber, the metals supported on the carrier can be eluted and recovered using only a single electrolytic cell. It is characterized by making it possible to perform. Therefore, the circulation line in the conventional electrolysis method is not essential to the present invention, and by appropriately selecting the cathode material, the reduced metal can be precipitated in the cathode chamber without being deposited on the cathode, and the electrolysis can be stopped. It also becomes possible to perform elution and recovery operations continuously without having to do so.

次に本発明に係わる電解における担体及び電解槽を構成
する各要素につき説明する。
Next, each element constituting the carrier and electrolytic cell in electrolysis according to the present invention will be explained.

本発明に使用する担体は、アルミナ、シリカ、炭素等の
無機担体と、イオン交換樹脂用等の有機担体が含まれる
。該担体に担持され本発明に従って溶出回収される金属
類は特に限定されないが、水素よりイオン化傾向の低い
(過電圧の高い)金属、例えばパラジウム、白金、金、
銀、ルテニウム、銅等の他にイオン化傾向の高いニッケ
ル等が金まれる。
The carriers used in the present invention include inorganic carriers such as alumina, silica, and carbon, and organic carriers such as those for ion exchange resins. The metals supported on the carrier and eluted and recovered according to the present invention are not particularly limited, but include metals that have a lower ionization tendency (higher overvoltage) than hydrogen, such as palladium, platinum, gold,
In addition to silver, ruthenium, copper, etc., nickel, which has a high ionization tendency, is used as gold.

これらの担体は通常粒状又は粉状でありその場合にはそ
のまま電解槽の陽極室に収容すればよいが、例えば近年
自動車用触媒として汎用されているハニカム型触媒の場
合には粉砕して数ミリメートル程度の大きさにして収容
することが望ましい。
These carriers are usually in the form of granules or powder, and in that case, they can be stored as they are in the anode chamber of the electrolytic cell, but for example, in the case of honeycomb-type catalysts, which have been widely used as automobile catalysts in recent years, they can be crushed into a few millimeters. It is desirable to accommodate it in a reasonable size.

陽極室に収容される該担体は、いわゆる固定床状態で収
容されても流動床状態で収容されてもよいが、流動床状
態の場合にはより微細に粉砕した後に使用してもよい。
The carrier stored in the anode chamber may be stored in a so-called fixed bed state or in a fluidized bed state, but in the case of a fluidized bed state, it may be used after being pulverized more finely.

又該担体は、金属の溶出を容易にするため及び不純物を
除去するために予め還元処理を行うことが望ましい。
Further, it is desirable that the carrier is previously subjected to a reduction treatment in order to facilitate metal elution and to remove impurities.

本発明に使用する陽極の材料は特に限定されず、寸法安
定性陽極(DSA)、炭素(グラファイト)電極、白金
電極等の発生する塩素に対する耐性のある不溶性陽極を
任意に使用することができる。
The material of the anode used in the present invention is not particularly limited, and any insoluble anode that is resistant to generated chlorine, such as a dimensionally stable anode (DSA), a carbon (graphite) electrode, or a platinum electrode, can be used.

本発明に使用する陰極の材料は特に限定されず任意の材
料を使用することができる。しかしながら担体から溶出
した金属イオンの還元を行う該陰極は、還元された金属
をその陰極表面に電析させずに陰極室内に沈澱させるこ
とができるものであると、陰極上に電析した金属の剥離
が不要となるため電解を停止することなく連続的に溶出
回収作業を継続することができる。従って該陰極材料と
しては、金属電析に対しては過電圧が高く、水素発生に
対しては過電圧の低い材料つまり炭素電極を選択するこ
とが好ましい。金属イオンを含有する溶液の電解還元に
おける陰極表面での反応は、金属電析と水素発生との競
争反応であり、陰極表面への金属の析出を防止するため
には当然に金属電析が起こり難く (金属電析に対する
過電圧が高く)、水素発生の起こり易い(水素発生に対
する過電圧が低い)材料を選択することにより水素発生
のみをほぼ選択的に生じさせることが望ましいからであ
る。
The material of the cathode used in the present invention is not particularly limited, and any material can be used. However, if the cathode that reduces the metal ions eluted from the carrier is capable of precipitating the reduced metal in the cathode chamber without electrodepositing it on the surface of the cathode, the metal ions deposited on the cathode will be reduced. Since stripping is not necessary, elution and recovery work can be continued continuously without stopping electrolysis. Therefore, as the cathode material, it is preferable to select a material that has a high overvoltage for metal electrodeposition and a low overvoltage for hydrogen generation, that is, a carbon electrode. The reaction on the cathode surface during electrolytic reduction of a solution containing metal ions is a competitive reaction between metal electrodeposition and hydrogen generation, and in order to prevent metal deposition on the cathode surface, metal electrodeposition naturally occurs. This is because it is desirable to almost selectively generate only hydrogen by selecting a material that is difficult (high overvoltage for metal electrodeposition) and easy to generate hydrogen (low overvoltage for hydrogen generation).

