JP2014173157A - Recovery method of metal from powdery scrap - Google Patents

Recovery method of metal from powdery scrap Download PDF

Info

Publication number
JP2014173157A
JP2014173157A JP2013048151A JP2013048151A JP2014173157A JP 2014173157 A JP2014173157 A JP 2014173157A JP 2013048151 A JP2013048151 A JP 2013048151A JP 2013048151 A JP2013048151 A JP 2013048151A JP 2014173157 A JP2014173157 A JP 2014173157A
Authority
JP
Japan
Prior art keywords
metal
scrap
powdery
electrolysis
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048151A
Other languages
Japanese (ja)
Other versions
JP6243614B2 (en
Inventor
Hisafumi Kawamura
寿文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013048151A priority Critical patent/JP6243614B2/en
Publication of JP2014173157A publication Critical patent/JP2014173157A/en
Application granted granted Critical
Publication of JP6243614B2 publication Critical patent/JP6243614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method of metal from powdery scrap capable of relaxing limitation of kinds of electrolytic electrode material and performing suspension electrolysis stably and continuously.SOLUTION: Provided is the recovery method of metal from powdery scrap including a process of performing electrolysis by suspension with an electrolyte including alcoholamine with respect to the scrap formed of powdery metal or powdery conductive metal oxide.

Description

本発明は、粉状スクラップからの金属の回収方法に関する。   The present invention relates to a method for recovering metal from powdery scrap.

スクラップからの金属回収は、通常、酸アルカリ等での湿式処理が用いられ、さらに湿式処理の中には懸濁電解を用いる手法がある。当該懸濁電解には、通常、アルカリ溶融塩等が用いられている。このような技術として、例えば、特許文献1に、金属酸化物粉末の電解還元による金属の製造方法であって、該金属酸化物粉末を塩化カルシウム等の溶融塩中に懸濁させ陰極表面で還元することを特徴とする製造方法が開示されている(特許文献1の請求項1、実施例等)。また、特許文献1に記載されているように、電解還元を行う温度は、500℃以上という非常に特殊な高温での電解条件が採用されている(特許文献1の段落0043等)。   For metal recovery from scrap, wet processing with an acid alkali or the like is usually used, and there is a technique using suspension electrolysis in wet processing. Usually, an alkali molten salt or the like is used for the suspension electrolysis. As such a technique, for example, Patent Document 1 discloses a method for producing a metal by electrolytic reduction of a metal oxide powder, wherein the metal oxide powder is suspended in a molten salt such as calcium chloride and reduced on the cathode surface. The manufacturing method characterized by doing is disclosed (Claim 1, Example, etc. of Patent Document 1). Further, as described in Patent Document 1, a very special high temperature electrolysis condition of 500 ° C. or higher is adopted as the temperature for performing the electrolytic reduction (paragraph 0043 of Patent Document 1).

特開2007−16293号公報JP 2007-16293 A

しかしながら、従来の粉状スクラップからの金属の回収方法によれば、電解液が高温状態で不安定になる、電解電極部材が電解液の作用により腐食する、電解により生成した金属水酸化物や金属酸化物が溶解できずに析出してしまい、安定的に継続して電気分解を行うことが困難となるという問題が生じている。   However, according to the conventional method for recovering metal from powdered scrap, the electrolytic solution becomes unstable at high temperature, the electrolytic electrode member is corroded by the action of the electrolytic solution, the metal hydroxide or metal generated by electrolysis There is a problem that the oxide cannot be dissolved but is deposited, making it difficult to perform electrolysis stably and continuously.

そこで、本発明は、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することを課題とする。   Then, this invention makes it a subject to provide the recovery method of the metal from the powdery scrap in which the restriction | limiting of the kind of electrolytic electrode material is eased, and suspension electrolysis can be performed stably continuously. To do.