通常の陰極材料としては、ニッケル、鉄、ステンレス等
、及び鉛、銀等を主成分とする材料が使用されているが
、前者は金属電析、水素発生の両者に対する過電圧が共
に低いため適当ではなく、後者は金属電析、水素発生の
両者に対する過電圧が共に高いためあまり適当ではない
Commonly used cathode materials include nickel, iron, stainless steel, etc., as well as materials whose main components are lead, silver, etc., but the former is not suitable because the overvoltage for both metal electrodeposition and hydrogen generation is low. However, the latter is not very suitable because the overvoltage for both metal electrodeposition and hydrogen generation is high.

これに対し、本発明で好ましく使用できるグラファイト
、活性炭等の炭素材料は、金属電析に対する過電圧は高
いが水素発生に対する過電圧は低く、陰極表面での反応
を水素発生にのみ限定し、金属電析を防止するのに効果
的である。
On the other hand, carbon materials such as graphite and activated carbon that can be preferably used in the present invention have a high overvoltage for metal electrodeposition but a low overvoltage for hydrogen generation, and limit the reaction on the cathode surface only to hydrogen generation. effective in preventing

陰極表面での金属電析をより以上に効果的に阻害するた
めには、電流密度を大きくして水素発生速度を増大させ
て、電析しようとする金属の陰極への析出を防止するこ
とが好ましい。好ましくは電流密度は5A/d+s”以
上、より好ましくはIOA7dm”以上、最も好ましく
は15A/dm”以上とする。他の電解条件にも依存す
るが、電流密度15A/dI11!では全析出量の80
%が金属粒子として陰極室内に沈澱する。
In order to more effectively inhibit metal electrodeposition on the cathode surface, it is necessary to increase the current density and increase the hydrogen generation rate to prevent the metal to be deposited on the cathode. preferable. Preferably, the current density is 5 A/d+s" or more, more preferably IOA 7 dm" or more, and most preferably 15 A/dm" or more. Although it depends on other electrolytic conditions, at a current density of 15 A/dI11!, the total amount of precipitation is 80
% precipitates in the cathode chamber as metal particles.

上記陰極及び陽極を使用して電解槽を構成するには、電
解槽を隔膜を使用して陰極室と陽極室に区画する必要が
ある。これは主に陽極室に収容された担体の陰極室への
流入防止と陰極室で還元された金属単体が陽極室へ逆に
流入して再度溶解されることを防止するためである。該
隔膜の材料は上記流入を防止でき、しかも陽極室で溶出
された金属イオンを含む電解液が透過−できるものでな
ければならず液透過性中性膜とする。該中性膜の例とし
ては濾布、素焼板、アスベストシート、碍子等がある。
In order to construct an electrolytic cell using the above cathode and anode, it is necessary to divide the electrolytic cell into a cathode chamber and an anode chamber using a diaphragm. This is mainly to prevent the carrier housed in the anode chamber from flowing into the cathode chamber and to prevent the metal element reduced in the cathode chamber from flowing back into the anode chamber and being dissolved again. The material of the diaphragm must be capable of preventing the above-mentioned inflow, and must also be able to pass through the electrolytic solution containing the metal ions eluted in the anode chamber, making it a liquid-permeable neutral membrane. Examples of the neutral membrane include filter cloth, clay plate, asbestos sheet, and insulator.

該中性膜として比較的強度の低い濾布等を使用する場合
には、例えば該濾布を塩化ビニル板とチタン板でサンド
インチ構造として補強した複合構造のものを使用するこ
とが好ましい。
When a relatively low-strength filter cloth or the like is used as the neutral membrane, it is preferable to use, for example, a composite structure in which the filter cloth is reinforced with a vinyl chloride plate and a titanium plate as a sandwich structure.

電解槽の構造は、箱型の電解槽を前記中性膜を使用して
左右に2分したものでも、筒状の電解槽を円筒形の中性
膜を使用して外側の陰極室と内側の陽極室に区画したも
のでも、あるいは箱型の電解槽を複数の中性膜を使用し
て複数の電解室に区画し、各電解室用の電極を複極式又
は単極式に接続して複数の電解室で金属の溶出あるいは
還元を行うようにしたものでもよい。
The structure of an electrolytic cell can be one in which a box-shaped electrolytic cell is divided into left and right halves using the above-mentioned neutral membrane, or a cylindrical electrolytic cell is separated into an outer cathode chamber and an inner one by using a cylindrical neutral membrane. Alternatively, a box-shaped electrolytic cell can be divided into multiple electrolytic chambers using multiple neutral membranes, and the electrodes for each electrolytic chamber can be connected in a bipolar or unipolar manner. Alternatively, the metal may be eluted or reduced in a plurality of electrolytic chambers.