本発明者は、上記課題を解決するために鋭意検討し、懸濁電解の電解液として、アルコールアミンに着目した。アルコールアミンは、沸点が高く高温で安定である等の種々の懸濁電解に有用な特性を有している。そのため、アルコールアミンを懸濁電解液として用いることで、上記課題を解決することが可能となる。   The present inventor diligently studied to solve the above-described problems, and focused attention on alcoholamine as an electrolytic solution for suspension electrolysis. Alcoholamines have useful properties for various types of suspension electrolysis, such as high boiling point and stable at high temperatures. Therefore, the above problem can be solved by using alcoholamine as the suspension electrolyte.

以上の知見を基礎として完成した本発明は一側面において、粉状の金属又は粉状の導電性金属酸化物からなるスクラップに対して、アルコールアミンを含有する電解液で懸濁して電気分解を行う工程を含む粉状スクラップからの金属の回収方法である。   In one aspect, the present invention completed on the basis of the above knowledge performs electrolysis by suspending a scrap made of powdered metal or powdered conductive metal oxide with an electrolyte containing alcohol amine. A method for recovering metal from powdery scrap including a process.

本発明に係る粉状スクラップからの金属の回収方法は一実施形態において、前記アルコールアミンが、モノエタノールアミン及び/又はトリエタノールアミンである。   In one embodiment of the method for recovering metal from powdered scrap according to the present invention, the alcohol amine is monoethanolamine and / or triethanolamine.

本発明に係る粉状スクラップからの金属の回収方法は別の一実施形態において、前記電解液中のアルコールアミンの濃度が1〜40mass%である。   In another embodiment of the method for recovering metal from powdery scraps according to the present invention, the concentration of alcoholamine in the electrolytic solution is 1 to 40 mass%.

本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記電解液の温度を50℃以上に調整して電気分解を行う。   In still another embodiment of the method for recovering metal from powdered scrap according to the present invention, the temperature of the electrolytic solution is adjusted to 50 ° C. or higher for electrolysis.

本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記電解液のpHが7超である。   In another embodiment of the method for recovering metal from powdered scrap according to the present invention, the pH of the electrolytic solution is more than 7.

本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、電気分解で用いる電解電極材が、ステンレスで形成されている。   In another embodiment of the method for recovering metal from powdered scrap according to the present invention, the electrolytic electrode material used for electrolysis is formed of stainless steel.

本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記粉状スクラップが、Li、Ni、Co及びMnからなる群から選択された1種又は2種以上を含むリチウムイオン2次電池用正極材である。   In still another embodiment of the method for recovering metal from powdered scrap according to the present invention, the powdered scrap contains one or more selected from the group consisting of Li, Ni, Co, and Mn. It is a positive electrode material for a lithium ion secondary battery.

本発明では、アルコールアミンを電解液として用いることで粉状スクラップの懸濁電解を行う。アルコールアミンは、沸点が高く高温で安定である。また、電解電極部材に対して腐食作用も無い。さらに、アルコールアミンは、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶解させて懸濁させることができる。このため、本発明によれば、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することができる。   In the present invention, suspension electrolysis of powdery scrap is performed by using alcoholamine as an electrolytic solution. Alcoholamine has a high boiling point and is stable at high temperatures. Further, there is no corrosive action on the electrolytic electrode member. Furthermore, the alcohol amine can be suspended by dissolving the metal hydroxide or metal oxide produced by suspension electrolysis well. For this reason, according to the present invention, there is provided a method for recovering metal from powdery scrap, in which restrictions on the type of electrolytic electrode material are alleviated and suspension electrolysis can be performed stably and continuously. Can do.

以下に、本発明に係る粉状スクラップからの金属の回収方法の実施形態を詳細に説明する。   Below, embodiment of the recovery method of the metal from the powdery scrap which concerns on this invention is described in detail.

本発明において、粉状の金属又は粉状の導電性金属酸化物からなるスクラップは、半導体及び電子部品、液晶ディスプレイ、工具コーティング、ガラスコーディング、光ディスク、ハードディスク、太陽電池、リチウムイオン2次電池用正極材等に用いるスパッタリングターゲット材を粉砕して作製した粉状スクラップが挙げられる。このため、これらの構成材料に含まれている金属(例えば、Ag、Au、Co、Cr、Cu、Ga、Ge、In、Mn、Mo、Ni、Pd、Pt、Rh、Ru、Sn、Ta、Ti、W、それらの合金、それらの導電性酸化物等)が、本発明に係る回収対象となる金属である。具体的な金属の種類を、各種用途とともに以下に列挙する:
・半導体及び電子部品:Ag, Al, Au, AuAs, AuSb, AuSi, AuSn, Al2O3, Cr, Cu, CuCr, CrNiAl, CrSi, GeS2, Hf, Ir, Mo, Ni, NiV, OsRu, Pd, Pt, PtNi, Rh, Ru, Si, Ta, TaAl, Ti, WTi, WTiなど
・液晶ディスプレイ:Ag, Ag合金, Al, AlNd, Cr, InSn, ITO, Mo, MoW, Si, SiO2, Ta, Ti, W, ZnAl, ZAO(ZnO+Al2O3)など
・工具コーティング:Cr, CrAl, Ti, TiAlなど
・ガラスコーティング:Ag, Ag合金, Al, Bi, Cr, InSn, ITO, Nb, Nb2O5, NiCr, Si, SiO2, Sn, Ta2O5, Ti, W, ZAO(ZnO+Al2O3), Znなど
・光ディスク:Al2O3, C, Co合金, Cr, Fe合金, Ta, Tb合金, Te合金, Pt, Pt合金など
・ハードディスク:Al2O3, C, CoCr, CoCrTa, CoCrPt, Cr, Cr合金, Cr酸化物, MgO, Mo, NiAl, NiSi, SiC, Ta, Ta2O5, Ti酸化物, V, Wなど
・太陽電池:Ag, Al, CIG(Cu+In+Ga), CuGa, ITO, Mo, Ni/NiV, Sn, ZAO(ZnO+Al2O3)など
・リチウムイオン2次電池用正極材:正極材としてLiCoO2、LiNiO2、LiMn2O4、Li(CoxNiyMnz)O2 〔x+y+z=1〕など、金属としてNi、Co、Mnなど、合金としてNiCoなど
In the present invention, scraps made of powdered metal or powdered conductive metal oxide are semiconductors and electronic parts, liquid crystal displays, tool coatings, glass coatings, optical disks, hard disks, solar cells, positive electrodes for lithium ion secondary batteries. Examples thereof include powdery scrap produced by pulverizing a sputtering target material used for a material. For this reason, metals contained in these constituent materials (for example, Ag, Au, Co, Cr, Cu, Ga, Ge, In, Mn, Mo, Ni, Pd, Pt, Rh, Ru, Sn, Ta, Ti, W, alloys thereof, conductive oxides thereof, and the like) are metals to be collected according to the present invention. Specific metal types are listed below along with various applications:
, Semiconductor and electronic components: Ag, Al, Au, AuAs , AuSb, AuSi, AuSn, Al 2 O 3, Cr, Cu, CuCr, CrNiAl, CrSi, GeS 2, Hf, Ir, Mo, Ni, NiV, OsRu, Pd, Pt, PtNi, Rh, Ru, Si, Ta, TaAl, Ti, WTi, WTi, etc. ・ Liquid crystal display: Ag, Ag alloy, Al, AlNd, Cr, InSn, ITO, Mo, MoW, Si, SiO 2 , Ta, Ti, W, ZnAl, ZAO (ZnO + Al 2 O 3 ), etc. Tool coating: Cr, CrAl, Ti, TiAl, etc. Glass coating: Ag, Ag alloy, Al, Bi, Cr, InSn, ITO, Nb , Nb 2 O 5 , NiCr, Si, SiO 2 , Sn, Ta 2 O 5 , Ti, W, ZAO (ZnO + Al 2 O 3 ), Zn, etc. Optical disc: Al 2 O 3 , C, Co alloy, Cr , Fe alloy, Ta, Tb alloy, Te alloy, Pt, Pt alloy etc. Hard disk: Al 2 O 3 , C, CoCr, CoCrTa, CoCrPt, Cr, Cr alloy, Cr oxide, MgO, Mo, NiAl, NiSi, SiC, Ta, Ta 2 O 5 , Ti oxide, V, W, etc. Solar cells: Ag, Al, CIG (Cu + In + Ga), CuGa, ITO, Mo, Ni / NiV, Sn, ZAO (ZnO + Al 2 O 3 ), etc. Positive electrode materials for lithium ion secondary batteries: LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li (CoxNiyMn) as positive electrode materials z) Ni, Co, Mn, etc. as metals, NiCo, etc. as alloys, such as O 2 [x + y + z = 1]