電解に際しては、該電解槽の陽極室で含塩素塩酸により
溶出される金属イオンを含む電解液を前記中性膜を通し
て陰極室へ透過させる手段が必要である。これは通常は
陽極液と陰極液の液面の高さを調節することにより達成
することができる。
During electrolysis, a means is required to allow the electrolytic solution containing metal ions eluted by chlorinated hydrochloric acid in the anode chamber of the electrolytic cell to permeate through the neutral membrane to the cathode chamber. This can usually be accomplished by adjusting the level of the anolyte and catholyte.

つまり陽極液の高さを常に陰極液の高さより高く維持し
ておけば前記中性膜に掛かる両極液間の圧力差により電
解液は常に陽極室から陰極室に向かって前記中性膜を透
過し、逆流することがない。
In other words, if the height of the anolyte is always maintained higher than the height of the catholyte, the electrolyte will always permeate through the neutral membrane from the anode chamber to the cathode chamber due to the pressure difference between the two anolytes on the neutral membrane. and there is no backflow.

陰極液を定期的又は継続的に外部に取り出しかつ陽極室
に循環させることにより、陽極液の高さを陰極液の高さ
を維持することが好ましい。
Preferably, the anolyte level is maintained at the catholyte level by periodically or continuously withdrawing the catholyte to the outside and circulating it into the anolyte chamber.

特に前述した通り、陰極として炭素電極を使用し該陰極
により還元される金属を陰極室内に沈澱させる場合には
、該陰極液の取り出し及び濾過等の分離操作により還元
された金属の回収も行うことができるのでより好ましい
。又陰極液には前記アルミナ等の担体の微細な残渣が含
まれることもあり、この場合には該残渣を濾過等により
分離した後、陽極室に循環させることが好ましい。
In particular, as mentioned above, when a carbon electrode is used as the cathode and the metal reduced by the cathode is precipitated in the cathode chamber, the reduced metal must also be recovered by taking out the catholyte and performing separation operations such as filtration. This is more preferable because it allows Further, the catholyte may contain fine residues of the carrier such as alumina, and in this case, it is preferable to separate the residues by filtration or the like and then circulate them to the anode chamber.

前記担体を収容した陽極室においては、収容方式が固定
床型か流動床型かに応じて適宜循環する電解液を利用す
ることが望ましい。例えば流動床の場合には収容した担
体を流動させるために循環電解液を陽極室下方から比較
的高速度で供給するようにし、又固定床の場合にも隣接
する担体間部分における担持金属の電解液との接触を良
好にするために例えば循環電解液を陽極室上方から該固
定床を通過させた筒状の供給管により陽極室下部に供給
し該電解液の上昇力により僅かに担体を流動させること
が好ましい。
In the anode chamber containing the carrier, it is desirable to use an electrolytic solution that is appropriately circulated depending on whether the accommodation method is a fixed bed type or a fluidized bed type. For example, in the case of a fluidized bed, a circulating electrolyte is supplied from below the anode chamber at a relatively high rate in order to fluidize the accommodated carriers, and in the case of a fixed bed, the supported metal is electrolyzed between adjacent carriers. In order to improve contact with the liquid, for example, a circulating electrolyte is supplied from above the anode chamber to the lower part of the anode chamber through a cylindrical supply pipe passed through the fixed bed, and the carrier is slightly fluidized by the rising force of the electrolyte. It is preferable to let

なお陽極室に収容された担体上の金属が殆ど溶出した場
合に電解を停止することなく担体を交換するために、前
記陽極室の下端に抜出口を設け、該抜出口から前記担体
を取り出すとともに同量の金属担持担体を陽極室に加え
るようにすることが好ましい。
In addition, in order to replace the carrier without stopping electrolysis when most of the metal on the carrier housed in the anode chamber is eluted, an extraction port is provided at the lower end of the anode chamber, and the carrier is taken out from the extraction port. Preferably, the same amount of metal support is added to the anode chamber.

電解の間、特に陰極として炭素電極を使用し、還元され
た金属の陰極上への電析を防止しようとする場合には、
陰極室内を撹拌することが好ましい。
During electrolysis, especially when using a carbon electrode as the cathode and trying to prevent the deposition of the reduced metal onto the cathode,
It is preferable to stir the inside of the cathode chamber.