本発明に係る粉状スクラップからの金属の回収方法は、まず、処理対象となる粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を準備する。当該原料混合物としては、金属又は導電性金属酸化物のスクラップを粉砕した、いわゆるリサイクル材等が挙げられる。   In the method for recovering metal from powdered scrap according to the present invention, first, a raw material mixture containing powdered metal or powdered conductive metal oxide to be treated is prepared. Examples of the raw material mixture include so-called recycled materials obtained by pulverizing scraps of metals or conductive metal oxides.

次に、アノード及びカソード、電解液を備えた電解槽を準備し、電解液に上記粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を投入して懸濁させて、電解液を攪拌しながら電気分解を行う。電気分解を行うと、電解液中で懸濁している粉状の金属又は粉状の導電性金属酸化物が、カソードから供給された電子により還元されてカソード表面に析出する。次に、カソード表面に析出した金属を回収する。本発明では電解液にアルコールアミンを用いているため、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶溶解させて懸濁させることができる。このため、安定的に継続して懸濁電解を行うことができる。   Next, an anode and a cathode and an electrolytic cell equipped with an electrolytic solution are prepared. The raw material mixture containing the powdered metal or the powdered conductive metal oxide is put into the electrolytic solution to be suspended, and electrolysis is performed. Electrolysis is performed while stirring the liquid. When electrolysis is performed, powdered metal or powdered conductive metal oxide suspended in the electrolyte is reduced by electrons supplied from the cathode and deposited on the cathode surface. Next, the metal deposited on the cathode surface is collected. In this invention, since alcohol amine is used for electrolyte solution, the metal hydroxide and metal oxide which were produced | generated by suspension electrolysis can be dissolved and dissolved satisfactorily. For this reason, suspension electrolysis can be performed stably continuously.

本発明で用いる電解液が電解電極部材に対して腐食作用も無いアルコールアミンであるため、電解槽のアノード及びカソードとしては、特に限定されず、ステンレス、Pbアノード、その他、通常の電極材に用いられる材料を用いることができる。   Since the electrolytic solution used in the present invention is an alcohol amine that has no corrosive action on the electrolytic electrode member, the anode and cathode of the electrolytic cell are not particularly limited, and are used for stainless steel, Pb anode, and other ordinary electrode materials. Can be used.

本発明において、電解液としてアルコールアミンを用いる。アルコールアミンとしては、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、アミノプロパノール、メチルエタノールアミン等が挙げられる。特に、モノエタノールアミン、トリエタノールアミンは安価である点で好ましい。   In the present invention, alcohol amine is used as the electrolytic solution. Examples of the alcohol amine include triethanolamine, diethanolamine, monoethanolamine, aminopropanol, and methylethanolamine. In particular, monoethanolamine and triethanolamine are preferable in that they are inexpensive.