上述の構成から成る本発明方法により、例えばパラジウ
ムを担持した触媒担体の該パラジウムの溶出回収を行う
場合には、まず担体上のパラジウムが含塩素塩酸中の塩
素により塩素化されて塩化パラジウムに変換されるとと
もに電解液中に溶出しパラジウムイオンとなる。該パラ
ジウムイオンは電解液に溶解した状態で上記した両極室
間の圧力差等に応じて前記中性膜方向に移動し、該中性
膜を透過して陰極室に達する。該陰極室において該パラ
ジウムイオンは発生している水素ガスによりあるいは陰
極と接触することにより次式に従っPd”  +   
H,−Pd   +   2H”で還元されて金属パラ
ジウムとなり、陰極室内に沈澱するか陰極上に電析する
。なお特に陰極室を攪拌した場合は該金属粒子の成長が
観察されるが、比較的その粒径が小さ(、溶液とともに
循環してもポンプや配管等の閉塞や摩耗といった問題が
生ずることがない。
For example, when elution and recovery of palladium from a catalyst carrier supporting palladium is performed by the method of the present invention having the above-mentioned configuration, palladium on the carrier is first chlorinated with chlorine in chlorine-containing hydrochloric acid and converted to palladium chloride. At the same time, it elutes into the electrolyte and becomes palladium ions. The palladium ions, dissolved in the electrolytic solution, move toward the neutral membrane depending on the pressure difference between the two electrode chambers, pass through the neutral membrane, and reach the cathode chamber. In the cathode chamber, the palladium ions are converted to Pd" + by the generated hydrogen gas or by contact with the cathode according to the following formula:
H, -Pd + 2H" to form metal palladium, which precipitates in the cathode chamber or is deposited on the cathode. Particularly when the cathode chamber is stirred, the growth of the metal particles is observed, but it is relatively slow. Because of its small particle size, it does not cause problems such as clogging or abrasion of pumps, piping, etc. even if it is circulated together with the solution.

上記した本発明方法によると、担体上に担持された金属
を単一電解槽内で高価な薬剤を使用することなくほぼ定
量的に溶出し回収することができ、しかも陰極として炭
素電極を使用しかつ陰極電流密度を調節すると、陰極上
に析出させることなく全であるいは殆どの金属粒子を陰
極室内に沈澱させることが可能になる。従って本発明の
好ましい態様においては、単一の電解槽で高価な薬剤を
使用することな(しかも電解操作を停止することなく連
続的に、担体上に担持された金属を溶出し回収すること
が可能になる。
According to the method of the present invention described above, metals supported on a carrier can be eluted and recovered almost quantitatively in a single electrolytic cell without using expensive chemicals, and moreover, a carbon electrode is used as a cathode. And by adjusting the cathode current density, it is possible to precipitate all or most of the metal particles into the cathode chamber without depositing them on the cathode. Therefore, in a preferred embodiment of the present invention, the metal supported on the carrier can be eluted and recovered continuously in a single electrolytic cell without using expensive chemicals (and without stopping the electrolytic operation). It becomes possible.

以下添付図面を参照しながら本発明の実施例を記載する
が、本発明は該実施例に限定されるものではない。
Examples of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to these examples.

(実施例1) 縦20cI11.横33cm、深さ54cm (有効容
量は20cm x33cm X 45cm = 29.
71 )の箱型電解槽lを、ビニール製網と濾布を塩化
ビニール板とチタン板で両側から支持した液透過製中性
膜2枚2で3分し、両側に陰極室3を中央部に陰極室4
を形成した。各陽極室3には陽極5である縦55cm 
、横20cm 、厚さ1cmのグラファイト板各1枚計
2枚を電解槽壁に密着するように設置してそれぞれのグ
ラファイト板の片面のみが陽極として有効に機能するよ
うにし、かつ前記陰極室には陰極6である縦55cm、
横10cm厚さ1cmのグラファイト板1枚を設置した
(Example 1) Vertical 20cI11. Width 33cm, depth 54cm (effective capacity is 20cm x 33cm x 45cm = 29.
The box-shaped electrolytic cell 1 of 71) is divided into three by two liquid-permeable neutral membranes 2 with a vinyl mesh and filter cloth supported from both sides by vinyl chloride plates and titanium plates, and cathode chambers 3 are placed on both sides in the center. Cathode chamber 4
was formed. Each anode chamber 3 has an anode 5 of 55 cm in length.
A total of two graphite plates, one each 20 cm wide and 1 cm thick, were installed in close contact with the wall of the electrolytic cell so that only one side of each graphite plate effectively functioned as an anode, and in the cathode chamber. is the cathode 6, which is 55 cm long;
A graphite plate with a width of 10 cm and a thickness of 1 cm was installed.

なお該電解槽の周囲には電解液冷却用のジャケット(図
示路)を設置し冷却水を流して電解液の冷却を行った。
A jacket (shown in the figure) for cooling the electrolytic solution was installed around the electrolytic cell, and cooling water was allowed to flow through the jacket to cool the electrolytic solution.