電解液中のアルコールアミンの濃度は、1〜40mass%であるのが好ましい。電解液中のアルコールアミンの濃度が1mass%未満であると、導電性が低くなり過ぎて電気分解が不安定になる。電解液中のアルコールアミンの濃度が40mass%超であると、電解液の種類によっては水への溶解度を超えてしまうし、必要以上に濃度が高くなり、コストの面で不利となる。電解液中のアルコールアミンの濃度は、より好ましくは2〜10mass%である。   The concentration of alcohol amine in the electrolytic solution is preferably 1 to 40 mass%. If the concentration of alcoholamine in the electrolytic solution is less than 1 mass%, the conductivity becomes too low and electrolysis becomes unstable. If the concentration of alcoholamine in the electrolytic solution exceeds 40 mass%, the solubility in water may be exceeded depending on the type of the electrolytic solution, and the concentration becomes higher than necessary, which is disadvantageous in terms of cost. The concentration of alcoholamine in the electrolytic solution is more preferably 2 to 10 mass%.

電気分解の際の電解液の温度は室温でもかまわないが、高温の方が良く、特に50℃以上に調整するのが好ましい。高温である方が電解液の導電性が大きくなるためである。   The temperature of the electrolytic solution at the time of electrolysis may be room temperature, but higher temperature is better, and it is particularly preferable to adjust to 50 ° C. or higher. This is because the conductivity of the electrolytic solution increases at higher temperatures.

電解液のpHは、電解液がアルカリ性(pH=7超)となるように調整され、好ましくは9以上、より好ましくは10以上である。pHが9未満であると、生成した金属又は合金に係るイオンが溶解していられなくなり、化合物を形成して析出し、結果として電解溶解を阻害してしまう可能性がある。   The pH of the electrolytic solution is adjusted so that the electrolytic solution is alkaline (pH = greater than 7), and is preferably 9 or more, more preferably 10 or more. When the pH is less than 9, ions relating to the generated metal or alloy cannot be dissolved, and a compound is formed and deposited, and as a result, electrolytic dissolution may be hindered.

電解液中に分散させる粉状の金属又は粉状の導電性金属酸化物の粒径は、0.01〜1000μmが好ましく、0.1〜100μmがより好ましく、0.1〜10μmがさらに好ましい。粉状の金属又は粉状の導電性金属酸化物の粒径が0.01μm未満であると体積が大きくなって取り扱いが困難となるおそれがあり、粒径が1000μm超であると電解液に懸濁し難くなるおそれがある。   The particle size of the powdered metal or powdered conductive metal oxide dispersed in the electrolytic solution is preferably 0.01 to 1000 μm, more preferably 0.1 to 100 μm, and still more preferably 0.1 to 10 μm. If the particle size of the powdered metal or powdered conductive metal oxide is less than 0.01 μm, the volume may increase and handling may be difficult, and if the particle size exceeds 1000 μm, the electrolyte solution may be suspended. There is a risk of becoming cloudy.

本発明では、上述のように、アルコールアミンを電解液として用いることで粉状スクラップの懸濁電解を行う。アルコールアミンは、沸点が高く高温で安定である。また、電解電極部材に対して腐食作用も無い。さらに、アルコールアミンは、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶解させて懸濁させることができる。明確な理由は不明であるが、おそらく溶解した金属がアルコールアミンと配位することで、安定化することが起因していると考えられる。このため、本発明によれば、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することができる。   In the present invention, as described above, suspension electrolysis of powdery scrap is performed by using alcoholamine as an electrolytic solution. Alcoholamine has a high boiling point and is stable at high temperatures. Further, there is no corrosive action on the electrolytic electrode member. Furthermore, the alcohol amine can be suspended by dissolving the metal hydroxide or metal oxide produced by suspension electrolysis well. The clear reason is unknown, but it is probably due to the stabilization of the dissolved metal by coordination with the alcohol amine. For this reason, according to the present invention, there is provided a method for recovering metal from powdery scrap, in which restrictions on the type of electrolytic electrode material are alleviated and suspension electrolysis can be performed stably and continuously. Can do.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(実施例1)
Li、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉をアルコールアミン20mass%のpH12の水溶液に懸濁させた。その懸濁液を電解液として、両極にSUS電極を用いて、設定電圧10V、電流密度を5A/dm2とし、1Aの定電流で60℃で電解を行った。10時間後、カソード側の電極表面に、Ni及びCoの合金が析出し、Li及びMnは電解液に溶解した。電流効率は30%であった。析出した合金を回収して品位を測定したところ、4Nと高かった。
Example 1
A scrap powder of a positive electrode material for a lithium ion secondary battery made of oxides of Li, Ni, Co, and Mn was suspended in an aqueous solution of 20% alcoholamine pH 12 by pH. Electrolysis was performed at 60 ° C. with a constant current of 1 A, using the suspension as an electrolytic solution, using SUS electrodes on both electrodes, setting voltage 10 V, current density 5 A / dm 2 . After 10 hours, an alloy of Ni and Co was deposited on the electrode surface on the cathode side, and Li and Mn were dissolved in the electrolytic solution. The current efficiency was 30%. The deposited alloy was recovered and the quality was measured.

(実施例2)
Li、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉をアルコールアミン5mass%のpH11の水溶液に懸濁させた。その懸濁液を電解液として、両極にSUS電極を用いて、設定電圧10V、電流密度を5A/dm2とし、1Aの定電流で60℃で電解を行った。10時間後、カソード側の電極表面に、Ni及びCoの合金が析出し、Li及びMnは電解液に溶解した。電流効率は25%であった。析出した合金を回収して品位を測定したところ、4Nと高かった。
(Example 2)
A scrap powder of a positive electrode material for a lithium ion secondary battery made of oxides of Li, Ni, Co, and Mn was suspended in an aqueous solution of alcohol amine 5 mass% and pH 11. Electrolysis was performed at 60 ° C. with a constant current of 1 A, using the suspension as an electrolytic solution, using SUS electrodes on both electrodes, setting voltage 10 V, current density 5 A / dm 2 . After 10 hours, an alloy of Ni and Co was deposited on the electrode surface on the cathode side, and Li and Mn were dissolved in the electrolytic solution. The current efficiency was 25%. The deposited alloy was recovered and the quality was measured.

(比較例1)
亜硫酸ナトリウム10mass%の水溶液に懸濁させた以外は実施例1と同様の条件にてLi、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉に対して電気分解を行ったが、電解溶解しなかった。
(Comparative Example 1)
Electrolysis of scrap powder of a positive electrode material for a lithium ion secondary battery composed of oxides of Li, Ni, Co, and Mn under the same conditions as in Example 1 except that it was suspended in an aqueous solution of 10% sodium sulfite. However, electrolytic dissolution did not occur.

Claims (7)