該電解槽1の陽極室3に下記表1に示す量のパラジウム
及び白金を担持したアルミナ担体7を固定床状態で収容
し、電流量、電圧及び電解液全量を表中に示す値に維持
しながら224g/lの塩酸濃度を有する電解液を供給
しかつ同量を陰極室から循環ライン8に抜き出し含まれ
る金属単体を該ライン8に併設されたフィルター9によ
り濾別し、48.21!の電解液を使用して、前記ジャ
ケントに冷却水を流して電解液温度を60℃に維持しな
がら循環させ、かつ拡径した下端部が陽極室内下部に達
している直径19ma+長さ60cmのエアリフト用筒
状体10の下端に陽極室底板に設置した空気バルブ11
から圧縮空気を供給して陽極室内の担体を陽極室内から
電解槽外に取り出し、陽極室上部より新しい担体を供給
した。なお陽極液量は各室3.81で計7.61、陰極
液量は7.81に維持した。通電時の陽極及び陰極電流
密度及び電解液中の金属濃度は表1に示す通りであった
The alumina carrier 7 carrying palladium and platinum in the amounts shown in Table 1 below was housed in the anode chamber 3 of the electrolytic cell 1 in a fixed bed state, and the amount of current, voltage, and total amount of electrolyte were maintained at the values shown in the table. At the same time, an electrolytic solution having a hydrochloric acid concentration of 224 g/l is supplied, and the same amount is extracted from the cathode chamber to the circulation line 8, and the elemental metal contained therein is filtered out by the filter 9 attached to the line 8, and 48.21! An air lift with a diameter of 19 m and a length of 60 cm uses an electrolyte of Air valve 11 installed on the bottom plate of the anode chamber at the lower end of the cylindrical body 10
The carrier in the anode chamber was taken out of the electrolytic cell by supplying compressed air from the anode chamber, and a new carrier was supplied from the upper part of the anode chamber. The amount of anolyte was maintained at 3.81 in each chamber, totaling 7.61, and the amount of catholyte was maintained at 7.81. The anode and cathode current densities and metal concentrations in the electrolyte during energization were as shown in Table 1.

330分経過後に通電を停止し、陰極6上に析出してい
る金属を回収し、陰極室内に沈澱している金属量及び電
解液中に残存している金属量を測定し、更に処理済担体
上に依然として担持されている金属の量を計測し、溶出
率を算出し表1に示す結果を得た。
After 330 minutes, the electricity supply was stopped, the metal precipitated on the cathode 6 was collected, the amount of metal precipitated in the cathode chamber and the amount of metal remaining in the electrolyte was measured, and the amount of metal deposited on the cathode chamber was measured. The amount of metal still supported on the sample was measured, the elution rate was calculated, and the results shown in Table 1 were obtained.

表    1 (実施例2) 実施例1と同様の装置を使用し、表1の実施例2の上欄
に記載された条件に従って白金、パラジウム及びロジウ
ムを担持した自動車触媒からの各金属の溶出回収を試み
た。その結果を表1の実施例2の下欄に示す。
Table 1 (Example 2) Using the same apparatus as in Example 1, elution and recovery of each metal from an autocatalyst supporting platinum, palladium, and rhodium according to the conditions listed in the upper column of Example 2 in Table 1. I tried. The results are shown in the lower column of Example 2 in Table 1.

(実施例3) 実施例1と同様の装置を使用し、表1の実施例3の上欄
に記載された条件に従って白金、パラジウム及びロジウ
ムを担持した自動車触媒からの各金属の溶出回収を試み
た。その結果を表1の実施例3の下欄に示す。
(Example 3) Using the same apparatus as in Example 1, attempts were made to elute and recover each metal from an autocatalyst supporting platinum, palladium, and rhodium according to the conditions listed in the upper column of Example 3 in Table 1. Ta. The results are shown in the lower column of Example 3 in Table 1.

(実施例4) 白金の品位(担持量)が858g/ tでありパラジウ
ムの品位が108g/ tである廃触媒A又は白金の品
位が304g/ tでありパラジウムの品位が610g
/lである廃触媒Bを使用し、通電量200A、電解液
温度60℃、電解液塩酸濃度20〜35%、開始時廃触
媒収容量9.0kg、廃触媒装入及び排出量2 kg/
回、廃触媒装入間隔15〜30分/回として廃触媒上の
白金及びパラジウムの?容出回収を行い、回収白金及び
パラジウム品位、終了時の未溶解残渣の白金及びパラジ
ウム品位及び電解液酸濃度を測定したところ表2に示す
結果が得られた。又上記実施例1と同様に電解液中、洗
浄液中及び回収金属への溶出率と、未溶解率を算出した
結果を表3に示す。
(Example 4) Spent catalyst A with platinum grade (supported amount) of 858 g/t and palladium grade of 108 g/t or platinum grade of 304 g/t and palladium grade of 610 g
/l of waste catalyst B, current flow rate is 200 A, electrolyte temperature is 60°C, electrolyte solution hydrochloric acid concentration is 20 to 35%, starting capacity of waste catalyst is 9.0 kg, and amount of waste catalyst charged and discharged is 2 kg/l.
of platinum and palladium on the spent catalyst with a charging interval of 15 to 30 minutes/time. After discharging and recovering, the recovered platinum and palladium grade, the platinum and palladium grade of the undissolved residue at the end, and the electrolyte acid concentration were measured, and the results shown in Table 2 were obtained. Table 3 shows the results of calculating the elution rate in the electrolytic solution, the cleaning solution, and the recovered metal, and the undissolved rate in the same manner as in Example 1 above.