粉状の金属又は粉状の導電性金属酸化物からなるスクラップに対して、アルコールアミンを含有する電解液で懸濁して電気分解を行う工程を含む粉状スクラップからの金属の回収方法。   A method for recovering metal from powdered scrap, comprising a step of electrolyzing a powdered metal or powdered conductive metal oxide suspended in an electrolyte containing alcohol amine. 前記アルコールアミンが、モノエタノールアミン及び/又はトリエタノールアミンである請求項1に記載の粉状スクラップからの金属の回収方法。   The method for recovering a metal from powdery scrap according to claim 1, wherein the alcohol amine is monoethanolamine and / or triethanolamine. 前記電解液中のアルコールアミンの濃度が1〜40mass%である請求項1又は2に記載の粉状スクラップからの金属の回収方法。   The method for recovering metal from powdery scrap according to claim 1 or 2, wherein the concentration of alcoholamine in the electrolytic solution is 1 to 40 mass%. 前記電解液の温度を50℃以上に調整して電気分解を行う請求項1〜3のいずれかに記載の粉状スクラップからの金属の回収方法。   The method for recovering metal from powdery scrap according to any one of claims 1 to 3, wherein electrolysis is performed by adjusting the temperature of the electrolytic solution to 50 ° C or higher. 前記電解液のpHが7超である請求項1〜4のいずれかに記載の粉状スクラップからの金属の回収方法。   The method for recovering metal from powdery scrap according to any one of claims 1 to 4, wherein the pH of the electrolytic solution is more than 7. 電気分解で用いる電解電極材が、ステンレスで形成されている請求項1〜5のいずれかに記載の粉状スクラップからの金属の回収方法。   The method for recovering metal from powdered scrap according to any one of claims 1 to 5, wherein the electrolytic electrode material used in electrolysis is formed of stainless steel. 前記粉状スクラップが、Li、Ni、Co及びMnからなる群から選択された1種又は2種以上を含むリチウムイオン2次電池用正極材である請求項1〜6のいずれかに記載の粉状スクラップからの金属の回収方法。   The powder according to any one of claims 1 to 6, wherein the powdery scrap is a positive electrode material for a lithium ion secondary battery containing one or more selected from the group consisting of Li, Ni, Co and Mn. To recover metal from scrap metal
JP2013048151A 2013-03-11 2013-03-11 Method for recovering metal from powdered scrap Active JP6243614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048151A JP6243614B2 (en) 2013-03-11 2013-03-11 Method for recovering metal from powdered scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048151A JP6243614B2 (en) 2013-03-11 2013-03-11 Method for recovering metal from powdered scrap

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017186996A Division JP6419282B2 (en) 2017-09-27 2017-09-27 Method for recovering metal from powdered scrap

Publications (2)

Publication Number Publication Date
JP2014173157A true JP2014173157A (en) 2014-09-22
JP6243614B2 JP6243614B2 (en) 2017-12-06

Family

ID=51694710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048151A Active JP6243614B2 (en) 2013-03-11 2013-03-11 Method for recovering metal from powdered scrap

Country Status (1)