実施例1〜4の結果から、溶出した金属の約15表  
  2 表    3 %が洗浄液中に回収され、残りの85%が陰極室内に沈
澱し又は電解液中に残存していることが分かる。
From the results of Examples 1 to 4, approximately 15 tables of eluted metals were found.
It can be seen that 2% was recovered in the cleaning solution and the remaining 85% precipitated in the cathode chamber or remained in the electrolyte.

(実施例5) 実施例4の廃触媒A 9.Okgを、上記各実施例の電
解槽に固定床状態で収容し実施例4と同様の条件で廃触
媒を補充することなく3.2時間通電し、電解液中の白
金及びパラジウム濃度と電解液の酸濃度を測定した。続
いて各2kgの廃触媒を所定時間間隔で供給しかつ同量
の処理済触媒を電解槽から抜き出し同様にして電解液中
の白金及びパラジウム濃度と電解液の酸濃度を5.5時
間測定した。
(Example 5) Spent catalyst A of Example 4 9. Okg was placed in the electrolytic cell of each of the above examples in a fixed bed state, and electricity was applied for 3.2 hours without replenishing the waste catalyst under the same conditions as in Example 4, and the platinum and palladium concentrations in the electrolyte and the electrolyte were The acid concentration was measured. Subsequently, 2 kg of each waste catalyst was supplied at predetermined time intervals, and the same amount of treated catalyst was extracted from the electrolytic cell, and the platinum and palladium concentrations in the electrolyte and the acid concentration in the electrolyte were measured for 5.5 hours in the same manner. .

次いで装入する触媒を実施例4の触媒Bに変更し同様に
1回に2kgずつ所定間隔で装入し同量を電解槽から抜
き出して電解液中の白金及びパラジウム濃度と電解液の
酸濃度を約6時間に亘って測定した。その結果を第2図
に示す。第2図中の上方の矢印は触媒装入時を示してい
る。
Next, the charged catalyst was changed to catalyst B of Example 4, and 2 kg was similarly charged at a predetermined interval at a time, and the same amount was taken out from the electrolytic cell to determine the platinum and palladium concentrations in the electrolyte and the acid concentration of the electrolyte. was measured over about 6 hours. The results are shown in FIG. The upper arrow in FIG. 2 indicates the time of catalyst charging.

(発明の効果) 本発明は、塩酸の電解により発生する含塩素塩酸による
担体上の金属類の溶出による金属イオンの形成を、該担
体を電解槽の陽極室に収容して該陽極室内で行い、前記
溶出金属イオンを含有する電解液を中性膜を通して陰極
室に透過させ、該陰極室内で前記金属イオンの還元を行
って対応する金属単体を陰極室内に沈澱させあるいは陰
極上に析出させて回収するようにしている。
(Effects of the Invention) The present invention is capable of forming metal ions by eluting metals on a carrier with chlorine-containing hydrochloric acid generated by electrolysis of hydrochloric acid, by storing the carrier in an anode chamber of an electrolytic cell. , permeate the electrolytic solution containing the eluted metal ions into the cathode chamber through a neutral membrane, reduce the metal ions in the cathode chamber, and precipitate the corresponding metal element in the cathode chamber or on the cathode. I'm trying to collect it.

従って本発明では、第1に単一の電解槽のみで担体上に
担持された金属類の溶出及び回収を行うことができ、王
水を使用したり溶出を電解槽外で行う従来の回収方法や
回収装置と比較して、遥かに少ない設備で担持金属の回
収を行うことができる。
Therefore, in the present invention, firstly, the metals supported on the carrier can be eluted and recovered using only a single electrolytic cell, which is different from conventional recovery methods that use aqua regia or elute outside the electrolytic cell. Supported metals can be recovered with far less equipment than conventional or recovery equipment.

第2に、薬剤による還元工程が不要であるためコスト減
を達成することができ、しかも後処理の必要な有害成分
が発生することがない。しかも該薬剤の不使用は、電解
前後の溶液の組成に変化を生じさせることがなく、陰極
液をそのまま陽極室に循環し続けて陽極液として使用す
ることが可能になる。
Second, cost reduction can be achieved because no chemical reduction step is required, and no harmful components that require post-treatment are generated. Moreover, since the chemical is not used, there is no change in the composition of the solution before and after electrolysis, and the catholyte can continue to be circulated as it is to the anode chamber and used as the anolyte.

第3に、本発明の一態様として陰極を炭素電極により構
成すると、陰極室内で還元され回収される金属単1体が
ほぼ選択的に沈澱し陰極上に電析しないため、該金属単
体の回収のために電解を停止゛し陰極から前記金属を剥
離する必要がなくなり連続操業が可能になるため、操業
効率が大幅に上昇する。
Thirdly, when the cathode is constituted by a carbon electrode as one aspect of the present invention, the single metal that is reduced and recovered in the cathode chamber is precipitated almost selectively and is not electrodeposited on the cathode, so that the single metal can be recovered. Since it is no longer necessary to stop electrolysis and peel off the metal from the cathode, continuous operation becomes possible, which greatly increases operational efficiency.