Country Link
JP (1) JP6243614B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164957A (en) * 2015-03-08 2016-09-08 国立大学法人 千葉大学 Capacitor and method of manufacturing the same
WO2016159194A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Recovery method for valuable material including tungsten
JPWO2016158878A1 (en) * 2015-03-31 2018-02-01 Jx金属株式会社 Method for producing tungsten carbide
JPWO2016158877A1 (en) * 2015-03-31 2018-02-01 Jx金属株式会社 Method for producing tungsten
JP2020198320A (en) * 2017-05-08 2020-12-10 日本重化学工業株式会社 Lithium ion battery recycle processing method
JP7377491B2 (en) 2020-01-08 2023-11-10 日本重化学工業株式会社 Treatment method for positive electrode of non-aqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395804A (en) * 1977-02-01 1978-08-22 Nippon Tungsten Separating and recovering of valuable metal
JPS5418418A (en) * 1977-07-07 1979-02-10 Council Scient Ind Res Recovery of zinc from zinc containing material
JPH01162789A (en) * 1987-12-17 1989-06-27 Kamioka Kogyo Kk Method and device for recovering metal deposited on carrier
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2013036111A (en) * 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of recovering tungsten
JP2014070261A (en) * 2012-09-28 2014-04-21 Jx Nippon Mining & Metals Corp Method for recovering transition metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395804A (en) * 1977-02-01 1978-08-22 Nippon Tungsten Separating and recovering of valuable metal
JPS5418418A (en) * 1977-07-07 1979-02-10 Council Scient Ind Res Recovery of zinc from zinc containing material
JPH01162789A (en) * 1987-12-17 1989-06-27 Kamioka Kogyo Kk Method and device for recovering metal deposited on carrier
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2013036111A (en) * 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of recovering tungsten
JP2014070261A (en) * 2012-09-28 2014-04-21 Jx Nippon Mining & Metals Corp Method for recovering transition metal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164957A (en) * 2015-03-08 2016-09-08 国立大学法人 千葉大学 Capacitor and method of manufacturing the same
WO2016159194A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Recovery method for valuable material including tungsten
JP2016191113A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for recovering valuable material including tungsten
KR20170127551A (en) * 2015-03-31 2017-11-21 제이엑스금속주식회사 Method for recovering valuable materials including tungsten
CN107429412A (en) * 2015-03-31 2017-12-01 捷客斯金属株式会社 The recovery method of the utility of tungstenic
JPWO2016158878A1 (en) * 2015-03-31 2018-02-01 Jx金属株式会社 Method for producing tungsten carbide
JPWO2016158877A1 (en) * 2015-03-31 2018-02-01 Jx金属株式会社 Method for producing tungsten
EP3279345A4 (en) * 2015-03-31 2018-10-17 JX Nippon Mining & Metals Corporation Tungsten production method
KR102011588B1 (en) * 2015-03-31 2019-08-16 제이엑스금속주식회사 Recovery method of valuables containing tungsten
US10422022B2 (en) 2015-03-31 2019-09-24 Jx Nippon Mining & Metals Corporation Method for producing tungsten
US10538849B2 (en) 2015-03-31 2020-01-21 Jx Nippon Mining & Metals Corporation Method for recovering at least one valuable containing tungsten
JP2020198320A (en) * 2017-05-08 2020-12-10 日本重化学工業株式会社 Lithium ion battery recycle processing method
JP7120578B2 (en) 2017-05-08 2022-08-17 日本重化学工業株式会社 Method for recycling lithium-ion batteries
JP7377491B2 (en) 2020-01-08 2023-11-10 日本重化学工業株式会社 Treatment method for positive electrode of non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6243614B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6243614B2 (en) Method for recovering metal from powdered scrap
JP4745400B2 (en) Recovery method of valuable metals from ITO scrap
JP5043029B2 (en) Recovery method of valuable metals from ITO scrap
TW200946691A (en) Method of recovering valuable metals from izo scrap
WO2017215283A1 (en) Method for recycling lithium in lithium iron phosphate by means of electrochemical process
TW200846503A (en) Methods of recovering valuable metal from scrap containing electrically conductive oxide
TW202028539A (en) Battery recycling with electrolysis of the leach to remove copper impurities
Joseph et al. A study of graphite as anode in the electro-deoxidation of solid UO2 in LiCl-Li2O melt
WO2008053619A1 (en) Method for collection of valuable metal from ito scrap
JPWO2014112198A1 (en) Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture
JP6100525B2 (en) Method for recovering metal or alloy from scrap of high purity metal or alloy
JP2020056093A (en) Method of producing sulfuric acid solution and electrolytic cell used in the same
JP6419282B2 (en) Method for recovering metal from powdered scrap
KR102211986B1 (en) Method for recovering metal from scrap
JP5972907B2 (en) Method for producing gallium hydroxide and method for producing gallium oxide powder
JP2011208216A (en) Method of recovering indium and tin
JP6228879B2 (en) Metal recovery from scrap
Liu et al. Preparation and electrochemical performance of the stainless steel/α-PbO2-ZrO2/β-PbO2-ZrO2-CNT composite anode
CN106574384B (en) The method for manufacturing titanium using strike
JP2018003164A (en) Metal recovery method from scrap
CN102560562A (en) Manufacturing method and application method of nickel-based intermetallic compound inert anode
CN111979563A (en) Electrochemical recycling method of indium gallium zinc oxide target material
JP6222067B2 (en) Method for regenerating anode, method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
CN105220182A (en) A kind of method preparing porous titanium valve
CN111349948A (en) Electrochemical method for recovering indium-gallium-zinc alloy from indium-gallium-zinc oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6243614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250