第4に、電解を使用するため、金属イオンが低濃度にな
っても還元反応が′m続し、はぼ定量的に金属イオンを
金属粒子として析出させることができる。
Fourth, since electrolysis is used, the reduction reaction continues even when the concentration of metal ions is low, making it possible to precipitate metal ions as metal particles almost quantitatively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる金属回収装置の一実施例を示
す概略縦断面図、第2図は、実施例5における白金及び
パラジウム濃度と電解液の酸濃度の経時変化を示すグラ
フである。 1・・・電解槽 2・・・液透過性中性膜3・・・陰極
室 4・・・陰極室 5・・・陽極 6・・・陰極 7・・・担体 8・・・循環ライン 9・・・フィルター 10・・・筒状体11・・・空気
バルブ 第ブ 図
FIG. 1 is a schematic vertical cross-sectional view showing one embodiment of a metal recovery device according to the present invention, and FIG. 2 is a graph showing changes over time in the platinum and palladium concentrations and the acid concentration of the electrolytic solution in Example 5. . 1... Electrolytic cell 2... Liquid permeable neutral membrane 3... Cathode chamber 4... Cathode chamber 5... Anode 6... Cathode 7... Carrier 8... Circulation line 9 ... Filter 10 ... Cylindrical body 11 ... Air valve No. 4

Claims (8)

【特許請求の範囲】[Claims] (1)液透過性中性膜により陽極室と陰極室に区画され
た電解槽の陽極室に金属及び/又は金属化合物が担持さ
れた担体を収容し、該陽極室に塩酸を含む電解液を供給
して塩素を電解的に発生させて前記金属及び/又は金属
化合物を前記電解液中に対応する金属イオンとして溶出
させ、該電解液を前記中性膜を通して前記陰極室に透過
させ、該陰極室において金属単体に還元し析出させるこ
とを含んで成る担体上に担持された金属の回収方法。
(1) A carrier carrying a metal and/or a metal compound is placed in the anode chamber of an electrolytic cell divided into an anode chamber and a cathode chamber by a liquid-permeable neutral membrane, and an electrolytic solution containing hydrochloric acid is placed in the anode chamber. chlorine is electrolytically generated to elute the metal and/or metal compound into the electrolyte as corresponding metal ions, the electrolyte is permeated through the neutral membrane into the cathode chamber, and the cathode is A method for recovering metals supported on a carrier, comprising reducing and precipitating metal elements in a chamber.
(2)陰極を炭素電極とし、還元された金属単体を陰極
室内に沈澱させるようにした特許請求の範囲第1項に記
載の回収方法。
(2) The recovery method according to claim 1, wherein the cathode is a carbon electrode, and the reduced metal element is precipitated in the cathode chamber.
(3)陰極電流密度を5A/dm^2以上として電解を
行うようにした特許請求の範囲第2項に記載の回収方法
(3) The recovery method according to claim 2, wherein electrolysis is performed at a cathode current density of 5 A/dm^2 or more.
(4)陰極室内に沈澱した金属単体を電解液とともに陰
極室から抜き出し、前記金属単体を分離した後、前記電
解液を陽極室へ循環させさるようにした特許請求の範囲
第2項又は第3項に記載の回収方法。
(4) The elemental metal precipitated in the cathode chamber is extracted from the cathode chamber along with the electrolyte, and after the elemental metal is separated, the electrolyte is circulated to the anode chamber. Collection method described in section.
(5)金属及び/又は金属化合物が担持された担体が収
容され、塩酸を含む電解液を電解することにより発生さ
せた塩素により前記金属及び/又は金属化合物を対応す
る金属イオンとして前記電解液中に溶出させるための陽
極室と、該電解液中の金属イオンを対応する金属単体に
還元し析出させるための陰極室と、電解槽を前記陽極室
及び陰極室に区画する液透過性中性膜と、前記陽極室中
の電解液を該中性膜を通して前記陰極室中へ透過させる
ための手段とを含んで成る担体上に担持された金属の回
収用装置。
(5) A carrier carrying a metal and/or metal compound is accommodated, and the metal and/or metal compound is converted into a corresponding metal ion in the electrolyte using chlorine generated by electrolyzing an electrolyte containing hydrochloric acid. an anode chamber for reducing and precipitating metal ions in the electrolytic solution into corresponding metal elements, and a liquid-permeable neutral membrane that partitions the electrolytic cell into the anode chamber and the cathode chamber. and means for permeating an electrolyte in the anode chamber through the neutral membrane into the cathode chamber.
(6)陰極室中へ電解液を透過させるための手段が、両
極室間の液圧差である特許請求の範囲第5項に記載の回
収用装置。
(6) The recovery device according to claim 5, wherein the means for permeating the electrolyte into the cathode chamber is a liquid pressure difference between the two electrode chambers.
(7)陰極室から電解液を抜き出すことにより液圧差を
生じさせるようにした特許請求の範囲第6項に記載の回
収用装置。
(7) The recovery device according to claim 6, wherein a liquid pressure difference is generated by extracting the electrolyte from the cathode chamber.
(8)陰極室から抜き出した電解液を陽極室に循環させ
るようにした特許請求の範囲第6項に記載の回収用装置
(8) The recovery device according to claim 6, wherein the electrolytic solution extracted from the cathode chamber is circulated to the anode chamber.
JP62319892A 1987-12-17 1987-12-17 Method and device for recovering metal supported on carrier Expired - Fee Related JP2520674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319892A JP2520674B2 (en) 1987-12-17 1987-12-17 Method and device for recovering metal supported on carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319892A JP2520674B2 (en) 1987-12-17 1987-12-17 Method and device for recovering metal supported on carrier

Publications (2)

Publication Number Publication Date
JPH01162789A true JPH01162789A (en) 1989-06-27
JP2520674B2 JP2520674B2 (en) 1996-07-31

Family

ID=18115397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319892A Expired - Fee Related JP2520674B2 (en) 1987-12-17 1987-12-17 Method and device for recovering metal supported on carrier

Country Status (1)

Country Link
JP (1) JP2520674B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502868A (en) * 2000-07-12 2004-01-29 インターナショナル リード ジンク リサーチ オーガナイゼーション,インコーポレーデット. Improvement of zinc-aluminum alloy film forming method by immersion in molten metal bath
JP2012087344A (en) * 2010-10-18 2012-05-10 Toshiba Corp Method and device for recovering rare metal
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst
JP2014173157A (en) * 2013-03-11 2014-09-22 Jx Nippon Mining & Metals Corp Recovery method of metal from powdery scrap
JP2015101741A (en) * 2013-11-21 2015-06-04 Jx日鉱日石金属株式会社 Method for recovering metal from scrap
JP2015190028A (en) * 2014-03-28 2015-11-02 Jx日鉱日石金属株式会社 Method for recovering metal from scrap
JP2017222933A (en) * 2017-09-27 2017-12-21 Jx金属株式会社 Method for recovery of metal from powdery scrap
JP2018003164A (en) * 2017-09-27 2018-01-11 Jx金属株式会社 Metal recovery method from scrap

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502868A (en) * 2000-07-12 2004-01-29 インターナショナル リード ジンク リサーチ オーガナイゼーション,インコーポレーデット. Improvement of zinc-aluminum alloy film forming method by immersion in molten metal bath
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst
JP2012087344A (en) * 2010-10-18 2012-05-10 Toshiba Corp Method and device for recovering rare metal
JP2014173157A (en) * 2013-03-11 2014-09-22 Jx Nippon Mining & Metals Corp Recovery method of metal from powdery scrap
JP2015101741A (en) * 2013-11-21 2015-06-04 Jx日鉱日石金属株式会社 Method for recovering metal from scrap
JP2015190028A (en) * 2014-03-28 2015-11-02 Jx日鉱日石金属株式会社 Method for recovering metal from scrap
JP2017222933A (en) * 2017-09-27 2017-12-21 Jx金属株式会社 Method for recovery of metal from powdery scrap
JP2018003164A (en) * 2017-09-27 2018-01-11 Jx金属株式会社 Metal recovery method from scrap

Also Published As

Publication number Publication date
JP2520674B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
EP0071443B1 (en) Device for waste water treatment
US4834850A (en) Efficient electrolytic precious metal recovery system
EP0221187B1 (en) Method of dissolving and recovering noble metals
EP0074167A1 (en) Metal contaminant removal
KR100858551B1 (en) A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
AU621543B2 (en) Electrochemical reactor for copper removal from barren solutions
JP2520674B2 (en) Method and device for recovering metal supported on carrier
GB2173215A (en) Process for recovering copper from an aqueous acidic solution thereof
CA2050201C (en) Electrogeneration of bromine and use thereof in recovery of precious metals and water treatment
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
US5225054A (en) Method for the recovery of cyanide from solutions
JP2005076103A (en) Method of treating plating waste liquid
EP0387907A1 (en) Method and apparatus for recovering silver from waste photographic processing solutions
KR100367709B1 (en) Recovery method of platinum group metals from waste water
JPS5919994B2 (en) Method for producing metal powder from dilute solution of metal
JPH11158681A (en) Treatment of selenium-containing water to be treated
JP2594802B2 (en) Electrolytic reduction method
JP2571591B2 (en) Precious metal recovery method
JP3991838B2 (en) Wastewater treatment method
JPH06510332A (en) Electrolysis device and method with porous stirring electrode
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JPH0413432B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees